More stories

  • in

    TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature

    Lovegrove, B. G. A phenology of the evolution of endothermy in birds and mammals. Biol. Rev. 92, 1213–1240 (2017).
    Google Scholar 
    Cuthill, I. C. et al. The biology of color. Science 357, 1–7 (2017).
    Google Scholar 
    Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160345 (2017).
    Google Scholar 
    Smith, K. R. et al. Color change for thermoregulation versus camouflage in free-ranging lizards. Am. Nat. 188, 668–678 (2016).
    Google Scholar 
    Rudh, A. & Qvarnström, A. Adaptive colouration in amphibians. Semin. Cell Dev. Biol. 24, 553–561 (2013).
    Google Scholar 
    Geen, M. R. S. & Johnston, G. R. Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard, Tiliqua scincoides. J. Therm. Biol. 43, 54–60 (2014).
    Google Scholar 
    Tattersall, G. J., Eterovick, P. C. & de Andrade, D. V. Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956). J. Exp. Biol. 209, 1185–1196 (2006).
    Google Scholar 
    Tattersall, G. J., Hillman, S. S., Drewes, R. C. & Sokol, O. M. The thermogenesis of digestion in rattlesnakes. J. Exp. Biol. 207, 579–585 (2004).
    Google Scholar 
    Seebacher, F. & Murray, S. A. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles. PLoS One 2, e281, 1–7 (2007).Forget-Klein, É. & Green, D. M. Toads use the subsurface thermal gradient for temperature regulation underground. J. Therm. Biol. 99, 1–9 (2021).
    Google Scholar 
    Kiefer, M. C., Van Sluys, M. & Rocha, C. F. D. Thermoregulatory behaviour in Tropidurus torquatus (Squamata, Tropiduridae) from Brazilian coastal populations: an estimate of passive and active thermoregulation in lizards. Acta Zool. 88, 81–87 (2007).
    Google Scholar 
    Spencer, K. et al. Growth at cold temperature increases the number of motor neurons to optimize locomotor function. Curr. Biol. 29, 1787–1799.e5 (2019).CAS 

    Google Scholar 
    Herrel, A. & Bonneaud, C. Temperature dependence of locomotor performance in the tropical clawed frog, Xenopus tropicalis. J. Exp. Biol. 215, 2465–2470 (2012).
    Google Scholar 
    Casterlin, M. E. & Reynolds, W. W. Diel activity and thermoregulatory behavior of a fully aquatic frog: Xenopus laevis. Hydrobiologia 75, 189–191 (1980).
    Google Scholar 
    Guo, K. et al. The thermal dependence and molecular basis of physiological color change in Takydromus septentrionalis (Lacertidae). Biol. Open 10, 1–9 (2021).
    Google Scholar 
    De Velasco, J. B. & Tattersall, G. J. The influence of hypoxia on the thermal sensitivity of skin colouration in the bearded dragon, Pogona vitticeps. J. Comp. Physiol. B. 178, 867–875 (2008).CAS 

    Google Scholar 
    Stuart-Fox, D. & Moussalli, A. Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 463–470 (2009).
    Google Scholar 
    Sanabria, E. A., Vaira, M., Quiroga, L. B., Akmentins, M. S. & Pereyra, L. C. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae). J. Therm. Biol. 41, 1–5 (2014).
    Google Scholar 
    Clusella-Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal benefits of melanism in cordylid lizards: a theoretical and field test. Ecology 90, 2297–2312 (2009).
    Google Scholar 
    Duarte, R. C., Flores, A. A. V. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos. Trans. R. Soc. B: Biol. Sci. 372, 1–7 (2017).Bertolesi, G. E. & McFarlane, S. Seeing the light to change colour: an evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res. 31, 354–373 (2018).CAS 

    Google Scholar 
    Bertolesi, G. E. et al. The regulation of skin pigmentation in response to environmental light by pineal type II opsins and skin melanophore melatonin receptors. J. Photochem. Photobiol. B Biol. 212, 112024 (2020).CAS 

    Google Scholar 
    Bagnara, J. T. Pineal regulation of the body lightening reaction in amphibian larvae. Sci. (80-.). 132, 1481–1483 (1960).CAS 

    Google Scholar 
    Bertolesi, G. E., Song, Y. N., Atkinson-Leadbeater, K., Yang, J.-L. J. & McFarlane, S. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation. Pigment Cell Melanoma Res. 30, 413–423 (2017).CAS 

    Google Scholar 
    Wang, H. & Siemens, J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temp. (Austin, Tex.) 2, 178–187 (2015).
    Google Scholar 
    Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflug. Arch. Eur. J. Physiol. 470, 745–759 (2018).CAS 

    Google Scholar 
    Kashio, M. Thermosensation involving thermo-TRPs. Mol. Cell. Endocrinol. 520, 1–8 (2021).
    Google Scholar 
    Señarís, R., Ordás, P., Reimúndez, A. & Viana, F. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflug. Arch. 470, 761–777 (2018).
    Google Scholar 
    Guo, H., Carlson, J. A. & Slominski, A. Role of TRPM in melanocytes and melanoma. Exp. Dermatol. 21, 650–654 (2012).CAS 

    Google Scholar 
    Kadowaki, T. Evolutionary dynamics of metazoan TRP channels. Pflug. Arch. 467, 2043–2053 (2015).CAS 

    Google Scholar 
    Saito, S. & Tominaga, M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temp. (Austin, Tex.) 4, 141–152 (2017).
    Google Scholar 
    Saito, S. et al. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J. Biol. Chem. 287, 30743–30754 (2012).CAS 

    Google Scholar 
    Saito, S. et al. Evolution of heat sensors drove shifts in thermosensation between xenopus species adapted to different thermal niches. J. Biol. Chem. 291, 11446–11459 (2016).CAS 

    Google Scholar 
    Gracheva, E. O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010).CAS 

    Google Scholar 
    Laursen, W. J., Anderson, E. O., Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. Species-specific temperature sensitivity of TRPA1. Temp. (Austin, Tex.) 2, 214–226 (2015).
    Google Scholar 
    Bertolesi, G. E., Hehr, C. L. & McFarlane, S. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland. Pigment Cell Melanoma Res. 28, 559–571 (2015).CAS 

    Google Scholar 
    Bagnara, J. T. The pineal and the body lightening reaction of larval amphibians. Gen. Comp. Endocrinol. 3, 86–100 (1963).CAS 

    Google Scholar 
    Nisembaum, L. et al. In the heat of the night: thermo-TRPV channels in the salmonid pineal photoreceptors and modulation of melatonin secretion. Endocrinology 156, 4629–4638 (2015).CAS 

    Google Scholar 
    Schartl, M. et al. What is a vertebrate pigment cell? Pigment Cell Melanoma Res. 29, 8–14 (2016).
    Google Scholar 
    Slominski, A. Cooling skin cancer: menthol inhibits melanoma growth. Focus on ‘TRPM8 activation suppresses cellular viability in human melanoma’. Am. J. Physiol. – Cell Physiol. 295, C293–C295 (2008).CAS 

    Google Scholar 
    Yamamura, H., Ugawa, S., Ueda, T., Morita, A. & Shimada, S. TRPM8 activation suppresses cellular viability in human melanoma. Am. J. Physiol. Cell Physiol. 295, C296–C301 (2008).CAS 

    Google Scholar 
    Knowlton, W. M. et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J. Neurosci. 33, 2837–2848 (2013).CAS 

    Google Scholar 
    Weyer-Menkhoff, I., Pinter, A., Schlierbach, H., Schänzer, A. & Lötsch, J. Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain 160, 2699–2709 (2019).Kumasaka, M., Sato, S., Yajima, I. & Yamamoto, H. Isolation and developmental expression of tyrosinase family genes in Xenopus laevis. Pigment Cell Res. 16, 455–462 (2003).CAS 

    Google Scholar 
    Rodionov, V. I., Hope, A. J., Svitkina, T. M. & Borisy, G. G. Functional coordination of microtubule-based and actin-based motility in melanophores. Curr. Biol. 8, 165–169 (1998).CAS 

    Google Scholar 
    Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).CAS 

    Google Scholar 
    Gosset, J. R. et al. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679. Eur. J. Pharm. Sci. 109S, S161–S167 (2017).
    Google Scholar 
    Winchester, W. J. et al. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J. Pharmacol. Exp. Ther. 351, 259–269 (2014).
    Google Scholar 
    Bianchi, B., Smith, P. A. & Abriel, H. The ion channel TRPM4 in murine experimental autoimmune encephalomyelitis and in a model of glutamate-induced neuronal degeneration. Mol. Brain 11, 1–10 (2018).
    Google Scholar 
    Li, K., Shi, Y., Gonye, E. C. & Bayliss, D. A. TRPM4 contributes to subthreshold membrane potential oscillations in multiple mouse pacemaker neurons. eNeuro 8, 1–13 (2021).
    Google Scholar 
    Dong, W. et al. Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum. J. Neurophysiol. 101, 803–815 (2009).
    Google Scholar 
    Bertolesi, G. E., Debnath, N., Atkinson-Leadbeater, K., Niedzwiecka, A. & McFarlane, S. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Mol. Ecol. 30, 6659–6676 (2021).CAS 

    Google Scholar 
    Viczian, A. S. & Zuber, M. E. A simple behavioral assay for testing visual function in xenopus laevis. J. Vis. Exp. 12, 51726 (2014).
    Google Scholar 
    Myers, B. R., Sigal, Y. M. & Julius, D. Evolution of thermal response properties in a cold-activated TRP channel. PLoS One 4, e5741 (2009).
    Google Scholar 
    Furman, B. L. S. et al. Pan-African phylogeography of a model organism, the African clawed frog ‘Xenopus laevis’. Mol. Ecol. 24, 909–925 (2015).CAS 

    Google Scholar 
    Wilson, R. S., James, R. S. & Johnston, I. A. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis. J. Comp. Physiol. B. 170, 117–124 (2000).CAS 

    Google Scholar 
    Kashiwagi, K. et al. Xenopus tropicalis: an ideal experimental animal in amphibia. Exp. Anim. 59, 395–405 (2010).CAS 

    Google Scholar 
    Martínez-Freiría, F., Toyama, K. S., Freitas, I. & Kaliontzopoulou, A. Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Sci. Rep. 10, 72871–1 (2020).Tanaka, K. Does the thermal advantage of melanism produce size differences in color-dimorphic snakes? Zool. Sci. 26, 698–703 (2009).
    Google Scholar 
    Moreno Azócar, D. L., Nayan, A. A., Perotti, M. G. & Cruz, F. B. How and when melanic coloration is an advantage for lizards: the case of three closely-related species of Liolaemus. Zool. (Jena.) 141, 125774 (2020).
    Google Scholar 
    Azócar, D. L. M. et al. Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade. J. Exp. Biol. 219, 1162–1171 (2016).
    Google Scholar 
    Smith, K. R. et al. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proc. R. Soc. B Biol. Sci. 283, 20160626 (2016).
    Google Scholar 
    Rowe, J. W. et al. Thermal and substrate color-induced melanization in laboratory reared red-eared sliders (Trachemys scripta elegans). J. Therm. Biol. 61, 125–132 (2016).
    Google Scholar 
    Larsen, E. H. Dual skin functions in amphibian osmoregulation. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 253, 110869 (2021).CAS 

    Google Scholar 
    Franco-Belussi, L., Sköld, H. N. & De Oliveira, C. Internal pigment cells respond to external UV radiation in frogs. J. Exp. Biol. 219, 1378–1383 (2016).
    Google Scholar 
    Langhelle, A., Lindell, M. J. & Nyström, P. Effects of ultraviolet radiation on amphibian embryonic and larval development. J. Herpetol. 33, 449–456 (1999).
    Google Scholar 
    Mueller, K. P. & Neuhauss, S. C. F. Sunscreen for fish: co-option of UV light protection for camouflage. PLoS One 9, e87372 (2014).
    Google Scholar 
    Perotti, M. G., Diéguez, M. & Del, C. Effect of UV-B exposure on eggs and embryos of patagonian anurans and evidence of photoprotection. Chemosphere 65, 2063–2070 (2006).CAS 

    Google Scholar 
    Nilsson Sköld, H., Aspengren, S. & Wallin, M. Rapid color change in fish and amphibians – function, regulation, and emerging applications. Pigment Cell Melanoma Res. 26, 29–38 (2013).
    Google Scholar 
    Vences, M. et al. Field body temperatures and heating rates in a montane frog population: the importance of black dorsal pattern for thermoregulation on JSTOR. Ann. Zool. Fennici 39, 209–220 (2002).
    Google Scholar 
    Lindgren, J. et al. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506, 484–488 (2014).CAS 

    Google Scholar 
    Bonino, M. F., Cruz, F. B. & Perotti, M. G. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? J. Therm. Biol. 94, 102744 (2020).
    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 

    Google Scholar 
    Liu, T. et al. RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells. Oncol. Lett. 15, 4129–4136 (2018).
    Google Scholar 
    Kashina, A. S. et al. Protein Kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 14, 1877–1881 (2004).CAS 

    Google Scholar  More

  • in

    Climate extremes drive negative vegetation growth

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model

    Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368(6497), 1341–1347 (2020).ADS 
    CAS 

    Google Scholar 
    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366(6470), 1236–1239 (2019).ADS 
    CAS 

    Google Scholar 
    Siddig, A. A., Ellison, A. M., Ochs, A., Villar-Leeman, C. & Lau, M. K. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Ind. 60, 223–230 (2016).
    Google Scholar 
    Thancharoen, A. Well managed firefly tourism: A good tool for firefly conservation in Thailand. Lampyrid. 2, 142–148 (2012).
    Google Scholar 
    Hwang, Y. T., Moon, J., Lee, W. S., Kim, S. A. & Kim, J. Evaluation of firefly as a tourist attraction and resource using contingent valuation method based on a new environmental paradigm. J. Qual. Assur. Hosp. Tour. 21(3), 320–336 (2019).Carlson, A. D. & Copeland, J. Flash communication in fireflies. Q. Rev. Biol. 60(4), 415–436 (1985).
    Google Scholar 
    Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Adult firefly abundance is linked to weather during the larval stage in the previous year. Ecol. Entomol. 44(2), 265–273 (2018).
    Google Scholar 
    Lewis, S. M. et al. A global perspective on firefly extinction threats. Bioscience 70(2), 157–167 (2020).
    Google Scholar 
    Cao, C. Q., Zhang, Y., Wang, Y. Z. & He, H. Progress in the research, protection, development and utilization of fireflies. J. Environ. Entomol.1–36 (2022).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853–858 (2000).ADS 
    CAS 

    Google Scholar 
    Thorn, J. S., Nijman, V., Smith, D. & Nekaris, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates:Nycticebus). Divers. Distrib. 15(2), 289–298 (2009).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40(1), 677–697 (2009).
    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
    Google Scholar 
    Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-Niche Factor Analysis: How to compute habitat-suitability maps without absence data?. Ecology 83(7), 2027–2036 (2002).
    Google Scholar 
    Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. A (General). 135(3), 370–384 (1972).
    Google Scholar 
    Hastie, T. J. Generalized additive models. Statistical models in S. Routledge. 249–307 (2017).Stockwell, D. R. & Noble, I. R. Induction of sets of rules from animal distribution data: A robust and informative method of data analysis. Math. Comput. Simul. 33(5–6), 385–390 (1992).
    Google Scholar 
    Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).
    Google Scholar 
    Jung, J. M., Lee, W. H. & Jung, S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomol. Res. 46(4), 223–235 (2016).
    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008).
    Google Scholar 
    Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Eco. Inform. 6(6), 364–370 (2011).
    Google Scholar 
    Wang, Z. et al. Prediction of potential distribution of the invasive Chrysanthemum Lace Bug, Corythucha marmorata in China based on Maxent. J. Environ. Entomol. 41(3), 626–633 (2019).
    Google Scholar 
    Li, A. et al. MaxEnt modeling to predict current and future distributions of Batocera lineolata (Coleoptera: Cerambycidae) under climate change in China. Ecoscience 27(1), 23–31 (2020).
    Google Scholar 
    Sutherland, L. N., Powell, G. S. & Bybee, S. M. Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera: Lampyridae). Sci. Rep. 11(1), 1–12 (2021).ADS 

    Google Scholar 
    Fu, X. H., Ballantyne, L. A. & Lambkin, C. Emeia gen. nov., a new genus of Luciolinae fireflies from China (Coleoptera: Lampyridae) with an unusual trilobite-like larva, and a redescription of the genus Curtos Motschulsky. Zootaxa. 3403(1), 1–53 (2012).Idris, N. S. et al. The dynamics of landscape changes surrounding a firefly ecotourism area. Glob. Ecol. Conserv. 29, e01741 (2021).
    Google Scholar 
    Santiago-Blay, J. A. Silent Sparks: The Wondrous World of Fireflies. Life: The Excitement of Biology. (2016).Picchi, M. S., Avolio, L., Azzani, L., Brombin, O. & Camerini, G. Fireflies and land use in an urban landscape: the case of Luciola italica L.(Coleoptera: Lampyridae) in the city of Turin. J. Insect Conserv. 17(4), 797–805 (2013).Pearsons, K. A., Lower, S. E. & Tooker, J. F. Toxicity of clothianidin to common Eastern North American fireflies. PeerJ 9, e12495 (2021).
    Google Scholar 
    Madruga Rios, O. & Hernández Quinta, M. Larval Feeding Habits of the Cuban Endemic FireflyAlecton discoidalisLaporte (Coleoptera: Lampyridae). Psyche J. Entomol. 2010, 1–5 (2010).Roberge, J. M. & Angelstam, P. E. R. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18(1), 76–85 (2004).
    Google Scholar 
    Bowen-Jones, E. & Entwistle, A. Identifying appropriate flagship species: The importance of culture and local contexts. Oryx 36(2), 189–195 (2002).
    Google Scholar 
    Walpole, M. J. & Leader-Williams, N. Tourism and flagship species in conservation. Biodivers. Conserv. 11(3), 543–547 (2002).Zhejiang Provincial Bureau of Statistics. Zhejiang physical geography profile, http://tjj.zj.gov.cn/col/col1525489/index.html (2022).Zhejiang Provincial Forestry Department. Announcement of Forest Resources and Their Ecological Function Value in Zhejiang Province. Zhejiang Daily. https://doi.org/10.38328/n.cnki.nzjrb.2016.002829 (2016).Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).
    Google Scholar 
    Brown, J. L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 13(5), 922 (2021).ADS 

    Google Scholar 
    WAN, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 19(8), 2072–2082 (2020).Zhou, R. et al. Projecting the potential distribution of glossina morsitans (Diptera: Glossinidae) under climate change using the MaxEnt model. Biology. 10(11), 1150 (2021).
    Google Scholar 
    Hill, M. P., Hoffmann, A. A., McColl, S. A. & Umina, P. A. Distribution of cryptic blue oat mite species in Australia: current and future climate conditions. Agric. For. Entomol. 14(2), 127–137 (2011).
    Google Scholar 
    Su, H., Bista, M. & Li, M. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 11(1), 1 (2021).ADS 
    CAS 

    Google Scholar 
    Proosdij, A. J., Sosef, M., Wieringa, J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008).
    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223–1232 (2006).
    Google Scholar 
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6(1), 337–348 (2016).
    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    CAS 
    MATH 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133(3), 225–245 (2000).
    Google Scholar 
    Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. M. Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquat. Conserv. Mar. Freshwat. Ecosyst. 27(3), 675–684 (2017).
    Google Scholar 
    Zhao, Y., Deng, X., Xiang, W., Chen, L. & Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Eco. Inform. 64, 101393 (2021).
    Google Scholar 
    Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Adult firefly abundance is linked to weather during the larval stage in the previous year. Ecol. Entomol. 44(2), 265–273 (2018).Chettri, B., Bhupathy, S. & Acharya, B. K. Distribution pattern of reptiles along an eastern Himalayan elevation gradient India. Acta Oecol. 36(1), 16–22 (2010).ADS 

    Google Scholar 
    Brown, J. H. Mammals on mountainsides: elevational patterns of diversity. Global Ecol. Biogeogr. 10(1), 101–109 (2001).Gairola, S., Sharma, C. M., Ghildiyal, S. K. & Suyal, S. Tree species composition and diversity along an altitudinal gradient in moist tropical montane valley slopes of the Garhwal Himalaya India. For. Sci. Technol. 7(3), 91–102 (2011).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5), 773–785 (2006).
    Google Scholar 
    Abe, N. Kansei estimation on luminescence of Firefly-Kansei information measurement and welfare utilization. J. Japan Soc. Kansei Eng. 3(2), 41–50 (2004).
    Google Scholar 
    Buckley, R. et al. Economic value of protected areas via visitor mental health. Nat. Commun. 10(1), 1 (2019).
    Google Scholar 
    Lewis, S. M. et al. Firefly tourism: Advancing a global phenomenon toward a brighter future. Conserv. Sci. Pract. 3(5), 1 (2021).
    Google Scholar  More

  • in

    Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms

    Methods for data analysis in figuresAll analyses in figures were performed using Mathematica 12.3 (Wolfram Research, Inc., Champaign, IL, USA).Analysis in Fig. 1
    C&D. To calculate integrated abundances of E. huxleyi cells and EhV, we first selected days for which all the bags had a non-null value. Values were then summed up to obtain the integrated abundance.E&J. We computed a standard linear fit between the E. huxleyi total abundances and total EhV abundances for covered and uncovered bags separately. We followed the same procedure for the correlations in panel J and provide a comparison between different models in Supplementary Fig. 5.Analysis in Fig. 2
    A. The ASVs that were selected appeared at a relative abundance of at least 2% in at least 4 samples for the 0.2–2 µm 16S sequences and at least in 8 samples for the 2–20 µm 18S sequences. Abundances were concatenated for each time point and normalized by row, to have maximum relative abundance of 1 across all samples. ASVs were sorted by the position of their individual center of mass ({t}_{{CM}}) defined by$${t}_{{CM}}=,frac{mathop{sum}limits_{i}{t}_{i}f({t}_{i})}{mathop{sum}limits_{i}f({t}_{i})}$$
    (1)
    with i representing the different time points and f(({t}_{i})) the relative abundance of the ASV. The same figure for the individual bags in shown in Supplementary Fig. 14 and Supplementary Fig. 15.B. We selected 18S ASVs with a maximum relative abundance of at least 2% and observed in at least five samples. We averaged relative abundance across bags and then smoothed the time series with a moving average filter (width 2). Then, we grouped all ASVs into clusters based on their cosine distance using Mathematica’s FindClusters function and the KMeans method. The number of possible clusters ranged from 2 to 12, and the final number of clusters was decided using the silhouette method71. Only silhouette scores for 2 and 6 clusters were positive (between-cluster distance minus within-cluster distance).D. We subset reads that map to either Flavobacteriales or Fhodobacterales, then renormalized within each class, taking the mean over bags. Results per bag are shown in Supplementary Fig. 9.F. The turnover time was defined by the exponential rate k at which the Bray-Curtis similarity ({BC}(t)) declined over time. To this end, for a given bag, we computed the Bray–Curtis similarity between the composition vector at a starting day t’ with all following days t, giving a curve that declined roughly exponentially. For earlier starting days (for which the similarity curves declined the furthest), we found that the Bray–Curtis similarity never reached 0 but instead leveled out around ({{BC}}_{infty }=0.05) (due to ASVs that are constantly present in all the samples and maintain a minimal level of similarity between bags). Thus, we imposed an offset at(,{{BC}}_{infty }) for all fits (using Mathematica’s FindFit function) with the function:$${BC}(t)=(1-{{BC}}_{{{infty }}}) times {e}^{-kleft({t}^{{prime} }-tright)}+{{BC}}_{{{infty }}}$$
    (2)
    The turnover is averaged over bags, showing the standard deviation as error bars in the figure.G. To find differentially abundant ASVs, we first selected a subset of ASVs that had a maximum abundance of at least 10%, and performed Mann–Whitney U-Tests between the relative abundance values of a given ASV in the focal bag and all the other bags over all timepoints of the bloom’s demise. Correcting for multiple testing, we found four 16S ASVs that were differentially abundant in any of the bags, three of which were specific to bag 7, shown in Fig. 2g; and five 18S ASVs, two specific to bags 5 and 6 (Rhizosolenia delicatula and Aplanochytrium), one specific to bag 4 (Pterosperma), and two specific to bag 7 (MAST-1C and Woloszynskia halophila, shown in Fig. 2g).H. The divergence between bags was calculated as follows: we first measured, for each bag, the Bray–Curtis distance between this given bag and all the other bags at the end of the experiment (Supplementary Fig. 13). In order to control for the existing differences between bags at the beginning of the bloom, Bray–Curtis distances were normalized according to the differences between bags at the starting day of the E. huxleyi bloom. As the exact starting days of the bloom is not clear, we normalized for starting days 11, 12, or 13. The plot shows averages with the standard deviation as error bars. For the 18S microbiome, we first removed reads that map to E. huxleyi to reduce bias toward bag 7 (which had by far the lowest E. huxleyi abundance, Fig. 1c).Analysis in Fig. 3
    A. Functional annotation of dominant 18S ASVs was based on manual literature search for the 100 most abundant 18S ASVs. Automatic annotation using the functional database created by72 gave qualitatively identical results but contained fewer organisms (covering about 50% of reads). The relative abundance of each trait was obtained by summing up the relative abundance of all the species harboring a specific trait. We used the annotations from72 to further subdivide heterotrophs into osmotrophs, saprotrophs, and other types of heterotrophy (e.g., grazing), ignoring ASVs with missing annotations.D. Growth rates were computed by fitting a linear model to the log-transformed absolute abundances. For thraustochytrids, we measured growth rates until the abundances reached their maximum, i.e., for days indicated by solid lines in Fig. 3b. For bacteria in the 0.2–2 micron fraction, we measured growth rates during the bloom and demise of E. huxleyi, i.e., for the time period after day 15 until the final day, except for bag 4 (until day 22) and bag 7 (until day 18) to account for their different bloom and demise dynamics. For bacteria in the 2–20 micron fraction, we measured growth rates similarly, starting after day 10 until the final day, except bags 4 and 7 (until day 22).E. To quantify the rate of change k of the biomass ratio of thraustochytrids to bacteria we fit a linear function to the log of biomass ratio from day 10 to the time point t where the ratio was maximal; for bag 7, this was day 18, for all others, day 23. We thus have:$$,{{log }},{BR},(t)={kt},+,{{log }},{BR},(0)$$
    (3)
    Analysis in Fig. 4
    C&D. Since TEP accumulates over time, it cannot be expressed as a weighted sum of phytoplankton abundances. Instead, we formulate the model as a recursive relation where TEP can be produced by E. huxleyi, naked nanophytoplankton, and picophytoplankton, and degraded or lost through sinking:$${TEP}left(tright)=left(1-dright){TEP}left(t-1right)+{a}_{E}Eleft(tright)+{a}_{N}Nleft(tright)+{a}_{P}Pleft(tright),$$
    (4)
    The amount of TEP at time t is given by the fraction (1-d) of TEP at time t-1, where d corresponds to the fraction of TEP that is degraded between time points, plus the amount of TEP produced by the phytoplankton cells present at time t (or time t-1, which gives equivalent results). E, N, and P correspond to E. huxleyi, naked nanophytoplankton, and picophytoplankton, respectively. The parameter ({a}_{E}) corresponds to the amount of TEP produced per E. huxleyi cell, reported in panel D. ({a}_{E}) is set to be fixed through time, and different for each bag. This recursion can be solved to give an explicit expression for TEP(t):$${TEP}left(tright)=mathop{sum }limits_{{t}^{{prime} }=0}^{t}{left(1-dright)}^{t-{t}^{{prime} }}[{a}_{E}Eleft({t}^{{prime} }right)+{a}_{N}Nleft({t}^{{prime} }right)+{a}_{P}Pleft({t}^{{prime} }right)].$$
    (5)
    This functional form was then used to perform a linear model fitting with the constraint ({a}_{i}ge 0) for various values of the parameter d. The best fit, defined by maximum ({R}^{2}) over the resulting linear model, was used to fix d = 0.12. Our model considers that the fraction of non-calcified E. huxleyi cells in the nanophytoplankton counts is small.Larger phytoplankton cells ( >40 μm) filtered out from flow-cytometry measurements can also be a major source of TEP, despite low cell density. In order to verify this, FlowCam data was analyzed. None of the identified classes of larger phytoplankton (such as Phaeocystis or Dinobryon) increased in a systematic manner toward later stages of the bloom, explaining why larger phytoplankton were not included in the TEP model (Supplementary Fig. 24 and Supplementary Fig. 25).E. Using the smFISH method that reports the proportion of infected E. huxleyi cells, we estimated the amount of TEP produced from infected cells. We first used the least infected uncovered bags (bags 1 and 3) as a baseline to fix model parameters such as how much TEP does a non-infected cell produce. We then split the E. huxleyi abundance into an uninfected subpopulation producing T TEP/cell as in the uninfected bags, and an infected subpopulation producing I×T TEP/cells. To define I, we combined the fixed model parameters (i.e., amount of TEP produced per cell from Fig. 4d for bags 1 and 3) with the measured fraction of infected cells. We adjusted the factor I = 4 to minimize deviation of the measure total TEP concentration from the model prediction including the two subpopulations. The same procedure was used for panel H, using the corresponding model for PIC.F&G. To model the amount of PIC produced per cell we assume that the measured PIC only increases via new E. huxleyi coccoliths. The equivalent model for PIC reads$${PIC}left(tright)=left(1-dright){PIC}left(t-1right)+{a}_{E}{{max }}left(Eleft(tright)-Eleft(t-1right)right).$$
    (6)
    Where ({a}_{E}) is the amount of PIC produced per cell, and displayed in panel G. Using the same procedure as for TEP, we obtain the best fit for d = 0.0075. Our PIC model assumes that all PIC production comes from E. huxleyi, supported by large occurrence of E. huxleyi cells observed in scanning electron microscopy (Supplementary Fig. 1).Methods for data collectionMesocosm core setupThe mesocosm experiment AQUACOSM VIMS-Ehux was carried out for 24 days between 24th May (day 0) and 16th June (day 23) 2018 in Raunefjorden at the University of Bergen’s Marine Biological Station Espegrend, Norway (60°16′11 N; 5°13′07E). The experiment consisted of seven enclosure bags made of transparent polyethylene (11 m3, 4 m deep and 2 m wide, permeable to 90% photosynthetically active radiation) mounted on floating frames and moored to a raft in the middle of the fjord. The bags were filled with surrounding fjord water (day −1; pumped from 5 m depth) and continuously mixed by aeration (from day 0 onwards). Each bag was supplemented with nutrients at a nitrogen to phosphorus ratio of 16:1 according to the optimal Redfield Ratio (1.6 µM NaNO3 and 0.1 µM KH2PO4 final concentration) on days 0–5 and 14–17, whereas on days 6, 7 and 13 only nitrogen was added to limit the growth of pico-eukaryotes and favor the growth of E. huxleyi that is more resistant to phosphate limited conditions. Silica was not added as a nutrient source in order to suppress the growth of diatoms and to enhance E. huxleyi proliferation. Bags 5, 6, 7 were covered to collect aerosols and guarantee minimal contamination while sampling for core variables. Bags 1, 2, 3, 4 were sampled for additional assays such as metabolomics, polysaccharides profiling, and vesicles, which increase sampling time and potential for contamination.Measurement of dissolved inorganic nutrientsUnfiltered seawater aliquots (10 mL) were collected from each bag and the surrounding fjord water in 12 mL polypropylene tubes and stored frozen at −20 °C. Dissolved inorganic nutrients were measured with standard segmented flow analysis with colorimetric detection73, using a Bran & Luebe autoanalyser. Data are available in ref. 74 and values for individual bags are plotted in Supplementary Fig. 26.Measurement of water temperature and salinityWater temperature and salinity were measured in each bag and the surrounding fjord water using a SD204 CTD/STD (SAIV A/S, Laksevag, Norway). Data points were averaged for 1–3 m depth (descending only). When this depth was not available, the available data points were taken. Data are missing for the fjord in days 0–1. Outliers were removed for the following samples: bag 1 at days 0, 4, 15; bag 7 at day 15. Data are available in ref. 74.Flow cytometry measurementsSamples for flow cytometric counts were collected twice a day, in the morning (7:00 a.m.) and evening (8:00–9:00 p.m.) from each bag and the surrounding fjord, which served as an environmental reference. Water samples were collected in 50 mL centrifugal tubes from 1 m depth, pre-filtered using 40 µm cell strainers, and immediately analyzed with an Eclipse iCyt (Sony Biotechology, Champaign, IL, USA) flow cytometer. A total volume of 300 µL with a flow rate of 150 µL/min was analyzed with the machine’s software ec800 v1.3.7. A threshold was applied based on the forward scatter signal to reduce the background noise.Phytoplankton populations were identified by plotting the autofluorescence of chlorophyll versus phycoerythrin and side scatter: calcified E. huxleyi (high side scatter and high chlorophyll), Synechococcus (high phycoerythrin and low chlorophyll), nano- and picophytoplankton (high and low chlorophyll, respectively). Chlorophyll fluorescence was detected by FL4 (excitation (ex): 488 nm and emission (em): 663–737 nm). Phycoerythrin was detected by FL3 (ex: 488 nm and em: 570–620 nm). Raw.fcs files were extracted and analyzed in R using ‘flowCore’ and ‘ggcyto’ packages and all data are available on Dryad74. In particular, the gating strategy was adapted to each day and each bag and individual plots for each days and each bag can be found in the Dryad link.For bacteria and viral counts, 200 µL of sample were fixed with 4 µL of 20% glutaraldehyde (final concentration of 0.5%) for 1 h at 4 °C and flash frozen. They were thawed and stained with SYBR gold (Invitrogen) that was diluted 1:10,000 in Tris-EDTA buffer, incubated for 20 min at 80 °C and cooled to room temperature. Bacteria and viruses were counted and analyzed using a Cytoflex and identified based on the Violet SSC-A versus FITC-A by comparing to reference samples containing fixed bacteria and viruses from lab cultures. A total volume of 60 µL with a flow rate of 10 µL/min was analyzed. A threshold was applied based on the forward scatter signal to reduce the background noise. For plotting bacteria (Fig. 1h), a moving average of three successive days was used.Enumeration of extracellular EhV abundance by qPCRDNA extracts from filters from the core sampling (see above) were diluted 100 times, and 1 µL was then used for qPCR analysis. EhV abundance was determined by qPCR for the major capsid protein (mcp) gene: 5′-acgcaccctcaatgtatggaagg-3′ (mcp1F) and 5′-rtscrgccaactcagcagtcgt -3′ (mcp94Rv). All reactions were carried out in technical triplicates using water as a negative control. For all reactions, Platinum SYBER Green qPCR SuperMix-UDG with ROX (Invitrogen, Carlsbad, CA, USA) was used as described by the manufacturer. Reactions were performed on a QuantStudio 5 Real-Time PCR System equipped with the QuantStudio Design and Analysis Software version 1.5.1 (Applied Biosystems, Foster City, CA, USA) as follows: 50 °C for 2 min, 95 °C for 5 min, 40 cycles of 95 °C for 15 s, and 60 °C for 30 s. Results were calibrated against serial dilutions of EhV201 DNA at known concentrations, enabling exact enumeration of viruses. Samples showing multiple peaks in melting curve analysis or peaks that were not corresponding to the standard curves were omitted. Data are available in ref. 74. A comparison of viral counts based on flow-cytometry and qPCR is shown in Supplementary Fig. 2.FlowCam analysisSamples for automated flow imaging microcopy were collected once a day in the morning (7:00 a.m.) from each bag and the surrounding fjord, which served as an environmental reference. Water samples were collected in 50 mL centrifugal tubes from 1 m depth, kept at 12 °C in darkness, and analyzed within 2 h of sampling, using a FlowCAM II (Fluid Imaging Technologies Inc., Scarborough, ME, USA) fitted with a 300 µm path length flow cell and a 4× microscope objective. Images were collected using auto-image mode at a rate of 7 frames/second. A sample volume of 10 mL was processed at a flow rate of 0.7 mL/min. Individual objects within each sample were clustered and annotated using the Ecotaxa platform75. Absolute counts for major groups, including the most abundant ciliate category Ciliophora U04, were then exported and normalized by the individual amount of water volume processed for each sample.Data are available under “Flowcam Composite Aquacosm_2018_VIMS-Ehux” project on Ecotaxa.Scanning electron microscopy50 ml of water samples from bags or fjord were collected on polycarbonate filters (0.2 µm pore size, 47 mm diameter, Millipore). The filters were air dried and stored on petri-slides (Millipore) at room temperature. Prior to observation, a small fraction of the filter was cut and coated with 2 nm of iridium using a Safematic CCU-010 coater (Safematic GMBH, Switzerland). Samples were observed on a Zeiss Ultra SEM that was set at a working distance of 6.2 ± 0.1 mm, an acceleration voltage of 3.0 kV and an aperture size of 30 mm. The secondary electron detector was used for image acquisition.Paired dilution experimentPhytoplankton growth and microzooplankton grazing rates were estimated using the dilution method76,77. A slightly modified version of the method was used with only one low dilution level (20%) and an undiluted treatment used78. Rates calculated using this method are considered conservative but accurate when compared with those using multiple dilution levels and a linear regression. Water from bags 1–4 was collected using a peristaltic pump at ~1 m depth and mixed into a 20 L clean carboy. Water was screened through a 200 µm mesh to remove larger mesozooplankton. The collected water was shaded with black plastic and returned to shore. Dilution experiments were set-up in a temperature-controlled room, set to ambient water temperature (±2 °C). Particle-free diluent (FSW) was prepared by gravity filtering whole seawater (WSW) through a 0.45 µm inline filter (PALL Acropak™ Membrane capsule) into a clean carboy. To the FSW, WSW was gently siphoned at a proportion of 20%. The 20% dilution and 100% WSW treatments were prepared in single carboys and then siphoned into triplicate 1.2 L Nalgene™ incubation bottles. To control for nutrient limitation, additional triplicate bottles of 100% WSW were incubated without added nutrients (10 µM nitrate and 1 µM phosphate). The incubation bottles were incubated for 24 h in an outdoor tank maintained at in-situ water temperatures by a flow-through system of ambient seawater. Bottles could float freely, and the seawater inflow caused gentle agitation throughout the 24 h period. A screen was used to mimic light conditions experienced within the mesocosm bags.To quantify viral mortality, we used the paired dilution method79 which involves setting up an extra low dilution level (20%) containing water filtered through a tangential flow filter (TFF) of 100 kDå to remove viral particles. During this experiment, TFF water was produced 1–2 days prior to the dilution experiment, to ensure the chemical composition of the water was as similar as possible, and experiments could be set up in a timely manner.At T0 hours and T24 hours from all dilution experiments, sub-samples were taken for the determination of chlorophyll-a and flow cytometry. For chlorophyll-a, 100–150 mL of seawater was filtered under low vacuum pressure through a 47 mm Whatman GF/F filters (effective pore size 0.7 µm), and then extracted in 7 mL of 97% methanol at 4 °C in the dark for 12 h. All chlorophyll readings were conducted on a Turner TD700 fluorometer80. Methanol blanks were included, and all samples were corrected for phaeophytin using a drop of 10% hydrochloric acid and then reading the sample again81.Water samples (2 × 1 mL) for flow cytometry were taken at T0 and T24 of dilution experiments for the determination of phytoplankton abundances. Water samples were taken in triplicate from T0, and from each bottle at T24. Samples were immediately fixed in 20 µL of glutaraldehyde (final concentration More

  • in

    Elevated alpha diversity in disturbed sites obscures regional decline and homogenization of amphibian taxonomic, functional and phylogenetic diversity

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 

    Google Scholar 
    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropogene. Trends Ecol. Evol. 30, 104–113 (2015).
    Google Scholar 
    Bradshaw, C. J. A., Sodhi, N. S. & Brook, B. W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87 (2009).
    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 

    Google Scholar 
    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).
    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 

    Google Scholar 
    Pasari, J. R., Levi, T., Zavaleta, E. S. & Tilman, D. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 110, 10219–10222 (2013).ADS 
    CAS 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Google Scholar 
    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).
    Google Scholar 
    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).ADS 
    CAS 

    Google Scholar 
    de Coster, G., Banks-Leite, C. & Metzger, J. P. Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proc. R. Soc. B 282, 20142844 (2015).
    Google Scholar 
    Riemann, J. C., Ndriantsoa, S. H., Rödel, M.-O. & Glos, J. Functional diversity in a fragmented landscape—habitat alterations affect functional trait composition of frog assemblages in Madagascar. Global Ecol. Conserv. 10, 173–183 (2017).
    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).CAS 

    Google Scholar 
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).
    Google Scholar 
    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multi-functionality. Proc. Natl. Acad. Sci. U.S.A. 113, 3557–3562 (2016).ADS 

    Google Scholar 
    Mori, A. S., Isbell, F. & Seidl, R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).
    Google Scholar 
    Dehling, J. M. & Dehling, D. M. Conserving ecological functions of frog communities in Borneo requires diverse forest landscapes. Global Ecol. Conserv. 26, e01481 (2021).
    Google Scholar 
    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).ADS 
    CAS 

    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).ADS 
    CAS 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. U.S.A. 100, 12765–12770 (2003).ADS 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 

    Google Scholar 
    Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. U.S.A. 117, 28140–28149 (2020).ADS 
    CAS 

    Google Scholar 
    Tilman, D. Functional diversity in Encyclopedia of biodiversity, Vol. 3. (ed. Levin S. A.) 109–120 (Academic Press, 2001)Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem function relationships. Ecology 92, 1573–1581 (2011).
    Google Scholar 
    Lean, C. & Maclaurin, J. The value of phylogenetic diversity in Biodiversity conservation and phylogenetic systematics. Topics in Biodiversity and Conservation 14. (eds. Pellens, R., Grandcolas, P.) 19–38 (Springer, 2016).Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).ADS 

    Google Scholar 
    Gumbs, R., Williams, R. C., Lowney, A. M. & Smith, D. Spatial and species-level metrics reveal global patterns of irreplaceable and imperiled gecko phylogenetic diversity. Israel J. Ecol. Evolut. 66, 239–252 (2020).
    Google Scholar 
    Brooks, D. R., Mayden, R. L. & McLennan, D. A. Phylogeny and biodiversity: Conserving our evolutionary legacy. Trends Ecol. Evol. 7, 55–59 (1992).CAS 

    Google Scholar 
    Phillimore, A. B. et al. Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness. Evolution 61, 942–957 (2007).
    Google Scholar 
    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).ADS 
    CAS 

    Google Scholar 
    Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).
    Google Scholar 
    Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).
    Google Scholar 
    Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20, 1512–1522 (2010).Gibbons, J. W. et al. Remarkable amphibian biomass and abundance in an isolated wetland: Implications for wetland conservation. Conserv. Biol. 20, 1457–1465 (2006).
    Google Scholar 
    Hocking, D. J. & Babbitt, K. J. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1–17 (2014).
    Google Scholar 
    Beebee, T. J. C. Amphibian breeding and climate change. Nature 374, 219–220 (1995).ADS 
    CAS 

    Google Scholar 
    Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001).ADS 
    CAS 

    Google Scholar 
    Cheng, T. L., Rovito, S. M., Wake, D. B. & Vredenburg, V. T. Coincident mass extirpation of neotropical amphibians with the emergence of the infection fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. U.S.A. 108, 9502–9507 (2011).ADS 
    CAS 

    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. U.S.A. 105, 11466–11473 (2008).ADS 
    CAS 

    Google Scholar 
    Ernst, R. & Rödel, M.-O. Patterns of community composition in two tropical tree frog assemblages: Separating spatial structure and environmental effects in disturbed and undisturbed forests. J. Trop. Ecol. 24, 111–120 (2008).
    Google Scholar 
    Gardner, T. A. et al. The value of primary, secondary, and plantation forests for a Neotropical Herpetofauna. Conserv. Biol. 21, 775–787 (2007).
    Google Scholar 
    Gardner, T. A., Fitzherbert, E. B., Drewes, R. C., Howell, K. M. & Caro, T. Spatial and temporal patterns of abundance and diversity of an East African leaf litter amphibian fauna. Biotropica 39, 105–113 (2007).
    Google Scholar 
    Gillespie, G. R. et al. Conservation of amphibians in Borneo: relative value of secondary tropical forest and non-forest habitats. Biol. Cons. 152, 136–144 (2012).
    Google Scholar 
    Angarita-M., O., Montes-Correa, A. C. & Renjifo, J. M. Amphibians and reptiles of an agroforestry system in the Colombian Caribbean. Amphibian & Reptile Conservation 8, 33–52 (2015).Jiménez-Robles, O., Guayasamin, J. M., Ron, S. R. & De la Riva, I. Reproductive traits associated with species turnover of amphibians in Amazonia and its Andean slopes. Ecol. Evol. 7, 2489–2500 (2017).
    Google Scholar 
    Ernst, R., Linsenmair, K. E. & Rödel, M.-O. Diversity erosion beyond the species level: dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biol. Cons. 133, 143–155 (2006).
    Google Scholar 
    Oda, F. H. et al. Anuran species richness, composition, and breeding habitat preferences: a comparison between forest remnants and agricultural landscapes in Southern Brazil. Zool. Stud. 55, 34 (2016).
    Google Scholar 
    Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C. & Dehling, J. M. Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). African Zool. 47, 60–73 (2012).
    Google Scholar 
    Tumushimire, L., Mindje, M., Sinsch, U. & Dehling, J. M. The anuran diversity of cultivated wetlands in Rwanda: Melting pot of generalists?. Salamandra 56, 99–112 (2020).
    Google Scholar 
    REMA. Rwanda State of Environment and Outlook Report 2017 – Achieving Sustainable Urbanization. (Rwanda Environment Management Authority, Government of Rwanda, 2017).Su, J. C., Debinski, D. M., Jakubauskas, M. E. & Kindscher, K. Beyond species richness: Community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv. Biol. 18, 167–173 (2004).
    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).ADS 
    CAS 

    Google Scholar 
    Zimkus, B. M., Rödel, M.-O. & Hillers, A. Complex patterns of continental speciation: Molecular phylogenetics and biogeography of sub-Saharan puddle frogs (Phrynobatrachus). Mol. Phylogenet. Evol. 55, 883–900 (2010).
    Google Scholar 
    Dehling, J. M. & Sinsch, U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. Zool. Anz. 280, 65–77 (2019).
    Google Scholar 
    Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).ADS 

    Google Scholar 
    Haddad, C. F. B. & Prado, C. P. A. Reproductive modes and their unexpected diversity in the Atlantic forest of Brazil. Bioscience 55, 207–217 (2005).
    Google Scholar 
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).ADS 
    CAS 

    Google Scholar 
    Alroy, J. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl. Acad. Sci. U.S.A. 114, 6056–6061 (2017).ADS 
    CAS 

    Google Scholar 
    Dehling, J. M. & Sinsch, U. Diversity of Ptychadena in Rwanda and taxonomic status of P. chrysogaster Laurent, 1954 (Amphibia, Anura, Ptychadenidae). ZooKeys 356, 69–102 (2013).IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org (2020).Portillo, F., Greenbaum, E., Menegon, M., Kusamba, C. & Dehling, J. M. Phylogeography and species boundaries of Leptopelis (Anura: Arthroleptidae) from the Albertine Rift. Mol. Phylogenet. Evol. 82, 75–86 (2015).
    Google Scholar 
    Channing, A., Dehling, J. M., Lötters, S. & Ernst, R. Species boundaries and taxonomy of the African River Frogs (Anura: Pyxicephalidae: Amietia). Zootaxa 4155, 1–76 (2016).CAS 

    Google Scholar 
    Rödel, M.-O. & Ernst, R. Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization. Ecotropica 10, 1–14 (2004).Channing, A. & Howell, K. M. Amphibians of East Africa. (Chimaira, 2006).Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evolut. 2, 850–858 (2018).
    Google Scholar 
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons. 61, 1–10 (1992).
    Google Scholar 
    Dehling, D. M. et al. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37, 1047–1055 (2014).
    Google Scholar 
    Baselga, A. et al. betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.6. https://CRAN.R-project.org/package=betapart (2022).Dehling, D. M. et al. Specialists and generalists fulfil important and complementary functional roles in ecological processes. Funct. Ecol. 35, 1810–1821 (2021).CAS 

    Google Scholar 
    Dehling, D. M., Barreto, E. & Graham, C. H. The contribution of mutualistic interactions to functional and phylogenetic diversity. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.05.006 (2022).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2021). More

  • in

    Hybridization provides climate resilience

    Hoffmann, A. A. & Sgrò, C. M. Nature 470, 479–485 (2011).Article 
    CAS 

    Google Scholar 
    Taylor, S. A. & Larson, E. L. Nat. Ecol. Evol. 3, 170–177 (2019).Article 

    Google Scholar 
    Brauer, C. J. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01585-1 (2023).Article 

    Google Scholar 
    Grinnell, J. Auk 34, 427–433 (1917).Article 

    Google Scholar 
    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton Univ. Press, 2011).Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).Article 
    CAS 

    Google Scholar 
    Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. Nat. Ecol. Evol. 5, 1350–1360 (2021).Article 

    Google Scholar 
    Fitzpatrick, M. C. & Keller, S. R. Ecol. Lett. 18, 1–16 (2015).Article 

    Google Scholar 
    Bay, R. A. et al. Science 359, 83–86 (2018).Article 
    CAS 

    Google Scholar 
    Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    Rellstab, C., Dauphin, B. & Exposito‐Alonso, M. Evol. Appl. 14, 1202–1212 (2021).Article 

    Google Scholar 
    Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. Trends Ecol. Evol. 16, 613–622 (2001).Article 

    Google Scholar 
    Rhymer, J. M. & Simberloff, D. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).Article 

    Google Scholar 
    Todesco, M. et al. Evol. Appl. 9, 892–908 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    Timely sown maize hybrids improve the post-anthesis dry matter accumulation, nutrient acquisition and crop productivity

    Srivastava, R. K., Mequanint, F., Chakraborty, A., Panda, R. K. & Halder, D. Augmentation of maize yield by strategic adaptation to cope with climate change for a future period in Eastern India. J. Clean. Prod. 339, 130599 (2022).
    Google Scholar 
    Pooniya, V. et al. Six years of conservation agriculture and nutrient management in maize–mustard rotation: Impact on soil properties, system productivity and profitability. Field Crops Res. 260, 108002 (2021).
    Google Scholar 
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize grain yields and yield components. Field Crops Res. 150, 135–144 (2013).
    Google Scholar 
    Maresma, A., Ballesta, A., Santiveri, F. & Lloveras, J. Sowing date affects maize development and yield in irrigated mediterranean environments. Agriculture 9(3), 67 (2019).
    Google Scholar 
    Srivastava, R. K., Panda, R. K., Chakraborty, A. & Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res. 221, 339–349 (2018).
    Google Scholar 
    Van Roekel, R. J. & Coulter, J. A. Agronomic responses of corn hybrids to row width and plant density. Agronomy J. 104(3), 612–620 (2012).
    Google Scholar 
    Santiveri, F., Royo, C. & Romagosa, I. Growth and yield responses of spring and winter triticale cultivated under Mediterranean conditions. Eur. J. Agron. 20(3), 281–292 (2004).
    Google Scholar 
    Masoni, A., Ercoli, L., Mariotti, M. & Arduini, I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron. 26(3), 179–186 (2007).CAS 

    Google Scholar 
    Yang, W., Peng, S., Dionisio-Sese, M. L., Laza, R. C. & Visperas, R. M. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Res. 105, 221–227 (2008).
    Google Scholar 
    Wei, H. et al. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res. 204, 101–109 (2017).
    Google Scholar 
    Wu, H. et al. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Sci. Rep. 8(1), 1–11 (2018).ADS 

    Google Scholar 
    Laza, M. R., Peng, S., Akita, S. & Saka, H. Contribution of biomass partitioning and translocation to grain yield under sub-optimum growing conditions in irrigated rice. Plant Prod. Sci. 6(1), 28–35 (2003).
    Google Scholar 
    Gao, H. et al. Intercropping modulates the accumulation and translocation of dry matter and nitrogen in maize and peanut. Field Crops Res. 284, 108561 (2022).
    Google Scholar 
    Yang, Y. et al. Solar radiation effects on dry matter accumulations and transfer in maize. Front. Plant Sci. 12, 1927 (2021).
    Google Scholar 
    Jamshidi, A. & Javanmard, H. R. Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng. J. 9(4), 2093–2099 (2018).
    Google Scholar 
    Tyagi, B. S. et al. Identification of wheat cultivars for low nitrogen tolerance using multivariable screening approaches. Agronomy 10(3), 417 (2020).CAS 

    Google Scholar 
    Fischer, R. A. & Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 29(5), 897–912 (1978).
    Google Scholar 
    Fernandez, G. C. Effective selection criteria for assessing plant stress tolerance. In Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13–16, Shanhua, Taiwan. 257–270 (1992).Bouslama, M. & Schapaugh, W. T. Jr. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop sci. 24(5), 933–937 (1984).
    Google Scholar 
    Ciampitti, I. A. & Vyn, T. J. Grain nitrogen source changes over time in maize: A review. Crop Sci. 53(2), 366–377 (2013).CAS 

    Google Scholar 
    Chen, Y. et al. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crops Res. 159, 1–9 (2014).
    Google Scholar 
    Mi, G. et al. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. J. plant nutr. 26(1), 237–247 (2003).CAS 

    Google Scholar 
    Tollenaar, M. & Lee, E. A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 51(2), 399 (2006).
    Google Scholar 
    Samonte, S. O. P. et al. Nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice. Agronomy J. 98(1), 168–176 (2006).CAS 

    Google Scholar 
    Qiao, J., Yang, L., Yan, T., Xue, F. & Zhao, D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric. Ecosyst. Environ. 146(1), 103–112 (2012).CAS 

    Google Scholar 
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants 3rd edn. (Academic Press, 2012).
    Google Scholar 
    Ning, P., Li, S., Yu, P., Zhang, Y. & Li, C. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Res. 144, 19–27 (2013).
    Google Scholar 
    Hawkesford, M. et al. Functions of macronutrients. In Marschners Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 178–189 (Academic Press, 2012).
    Google Scholar 
    Palta, J. A. et al. Large root systems: Are they useful in adapting wheat to dry environments?. Funct. Plant Biol. 38(5), 347–354 (2011).
    Google Scholar 
    Pooniya, V., Palta, J. A., Chen, Y., Delhaize, E. & Siddique, K. H. Impact of the TaMATE1B gene on above and below-ground growth of durum wheat grown on an acid and Al3+-toxic soil. Plant Soil 447(1), 73–84 (2020).CAS 

    Google Scholar 
    Bonelli, L. E., Monzon, J. P., Cerrudo, A., Rizzalli, R. H. & Andrade, F. H. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Res. 198, 215–225 (2016).
    Google Scholar 
    Sorensen, I., Stone, P. & Rogers, B. Effect of sowing time on yield of a short and a long season maize hybrid. Proc. Agron. Soc. NZ 30, 63–66 (2000).
    Google Scholar 
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: Phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155 (2013).
    Google Scholar 
    Zhou, B. et al. Maize kernel weight responses to sowing date-associated variation in weather conditions. Crop J. 5(1), 43–51 (2017).
    Google Scholar 
    Cirilo, A. G. & Andrade, F. H. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Sci. 34(4), 1039–1043 (1994).
    Google Scholar 
    Shi, Y. et al. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Till. Res. 160, 73–81 (2016).
    Google Scholar 
    He, P., Zhou, W. & Jin, J. Carbon and nitrogen metabolism related to grain formation in two different senescent types of maize. J. Plant Nutrit. 27(2), 295–311 (2004).CAS 

    Google Scholar 
    Pommel, B. et al. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur. J. Agron. 24(3), 203–211 (2006).CAS 

    Google Scholar 
    Clarke, J. M., Campbell, C. A., Cutforth, H. W., DePauw, R. M. & Winkleman, G. E. Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Can. J. Plant Sci. 70(4), 965–977 (1990).CAS 

    Google Scholar 
    Mardeh, A. S. S., Ahmadi, A., Poustini, K. & Mohammadi, V. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res. 98(2–3), 222–229 (2006).
    Google Scholar 
    Naderi, A., Majidi-Harvan, E., Hashemi-Dezfoli, A., Rezaei, A. & Normohamadi, G. Analysis of efficiency of drought tolerance indices in crop plants and introduction of a new criteria. Seed Plant 15(4), 390–402 (1999).
    Google Scholar 
    Zeng, W. et al. Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int. J. Mol. Sci. 20(11), 2793 (2019).CAS 

    Google Scholar 
    Hajibabaei, M. & Azizi, F. Evaluation of drought tolerance indices in some new hybrids of corn. Electron. J. Crop Prod. 3, 139–155 (2011).
    Google Scholar 
    Zhao, J. et al. Yield and water use of drought-tolerant maize hybrids in a semiarid environment. Field Crops Res. 216, 1–9 (2018).
    Google Scholar 
    Fageria, N. K. Nitrogen harvest index and its association with crop yields. J. Plant Nutri. 37(6), 795–810 (2014).CAS 

    Google Scholar 
    Raghuram, N., Sachdev, M. S. & Abrol, Y. P. Towards an integrative understanding of reactive nitrogen. In Agricultural Nitrogen Use & Its Environmental Implications (eds Abrol, Y. P. et al.) 1–6 (I.K. International Publishing House Pvt. Ltd., 2007).
    Google Scholar 
    Baligar, V. C., Fageria, N. K. & He, Z. L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 32(7–8), 921–950 (2001).CAS 

    Google Scholar 
    Foulkes, M. J. et al. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res. 114(3), 329–342 (2009).
    Google Scholar 
    Gaju, O. et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res. 123(2), 139–152 (2011).
    Google Scholar 
    Ehdaie, B. A. H. M. A. N., Mohammadi, S. A. & Nouraein, M. QTLs for root traits at mid-tillering and for root and shoot traits at maturity in a RIL population of spring bread wheat grown under well-watered conditions. Euphytica 211(1), 17–38 (2016).
    Google Scholar 
    Piper, C. S. Soil and Plant Analysis (Adelaide University, 1950).
    Google Scholar 
    Subbiah, B. V. & Asija, G. L. A rapid method for the estimation of nitrogen in soil. Curr. Sci. 26, 259–260 (1956).
    Google Scholar 
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Carbonate (USDA, 1954).
    Google Scholar 
    Hanway, J. J. & Heidel, H. Soil Analysis Methods as used in Iowa State College Soil Testing Laboratory, Bulletin 57 (Iowa State College of Agriculture, 1952).
    Google Scholar 
    Walkley, A. L. & Black, I. A. An examination of the Degtjareff method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 

    Google Scholar 
    Ntanos, D. A. & Koutroubas, S. D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 74, 93–101 (2002).
    Google Scholar 
    Prasad, R., Shivay, Y. S., Kumar, D., & Sharma, S. N. Learning by doing exercises in soil fertility (A practical manual for soil fertility). Division of Agronomy, Indian Agricultural Research Institute, India, (2006).Jiang, L. et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res. 88, 239–250 (2004).
    Google Scholar 
    Dai, X. et al. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res. 154, 100–109 (2013).
    Google Scholar 
    Liu, W. et al. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China Plain. Front. Plant Sci. 9, 1798 (2018).
    Google Scholar 
    Gomez, K. A. & Gomez, A. A. Statistical Procedures for Agricultural Research 2nd edn, 180–209 (Wiley, 1984).
    Google Scholar  More

  • in

    Pollinators and the habitat fragmentation puzzle

    Habitat loss is one of main threats to biodiversity worldwide and in general is perceived as something to be avoided. However, the prevalence of negative effects of forest fragmentation is less clear. Fragmentation creates edges between once-pristine forest and the adjacent non-forest system or systems (for example, agricultural lands, cities or water reservoirs), but the effects of these edges on biodiversity are not always clear. By performing a robust study of the interaction between insect pollinators and flowering plants at forest edges and within the forest, Ren et al.1 add a new piece to this puzzle by showing that forest edges can have a positive buffering effect on interaction networks. More