More stories

  • in

    A new technique to study nutrient flow in host-parasite systems by carbon stable isotope analysis of amino acids and glucose

    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518. https://doi.org/10.1038/nature06970 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts?. Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lafferty, K. D., Dobson, A. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. 103, 11211–11216 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Amundsen, P. A. et al. Food web topology and parasites in the pelagic zone of a subarctic lake. J. Anim. Ecol. 78, 563–572. https://doi.org/10.1111/j.1365-2656.2008.01518.x (2009).Article 

    Google Scholar 
    Thompson, R. M., Mouritsen, K. N. & Poulin, R. Importance of parasites and their life cycle characteristics in determining the structure of a large marine food web. J. Anim. Ecol. 74, 77–85. https://doi.org/10.1111/j.1365-2656.2004.00899.x (2005).Article 

    Google Scholar 
    Thieltges, D. W. et al. Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos 122, 1473–1482. https://doi.org/10.1111/j.1600-0706.2013.00243.x (2013).Article 

    Google Scholar 
    Sato, T. et al. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology 92, 201–207 (2011).Article 

    Google Scholar 
    Lafferty, K. D. & Kuris, A. M. Trophic strategies, animal diversity and body size. Trends Ecol. Evol. 17, 507–513 (2002).Article 

    Google Scholar 
    Goedknegt, M. A. et al. Trophic relationship between the invasive parasitic copepod Mytilicola orientalis and its native blue mussel (Mytilus edulis) host. Parasitology 145, 814–821. https://doi.org/10.1017/S0031182017001779 (2018).Article 
    CAS 

    Google Scholar 
    Timi, J. T. & Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 50, 755–761. https://doi.org/10.1016/j.ijpara.2020.04.007 (2020).Article 

    Google Scholar 
    Barber, I. & Svensson, P. A. Effects of experimental Schistocephalus solidus infections on growth, morphology and sexual development of female three-spined sticklebacks Gasterosteus aculeatus. Parasitology 126, 359–367. https://doi.org/10.1017/s0031182002002925 (2003).Article 
    CAS 

    Google Scholar 
    Scharsack, J. P., Koch, K. & Hammerschmidt, K. Who is in control of the stickleback immune system: Interactions between Schistocephalus solidus and its specific vertebrate host. Proc. Biol. Sci. 274, 3151–3158. https://doi.org/10.1098/rspb.2007.1148 (2007).Article 

    Google Scholar 
    Hopkins, C. A. Studies on cestode metabolism. I. glycogen metabolism in Schistocephalus solidus In vivo. J. Parasitol. 36, 384–390 (1950).Article 
    CAS 

    Google Scholar 
    Körting, W. & Barrett, J. Carbohydrate catabolism in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). Int. J. Parasitol. 7, 411–417 (1977).Article 

    Google Scholar 
    Hebert, F. O., Grambauer, S., Barber, I., Landry, C. R. & Aubin-Horth, N. Major host transitions are modulated through transcriptome-wide reprogramming events in Schistocephalus solidus, a threespine stickleback parasite. Mol. Ecol. 26, 1118–1130. https://doi.org/10.1111/mec.13970 (2017).Article 
    CAS 

    Google Scholar 
    Berger, C. S. et al. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasites Vectors 14, 436. https://doi.org/10.1186/s13071-021-04933-w (2021).Article 
    CAS 

    Google Scholar 
    Jolles, J. W., Mazue, G. P. F., Davidson, J., Behrmann-Godel, J. & Couzin, I. D. Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci. Rep. 10, 12282. https://doi.org/10.1038/s41598-020-69057-0 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Scharsack, J. P. et al. Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes. Glob. Change Biol. 27, 94–107. https://doi.org/10.1111/gcb.15402 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kochneva, A., Borvinskaya, E. & Smirnov, L. Zone of interaction between the parasite and the host: Protein profile of the body cavity fluid of Gasterosteus aculeatus L. infected with the Cestode Schistocephalus solidus (Muller, 1776). Acta Parasitol. 66, 569–583. https://doi.org/10.1007/s11686-020-00318-8 (2021).Article 
    CAS 

    Google Scholar 
    Barber, I. & Scharsack, J. P. The three-spined stickleback-Schistocephalus solidus system: An experimental model for investigating host-parasite interactions in fish. Parasitology 137, 411–424. https://doi.org/10.1017/S0031182009991466 (2010).Article 
    CAS 

    Google Scholar 
    Weber, J. N., Steinel, N. C., Shim, K. C. & Bolnick, D. I. Recent evolution of extreme cestode growth suppression by a vertebrate host. Proc. Natl. Acad. Sci. U. S. A. 114, 6575–6580. https://doi.org/10.1073/pnas.1620095114 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Sabadel, A. J. M., Stumbo, A. D. & MacLeod, C. D. Stable-isotope analysis: A neglected tool for placing parasites in food webs. J. Helminthol. 93, 1–7. https://doi.org/10.1017/S0022149X17001201 (2019).Article 
    CAS 

    Google Scholar 
    Hayes, J. M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Mar. Geol. 113, 111–125 (1993).Article 
    ADS 
    CAS 

    Google Scholar 
    France, R. L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40, 1310–1313 (1995).Article 
    ADS 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    O’Connell, T. C. ‘Trophic’ and ‘source’ amino acids in trophic estimation: A likely metabolic explanation. Oecologia 184, 317–326. https://doi.org/10.1007/s00442-017-3881-9 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    McMahon, K. W., Fogel, M. L., Elsdon, T. S. & Thorrold, S. R. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79, 1132–1141. https://doi.org/10.1111/j.1365-2656.2010.01722.x (2010).Article 

    Google Scholar 
    Liu, H.-z, Luo, L. & Cai, D.-l. Stable carbon isotopic analysis of amino acids in a simplified food chain consisting of the green alga Chlorella spp., the calanoid copepod Calanus sinicus, and the Japanese anchovy (Engraulis japonicus). Can. J. Zool. 96, 23–30. https://doi.org/10.1139/cjz-2016-0170 (2018).Article 
    CAS 

    Google Scholar 
    Wang, Y. V. et al. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chem. 256, 380–389. https://doi.org/10.1016/j.foodchem.2018.02.095 (2018).Article 
    CAS 

    Google Scholar 
    Whiteman, J. P., Kim, S. L., McMahon, K. W., Koch, P. L. & Newsome, S. D. Amino acid isotope discrimination factors for a carnivore: Physiological insights from leopard sharks and their diet. Oecologia 188, 977–989. https://doi.org/10.1007/s00442-018-4276-2 (2018).Article 
    ADS 

    Google Scholar 
    Rogers, M., Bare, R., Gray, A., Scott-Moelder, T. & Heintz, R. Assessment of two feeds on survival, proximate composition, and amino acid carbon isotope discrimination in hatchery-reared Chinook salmon. Fish. Res. 219, 105303. https://doi.org/10.1016/j.fishres.2019.06.001 (2019).Article 

    Google Scholar 
    Choy, K., Smith, C. I., Fuller, B. T. & Richards, M. P. Investigation of amino acid δ13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography–isotope ratio mass spectrometry. Geochim. Cosmochim. Acta 74, 6093–6111. https://doi.org/10.1016/j.gca.2010.07.025 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).Article 
    CAS 

    Google Scholar 
    Raghavan, M., McCullagh, J. S., Lynnerup, N. & Hedges, R. E. Amino acid delta13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: Paleodietary implications from intra-individual comparisons. Rapid Commun. Mass Spectrom. 24, 541–548. https://doi.org/10.1002/rcm.4398 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Honch, N. V., McCullagh, J. S. & Hedges, R. E. Variation of bone collagen amino acid delta13C values in archaeological humans and fauna with different dietary regimes: Developing frameworks of dietary discrimination. Am. J. Phys. Anthropol. 148, 495–511. https://doi.org/10.1002/ajpa.22065 (2012).Article 

    Google Scholar 
    Mora, A. et al. High-resolution palaeodietary reconstruction: Amino acid δ 13 C analysis of keratin from single hairs of mummified human individuals. Quatern. Int. 436, 96–113. https://doi.org/10.1016/j.quaint.2016.10.018 (2017).Article 

    Google Scholar 
    Matos, M. P. V., Konstantynova, K. I., Mohr, R. M. & Jackson, G. P. Analysis of the (13)C isotope ratios of amino acids in the larvae, pupae and adult stages of Calliphora vicina blow flies and their carrion food sources. Anal. Bioanal. Chem. 410, 7943–7954. https://doi.org/10.1007/s00216-018-1416-9 (2018).Article 
    CAS 

    Google Scholar 
    Bontempo, L. et al. Bulk and compound-specific stable isotope ratio analysis for authenticity testing of organically grown tomatoes. Food Chem. 318, 126426. https://doi.org/10.1016/j.foodchem.2020.126426 (2020).Article 
    CAS 

    Google Scholar 
    Gaye-Siessegger, J., McCullagh, J. S. & Focken, U. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue delta13C of rainbow trout. Br. J. Nutr. 105, 1764–1771. https://doi.org/10.1017/S0007114510005696 (2011).Article 
    CAS 

    Google Scholar 
    Newsome, S. D., Fogel, M. L., Kelly, L. & del Rio, C. M. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062. https://doi.org/10.1111/j.1365-2435.2011.01866.x (2011).Article 

    Google Scholar 
    Larsen, T. et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8, e73441. https://doi.org/10.1371/journal.pone.0073441 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Thieltges, D. W., Goedknegt, M. A., O’Dwyer, K., Senior, A. M. & Kamiya, T. Parasites and stable isotopes: A comparative analysis of isotopic discrimination in parasitic trophic interactions. Oikos 128, 1329–1339. https://doi.org/10.1111/oik.06086 (2019).Article 

    Google Scholar 
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. Camb. Philos. Soc. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2011).Article 

    Google Scholar 
    Wang, Y. V., Wan, A. H. L., Krogdahl, A., Johnson, M. & Larsen, T. (13)C values of glycolytic amino acids as indicators of carbohydrate utilization in carnivorous fish. PeerJ 7, e7701. https://doi.org/10.7717/peerj.7701 (2019).Article 

    Google Scholar 
    Hesse, T. et al. Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks. Sci. Rep. 12, 11690. https://doi.org/10.1038/s41598-022-15704-7 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Riekenberg, P. M. et al. Stable nitrogen isotope analysis of amino acids as a new tool to clarify complex parasite–host interactions within food webs. Oikos 130, 1650–1664. https://doi.org/10.1111/oik.08450 (2021).Article 
    CAS 

    Google Scholar 
    Carleton, S. A. & Del Rio, C. M. Growth and catabolism in isotopic incorporation: A new formulation and experimental data. Funct. Ecol. 24, 805–812. https://doi.org/10.1111/j.1365-2435.2010.01700.x (2010).Article 

    Google Scholar 
    Perga, M. E. & Gerdeaux, D. ‘Are fish what they eat’ all year round?. Oecologia 144, 598–606. https://doi.org/10.1007/s00442-005-0069-5 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Grey, J. Trophic fractionation and the effects of diet switch on the carbon stable isotopic ‘signatures’ of pelagic consumers. SIL Proc. 1922–2010(27), 3187–3191. https://doi.org/10.1080/03680770.1998.11898266 (2000).Article 

    Google Scholar 
    Danfaer, A. Nutrient metabolism and utilization in the liver. Livest. Prod. Sci. 39, 115–127 (1994).Article 

    Google Scholar 
    Read, C. P. & Simmons, J. E. Biochemistry and physiology of tapeworms. Physiol. Rev. 43, 263–305 (1963).Article 
    CAS 

    Google Scholar 
    Nachev, M. et al. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen. Parasites Vectors 10, 1–9. https://doi.org/10.1186/s13071-017-2030-y (2017).Article 
    CAS 

    Google Scholar 
    Kanaya, G. et al. Application of stable isotopic analyses for fish host–parasite systems: An evaluation tool for parasite-mediated material flow in aquatic ecosystems. Aquat. Ecol. 53, 217–232. https://doi.org/10.1007/s10452-019-09684-6 (2019).Article 
    CAS 

    Google Scholar 
    Gilbert, B. M. et al. You are how you eat: differences in trophic position of two parasite species infecting a single host according to stable isotopes. Parasitol. Res. 119, 1393–1400. https://doi.org/10.1007/s00436-020-06619-1 (2020).Article 

    Google Scholar 
    Gilbert, B. M. et al. Stable isotope analysis spills the beans about spatial variance in trophic structure in a fish host—Parasite system from the Vaal River System, South Africa. Int. J. Parasitol. Parasites Wildl. 12, 134–141. https://doi.org/10.1016/j.ijppaw.2020.05.011 (2020).Article 

    Google Scholar 
    Felig, P. The glucose-alanine cycle. Metabolism 22, 179–207 (1973).Article 
    CAS 

    Google Scholar 
    Dale, R. A. Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochem. Biophys. Acta. 544, 496–503 (1978).Article 
    CAS 

    Google Scholar 
    Jordan, P. M. & Akhtar, M. The mechanism of action of serine Transhydroxymethylase. Biochem. J. 116, 277–286 (1970).Article 
    CAS 

    Google Scholar 
    Linstead, D. J., Klein, R. A. & Cross, G. A. M. Threonine catabolism in Trypanosoma brucei. J. Gen. Microbiol. 101, 243–251 (1977).Article 
    CAS 

    Google Scholar 
    Hare, P. E., Fogel, M. L., Stafford, T. W. Jr., Mitchell, A. D. & Hoering, T. C. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J. Archaeol. Sci. 18, 277–292 (1991).Article 

    Google Scholar 
    Petzke, K. J., Boeing, H., Klaus, S. & Metges, C. C. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J. Nutr. 135, 1515–1520 (2005).Article 
    CAS 

    Google Scholar 
    McMahon, K. W., Polito, M. J., Abel, S., McCarthy, M. D. & Thorrold, S. R. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol. Evol. 5, 1278–1290. https://doi.org/10.1002/ece3.1437 (2015).Article 

    Google Scholar 
    Fuller, B. T. & Petzke, K. J. The dietary protein paradox and threonine (15) N-depletion: Pyridoxal-5’-phosphate enzyme activity as a mechanism for the delta (15) N trophic level effect. Rapid Commun. Mass Spectrom. 31, 705–718. https://doi.org/10.1002/rcm.7835 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowyer, A. et al. Structure and function of the l-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Struct. Biol. 168, 294–304. https://doi.org/10.1016/j.jsb.2009.07.011 (2009).Article 
    CAS 

    Google Scholar 
    Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: Reaction mechanism, physiological significance and hyperglycinemia. Proc. Jpn. Acad. https://doi.org/10.2183/pjab/84.246 (2008).Article 

    Google Scholar 
    Locasale, J. W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583. https://doi.org/10.1038/nrc3557 (2013).Article 
    CAS 

    Google Scholar 
    Kalhan, S. C. & Hanson, R. W. Resurgence of serine: An often neglected but indispensable amino Acid. J. Biol. Chem. 287, 19786–19791. https://doi.org/10.1074/jbc.R112.357194 (2012).Article 
    CAS 

    Google Scholar 
    Larsen, T., Wang, Y. V. & Wan, A. H. L. Tracing the Trophic fate of aquafeed macronutrients with carbon isotope ratios of amino acids. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.813961 (2022).Article 

    Google Scholar 
    Sweeting, C. J., Polunin, N. V. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601. https://doi.org/10.1002/rcm.2347 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Tarallo, A., Bailey, C., Agnisola, C. & D’Onofrio, G. A theoretical evaluation of the respiration rate partition in the Gasterosteus aculeatus-Schistocephalus solidus host-parasite system. Int. Aquat. Res. 13, 185. https://doi.org/10.22034/IAR.2021.1924974.1142 (2021).Article 

    Google Scholar 
    Takizawa, Y. et al. A new insight into isotopic fractionation associated with decarboxylation in organisms: Implications for amino acid isotope approaches in biogeoscience. Progress Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00364-w (2020).Article 

    Google Scholar 
    Ron-Harel, N. et al. T cell activation depends on extracellular alanine. Cell Rep. 28, 3011-3021.e4. https://doi.org/10.1016/j.celrep.2019.08.034 (2019).Article 
    CAS 

    Google Scholar 
    Wang, W. et al. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids 45, 463–477. https://doi.org/10.1007/s00726-013-1493-1 (2013).Article 
    CAS 

    Google Scholar 
    Mathis, D. & Shoelson, S. E. Immunometabolism: An emerging frontier. Nat. Rev. Immunol. 11, 81. https://doi.org/10.1038/nri2922 (2011).Article 
    CAS 

    Google Scholar 
    Guo, C. et al. Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish Shellfish Immunol. 47, 664–673. https://doi.org/10.1016/j.fsi.2015.09.034 (2015).Article 
    CAS 

    Google Scholar 
    Peuss, R. et al. Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish. Nat. Ecol. Evol. 4, 1416–1430. https://doi.org/10.1038/s41559-020-1234-2 (2020).Article 

    Google Scholar 
    Smyth, J. D. Fertilization of Schistocephalus solidus in vitro. Exp. Parasitol. 3, 64–71 (1954).Article 
    CAS 

    Google Scholar 
    Schärer, L. & Wedekind, C. Lifetime reproductive output in a hermaphrodite cestode when reproducing alone or in pairs. Evol. Ecol. 13, 381–394 (1999).Article 

    Google Scholar 
    McCullagh, J. S. Mixed-mode chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 483–494. https://doi.org/10.1002/rcm.4322 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Dunn, P. J., Honch, N. V. & Evershed, R. P. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid delta13C values for palaeodietary and palaeoecological reconstruction. Rapid Commun. Mass Spectrom. 25, 2995–3011. https://doi.org/10.1002/rcm.5174 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Fry, B., Carter, J. F., Yamada, K., Yoshida, N. & Juchelka, D. Position-specific (13) C/(12) C analysis of amino acid carboxyl groups—Automated flow-injection-analysis based on reaction with ninhydrin. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8126 (2018).Article 

    Google Scholar 
    Marks, R. G. H., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. How to couple LC-IRMS with HRMS─A proof-of-concept study. Anal Chem 94, 2981–2987 (2022).Article 
    CAS 

    Google Scholar 
    Sun, Y. et al. A method for stable carbon isotope measurement of underivatized individual amino acids by multi-dimensional high-performance liquid chromatography and elemental analyzer/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 34, e8885. https://doi.org/10.1002/rcm.8885 (2020).Article 
    CAS 

    Google Scholar 
    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Köster, D., Villalobos, I. M. S., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. New concepts for the determination of oxidation efficiencies in liquid chromatography-isotope ratio mass spectrometry. Anal. Chem. 91, 5067–5073. https://doi.org/10.1021/acs.analchem.8b05315 (2019).Article 
    CAS 

    Google Scholar 
    Boschker, H. T., Moerdijk-Poortvliet, T. C., van Breugel, P., Houtekamer, M. & Middelburg, J. J. A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 22, 3902–3908. https://doi.org/10.1002/rcm.3804 (2008).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers

    Chakraborty, A. & Jones, T. E. in Natural Heritage of Japan Geoheritage, Geoparks and Geotourism (Conservation and Management Series) (eds Chakraborty, A. et al.) Ch. 16 (Springer, 2018).Nakamura, K. Possible nascent trench along the eastern Japan Sea as the convergent boundary between Eurasian and North American plates (in Japanese). Bull. Earthq. Res. Inst. 58, 711–722 (1983).
    Google Scholar 
    Seno, T. Is northern Honshu a microplate? Tectonophysics 115, 177–196 (1985).Article 

    Google Scholar 
    Ogawa, Y., Takami, Y. & Takazawa, S. in Formation and Applications of the Sedimentary Record in Arc Collision Zones Vol. 436 (eds Draut, A. E. at al.) 155–170 (Geological Society of America, 2008).Tsuya, H. & Morimoto, R. Types of volcanic eruptions in Japan (in Japanese). Bull. Volcanol. 26, 209–222 (1963).Article 
    CAS 

    Google Scholar 
    Aoki, Y., Tsunematsu, K. & Yoshimoto, M. Recent progress of geophysical and geological studies of Mt. Fuji Volcano, Japan. Earth Sci. Rev. 194, 264–282 (2019).Article 

    Google Scholar 
    Tsuchi, R. Geology and groundwater of Mt. Fuji, Japan (in Japanese). J. Geogr. 126, 33–42 (2017).Article 

    Google Scholar 
    Vittecoq, B., Reninger, P.-A., Lacquement, F., Martelet, G. & Violette, S. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Sys. Sci. 23, 2321–2338 (2019).Article 
    CAS 

    Google Scholar 
    Yamamoto, S. Hydrologic study of volcano Fuji and its adjacent areas (in Japanese). Geogr. Rev. Jpn 43, 267–184 (1970).Article 

    Google Scholar 
    Yamamoto, T. & Nakada, S. in Volcanic Hazards, Risks, and Disasters (eds Shroder, J. F. & Papale, P.) 355–376 (Elsevier, 2015).Hasegawa, A. et al. Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: an overview. Gondwana Res. 16, 370–400 (2009).Article 

    Google Scholar 
    Kashiwagi, H. & Nakajima, J. Three‐dimensional seismic attenuation structure of central Japan and deep sources of arc magmatism. Geophys. Res. Lett. 46, 13746–13755 (2019).Article 

    Google Scholar 
    Obrochta, S. P. et al. Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating. Quat. Sci. Rev. 200, 395–405 (2018).Article 

    Google Scholar 
    Tosaki, Y. & Asai, K. Groundwater ages in Mt. Fuji (in Japanese). J. Geogr. 126, 89–104 (2017).Article 

    Google Scholar 
    Imtiaz, M. et al. Vanadium, recent advancements and research prospects: a review. Environ. Int. 80, 79–88 (2015).Article 
    CAS 

    Google Scholar 
    Koshimizu, S., & Tomura, K. (2000). Geochemical behavior of trace vanadium in the spring, groundwater and lake water at the foot of Mt. Fuji, Central Japan. In K. Sato & Y. Iwasa (Eds.), Groundwater Updates. Springer, Tokyo. 171-176. https://doi.org/10.1007/978-4-431-68442-8_29Ono, M. et al. Regional groundwater flow system in a stratovolcano adjacent to a coastal area: a case study of Mt. Fuji and Suruga Bay, Japan. Hydrogeol. J. 27, 717–730 (2019).Article 

    Google Scholar 
    UNESCO Fujisan, Sacred Place and Source of Artistic Inspiration (World Heritage Convention, 2013); https://whc.unesco.org/en/list/1418Nationally Designated Cultural Properties Database (in Japanese) (Agency of Cultural Affairs Japan, 2020); https://kunishitei.bunka.go.jp/bsys/indexShowa’s 100 Famous Waters of Japan (Ministry of the Environment Japan (MOEJ), 1985); https://www.env.go.jp/water/meisui/Heisei’s 100 Famous Waters of Japan (MOEJ, 2009): https://www.env.go.jp/water/meisui/An Overview of the Bottled Water Market in Japan (Frost & Sullivan, 2016).Fujiyoshida Mineral Water Conservation Association FMWCA Regulations (in Japanese) (Mt. Fuji Springs Inc., 2016); http://fujiyoshida-hozen.org/aboutwater/Adachi, Y. et al. The physiological effects of the undercurrent water from Mt. Fuji on type 2 diabetic KK-Ay mice. Biomed. Res. Trace Elem. 15, 76–78 (2004).CAS 

    Google Scholar 
    Isogai, A., Kanada, R., Iawata, H. & Sudo, S. The influence of vanadium on the components of hineka (in Japanese). J. Brew. Soc. Jpn 107, 443–450 (2012).Article 

    Google Scholar 
    Tamada, Y., Tokui, M., Yamashita, N., Kubodera, T. & Akashi, T. Analyzing the relationship between the inorganic element profile of sake dilution water and dimethyl trisulfide formation using multi-element profiling. J. Biosci. Bioeng. 127, 710–713 (2019).Article 
    CAS 

    Google Scholar 
    London Sake Challenge 2018: Awarded Sake (Sake Somelier Association (SSA), 2018); https://londonsakechallenge.com/awarded-sake-2019/London Sake Challenge 2019: Awarded Sake (SSA, 2019); https://londonsakechallenge.com/awarded-sake-2019/Yasuhara, M., Hayashi, T. & Asai, K. Overview of the special issue “Groundwater in Mt. Fuji”. J. Geogr. 126, 25–27 (2017).Article 

    Google Scholar 
    Yasuhara, M., Hayashi, T., Asai, K., Uchiyama, M. & Nakamura, T. Overview of the special issue “Groundwater in Mt. Fuji (Part 2)”. J. Geogr. 129, 657–660 (2020).Article 

    Google Scholar 
    Gmati, S., Tase, N., Tsujimura, M. & Tosaki, Y. Aquifers interaction in the southwestern foot of Mt. Fuji, Japan, examined through hydrochemistry and statistical analyses. Hydrol. Res. Lett. 5, 58–63 (2011).Article 

    Google Scholar 
    Ikeda, K. Water-sediments interaction of salinized groundwater, and its chemical compositions in coastal areas (in Japanese). Jpn. J. Limnol. 46, 303–314 (1985).Article 
    CAS 

    Google Scholar 
    Kato, K. et al. Unveiled groundwater flushing from the deep seafloor in Suruga Bay. Limnology https://doi.org/10.1007/s10201-014-0445-0 (2015).Segawa, T. et al. Microbes in groundwater of a volcanic mountain, Mt. Fuji; 16S rDNA phylogenetic analysis as a possible indicator for the transport routes of groundwater. Geomicrobiol. J. 32, 677–688 (2015).Article 

    Google Scholar 
    Sugiyama, A., Masuda, S., Nagaosa, K., Tsujimura, M. & Kato, K. Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA. Biogeosciences 15, 721–732 (2018).Article 
    CAS 

    Google Scholar 
    Yasuhara, M., Kazahaya, K. & Marui, A. in Fuji Volcano (eds Aramaki, S. et al.) 389–405 (Yamanashi Institute of Environmental Sciences, 2007).Tsuchi, R. in Fuji Volcano (eds Aramaki, S. et al.) 375–387 (Yamanashi Institute of Environmental Sciences, 2007).Takada, A., Yamamoto, T., Ishizuka, Y. & Nakano, S. in Miscellaneous Map Series No. 12, 56 (Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 2016).Uchiyama, T. Hydrogeological structure and hydrological characterization in the northern foot area of Fuji volcano, central Japan (in Japanese). J. Geogr. 129, 697–724 (2020).Article 

    Google Scholar 
    Ikawa, R. et al. in S-5: Seamless Geoinformation of Coastal Zone “Northern Coastal Zone of Suruga Bay” (GSJ, AIST, 2016).AIST 2014 Marine Geological and Environmental Survey Confirmation Technology Development Results Report (in Japanese) (AIST, 2015).AIST 2015 Marine Geological and Environmental Survey Confirmation Technology Development Results Report (in Japanese) (AIST, 2016).Lin, A., Iida, K. & Tanaka, H. On-land active thrust faults of the Nankai–Suruga subduction zone: the Fujikawa-kako Fault Zone, central Japan. Tectonophysics 601, 1–19 (2013).Article 

    Google Scholar 
    Fujita, E. et al. Stress field change around the Mount Fuji volcano magma system caused by the Tohoku megathrust earthquake, Japan. Bull. Volcanol. 75, 679 (2013).Article 

    Google Scholar 
    Kano, K.-I., Odawara, K., Yamamoto, G. & Ito, T. Tectonics of the Fujikawa-kako Fault Zone around the Hoshiyama Hills, central Japan, since 1 Ma. Geosci. Rep. Shizuoka Univ. 46, 19–49 (2019).
    Google Scholar 
    Schilling, O. S., Cook, P. G. & Brunner, P. Beyond classical observations in hydrogeology: the advantages of including exchange flux, temperature, tracer concentration, residence time and soil moisture observations in groundwater model calibration. Rev. Geophys. 57, 146–182 (2019).Article 

    Google Scholar 
    Schilling, O. S. et al. Quantifying groundwater recharge dynamics and unsaturated zone processes in snow-dominated catchments via on-site dissolved gas analysis. Water Resour. Res. 57, e2020WR028479 (2021).Article 

    Google Scholar 
    National Hydrological Environment Database of Japan (GSJ, AIST, 2020).Hayashi, T. Understanding the groundwater flow system at the northern part of Mt. Fuji: current issues and prospects (in Japanese). J. Geogr. 129, 677–695 (2020).Article 

    Google Scholar 
    Yasuhara, M., Marui, A., & Kazahaya, K. (1997). Stable isotopic composition of groundwater from Mt. Yatsugatake and Mt. Fuji, Japan. Proceedings of the Rabat Symposium. Rabat Symposium, April 1997, Wallingford, UK.Jasechko, S. Global isotope hydrogeology—review. Rev. Geophys. https://doi.org/10.1029/2018RG000627 (2019).Yaguchi, M., Muramatsu, Y., Chiba, H., Okumura, F. & Ohba, T. The origin and hydrochemistry of deep well waters from the northern foot of Mt. Fuji, central Japan. Geochem. J. 50, 227–239 (2016).Article 
    CAS 

    Google Scholar 
    Aizawa, K. et al. Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan. Geology 44, 127–130 (2016).Article 
    CAS 

    Google Scholar 
    Kipfer, R. et al. Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth Planet. Sci. Lett. 125, 357–370 (1994).Article 
    CAS 

    Google Scholar 
    Kipfer, R., Aeschbach-Hertig, W., Peeters, F. & Stute, M. in Noble Gases in Geochemistry and Cosmochemistry Reviews in Mineralogy and Geochemistry Vol. 47 (eds Porcelli, D. et al.) Ch. 14 (De Gruyter, 2002).Sano, Y. & Fischer, T. P. in The Noble Gases as Geochemical Tracers: Advances in isotope geochemistry (ed. Burnard, O.) Ch. 10 (Springer, 2013).Sano, Y. & Wakita, H. Distribution of 3He/4He ratios and its implications for geotectonic structure of the Japanese Islands. J. Geophys. Res. 90, 8729–8741 (1985).Article 
    CAS 

    Google Scholar 
    Tomonaga, Y. et al. Fluid dynamics along the Nankai Trough: He isotopes reveal direct seafloor mantle-fluid emission in the Kumano Basin (Southwest Japan). ACS Earth Space Chem. 4, 2015–2112 (2020).Article 

    Google Scholar 
    Chen, A. et al. Mantle fluids associated with crustal-scale faulting in a continental subduction setting, Taiwan. Sci Rep. 9, 10805 (2019).Article 

    Google Scholar 
    Crossey, L. J. et al. Continental smokers couple mantle degassing and distinctive microbiology within continents. Earth Planet. Sci. Lett. 435, 22–30 (2016).Article 
    CAS 

    Google Scholar 
    Crossey, L. J. et al. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—neotectonic connections and implications for groundwater systems. Geol. Soc. Am. Bull. 121, 1034–1053 (2009).Article 
    CAS 

    Google Scholar 
    Kusuda, C., Iwamori, H., Nakamura, H., Kazahaya, K. & Morikawa, N. Arima hot spring waters as a deep-seated brine from subducting slab. Earth Planets Space 66, 119 (2014).Article 

    Google Scholar 
    Sano, Y., Kameda, A., Takahata, N., Yamamoto, J. & Nakajima, J. Tracing extinct spreading center in SW Japan by helium-3 emanation. Chem. Geol. 266, 50–56 (2009).Article 
    CAS 

    Google Scholar 
    Sano, Y. et al. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan. Sci. Rep. 6, 37939 (2016).Article 
    CAS 

    Google Scholar 
    Peeters, F. et al. Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios. Geochim. Cosmochim. Acta 67, 587–600 (2002).Article 

    Google Scholar 
    Reimann, C. & de Caritat, P. Chemical Elements in the Environment 398 (Springer, 1998).Hamada, T. in Vanadium in the Environment. Part 1: Chemistry and Biochemistry Advances in Environmental Sciences and Technology Vol. 10 (ed. Nriagu, J. O.) 97–123 (Wiley & Sons, 1998).Koshimizu, S. & Kyotani, T. Geochemical behaviors of multi-elements in water samples from the Fuji and Sagami Rivers, Central Japan, using vanadium as an effective indicator. Jpn J. Limnol. 63, 113–124 (2002).Article 
    CAS 

    Google Scholar 
    Sohrin, R. in Green Science and Technology (eds Park, E. Y. et al.) Ch. 7 (CRC, 2019).Wehrli, B. & Stumm, W. Oxygenation of vanadyl(IV). Effect of coordinated surface hydroxyl groups and hydroxide ion. Langmuir 4, 753–758 (1988).Article 
    CAS 

    Google Scholar 
    Wright, M. T. & Belitz, K. Factors controlling the regional distribution of vanadium in groundwater. Ground Water 48, 515–525 (2010).Article 
    CAS 

    Google Scholar 
    Deverel, S. J., Goldberg, S. & Fujii, R. in Agricultural salinity assessment and management (eds W.W. Wallender & K.K. Tanji) 89–137 (American Society of Civil Engineers, 2012).Wehrli, B. & Stumm, W. Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim. Cosmochim. Acta 53, 69–77 (1989).Article 
    CAS 

    Google Scholar 
    Chen, G. & Liu, H. Understanding the reduction kinetics of aqueous vanadium(V) and transformation products using rotating ring-disk electrodes. Environ. Sci. Technol. 51, 11643–11651 (2017).Article 
    CAS 

    Google Scholar 
    Telfeyan, K., Johannesson, K. H., Mohajerin, T. J. & Palmore, C. D. Vanadium geochemistry along groundwater flow paths in contrasting aquifers of the United States: Carrizo Sand (Texas) and Oasis Valley (Nevada) aquifers. Chem. Geol. 410, 63–78 (2015).Article 
    CAS 

    Google Scholar 
    Kan, K. et al. Archaea in Yellowstone Lake. ISME J. 5, 1784–1795 (2011).Article 
    CAS 

    Google Scholar 
    Wong, H. L. et al. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 7, 46160 (2017).Article 
    CAS 

    Google Scholar 
    Ikeda, K. A study on chemical characteristics of ground water in Fuji area (in Japanese). J. Groundw. Hydrol. 24, 77–93 (1982).
    Google Scholar 
    Aizawa, K. et al. Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth Planet. Sci. Lett. 235, 343–355 (2005).Article 
    CAS 

    Google Scholar 
    Yamamoto, T., Takada, A., Ishizuka, Y., Miyaji, N. & Tajima, Y. Basaltic pyroclastic flows of Fuji volcano, Japan: characteristics of the deposits and their origin. Bull. Volcanol. 67, 622–633 (2005).Article 

    Google Scholar 
    Yamamoto, T., Takada, A., Ishizuka, Y. & Nakano, S. Chronology of the products of Fuji volcano based on new radiometoric carbon ages (in Japanese). Bull. Volcanol. 50, 53–70 (2005).CAS 

    Google Scholar 
    Aizawa, K., Yoshimura, R. & Oshiman, N. Splitting of the Philippine Sea Plate and a magma chamber beneath Mt. Fuji. Geophys. Res. Lett. 31, L09603 (2004).Article 

    Google Scholar 
    Nakamura, H., Iwamori, H. & Kimura, J.-I. Geochemical evidence for enhanced fluid flux due to overlapping subducting plates. Nat. Geosci. 1, 380–384 (2008).Article 
    CAS 

    Google Scholar 
    Kaneko, T., Yasuda, A., Fujii, T. & Yoshimoto, M. Crypto-magma chambers beneath Mt. Fuji. J. Volcanol. Geotherm. Res. 193, 161–170 (2010).Article 
    CAS 

    Google Scholar 
    Tsuya, H., Machida, H., & Shimozuru, D. (1988). Geology of volcano Mt. Fuji. Explanatory text of the geologic map of Mt. Fuji (scale 1:50,000; second printing). Geological Survey of Japan (GSJ), Tsukuba, Japan.Yoshimoto, M. et al. Evolution of Mount Fuji, Japan: inference from drilling into the subaerial oldest volcano, pre-Komitake. Isl. Arc. 19, 470–488 (2010).Article 

    Google Scholar 
    Shikazono, N., Arakawa, T. & Nakano, T. Groundwater quality, flow, and nitrogen pollution at the southern foot of Mt. Fuji (in Japanese). J. Geogr. 123, 323–342 (2014).Article 

    Google Scholar 
    Tosaki, Y., Tase, N., Sasa, K., Takahashi, T. & Nagashima, Y. Estimation of groundwater residence time using the 36Cl bomb pulse. Groundwater 49, 891–902 (2011).Article 
    CAS 

    Google Scholar 
    Yamamoto, T. Geology of the Southwestern Part of Fuji Volcano (in Japanese) 27 (GSJ, AIST, 2014).Tsuya, H. Geology of volcano Mt. Fuji. Explanatory text of the geologic map of Mt. Fuji (scale 1:50,000). Geological Survey of Japan, Tsukuba, Japan. (1968).Tomiyama, S., Ii, H., Miyaike, S., Hattori, R. & Ito, Y. Estimation of the sources and flow system of groundwater in Fuji-Gotenba area by stable isotopic analysis and groundwater flow simulation (in Japanese). Bunseki Kagaku 58, 865–872 (2009).Article 
    CAS 

    Google Scholar 
    Oguchi, T. & Oguchi, C. T. in Geomorphological Landscapes of the World (ed. Migoń, P.) Ch. 31 (Springer, 2010).Mean Annual Precipitation from 1981-2010 Recorded at the Four Mt. Fuji Observatories (Mishima, Fuji, Furuseki, Yamanaka) (Japan Meteorological Agency, 2015).Schilling, O. S., Park, Y.-J., Therrien, R. & Nagare, R. M. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze-thaw. Groundwater 57, 63–74 (2018).Article 

    Google Scholar 
    Sakio, H. & Masuzawa, T. Advancing timberline on Mt. Fuji between 1978 and 2018. Plants 9, 1537 (2020).Article 

    Google Scholar 
    Asai, K. & Koshimizu, S. 3H/3He-based groundwater ages for springs located at the foot of Mt. Fuji (in Japanese). J. Groundw. Hydrol. 61, 291–298 (2019).Article 

    Google Scholar 
    Sakai, Y., Shita, K., Koshimizu, S. & Tomura, K. Geochemical study of trace vanadium in water by preconcentrational neutron activation analysis. J. Radioanal. Nucl. Chem. 216, 203–212 (1997).Article 
    CAS 

    Google Scholar 
    Nahar, S. & Zhang, J. Concentration and distribution of organic and inorganic water pollutants in eastern Shizuoka, Japan. Toxicol. Environ. Chem. https://doi.org/10.1080/02772248.2011.610498 (2011).Kamitani, T., Watanabe, M., Muranaka, Y., Shin, K.-C. & Nakano, T. Geographical characteristics and sources of dissolved ions in groundwater at the southern part of Mt. Fuji (in Japanese). J. Geogr. 126, 43–71 (2017).Article 

    Google Scholar 
    Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9.0 Tohoku earthquake. Sci Rep. 2, 270 (2012).Article 

    Google Scholar 
    Uchida, N. & Bürgmann, R. A decade of lessons learned from the 2011 Tohoku-Oki earthquake. Rev. Geophys. 59, e2020RG000713 (2021).Article 

    Google Scholar 
    Mahara, Y., Igarashi, T. & Tanaka, Y. Groundwater ages of confined aquifer in Mishima lava flow, Shizuoka (in Japanese). J. Groundw. Hydrol. 35, 201–215 (1993).Article 

    Google Scholar 
    Nakamura, T. et al. Sources of water and nitrate in springs at the northern foot of Mt. Fuji and nitrate loading in the Katsuragawa River (in Japanese). J. Geogr. 126, 73–88 (2017).Article 

    Google Scholar 
    Notsu, K., Mori, T., Sumino, H. & Ohno, M. in Fuji Volcano (eds Aramaki, S. et al.) 173–182 (Yamanashi Institute of Environmental Sciences, 2007).Ogata, M. & Kobayashi, H. Hydrologic Science Research for the Management and Utilization of Ground Water Resources in the Northern Piedmont Area of Mt. Fuji: Fluorine Ion and Vanadium Contained in Ground Water at the Northern Foot of Mt. Fuji (Yamanashi Industrial Technology Center, 2015).Ogata, M., Kobayashi, H. & Koshimizu, S. Concentration of fluorine in groundwater and groundwater table at the northern foot of Mt. Fuji (in Japanese). J. Groundw. Hydrol. 56, 35–51 (2014).Article 

    Google Scholar 
    Ohno, M., Sumino, H., Hernandez, P. A., Sato, T. & Nagao, K. Helium isotopes in the Izu Peninsula, Japan: relation of magma and crustal activity. J. Volcanol. Geotherm. Res. 199, 118–126 (2011).Article 
    CAS 

    Google Scholar 
    Okabe, S., Shibasaki, M., Oikawa, T., Kawaguchi, Y. & Nihongi, H. Geochemical studies of spring and lake waters on and around Mt. Fuji (in Japanese). J. Sch. Mar. Sci. Technol. Tokai Univ. 14, 81–105 (1981).CAS 

    Google Scholar 
    Ono, M., Ikawa, R., Machida, H. & Marui, A. Distribution of radon concentration in groundwater at the southwestern foot of Mt. Fuji (in Japanese). Radioisotopes 65, 431–439 (2016).Article 
    CAS 

    Google Scholar 
    Tosaki, Y. Estimation of Groundwater Residence Time Using Bomb-Produced Chlorine-36. PhD thesis, Univ. Tsukuba (2008).Umeda, K., Asamori, K. & Kusano, T. Release of mantle and crustal helium from a fault following an inland earthquake. Appl. Geochem. 37, 134–141 (2013).Article 
    CAS 

    Google Scholar 
    Yamamoto, C. Estimation of Groundwater Flow System Using Multi-tracer Techniques in Mt. Fuji, Japan. (in Japanese) PhD thesis, Univ. Tsukuba (2016).Yamamoto, S. & Nakamura, T. Visit to valuable water springs (129) valuable water at the northern foot of Mount Fuji (Fuji-Kawaguchiko Town) (in Japanese). J. Groundw. Hydrol. 62, 329–336 (2020).Article 

    Google Scholar 
    Yamamoto, S. et al. Water sources of lake bottom springs in Lake Kawaguchi, northern foot of Mount Fuji, Japan (in Japanese). J. Geogr. 129, 665–676 (2020).Article 

    Google Scholar 
    Yamamoto, S., Nakamura, T. & Uchiyama, T. Newly discovered lake bottom springs from Lake Kawaguchi, the northern foot of Mount Fuji, Japan (in Japanese). J. Jpn Assoc. Hydrol. Sci. 47, 49–59 (2017).
    Google Scholar 
    Yamamoto, S., Nakamura, T., Koishikawa, H. & Uchiyama, T. Water quality of shallow groundwater in the southern coast area of Lake Kawaguchi at the northern foot of Mt. Fuji, Yamanashi, Japan (in Japanese). Mt Fuji Res. 11, 1–9 (2017).
    Google Scholar 
    Coplen, T. B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 66, 273–276 (1994).CAS 

    Google Scholar 
    Nimz, G. J. in Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) Ch. 8 (Elsevier, 1998).Bullen, T. D. & Kendall, C. in Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) Ch. 18 (Elsevier, 1998).Vanadium Pentoxide and Other Inorganic Vanadium Compounds Vol. 29 (WHO, 2001).Nagai, T., Takahashi, M., Hirahara, Y. & Shuto, K. Sr-Nd isotopic compositions of volcanic rocks from Fuji, Komitake and Ashitaka Volcanoes, Central Japan (in Japanese). Proc. Inst. Nat. Sci. Nihon Univ. 39, 205–215 (2004).CAS 

    Google Scholar 
    Hogan, J. F. & Blum, J. D. Tracing hydrologic flow paths in a small forested watershed using variations in 87Sr/86Sr, [Ca]/[Sr], [Ba]/[Sr] and δ18O. Water Resour. Res. 39, 1282 (2003).Article 

    Google Scholar 
    Koshikawa, M. K. et al. Using isotopes to determine the contribution of volcanic ash to Sr and Ca in stream waters and plants in a granite watershed, Mt. Tsukuba, central Japan. Environ. Earth Sci. 75, 501 (2016).Article 

    Google Scholar 
    Graustein, W. C. in Stable Isotopes in Ecological Research Ecological Studies (Analysis and Synthesis) (eds Rundel, JP.W. et al.) Ch. 28 (Springer, 1989).Cook, P. G. & Böhlke, J.-K. in Environmental Tracers in Subsurface Hydrology (eds Cook, P. G. & Herczeg, A. L.) Ch. 1 (Springer, 2000).Aeschbach-Hertig, W. & Solomon, D. K. in The Noble Gases as Geochemical Tracers (ed. Burnard, P.) Ch. 5 (Springer, 2013).Popp, A. L. et al. A framework for untangling transient groundwater mixing and travel times. Water Resour. Res. 57, e2020WR028362 (2021).Article 

    Google Scholar 
    Schilling, O. S. et al. Advancing physically-based flow simulations of alluvial systems through observations of 222Rn, 3H/3He, atmospheric noble gases and the novel 37Ar tracer method. Water Resour. Res. 53, 10465–10490 (2017).Article 

    Google Scholar 
    Tomonaga, Y. et al. Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: applicatoin to the Ceneri Base Tunnel (Switzerland). J. Hydrol. 545, 395–409 (2017).Article 
    CAS 

    Google Scholar 
    Niu, Y. et al. Noble gas signatures in the island of Maui, Hawaii – characterizing groundwater sources in fractured systems. Water Resour. Res. 53, 3599–3614 (2017).Article 

    Google Scholar 
    Warrier, R. B., Castro, M. C. & Hall, C. M. Recharge and source-water insights from the Galapagos Islands using noble gases and stable isotopes. Water Resour. Res. https://doi.org/10.1029/2011WR010954 (2012).Schilling, O. S. et al. Buried paleo-channel detection with a groundwater model, tracer-based observations, and spatially varying, preferred anisotropy pilot point calibration. Geophys. Res. Lett. 49, e2022GL098944 (2022).Article 

    Google Scholar 
    Brennwald, M. S., Schmidt, M., Oser, J. & Kipfer, R. A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol. 50, 13455–12463 (2016).Article 
    CAS 

    Google Scholar 
    Tomonaga, Y. et al. On-line monitoring of the gas composition in the full-scale emplacement experiment at Mont Terri (Switzerland). Appl. Geochem. 100, 234–243 (2019).Article 
    CAS 

    Google Scholar 
    Brennwald, M. S., Tomonaga, Y. & Kipfer, R. Deconvolution and compensation of mass spectrometric overlap interferences with the miniRUEDI portable mass spectrometer. MethodsX 7, 101038 (2020).Article 
    CAS 

    Google Scholar 
    Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).Beyerle, U. et al. A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ. Sci. Technol. 34, 2042–2050 (2000).Article 
    CAS 

    Google Scholar 
    Clarke, W. B., Jenkins, W. J. & Top, Z. Determination of tritium by mass spectrometric measurement of 3He. Int. J. Appl. Radiat. Isotopes 27, 515–522 (1976).Article 
    CAS 

    Google Scholar 
    Bucci, A., Petrella, E., Celivo, F. & Naclerio, G. Use of molecular approaches in hydrogeological studies: the case of carbonate aquifers in southern Italy. Hydrogeol. J. 25, 1017–1031 (2017).Article 
    CAS 

    Google Scholar 
    Proctor, C. R. et al. Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME J. 12, 1344–1359 (2018).Article 
    CAS 

    Google Scholar 
    Pronk, M., Goldscheider, N. & Zopfi, J. Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol. J. 17, 37–48 (2009).Article 

    Google Scholar 
    Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).Article 
    CAS 

    Google Scholar 
    Ginn, T. R. et al. in Encyclopedia of Hydrological Sciences (ed. Anderson, M.G.) Ch. 105 (John Wiley & Sons, 2005).Tufenkji, N. & Emelko, M. B. in Encyclopedia of Environmental Health (ed. Nriagu, J.O.) Vol. 2, 715–726 (Elsevier, 2011).Nevecherya, I. K., Shestakov, V. M., Mazaev, V. T. & Shlepnina, T. G. Survival rate of pathogenic bacteria and viruses in groundwater. Water Res. 32, 209–214 (2005).Article 
    CAS 

    Google Scholar 
    Franzosa, E. A. et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nature Rev. Microbiol. 13, 360–372 (2015).Article 
    CAS 

    Google Scholar 
    Kimura, H., Ishibashi, J. I., Masuda, H., Kato, K. & Hanada, S. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere. Appl. Environ. Microbiol. 73, 2110–2117 (2007).Article 
    CAS 

    Google Scholar 
    Somerville, C. C., Knight, I. T., Straube, W. L. & Colwell, R. R. Simple, rapid method for direct isolation of nucleic-acids from aquatic environments. Appl. Environ. Microbiol. 55, 548–554 (1989).Article 
    CAS 

    Google Scholar 
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE https://doi.org/10.1371/journal.pone.0105592 (2014).Wasimuddin et al. Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Mol. Ecol. Resour. 20, 1558–1571 (2020).Article 
    CAS 

    Google Scholar 
    Suzuki, Y., Shimizu, H., Kuroda, T., Takada, Y. & Nukazawa, K. Plant debris are hotbeds for pathogenic bacteria on recreational sandy beaches. Sci Rep. 11, 11496 (2021).Article 
    CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high- throughput community sequencing data. Nat. Methods 7, 335–336 (2010).Article 
    CAS 

    Google Scholar 
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).Article 
    CAS 

    Google Scholar 
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    CAS 

    Google Scholar 
    R: A Language and Environment for Statistical Computing v.3.6.2 (R Foundation for Statistical Computing, 2019).Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980).Article 

    Google Scholar 
    Schilling, O. S. et al. Mt. Fuji hydrogeochemical and microbiological dataset. HydroShare https://doi.org/10.4211/hs.4eac370d12e142b5aa718e5deb57da39 (2022).Gotelli, N. J. & Chao, A. in Encyclopedia of Biodiversity Vol. 5 (ed. Levin, S. A.) 195–211 (Academic, 2013).World Imagery (Esri, 2021); https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9Elevation Tile Map of Japan (DEM5A; Resolution: 5m) (Geospatial Information Authority of Japan (GSI), 2021).Chiba, T., Kaneta, S. & Suzuki, Y. in The International Archives of the Photogrammetry Vol. XXXVII Ch. B2 (Remote Sensing and Spatial Information Sciences, 2008).Air Asia Survey Co. Ltd Red Relief Image Map of Japan (RRIM 10_2016) (GSI, 2016).Active Fault Database of Japan April 26 2019 edn Disclosure database DB095 (AIST, 2019).Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000252 (2003).Van Horne, A., Sato, H. & Ishiyama, T. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophysics 710–711, 6–20 (2017).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    2019 Coastal Disposal System Evaluation Confirmation Technology Results Report (in Japanese) (AIST, 2019). More

  • in

    Author Correction: Measuring the world’s cropland area

    Authors and AffiliationsStatistics Division, Food and Agriculture Organization of the United Nations, Rome, ItalyFrancesco N. Tubiello, Giulia Conchedda, Leon Casse & Giorgia De SantisDigitization and Informatics Division, Food and Agriculture Organization of the United Nations, Rome, ItalyHao Pengyu & Chen ZhongxinInternational Institute for Applied Systems Analysis, Laxenburg, AustriaSteffen FritzGeospatial Unit, Land and Water Division, Food and Agriculture Organization of the United Nations, Rome, ItalyDouglas MuchoneyAuthorsFrancesco N. TubielloGiulia ConcheddaLeon CasseHao PengyuChen ZhongxinGiorgia De SantisSteffen FritzDouglas MuchoneyCorresponding authorCorrespondence to
    Francesco N. Tubiello. More

  • in

    Spring phenology alters vegetation drought recovery

    Mishra, A. K. & Singh, V. P. J. Hydrol. 391, 202–216 (2010).Article 

    Google Scholar 
    Jiao, W. et al. Nat. Commun. 12, 3777 (2021).Article 
    CAS 

    Google Scholar 
    Gampe, D. et al. Nat. Clim. Change 11, 772–779 (2021).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Schwalm, C. R. et al. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01584-2 (2023).Fourth National Climate Assessment: Volume II—Impacts, Risks, and Adaptation in the United States (US Global Change Research Program, 2018).Daryanto, S., Wang, L. & Jacinthe, P. A. PLoS ONE 11, e0156362 (2016).Article 

    Google Scholar 
    Jiao, W. et al. J. Geophys. Res. Biogeosci. 127, e2021JG006431 (2022).Augspurger, C. K. Oecologia 156, 281–286 (2008).Article 

    Google Scholar 
    Lian, X. et al. Nat. Commun. 12, 983 (2021).Article 
    CAS 

    Google Scholar 
    Buermann, W. et al. Nature 562, 110–114 (2018).Article 
    CAS 

    Google Scholar 
    Lian, X. et al. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Jiao, W., Wang, L. & McCabe, M. F. Rem. Sens. Environ. 256, 112313 (2021).Article 

    Google Scholar  More

  • in

    Evolutionary diversification of methanotrophic ANME-1 archaea and their expansive virome

    Sampling and incubationFour rock samples were collected from the 3.7 km-deep Auka vent field in the Southern Pescadero Basin (23.956094N, 108.86192W)20,23. Sample NA091.008 was collected in 2017 on cruise NA091 with the Eexploration vessle Nautilus and incubated as described previously34. Samples 12,019 (S0200-R1), 11,719 (S0193-R2) and 11,868 (S0197-PC1), the latter representing a lithified nodule recovered from a sediment push core, were collected with Remotely operated vehicle SuBastian and Research vessel Falkor on cruise FK181031 in November 2018. These samples were processed shipboard and stored under anoxic conditions at 4 °C for subsequent incubation in the laboratory. In the laboratory, rock samples 12,019 and 11,719 were broken into smaller pieces under sterile conditions, immersed in N2-sparged sterilized artificial sea water and incubated under anoxic conditions with methane, as described previously for NA091.008 (ref. 34). Additional sampling information can be found in Supplementary Table 1. Mineralogical analysis by X-ray Powder Diffraction (XRD) identified barite in several of these samples, collected from two locations in the Auka vent field, including on the western side of the Matterhorn vent (11,719, NA091.008), and one oil-saturated sample (12,019) recovered from the sedimented flanks from the southern side of Z vent. Our analysis also includes metagenomic data from two sediment cores from the Auka vent field (DR750-PC67 and DR750-PC80) collected in April 2015 with the ROV Doc Ricketts and R/V Western Flyer (MBARI2015), previously published (ref. 23).Fluorescence in situ hybridizationSamples were fixed shipboard using freshly prepared paraformaldehyde (2 vol% in 3× Phosphate Buffer Solution (PBS), EMS15713) at 4 °C overnight, rinsed twice using 3× PBS, and stored in ethanol (50% in 1× PBS) at −20 °C until processing. Small pieces ( More

  • in

    Synthesis of heat-resistant and water/oil-repellent aromatic polyketones bearing tetrakis(nonafluorobutyl)-p-terphenylene units

    Hou J, Sun J, Fang Q. A fluorinated low dielectric polymer at high frequency derived from allylphenol and benzocyclobutene by a facile route. Eur Polym J. 2022;163:110943–9.Article 
    CAS 

    Google Scholar 
    Qiu Z, Wu S, Li Z, Zhang S, Xing W, Liu S. Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules 2006;39:6425–32.Article 
    CAS 

    Google Scholar 
    Schönberger F, Chromik A, Kerres J. Synthesis and characterization of novel (sulfonated) poly(arylene ether)s with pendent trifluoromethyl groups. Polymer 2009;50:2010–24.Article 

    Google Scholar 
    Chen JC, Liu YC, Ju JJ, Chiang CJ, Chern YT. Synthesis, characterization and hydrolysis of aromatic polyazomethines containing non-coplanar biphenyl structures. Polymer 2011;52:954–64.Article 
    CAS 

    Google Scholar 
    Liaw DJ, Huang CC, Chen WH. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2’-dimethyl-4,4’-biphenylene units. Polymer 2006;47:2337–48.Article 
    CAS 

    Google Scholar 
    Shohbuke E, Kobayashi Y, Okubayashi S. Effects of acrylate monomers containing alkyl groups on water and oil repellent treatments of polyester fabrics. Colloids. Surf. A: Physicochem Eng Asp. 2021;631:127632–9.Article 
    CAS 

    Google Scholar 
    Sun Y, Zhao X, Liu R, Chen G, Zhou X. Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog Org Coat. 2018;123:306–13.Article 
    CAS 

    Google Scholar 
    Tang W, Huang Y, Qing FL. Synthesis and characterization of fluorinated polyacrylate graft copolymers capable as water and oil repellent finishing agents. J Appl Polym Sci. 2011;119:84–92.Article 
    CAS 

    Google Scholar 
    Jiang J, Zhang G, Wang Q, Zhang Q, Zhan X, Chen F. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates. ACS Appl Mater Interfaces. 2016;8:10513–23.Article 
    CAS 

    Google Scholar 
    Honda K, Morita M, Otsuka H, Takahara A. Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films. Macromolecules 2005;38:5699–705.Article 
    CAS 

    Google Scholar 
    Shaver AT, Yin K, Borjigin H, Zhang W, Choudhury SR, Baer E, Mecham SJ, Riffle JS, McGrath JE. Fluorinated poly(arylene ether ketone)s for high temperature dielectrics. Polymer 2016;83:199–204.Article 
    CAS 

    Google Scholar 
    Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer. 1981;22:1096–103.Article 
    CAS 

    Google Scholar 
    Yonezawa N, Okamoto A. Synthesis of Wholly Aromatic Polyketones. Polym J. 2009;41:899–928.Article 
    CAS 

    Google Scholar 
    Maeyama K, Ito S. Synthesis of aromatic poly(ether ketone)s bearing 9,9-dialkylfuorene-2,7-diyl units through nucleophilic aromatic substitution polymerization. Polym Bull.2018;75:5763–76.Article 
    CAS 

    Google Scholar 
    Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether ketone). Polymer 1983;24:953–8.Article 
    CAS 

    Google Scholar 
    Maeyama K, Hikiji I, Ogura K, Okamoto A, Ogino K, Saito H, Yonezawa N. Synthesis of Optically Active Aromatic Poly(ether ketone)s via Nucleophilic Aromatic Substitution Polymerization. Polym J. 2005;37:707–10.Article 
    CAS 

    Google Scholar 
    Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Effect of pendent phenyl and bis-phthalazinone moieties on the properties of N-heterocyclic poly(aryl ether ketone ketone)s. Polymer 2020;198:122525–34.Article 
    CAS 

    Google Scholar 
    Eaton PE, Carlson GR, Lee JT. Phosphorus Pentoxide-Methanesulfonic Acid. A Convenient Alternative to Polyphosphoric Acid. J Org Chem. 1973;38:4071–3.Article 
    CAS 

    Google Scholar 
    Nowacki B, Iamazaki E, Cirpan A, Karasz F, Atvars TDZ, Akcelrud L. Highly efficient polymer blends from a polyfluorene derivative and PVK for LEDs. Polymer 2009;50:6057–64.Article 
    CAS 

    Google Scholar 
    Wang TQ, Zhao SL, Zhang WM, Lin HX, Cui YM. Synthesis, X-ray crystal structure, and optical properties of novel 9,9-diethyl-1,2-diaryl-1,9-dihydrofluoreno[2,3-d]imidazoles. Monatsh Chem. 2016;147:1991–9.Article 
    CAS 

    Google Scholar 
    Chen J, Onogi S, Hsieh YC, Hsiao CC, Higashibayashi S, Sakurai H, Wu YT. Palladium-Catalyzed Arylation of Methylene-Bridged Polyarenes: Synthesis and Structures of 9-Arylfluorene Derivatives. Adv Synth Catal. 2012;354:1551–8.Article 
    CAS 

    Google Scholar 
    Manuel S, Anne S, Larissa AC, Stefan M. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nat Commun.2019;10:2592.Article 

    Google Scholar 
    Lee KS, Lee JS. Synthesis of Highly Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguides. Chem Mater. 2006;18:4519–25.Article 
    CAS 

    Google Scholar 
    Natarajan P, Vagicherla VD, Vijayan MT. A mild oxidation of deactivated naphthalenes and anthracenes to corresponding para-quinones by N-bromosuccinimide. Tetrahedron Lett. 2014;55:3511–5.Article 
    CAS 

    Google Scholar 
    Faury T, Dumur F, Clair S, Abel M, Porte L, Gigmes D. Side functionalization of diboronic acid precursors for covalent organic frameworks. Cryst Eng Comm. 2013;15:2067–75.Article 
    CAS 

    Google Scholar 
    Shaposhnikova VV, Tkachenko AS, Zvukova ND, Peregudov AS, Klemenkova ZS, Ponomarev AF, Il´yasov VK, Lachinov AN, Salazkin SN. New possibilities for the effective influence on the charge transport in poly(arylene ether ketones) without using phthalide-containing fragments in the polymer chains. Rus Chem Bull Int Ed. 2016;65:502–6.Article 
    CAS 

    Google Scholar 
    Owens DK, Wendt RC. Estimation of the Surface Free Energy of Polymers. J Appl Polym Sci. 1969;13:1741–7.Article 
    CAS 

    Google Scholar 
    Fox HW, Zisman WA. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci. 1950;5:514–31.Article 
    CAS 

    Google Scholar  More

  • in

    Localized coevolution between microbial predator and prey alters community-wide gene expression and ecosystem function

    Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964;18:586–608.Article 

    Google Scholar 
    Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA. 2012;109:4544–9.Article 
    CAS 

    Google Scholar 
    Hall AR, Scanlan PD, Buckling A. Bacteria-phage coevolution and the emergence of generalist pathogens. Am Nat. 2011;177:44–53.Article 

    Google Scholar 
    Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot. 1998;76:1052–71.CAS 

    Google Scholar 
    Schluter D. The ecology of adaptive radiation. Oxford, UK: University Press; 2000.Buckling A, Maclean CR, Brockhurst MA, Colegrave N. The Beagle in a bottle. Nature. 2009;457:824–9.Article 
    CAS 

    Google Scholar 
    Thompson JN. The coevolutionary process. Chicago, USA: University of Chicago Press; 1994.Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M. Global relationship between phytoplankton diversity and productivity in the ocean. Nat Commun. 2014;5:4299.Article 
    CAS 

    Google Scholar 
    Jürgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81:413–34.Article 

    Google Scholar 
    Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG. Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci USA. 2004;101:10644–9.Article 
    CAS 

    Google Scholar 
    Thompson JN. The geographic mosaic of coevolution. Chicago, USA: University of Chicago Press; 2005.Hahn MW, Höfle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol. 2001;35:113–21.Article 
    CAS 

    Google Scholar 
    Fuhrman JA, Noble RT. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr. 1995;40:1236–42.Article 

    Google Scholar 
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.Article 

    Google Scholar 
    Lankau RA, Strauss SY. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science. 2007;317:1561–3.Article 
    CAS 

    Google Scholar 
    Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett. 2022:25;307–19.Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG Jr. Rapid evolution drives ecological dynamics in a predator-prey system. Nature. 2003;424:303–6.Article 
    CAS 

    Google Scholar 
    McClean D, McNally L, Salzberg LI, Devine KM, Brown SP, Donohue I. Single gene locus changes perturb complex microbial communities as much as apex predator loss. Nat Commun. 2015;6:8235.Article 

    Google Scholar 
    Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.Article 

    Google Scholar 
    Middelboe M, Holmfeldt K, Riemann L, Nybroe O, Haaber J. Bacteriophages drive strain diversification in a marine Flavobacterium: Implications for phage resistance and physiological properties. Environ Microbiol. 2009;11:1971–82.Article 
    CAS 

    Google Scholar 
    Lennon JT, Martiny JBH. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol Lett. 2008;11:1178–88.Article 

    Google Scholar 
    Cairns J, Jokela R, Hultman J, Tamminen M, Virta M, Hiltunen T. Construction and characterization of synthetic bacterial community for experimental ecology and evolution. Front Genet. 2018;9:312.Article 

    Google Scholar 
    Pascual-García A, Bell T. Community-level signatures of ecological succession in natural bacterial communities. Nat Commun. 2020;11:2386.Article 

    Google Scholar 
    Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72.Article 
    CAS 

    Google Scholar 
    Cairns J, Moerman F, Fronhofer EA, Altermatt F, Hiltunen T. Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proc Biol Sci. 2020;287:20200652.
    Google Scholar 
    Cooke DP, Wedge DC, Lunter G. A unified haplotype-based method for accurate and comprehensive variant calling. Nat Biotechnol. 2021;39:885–92.Article 
    CAS 

    Google Scholar 
    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.Article 
    CAS 

    Google Scholar 
    Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.Article 
    CAS 

    Google Scholar 
    Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.Article 
    CAS 

    Google Scholar 
    Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551:45–50.Article 

    Google Scholar 
    Timonen J, Mannerström H, Vehtari A, Lähdesmäki H. lgpr: an interpretable nonparametric method for inferring covariate effects from longitudinal data. Bioinformatics. 2021;37:1860–7.Article 
    CAS 

    Google Scholar 
    Willis AD, Martin BD. Estimating diversity in networked ecological communities. Biostatistics. 2022;23:207–22.Article 

    Google Scholar 
    Willis A, Bunge J, Whitman T. Improved detection of changes in species richness in high diversity microbial communities. J R Stat Soc C. 2017;66:963–77.Article 

    Google Scholar 
    Anderson MJ. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 2001:26;32–46.Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62:245–53.Article 

    Google Scholar 
    Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.Article 

    Google Scholar 
    Zhang Y, Thompson KN, Huttenhower C, Franzosa EA. Statistical approaches for differential expression analysis in metatranscriptomics. Bioinformatics. 2021;37:i34–41.Article 
    CAS 

    Google Scholar 
    Abdi H, Williams LJ, Valentin D, Bennani-Dosse M. STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comp Stat. 2012;4:124–67.Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw. 2014;61:1–36.Article 

    Google Scholar 
    Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35:2084–92.Article 
    CAS 

    Google Scholar 
    Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.Article 
    CAS 

    Google Scholar 
    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.Article 
    CAS 

    Google Scholar 
    Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ. Different trajectories of parallel evolution during viral adaptation. Science. 1999;285:422–4.Article 
    CAS 

    Google Scholar 
    Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet. 2011;43:1275–80.Article 
    CAS 

    Google Scholar 
    Lebeuf-Taylor E, McCloskey N, Bailey SF, Hinz A, Kassen R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. Elife. 2019;8:e45952.Article 

    Google Scholar 
    Bailey SF, Hinz A, Kassen R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat Commun. 2014;5:4076.Article 
    CAS 

    Google Scholar 
    Mukherjee S, Jemielita M, Stergioula V, Tikhonov M, Bassler BL. Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biol. 2019;17:e3000579.Article 
    CAS 

    Google Scholar 
    Segura A, Hurtado A, Duque E, Ramos JL. Transcriptional phase variation at the flhB gene of Pseudomonas putida DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance. J Bacteriol. 2004;186:1905–9.Article 
    CAS 

    Google Scholar 
    Lee X, Reimmann C, Greub G, Sufrin J, Croxatto A. The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Microbes Infect. 2012;14:268–72.Article 
    CAS 

    Google Scholar 
    Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jürgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Micro Ecol. 2008;53:83–98.Article 

    Google Scholar 
    Collins K, editor. Tetrahymena thermophila. New York: Academic Press, Elsevier; 2012.Ruehle MD, Orias E, Pearson CG. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics. 2016;203:649–65.Article 
    CAS 

    Google Scholar 
    Plum K, Tarkington J, Zufall RA. Experimental evolution in Tetrahymena. Microorganisms. 2022;10:1–11.Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157:95–109.Article 
    CAS 

    Google Scholar 
    Jones ML, Rivett DW, Pascual-García A, Bell T. Relationships between community composition, productivity and invasion resistance in semi-natural bacterial microcosms. Elife. 2021;10:1–25.Kertesz MA. Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev. 2000;24:135–75.CAS 

    Google Scholar 
    Park C, Shin B, Park W. Protective role of bacterial alkanesulfonate monooxygenase under oxidative stress. Appl Environ Microbiol. 2020;86:1–14.Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334:986–90.Article 
    CAS 

    Google Scholar 
    Ong C-LY, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 2010;10:183.Article 

    Google Scholar 
    McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc Lond B Biol Sci. 2015;370:1–8.Scheuerl T, Cairns J, Becks L, Hiltunen T. Predator coevolution and prey trait variability determine species coexistence. Proc Biol Sci. 2019;286:20190245.
    Google Scholar 
    Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:916–31.Article 
    CAS 

    Google Scholar 
    Wilhelm Scherer H. Sulfur in soils. J Plant Nutr Soil Sci. 2009;172:326–35.Article 

    Google Scholar 
    Kaya K. Chemistry and biochemistry of taurolipids. Prog Lipid Res. 1992;31:87–108.Article 
    CAS 

    Google Scholar 
    Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.Article 

    Google Scholar 
    Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol. 2022;20:109–21.Article 
    CAS 

    Google Scholar 
    Price TD, Qvarnström A, Irwin DE. The role of phenotypic plasticity in driving genetic evolution. Proc Biol Sci. 2003;270:1433–40.Article 

    Google Scholar  More

  • in

    Human-mediated dispersal drives the spread of the spotted lanternfly (Lycorma delicatula)

    Simberloff, D. et al. (eds) Invasive Species in a Globalized World (University of Chicago Press, 2015).
    Google Scholar 
    Gippet, J. M., Liebhold, A. M., Fenn-Moltu, G. & Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102 (2019).Article 

    Google Scholar 
    Hall, C. M. Biological invasion, biosecurity, tourism, and globalisation. In Handbook of Globalisation and Tourism (Edward Elgar Publishing, 2019).
    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2021.01.006 (2021).Article 

    Google Scholar 
    Simberloff, D. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13, 1255–1268 (2011).Article 

    Google Scholar 
    Hayes, K. R. & Barry, S. C. Are there any consistent predictors of invasion success?. Biol. Invasions 10, 483–506 (2008).Article 

    Google Scholar 
    Catford, J. A., Vesk, P. A., Richardson, D. M. & Pyšek, P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Change Biol. 18, 44–62 (2012).Article 
    ADS 

    Google Scholar 
    Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl. Acad. Sci. USA 103, 374–378 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kamenova, S. et al. Invasions toolkit: Current methods for tracking the spread and impact of invasive species. Adv. Ecol. Res. 56, 85–182 (2017).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).Article 

    Google Scholar 
    Crooks, J. A. & Rilov, G. The establishment of invasive species. In Biological Invasions in Marine Ecosystems 173–175 (Springer, 2009).Chapter 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).Article 

    Google Scholar 
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    O’Reilly-Nugent, A. et al. Landscape effects on the spread of invasive species. Curr. Landsc. Ecol. Rep. 1, 107–114 (2016).Article 

    Google Scholar 
    Simberloff, D. We can eliminate invasions or live with them. Successful management projects. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems 149–157 (Springer, 2008).
    Google Scholar 
    Gutierrez, A. P. & Ponti, L. Eradication of invasive species: Why the biology matters. Environ. Entomol. 42, 395–411 (2013).Article 

    Google Scholar 
    McLaughlin, G. M. & Dearden, P. K. Invasive insects: Management methods explored. J. Insect Sci. 19, 17 (2019).Article 

    Google Scholar 
    Han, J. M. et al. Lycorma delicatula (hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae) finally, but suddenly arrived in Korea. Entomol. Res. 38, 281–286 (2008).Article 

    Google Scholar 
    Park, J.-D. et al. Biological characteristics of lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48, 53–57 (2009).Article 

    Google Scholar 
    Shin, Y.-H., Moon, S.-R., Yoon, C.-M., Ahn, K.-S. & Kim, G.-H. Insecticidal activity of 26 insectcides against eggs and nymphs of Lycorma delicatula (hemiptera: Fulgoridae). Korean J. Pestic. Sci. 14, 157–163 (2010).
    Google Scholar 
    Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest Manag. 6, 20 (2015).Article 

    Google Scholar 
    Urban, J. M. Perspective: Shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).Article 
    CAS 

    Google Scholar 
    Liu, G. Some extracts from the history of entomology in china. Psyche 46, 23–28 (1939).Article 

    Google Scholar 
    Barringer, L. E., Donovall, L. R., Spichiger, S.-E., Lynch, D. & Henry, D. The first new world record of Lycorma delicatula (insecta: Hemiptera: Fulgoridae). Entomol. News 125, 20–23 (2015).Article 

    Google Scholar 
    Parra, G., Moylett, H. & Bulluck, R. Technical Working Group Summary Report: Spotted Lanternfly, Lycorma Delicatula (White, 1845). (2018).Harper, J. K., Stone, W., Kelsey, T. W. & Kime, L. F. Potential Economic Impact of the Spotted Lanternfly on Agriculture and Forestry in Pennsylvania 1–84 (The Center for Rural Pennsylvania, 2019).
    Google Scholar 
    Kim, J. G., Lee, E.-H., Seo, Y.-M. & Kim, N.-Y. Cyclic behavior of Lycorma delicatula (insecta: Hemiptera: Fulgoridae) on host plants. J. Insect Behav. 24, 423–435 (2011).Article 

    Google Scholar 
    Albright, T. A. et al. Pennsylvania forests 2014. Resour. Bull. 111, 1–140 (2017).
    Google Scholar 
    Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).
    Google Scholar 
    Barringer, L. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).Article 

    Google Scholar 
    Murman, K. et al. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 49, 1270–1281 (2020).Article 

    Google Scholar 
    Huron, N. A., Behm, J. E. & Helmus, M. R. Paninvasion severity assessment of a us grape pest to disrupt the global wine market. bioRxiv (2021).Dara, S. K. Update on the Spotted Lanternfly.Jung, J.-M., Jung, S., Byeon, D.-H. & Lee, W.-H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (hemiptera: Fulgoridae), by using climex. J. Asia-Pac. Biodivers. 10, 532–538 (2017).Article 

    Google Scholar 
    Namgung, H., Kim, M.-J., Baek, S., Lee, J.-H. & Kim, H. Predicting potential current distribution of Lycorma delicatula (hemiptera: Fulgoridae) using maxent model in south korea. J. Asia-Pac. Entomol. 23, 291–297 (2020).Article 

    Google Scholar 
    Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2020).
    Google Scholar 
    Grimm, V. et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198, 115–126 (2006).Article 

    Google Scholar 
    DeAngelis, D. L. Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems (CRC Press, 2018).Book 

    Google Scholar 
    Łomnicki, A. Individual-based models and the individual-based approach to population ecology. Ecol. Model. 115, 191–198 (1999).Article 

    Google Scholar 
    Grimm, V. & Railsback, S. F. A conceptual framework for designing individual-based models. In Individual-Based Modeling and Ecology 71–121 (Princeton University Press, 2005).Chapter 
    MATH 

    Google Scholar 
    Smith, N. R. et al. Agent-based models of malaria transmission: A systematic review. Malar. J. 17, 1–16 (2018).Article 
    CAS 

    Google Scholar 
    Venkatramanan, S. et al. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 22, 43–49 (2018).Article 

    Google Scholar 
    Harris, C. M., Park, K. J., Atkinson, R., Edwards, C. & Travis, J. Invasive species control: Incorporating demographic data and seed dispersal into a management model for rhododendron ponticum. Ecol. Inform. 4, 226–233 (2009).Article 

    Google Scholar 
    Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16, 331–342 (2010).Article 

    Google Scholar 
    Rebaudo, F., Crespo-Pérez, V., Silvain, J.-F. & Dangles, O. Agent-based modeling of human-induced spread of invasive species in agricultural landscapes: Insights from the potato moth in ecuador. J. Artif. Soc. Soc. Simul. 14, 7 (2011).Article 

    Google Scholar 
    Day, C. C., Landguth, E. L., Bearlin, A., Holden, Z. A. & Whiteley, A. R. Using simulation modeling to inform management of invasive species: A case study of eastern brook trout suppression and eradication. Biol. Conserv. 221, 10–22 (2018).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudı’k, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-first International Conference on Machine Learning 83 (2004).Phillips, S. J. et al. A brief tutorial on maxent. AT&T Res. 190, 231–259 (2005).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Urbanek, S. RJava: Low-Level R to Java Interface. (2020).Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).
    Google Scholar 
    Elith, J. et al. A statistical explanation of maxent for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Lane, M. A. & Edwards, J. L. The global biodiversity information facility (gbif). Syst. Assoc. Spec. 73, 1 (2007).
    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous united states. US Geol. Surv. Data Ser. 691, 4–9 (2012).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).Venter, O. et al. Last of the wild project, version 3 (lwp-3): 2009 human footprint, 2018 release. NASA Socioeconomic Data and Applications Center (SEDAC) 10, H46T40JQ44 (2018).Park, M. Overwintering ecology and population genetics of Lycorma delicatula (hemiptera: Fulgoridae) in Korea. Seoul National University, Seoul, Korea Doctoral Thesis (2015).Pearson, K. I. Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philos. Trans. R. Soc. Lond. Ser. A 195, 1–47 (1900).ADS 
    MATH 

    Google Scholar 
    Warmerdam, F. The geospatial data abstraction library. In Open Source Approaches in Spatial Data Handling 87–104 (Springer, 2008).Chapter 

    Google Scholar 
    Greenberg, J. A., Mattiuzzi, M. & SystemRequirements, G. Package ‘gdalUtils’. (2020).Domingue, M. J. & Baker, T. C. Orientation of flight for physically disturbed spotted lanternflies, Lycorma delicatula, (Hemiptera, fulgoridae). J. Asia-Pac. Entomol. 22, 117–120 (2019).Article 

    Google Scholar 
    Myrick, A. J. & Baker, T. C. Analysis of anemotactic flight tendencies of the spotted lanternfly (Lycorma delicatula) during the 2017 mass dispersal flights in pennsylvania. J. Insect Behav. 32, 11–23 (2019).Article 

    Google Scholar 
    Wolfin, M. S., Myrick, A. J. & Baker, T. C. Flight duration capabilities of dispersing adult spotted lanternflies, Lycorma delicatula. J. Insect Behav. 33, 125–137 (2020).Article 

    Google Scholar 
    Strömbom, D. & Pandey, S. Modeling the life cycle of the spotted lanternfly (Lycorma delicatula) with management implications. Math. Biosci. 340, 108670 (2021).Article 
    MATH 

    Google Scholar 
    Wellington, W. G. Conditions governing the distribution of insects in the free atmosphere. Can. Entomol. 77, 7–15 (1945).Article 

    Google Scholar 
    DeLong, D. M. The bionomics of leafhoppers. Annu. Rev. Entomol. 16, 179–210 (1971).Article 

    Google Scholar 
    Baker, T. et al. Progression of seasonal activities of adults of the spotted lanternfly, Lycorma delicatula, during the 2017 season of mass flight dispersal behavior in eastern Pennsylvania. J. Asia-Pac. Entomol. 22, 705–713 (2019).Article 

    Google Scholar 
    Leach, H. & Leach, A. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in eastern us vineyards. J. Pest Sci. 93, 1215–1224 (2020).Article 

    Google Scholar 
    Goutte, C. & Gaussier, E. A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In European Conference on Information Retrieval 345–359 (Springer, 2005).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Tukey, J. Multiple comparisons. J. Am. Stat. Assoc. 48, 624–625 (1953).
    Google Scholar 
    Mendiburu, F. de & Mendiburu, M. F. de. Package ‘agricolae’. R Package, Version 1-2 (2019).McAvoy, T. J., Snyder, A. L., Johnson, N., Salom, S. M. & Kok, L. T. Road survey of the invasive tree-of-heaven (Ailanthus altissima) in Virginia. Invasive Plant Sci. Manag. 5, 506–512 (2012).Article 

    Google Scholar 
    Casella, F. & Vurro, M. Ailanthus altissima (tree of heaven): Spread and harmfulness in a case-study urban area. Arboricult. J. 35, 172–181 (2013).Article 

    Google Scholar 
    Takahashi, D. & Park, Y.-S. Spatial heterogeneities of human-mediated dispersal vectors accelerate the range expansion of invaders with source–destination-mediated dispersal. Sci. Rep. 10, 1–9 (2020).Article 

    Google Scholar 
    Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).Article 
    ADS 

    Google Scholar 
    Turner, R. M. et al. Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol. Appl. 31, e02412 (2021).Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).Article 

    Google Scholar 
    Wilson, J. R., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 

    Google Scholar 
    Auffret, A. G., Berg, J. & Cousins, S. A. The geography of human-mediated dispersal. Divers. Distrib. 20, 1450–1456 (2014).Article 

    Google Scholar 
    Koch, F. H., Yemshanov, D., Magarey, R. D. & Smith, W. D. Dispersal of invasive forest insects via recreational firewood: A quantitative analysis. J. Econ. Entomol. 105, 438–450 (2012).Article 

    Google Scholar 
    Eyer, P.-A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2020).Article 

    Google Scholar 
    Petrice, T. R. & Haack, R. A. Effects of cutting date, outdoor storage conditions, and splitting on survival of Agrilus planipennis (coleoptera: Buprestidae) in firewood logs. J. Econ. Entomol. 99, 790–796 (2006).Article 

    Google Scholar 
    Petrice, T. R. & Haack, R. A. Can emerald ash borer, Agrilus planipennis (coleoptera: Buprestidae), emerge from logs two summers after infested trees are cut?. Great Lakes Entomol. 40, 92–95 (2007).
    Google Scholar 
    Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (coleoptera) in North America. Divers. Distrib. 12, 71–79 (2006).Article 

    Google Scholar 
    Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 15, 044015 (2020).Article 
    ADS 

    Google Scholar 
    Hulme, P. E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).Article 
    ADS 

    Google Scholar  More