1.
Devendra, C. & Thomas, D. Smallholder farming systems in Asia. Agric. Syst. 71, 17–25 (2002).
Article Google Scholar
2.
Herrero, M. et al. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327, 822–825 (2010).
ADS CAS PubMed Article Google Scholar
3.
Wright, I. A. et al. Integrating crops and livestock in subtropical agricultural systems. J. Sci. Food Agric. 92, 1010–1015 (2011).
PubMed Article CAS Google Scholar
4.
Halstead, P. Pastoralism or household herding? Problems of scale and specialization in early Greek animal husbandry. World Archaeol. 28, 20–42 (1996).
Article Google Scholar
5.
Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. 110, 12589–12594 (2013).
ADS CAS PubMed Article Google Scholar
6.
Altieri, M. A., Nicholls, C. I., Henao, A. & Lana, M. A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 35, 869–890 (2015).
Article Google Scholar
7.
Garrett, R. D. et al. Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecol. Soc. 25, 24 (2020).
Article Google Scholar
8.
Verhoeven, J. T. A., Arheimer, B., Yin, C. & Hefting, M. M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol. 21, 96–103 (2006).
PubMed Article Google Scholar
9.
Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. 107, 8035–8040 (2010).
ADS CAS PubMed Article Google Scholar
10.
Macdonald, J. M., & Mcbride, W. D. The transformation of U.S. livestock agriculture: scale, efficiency, and risks (2009).
11.
Gerber, P. J. et al. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (2013).
12.
Lin, B. B. Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61, 183–193 (2011).
Article Google Scholar
13.
Gaudin, A. C. M. et al. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 10, e0113261 (2015).
PubMed PubMed Central Article CAS Google Scholar
14.
Peterson, C. A., Eviner, V. T. & Gaudin, A. C. M. Ways forward for resilience research in agroecosystems. Agric. Syst. 162, 19–27 (2018).
Article Google Scholar
15.
Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).
Article Google Scholar
16.
Lobell, D. B. & Field, C. B. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).
ADS Article Google Scholar
17.
Gornall, J. et al. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. B 365, 2973–2989 (2010).
Article Google Scholar
18.
Osborne, T. M. & Wheeler, T. R. Evidence for a climate signal in trends of global crop yield variability over the past 50 years. Environ. Res. Lett. 8, 024001 (2013).
ADS Article Google Scholar
19.
United Nations. Population division of the department of economic and social affairs of the United Nations: world population prospects. https://population.un.org/wpp/DataQuery/ (2019).
20.
Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl. Acad. Sci. 104, 19703–19708 (2007).
ADS CAS PubMed Article Google Scholar
21.
Bullock, J. M. et al. Resilience and food security: rethinking an ecological concept. J. Ecol. 105, 880–884 (2017).
Article Google Scholar
22.
Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 1–9 (2018).
CAS Article Google Scholar
23.
de Moraes, A. et al. Integrated crop-livestock systems in the Brazilian subtropics. Eur. J. Agron. 57, 4–9 (2014).
Article Google Scholar
24.
Niles, M. T., Garrett, R. D. & Walsh, D. Ecological and economic benefits of integrating sheep into viticulture production. Agron. Sustain. Dev. 38, 1–11 (2018).
Article Google Scholar
25.
Companhia Nacional de Abastecimento (CONAB). Safra brasileira de grãos: Tabela de levantamento. https://www.conab.gov.br/info-agro/safras/graos (2020).
26.
Empresa Brasileira de Pesquisa Agropecuária (Embrapa). ILPF em números. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/158636/1/2016-cpamt-ilpf-em-numeros.pdf (2016).
27.
Garrett, R. D. et al. Social and ecological analysis of commercial integrated crop livestock systems: current knowledge and remaining uncertainty. Agric. Syst. 155, 136–146 (2017).
Article Google Scholar
28.
Bell, L. W. & Moore, A. D. Integrated crop-livestock systems in Australian agriculture: trends, drivers and implications. Agric. Syst. 111, 1–12 (2012).
Article Google Scholar
29.
Sulc, R. M. & Franzluebbers, A. J. Exploring integrated crop-livestock systems in different ecoregions of the United States. Eur. J. Agron. 57, 21–30 (2014).
Article Google Scholar
30.
Carvalho, P. C. F. et al. Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification. J. Anim. Sci. 96, 3513–3525 (2018).
PubMed PubMed Central Article Google Scholar
31.
Russelle, M. P., Entz, M. H. & Franzluebbers, A. J. Reconsidering integrated crop-livestock systems in North America. Agron. J. 99, 325–334 (2007).
Article Google Scholar
32.
Carvalho, P. C. F. et al. Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr. Cycl. Agroecosyst. 88, 259–273 (2010).
Article Google Scholar
33.
Oliveira, C. A. O. et al. Comparison of an integrated crop-livestock system with soybean only: economic and production responses in southern Brazil. Renew. Agric. Food Syst. 29, 230–238 (2013).
Article Google Scholar
34.
Ryschawy, J., Choisis, N., Choisis, J. P., Joannon, A. & Gibon, A. Mixed crop-livestock systems: an economic and environmental-friendly way of farming?. Animal 6, 1722–1730 (2012).
CAS PubMed Article Google Scholar
35.
Peterson, C. A., Bell, L. W., Carvalho, P. C. F. & Gaudin, A. C. M. Resilience of an integrated crop–livestock system to climate change: a simulation analysis of cover crop grazing in southern Brazil. Front. Sustain. Food Syst. 4, 604099 (2020).
Article Google Scholar
36.
Chávez, L. F. et al. Diversidade metabólica e atividade microbiana no solo em sistema de integração lavoura-pecuária sob intensidades de pastejo. Pesq. Agropec. Bras. 46, 1254–1261 (2011).
Article Google Scholar
37.
Peterson, C. A. et al. Winter grazing does not affect soybean yield despite lower soil water content in a subtropical crop-livestock system. Agron. Sustain. Dev. 39, 26 (2019).
CAS Article Google Scholar
38.
Assmann, J. M. et al. Soil carbon and nitrogen stocks and fractions in a long-term integrated crop-livestock system under no-tillage in southern Brazil. Agric. Ecosyst. Environ. 190, 52–59 (2014).
CAS Article Google Scholar
39.
Peyraud, J. L. & Peeters, A. The role of grassland based production system in the protein security. Grassland Science in Europe – The multiple roles of grassland in the European bioeconomy 21, 29–43 (2016).
Google Scholar
40.
Harrison, G. W. Stability under environmental stress: resistance, resilience, persistence, and variability. Am. Nat. 113, 659–669 (1979).
MathSciNet Article Google Scholar
41.
Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).
PubMed Article Google Scholar
42.
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
ADS CAS PubMed Article Google Scholar
43.
Lightfoot, C. W. F., Dear, K. B. G. & Mead, R. Intercropping sorghum with cowpea in dryland farming systems in Botswana. II. Comparative stability of alternative cropping systems. Exp. Agric. 23, 435–442 (1987).
Article Google Scholar
44.
Li, M., Peterson, C. A., Tautges, N. E., Scow, K. M. & Gaudin, A. C. M. Yields and resilience outcomes of organic, cover crop, and conventional practices in a Mediterranean climate. Sci. Rep. 9, 12283 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
45.
Nielsen, D. C. & Vigil, M. F. Wheat yield and yield stability of eight dryland crop rotations. Agron. J. 110, 594–601 (2018).
Article Google Scholar
46.
Temesgen, T., Keneni, G., Sefera, T. & Jarso, M. Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop J. 3, 258–268 (2015).
Article Google Scholar
47.
Finlay, K. W. & Wilkinson, G. N. The analysis of adaptation in a plant-breeding programe. Aust. J. Agric. Res. 14, 742–754 (1963).
Article Google Scholar
48.
Raun, W. R., Barreto, H. J. & Westerman, R. L. Use of stability analysis for long-term soil fertility experiments. Agron. J. 85, 159–167 (1993).
Article Google Scholar
49.
Williams, A. et al. Soil water holding capacity mitigates downside risk and volatility in US rainfed maize: time to invest in soil organic matter?. PLoS ONE 11, e0160974 (2016).
PubMed PubMed Central Article CAS Google Scholar
50.
Williams, A. et al. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Sci. Rep. 8, 8467 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
51.
Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
ADS CAS PubMed Article Google Scholar
52.
Craven, D. et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0647-7 (2018).
Article PubMed Google Scholar
53.
Bennett, J. A. et al. Resistance of soil biota and plant growth to disturbance increases with plant diversity. Ecol. Lett. https://doi.org/10.1111/ele.13408 (2019).
Article PubMed Google Scholar
54.
Instituto Nacional de Meteorologia (INMET). Normais climatológicas do Brasil. https://portal.inmet.gov.br/normais (2020).
55.
Soil Survey Staff. Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys (USDA Natural Resources Conservation Service, 1999).
56.
Comissão de Química e Fertilidade do Solo – RS/SC (CQFS RS/SC). Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina (Sociedade Brasileira de Ciência do Solo, 2004).
57.
Barthram, G. T. (1985). Experimental techniques: The HFRO sward stick. In Alcok, M. M. The Hill farming research organization Biennial report 1984/1985, pp. 29–30 (1985).
58.
Mott, G. O., & Lucas, H. L. The design, conduct, and interpretation of grazing trials on cultivated and improved pastures. In Proceedings of the international grassland congress, pp. 1380–1386 (1952).
59.
Klingman, D. L., Miles, S. R. & Mott, G. O. The Cage Method for determining consumption and yield of pasture herbage. Agron. J. 35, 739–746 (1943).
Article Google Scholar
60.
Nunes, P. A. A. et al. Grazing intensity determines pasture spatial heterogeneity and productivity in an integrated crop-livestock system. Grassl. Sci. 65, 49–59 (2019).
Article Google Scholar
61.
van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & Boer, I. J. M. Global food supply: land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).
Article CAS Google Scholar
62.
Gil, J. D. B. et al. Tradeoffs in the quest for climate smart agricultural intensification in Mato Grosso, Brazil. Environ. Res. Lett. 13, 064025 (2018).
ADS Article Google Scholar
63.
National Research Council. Growth and Body Reserves. In: Nutrient Requirements of Beef Cattle, pp. 22–39 (NRC, 2016).
64.
USDA. Agricultural research service of the United States Department of Agriculture: FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/174270/nutrients (2019).
65.
Banco Central do Brasil. Correção de valores pela caderneta de poupança. https://www.bcb.gov.br (2020).
66.
Agrolink. Cotações dos produtos agropecuários: Bovinos. https://www.agrolink.com.br/cotacoes/historico/rs/boi-gordo-kg-vivo-1kg (2019).
67.
Agrolink. Cotações dos produtos agropecuários: Soja. https://www.agrolink.com.br/cotacoes/historico/rs/soja-em-grao-sc-60kg (2019).
68.
Banco Central do Brasil. Correção de valores pelo Índice Geral de Preços do Mercado (IGP-M/FGV). https://www3.bcb.gov.br/CALCIDADAO/publico/corrigirPorIndice.do?method=corrigirPorIndice (2020).
69.
International Monetary Fund. Exchange rate archives by month. https://www.imf.org/external/np/fin/data/param_rms_mth.aspx (2019).
70.
Companhia Nacional de Abastecimento (CONAB). Planilhas de custos de produção – Séries históricas. https://www.conab.gov.br/info-agro/custos-de-producao/planilhas-de-custo-de-producao/itemlist/category/414-planilhas-de-custos-de-producao-series-historicas (2019).
71.
R Core Team. R: a language and environment for statistical computing (2018).
72.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
73.
Lenth, R. emmeans: estimated marginal means, aka least-squares means. R package version 1.3.1. (2018).
74.
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Article Google Scholar
75.
Fox, J. & Weisberg, S. An {R} companion to applied regression (2011).
76.
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
MathSciNet MATH Article Google Scholar
77.
de Mendiburu, F. agricolae: statistical procedures for agricultural research. R package version 1.2–8. (2017).
78.
Kunrath, T. R., Carvalho, P. C. F., Cadenazzi, M., Bredemeier, C. & Anghinoni, I. Grazing management in an integrated crop-livestock system: soybean development and grain yield. Rev. Ciência Agronômica 46, 645–653 (2015).
Google Scholar
79.
Peterson, C. A., Deiss, L. & Gaudin, C. M. Commercial integrated crop-livestock systems achieve comparable crop yields to specialized production systems: a meta-analysis. PLoS ONE 15, e0231840 (2020).
CAS PubMed PubMed Central Article Google Scholar
80.
Franzluebbers, A. J. & Stuedemann, J. A. Soil physical responses to cattle grazing cover crops under conventional and no tillage in the Southern Piedmont USA. Soil Tillage Res. 100, 141–153 (2008).
Article Google Scholar
81.
Tracy, B. F. & Zhang, Y. Soil compaction, corn yield response, and soil nutrient pool dynamics within an integrated crop-livestock system in Illinois. Crop Sci. 48, 1211–1218 (2008).
CAS Article Google Scholar
82.
Schmitt, J. Nematoides fitoparasitas e de vida livre como bioindicadores de qualidade do solo de um sistema de integração lavoura-pecuária (Universidade Federal de Santa Maria, 2019).
83.
Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).
ADS CAS Article Google Scholar
84.
Ingram, L. J. et al. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci. Soc. Am. J. 72, 939–948 (2008).
ADS CAS Article Google Scholar
85.
Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).
Article Google Scholar
86.
Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).
PubMed Article Google Scholar
87.
Noy-Meir, I. et al. Stability of grazing systems: an application of predator-prey graphs. J. Ecol. 63, 459–481 (1975).
Article Google Scholar
88.
Franzluebbers, A. J. et al. Well-managed grazing systems: a forgotten hero of conservation. J. Soil Water Conserv. 67, 100A-104A (2012).
Article Google Scholar
89.
Schuster, M. Z. et al. Grazing intensities affect weed seedling emergence and the seed bank in an integrated crop-livestock system. Agric. Ecosyst. Environ. 232, 232–239 (2016).
Article Google Scholar
90.
Kunrath, T. R. et al. Sward height determines pasture production and animal performance in a long-term soybean-beef cattle integrated system. Agric. Syst. 177, 102716 (2020).
Article Google Scholar
91.
Mott, G. O. Grazing pressure and the measurement of pasture production. In: Proceedings of the International Grassland Congress, pp. 606–611 (1960).
92.
Maraschin, G. E. et al. Native pasture, forage on offer and animal response. In: Proceedings of the international grassland congress, pp. 26–27 (1997).
93.
de Souza Filho, W. et al. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: trade-offs between animal performance and environmental impacts. J. Clean. Prod. 213, 968–975 (2019).
94.
Soussana, J.-F. & Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric. Ecosyst. Environ. 190, 9–17 (2014).
CAS Article Google Scholar
95.
Food and Agriculture Organization of the United Nations (FAO). Trade and markets: the FAO meat price index. http://www.fao.org/economic/est/est-commodities/meat/en/ (2020).
96.
Center for Advanced Studies on Applied Economics (CEPEA). Agricultural prices: Soybean. https://www.cepea.esalq.usp.br/en/indicator/soybean.aspx (2020).
97.
Center for Advanced Studies on Applied Economics (CEPEA). Agricultural prices: Cattle. https://www.cepea.esalq.usp.br/en/indicator/cattle.aspx (2020). More