More stories

  • in

    Tree rings reveal signs of Europe’s sustainable forest management long before the first historical evidence

    1.
    Short, I. & Hawe, J. Possible silvicultural systems for use in the rehabilitation of poorly performing pole-stage broadleaf stands—Coppice-with-standards. Irish For. 69(1 & 2), 148–166 (2012).
    Google Scholar 
    2.
    Bürgi, M. How terms shape forests: ‘Niederwald’, ‘Mittelwald’ and ‘Hochwald’, and their interaction with Forest Development in the Canton of Zurich, Switzerland. Environ. History 5, 325–344 (1999).
    Article  Google Scholar 

    3.
    Mosandl, R., Summa, J. & Stimm, B. Coppice-with-standards: Management options for an ancient forest system. For. Ideas 16(1), 65–74 (2010).
    Google Scholar 

    4.
    Rossel, K. Urkundenbuch der Abtei Eberbach im Rheingau, erster Band (Roth, Wiesbaden, 1862).
    Google Scholar 

    5.
    Kehrein, J. Sammlung alt- und mitteldeutscher Wörter aus lateinischen Urkunden (Förstemann, Nordhausen, 1863).
    Google Scholar 

    6.
    Hausrath, H. Geschichte des deutschen Waldbaus. Von seinen Anfängen bis 1850. Schriftenreihe des Instituts für Forstpolitik und Raumordnung der Univ. Freiburg. (Hochschulverlag, Freiburg im Breisgau 1982).

    7.
    Schweitzer, P.P. Altdeutscher Wortschatz—Ein sprachgeschichtliches Wörterbuch. http://www.ippsch.de/images/pdf/database/altdeutsch.pdf. (Hadamar, 2002).

    8.
    Hasel, K. & Schwartz, E. Forstgeschichte. Ein Grundriß für Studium und Praxis 3rd edn. (Kessel, Remagen, 2006).
    Google Scholar 

    9.
    Troup, R. S. Sivicultural Systems (Clarendon Press, Oxford, 1928).
    Google Scholar 

    10.
    Hochbichler, E. Methods of oak silviculture in Austria. Ann. For. Sci. 50(6), 583–591 (1993).
    Article  Google Scholar 

    11.
    Piussi, P. Close to nature forestry criteria and coppice management in. In Nature-based Forestry in Central Europe: Alternatives to Industrial Forestry and Strict Preservation. Studia Forestalia Slovenica 126 (ed. Diaci, J.) 27–37 (University of Ljubljana, Biotechnical Faculty, Department of Forestry and Renewable Forest Resources, Ljubljana, 2006).
    Google Scholar 

    12.
    Groß, P. & Konold, W. The, “Mittelwald”—An agroforestry system between rigid sustainability and creative options. A historical study/Mittelwald als Agroforstsystem zwischen geordneter Nachhaltigkeit und Gestaltungsvielfalt—Eine historische Studie. Allg. Forst- und Jagdzeitung 181(3/4), 64–71 (2010).
    Google Scholar 

    13.
    Bernard, V. Gestion et évolution de la forêt. Les Dossiers d’Archéologie 344, 50–53 (2011).
    Google Scholar 

    14.
    Bernard, V., Le Digol, Y. &, Couturier, Y. Production de bois d’œuvre et pratiques sylvicoles entre forêt et bocage: Dendro-archéologie des charpentes du territoire de Sainte-Suzanne (XIIe–XVIIIe siècles). in Sainte−Suzanne -un Territoire remarquable en Mayenne, Cahiers du Patrimoine 106 (eds. Davy, C. & Foisneau, N.) 243–257 (Revue 303, Nantes, 2014).

    15.
    Bader, M., Grimmi, U. & Bürgi, M. Die Zürcher Wälder um 1823—Betriebsformen und Baumarten. Schweizerische Zeitschrift für Forstwesen 166(1), 24–31 (2015).
    Article  Google Scholar 

    16.
    Szabó, P., Müllerová, J., Suchánková, S. & Kotačka, M. Intensive woodland management in the Middle Ages: Spatial modelling based on archival data. J. Historical Geogr. 48, 1–10. https://doi.org/10.1016/j.jhg.2015.01.005 (2015).
    Article  Google Scholar 

    17.
    Vandekerkhove, K. et al. 500 years of coppice-with-standards management in Meerdaal Forest (Central Belgium). iForest Biogeosci. Forestry 9(4), 509–517. https://doi.org/10.3832/ifor1782-008 (2016).
    Article  Google Scholar 

    18.
    Müllerová, J. et al. Detecting coppice legacies from tree growth. PLoS ONE 11(1), e0147205. https://doi.org/10.1371/journal.pone.0147205 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Schmidt, U. E. Historische Aspekte der Energiewaldfrage. in Forum Forstgeschichte. Festschrift zum 65. Geburtstag von Prof. Dr. Egon Gundermann. Forstliche Forschungsberichte München 206 (ed. Hamberger, J.) 98–102 (Zentrum Wald Forst Holz Weihenstephan, Freising, 2009).

    20.
    Hartig, G. L. Lehrbuch für Förster und die es werden woollen. Zweyter Band, welcher von der Holzzucht und dem Forstschutze handelt (Cotta’sche Buchhandlung, Tübingen, 1808).
    Google Scholar 

    21.
    Cotta, H. Anweisung zum Waldbau (Arnoldische Buchhandlung, Dresden, 1817).
    Google Scholar 

    22.
    Pfeil, W. Die Behandlung und Schätzung des Mittelwaldes (Darnmann, Züllichau, 1824).
    Google Scholar 

    23.
    Krause, C. G. R. Anleitung zur Behandlung des Mittelwaldes (Keyser, Erfurt, 1829).
    Google Scholar 

    24.
    Knap, I. Die Anfänge “wissenschaftlicher” Forstlehre am Bespiel des Allgemeinen oeconomischen Forst-Magazins (1763–1769). In Landschaften agrarisch-ökonomischen Wissens: Strategien innovativer Ressourcennutzung in Zeitschriften und Sozietäten des 18. Jahrhunderts. Cottbuser Studien zur Geschichte von Technik, Arbeit und Umwelt 30 (ed. Popplow, M.) 61–78 (Waxmann, Münster/New York, 2010).
    Google Scholar 

    25.
    Treiber, R. Genutzte Mittelwälder—Zentren der Artenvielfalt für Tagfalter und Widderchen im Südelsass. Nutzungsdynamik und Sukzession als Grundlage für ökologische Kontinuität. Naturschutz und Landschaftsplanung 35(1), 50–63 (2003).
    Google Scholar 

    26.
    André, F. & Ponette, Q. Comparison of biomass and nutrient content between oak (Quercus petraea) and hornbeam (Carpinus betulus) trees in a coppice-with-standards stand in Chimay (Belgium). Ann. For. Sci. 60, 489–502 (2003).
    Article  Google Scholar 

    27.
    Summa, J. & Mosandl, R. Waldbauliche Untersuchungen zur Qualität von Mittelwald-Lassreiteln. AFZ 6(2009), 296–299 (2009).
    Google Scholar 

    28.
    Beinhofer, B., Hahn, A., Englert, J. & Knoke, T. Wie wachsen Mittelwaldeichen?. AFZ 6, 299–301 (2009).
    Google Scholar 

    29.
    Albert, K. Biomasse im Mittelwald—Potenzialabschätzung und Nährstoffnachhaltigkeit (Cuvillier, Göttingen, 2014).
    Google Scholar 

    30.
    Grewe, B.-S. Dorf und Wald im 19. Jahrhundert. Lokalstudien aus der bayerischen Rheinpfalz (1814–1870). Siedlungsforschung 19, 145–162 (2001).
    Google Scholar 

    31.
    Selter, B. Forstwirtschaft und Siedlungsentwicklung im 19. Jahrhundert. Siedlungsforschung 19, 187–205 (2001).
    Google Scholar 

    32.
    Deforce, K. & Haneca, K. Tree-ring analysis of archaeological charcoal as a tool to identify past woodland management: The case from a 14th century site from Oudenaarde (Belgium). Quatern. Int. 366, 70–80 (2015).
    Article  Google Scholar 

    33.
    Dufraisse, A. et al. Anthraco-typology as a key approach to past firewood exploitation and woodland management reconstructions. Dendrological reference dataset modelling with dendro-anthracological tools. Quat. Int. 463(Part B), 232–249 (2018).
    Article  Google Scholar 

    34.
    Altman, J. et al. Tree-rings mirror management legacy: Dramatic response of standard oaks to past coppicing in Central Europe. PLoS ONE 8(2), e55770. https://doi.org/10.1371/journal.pone.0055770 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Haneca, K., Čufar, K. & Beeckman, H. Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. J. Archaeol. Sci. 36(1), 1–11 (2009).
    Article  Google Scholar 

    36.
    Haneca, K., van Acker, J. & Beeckman, H. Growth trends reveal the forest structure during Roman and Medieval times in Western Europe: a comparison between archaeological and actual oak ring series (Quercus robur and Quercus petraea). Ann. For. Sci. 62, 797–805 (2005).
    Article  Google Scholar 

    37.
    Albrecht, L. & Abt, A. Die Bedeutung der Eiche im bäuerlichen Mittelwald. LWF Wissen 75, 41–47 (2014).
    Google Scholar 

    38.
    Nowacki, G. J. & Abrams, M. D. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol. Monogr. 67(2), 225–249 (1997).
    Google Scholar 

    39.
    Nehrbass-Ahles, C. et al. The influence of sampling design on tree-ring-based quantification of forest growth. Glob. Change Biol. 20, 2867–2885 (2014).
    ADS  Article  Google Scholar 

    40.
    Brokaw, N. & Thompson, J. The H for DBH. For. Ecol. Manag. 129(1–3), 89–91 (2000).
    Article  Google Scholar 

    41.
    Tegel, W. & Hakelberg, D. Jahrringdaten archäologischer Holzfunde als Klima- und Umweltarchiv. Geographische Rundschau 7(8), 11–13 (2014).
    Google Scholar 

    42.
    Tegel, W., Vanmoerkerke, J. & Büntgen, U. Updating historical tree-ring records for climate reconstruction. Quatern. Sci. Rev. 29(17–18), 1957–1959 (2010).
    ADS  Article  Google Scholar 

    43.
    Bärnthol, R. Nieder- und Mittelwald in Franken. Waldwirtschaftsformen aus dem Mittelalter. Schriften und Kataloge des Fränkischen Freilandmuseums Vol. 40 (Fränkisches Freilandmuseum, Bad Windsheim, 2003).
    Google Scholar 

    44.
    Williamsson, T. Environment, Society and Landscape in Early Medieval England. Anglo-Saxon Studies Vol. 19 (Boydell, Woodbridge, 2013).
    Google Scholar 

    45.
    Ferreiro-Domínguez, N., Mosquera-Losada, M.R. & Rigueiro-Rodríguez, A. Pasture production and tree growth in silvopastoral systems established with different trees. in Management of Agroforestry Systems: Ecological, Social and Economic Approaches. (eds. Fernández-Núñez, E. & Castro, M.) 31–40 (Bragança, 2016).

    46.
    Ferrini, F. Pollarding and its effects on tree physiology: A look to mature and senescent tree management in Italy. 1er colloque européen sur les trognes, 26, 27 et 28 Octobre 2006 Vendôme (Maison Botanique, Boursay, 2006).

    47.
    Kadavý, J., Adamec, Z., Uherková, B., Kneifl, M., Knott, R., Kučera, A., Friedl, M., Dařenová, E., Skládanka, J. & Drápela, K. Growth response of sessile Oak and European Hornbeam to traditional coppice-with-standards management. Forests 10(6), 515. https://doi.org/10.3390/f10060515 (2019).
    Article  Google Scholar 

    48.
    Blank, R. & Riemer, T. Quantifizierung des Einflusses blattfressender Insekten auf den Spätholzzuwachs der Eiche in Nordwestdeutschland/Quantification of the Effect of Insect Defoliation Upon Latewood Increment if Oaks in Northwest Germany. Forst und Holz 18, 569–576 (1999).
    Google Scholar 

    49.
    Mitchell, S. J. Wind as a natural disturbance agent in forests: A sysnthesis. Forestry 86, 147–157 (2013).
    Article  Google Scholar 

    50.
    Pilcher, J. R. & Gray, B. The relationships between oak tree growth and climate in Britain. J. Ecol. 70, 297–304 (1982).
    Article  Google Scholar 

    51.
    Büntgen, U. et al. Tree-ring indicators of German summer drought over the last millennium. Quat. Sci. Rev. 29, 1005–1016 (2010).
    ADS  Article  Google Scholar 

    52.
    Billamboz, A. Dendroarchaeology and cockchafers north of the Alps: Regional patterns of a middle frequency signal in oak tree-ring series. Environ. Archaeol. 19(2), 114–123 (2014).
    Article  Google Scholar 

    53.
    Sallé, A., Nageleisen, L.-M. & Lieutier, F. Bark and wood boring insects involved in oak declines in Europe: Current knowledge and future prospects in a context of climate change. For. Ecol. Manage. 328, 79–93 (2014).
    Article  Google Scholar 

    54.
    Bunde, A., Büntgen, U., Ludescher, J. & von Storch, H. Is there memory in precipitation?. Nat. Clim. Chang. 3(3), 174–175 (2013).
    ADS  Article  Google Scholar 

    55.
    Liebert, T. Siedlungkomplex Großhöbing: Mühlen und Bootsländen als Einrichtungen ländlicher Zentralorte in Zentrale Orte und zentrale Räume des Frühmittelalters in Süddeutschland. Tagung des Römisch-Germanischen Zentralmuseums Mainz und der Friedlrich-Schiller-Universität Jena vom 7.-9.10.2011 in Bad Neustadt an der Saale (eds. Ettel, P. & Werther, L.) 141–159 (Römisch-Germanisches Zentralmuseum, Mainz, 2013).

    56.
    Liebert, T. Frühmittelalterliche Wassermühlen und Wasserbauwerke im Schwarzachtal bei Großhöbing. Materialhefte zur bayerischen Archäologie 101 (Laßleben, Kallmünz 2015).

    57.
    Bastien, Y. Taillis et taillis sous futaie (Ecole nationale du Génie, des eaux et des fôrets, Centre de Sylviculture, Nancy, 2002).
    Google Scholar 

    58.
    Tegel, W., Elburg, R., Hakelberg, D., Stäuble, H. & Büntgen, U. Early Neolithic water wells reveal the World’s Oldest Wood Architecture. PLoS ONE 7(12), e51374. https://doi.org/10.1371/journal.pone.0051374 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Bruckmann, V. J., Yan, S., Hochbichler, E. & Glatzel, G. Carbon pools and temporal dynamics along a rotation period in Quercus dominated high forest and coppice with standards stands. For. Ecol. Manage. 262, 1853–1862 (2011).
    Article  Google Scholar 

    60.
    Stojanović, M., Čater, M. & Pokorny, R. Responses in young Quercus petraea: coppices and standards under favourable and drought conditions. Dendrobiology 76, 127–136 (2016).
    Article  CAS  Google Scholar 

    61.
    Ljungqvist, F. C. et al. Ranking of tree-ring based hydroclimate reconstructions from the past millennium. Quatern. Sci. Rev. 230, 106074 (2020).
    Article  Google Scholar 

    62.
    Billamboz, A. Jahrringuntersuchungen in der Siedlung Forschner und weiteren bronze- und eisenzeitlichen Feuchtbodensiedlungen Südwestdeutschlands. Aussagen der angewandten Dendrochchronologie in der Feuchtbodenarchäologie. Siedlungsarchäologie im Alpenvorland XI, Forschungen und Berichte zur Vor- und Frühgeschichte in Baden-Württemberg 113, (ed. Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart) 399–555 (Theiss, Stuttgart, 2009).

    63.
    Nenninger, M. Die Römer und der Wald. Untersuchungen zum Umgang mit einem Naturraum am Beispiel der Römischen Nordwestprovinzen. Geographica Historica Vol. 16 (Steiner, Stuttgart, 2001).
    Google Scholar 

    64.
    Trier, J. Holz: Etymologien aus dem Niederwald. Münstersche Forschungen Vol. 6 (Böhlau, Münster, 1952).
    Google Scholar 

    65.
    Mantel, K. Forstgeschichtliche Beiträge. (Schaper, Hannover, 1965).

    66.
    Epperlein, S. Waldnutzung, Waldstreitigkeiten und Waldschutz in Deutschland im hohen Mittelalter. 2. Hälfte 11. Jahrhundert bis ausgehendes 14. Jahrhundert Vierteljahrschrift für Sozial- und Wirtschaftsgeschichte Beihefte Vol. 109 (Steiner, Stuttgart, 1993).
    Google Scholar 

    67.
    Schütt, P., Schuck, H. J. & Stimm, B. Lexikon der Baum- und Straucharten—Das Standardwerk der Forstbotanik. Morphologie, Pathologie, Ökologie und Systematik wichtiger Baum- und Straucharten (Nikol, Hamburg, 2002).
    Google Scholar 

    68.
    Boretius, A. Karoli Magni Capitularia. Monumenta Germaniae historica inde ab anno Christi quingentesimo usque ad anum millesimum et quingentesimum 1. (Hahn, Hannover, 1883).

    69.
    Mantel, K. & Hauff, D. Wald und Forst in der Geschichte. Ein Lehr- und Handbuch. (Schaper, Alfeld/Hannover, 1990).

    70.
    Herzig, F. Dendroarchäologie: Mensch und Umwelt – eine Wechselwirkung, eingraviert in Holz. Bericht der bayerischen Bodendenkmalpflege 50, 225–236 (2009).
    Google Scholar 

    71.
    Speer, J.H. Fundamentals of Tree-Ring Research (University of Arizona Press, Tucson, 2010).

    72.
    Knibbe, B. PAST4—Personal Analysis System for Treering Research version 4.5. Instruction Manual (SCIEM, Vienna, 2008).
    Google Scholar  More

  • in

    Using metacommunity ecology to understand environmental metabolomes

    An example set of metabolite assemblages and microbial communities
    We use metabolite data from the Columbia River corridor to provide an example of how to use a dendrogram-based framework to study the processes influencing metabolite assemblages. In brief, samples of river water and pore water were collected on November 19, 2017 from five locations (Supplementary Fig. 1, Supplementary Table 1) along the mainstem Columbia River in Washington State across a ~1 km transect running along the shoreline. This part of the Columbia River is in an arid region, is dam regulated, is predominantly gravel bedded, experiences significant groundwater-surface water mixing in pore fluids, and has been studied and described extensively36,43,44. At each location, filtered river water and subsurface pore water were collected; one replicate of river water was collected, and three pore water samples were collected from 30 cm depth within a 1 m2 area using 0.25-inch diameter sampling tubes. Samples were analyzed using FTICR-MS at the Environmental Molecular Sciences Laboratory using previously established methods. The raw FTICR-MS data were processed according to established methods to (1) identify peaks from the mass spectra that correspond to unique metabolites identified by their unique mass, (2) calibrate peak/metabolite masses against a standard set of known metabolites, and (3) assign molecular formula based on the Compound Identification Algorithm (CIA)45,46. Further data analyses are described below in the subsections that use the associated analysis. In addition, water samples were analyzed for basic geochemical parameters (i.e., dissolved organic carbon concentration, specific conductivity, and major anions and cations). We extracted DNA from the filters used to collect aqueous samples and characterized associated microbial communities using 16 S rRNA gene sequencing and associated data processing to pick operational taxonomic units and generate a phylogenetic tree.
    Building metabolite dendrograms
    Tools and metrics in metacommunity ecology often leverage relational information such as among-species evolutionary relatedness or functional trait similarities, allowing researchers to reveal the balance among stochastic and deterministic assembly processes23,35,41,42,47,48. While metabolites do not have genetic sequence information, their characteristics can be approached in a way that is analogous to the functional trait approach in ecological analyses39,49. Unlike multivariate dendrograms typically used within metabolomics studies (e.g., Tfaily et al. 2018)7, these dendrograms represent relationships between metabolites and not samples. To this end, we developed and evaluated three methods of measuring trait-like relational information between different chemical compounds using two different information sets: molecular characteristics and biochemical transformations (Fig. 1, Supplementary Fig. 2, Supplementary Data 1–3).
    Fig. 1: Figure summarizing the steps necessary to create the three dendrograms used throughout this manuscript.

    The top path (Molecular Characteristics Dendrogram or MCD) demonstrates the relational information provided by molecular properties, like elemental composition and aromaticity index, while the bottom path (Transformation-based Dendrogram or TD) emphasizes the relationships driven by potential biochemical transformation networks. The middle path (Transformation-Weighted Characteristics Dendrogram or TWCD) is a combination of information provided by the top and both paths. All metabolites in the transformation network would have been identified; the numbered metabolites are used to demonstrate the approach. Definition of acronyms under molecular properties: C, H, O, N, S, and P are elemental counts; DBE is double-bond equivalents; AIMod is modified aromaticity index; and kdef is Kendrick defect.

    Full size image

    First, we generated a molecular characteristics dendrogram (MCD) which integrates elemental composition (e.g., C-, H-, O-, N-, S-, P-content) and derived statistics (i.e., aromaticity index, double-bond equivalents, etc.) similar to principles outlined in compound classification studies50,51,52,53,54,55,56 or in NOM functional diversity analyses16,17,18,57. Next, we created a transformation-based dendrogram (TD) using putative biochemical transformations identified by aligning mass differences to a database of known transformations1,2,3,9,51,58,59 (Supplementary Data 4). Finally, we made the transformation-weighted characteristics dendrogram (TWCD), which is a combination of the MCD and TD (Supplementary Fig. 2). Given each dendrogram method incorporates FTICR-MS peaks differently, the number of peaks incorporated into downstream analyses also varies (Fig. 2a, Supplementary Fig. 3; see Supplement for details). For example, while the MCD incorporates all assigned molecular formula (~14% of observed peaks in this dataset), the TD can gain access to a broader range of peaks because formulas are not required (~72.5% of observed peaks) (Supplementary Fig. 3). While there is a discrepancy between these approaches, this is due to inefficient formula assignment of FTICR-MS data and will vary from dataset to dataset, and with improved formula assignment tools60. Detailed differences between these dendrograms are explored in the Supplement, but each resulted in different metabolite clustering patterns that help provide deeper insight into ecosystem assembly. We suggest that while other approaches to estimating dendrograms from metabolite data exist, the MCD, TD, and TWCD provide a complementary set of methods that are useful for studying the spatiotemporal organization of meta-metabolomes.
    Fig. 2: Alpha diversity boxplots for the metabolite data.

    a Richness (akin to metabolite count). b Dendrogram Diversity (DD) which is analogous to Faith’s Phylogenetic Diversity (PD). c Mean Pairwise Distance (MPD). d Mean Nearest Taxon Distance (MNTD). Two-sided Mann–Whitney U tests (Surface water n = 7, Pore water n = 14) determined that only the TWCD-DD comparison was significant; the p value is indicated within the figure. Each panel represents metrics calculated for the corresponding metabolite dendrogram (e.g., MCD, TD, and TWCD). Boxes represent the 1st and 3rd quartiles, the horizontal line within the box represents the median, the vertical lines represent extreme values calculated based on the interquartile range, and the points are potential outliers.

    Full size image

    Importantly, data collected using an FTICR-MS will include information about any ionizable compound, not just those associated with biological systems61. Despite this potential limitation, previous studies have demonstrated that this type of data still contains biogeochemically relevant information1,2,4,16,17. Therefore, the three dendrograms described above can resolve the potential relationships between molecular formula based upon a point of view, which is agnostic to a molecular formula’s source (MCD), a point of view which encompasses a putative biochemical point of view (TD), and an integrated view (TWCD). As with many of the tools described in this manuscript, the lack of explicit biological information provides two key benefits. First, it embraces the perspective that there is inherent value in investigating the processes, which give rise to all molecular formula, not just those involved in microbiologically mediated reactions. This allows for evaluation of intrinsic metabolite assemblage turnover without requiring potentially inaccurate biological assumptions. Second, it allows for the coupling of meta-metabolome ecology with other multi-omics data types. This approach minimizes errors that could occur by assigning the sources for molecular formula and associated transformations a priori, and allows understanding to be derived a posteriori through coupling to additional data types.
    A quick note about phylogenetic signals
    In order to ensure that a phylogenetic tree accurately captures the functional trait information of an ecological system, a test for a phylogenetic signal must be first performed13,24,62,63,64. Once a phylogenetic signal is confirmed, a range of ecological null models can be used to infer community assembly processes13. Within many ecosystems, this can be measured by calculating one of many phylogenetic signal metrics using average trait values63; in microbial systems where said trait values are not as readily available, estimated niche values are calculated based upon abundance and environmental data instead13,64. However, when functional trait dendrograms are used instead of a phylogenetic tree, a phylogenetic signal is unnecessary as the trait relationships are already built into the framework39. Given that the three proposed dendrograms are closely aligned to functional trait dendrograms (i.e., molecular formula properties and putative biochemical relationships)16,17, phylogenetic signal is unnecessary when implementing associated null models.
    Using metabolite dendrograms to study metabolite diversity and assembly processes
    From a practical perspective, the three dendrograms provide a foundation for studying metabolite assemblages with ecological tools that traditionally use phylogenetic or functional trait data. For example, below we show how metabolomes can be studied using metrics associated with richness (Faith’s PD, UniFrac), overall divergence (MPD), and nearest neighbor divergence (MNTD)42,47,48,65. As a parallel to ecological analyses, these metrics can be used to study the spatial and temporal organization of meta-metabolomes.
    Many ecological studies track trait dynamics or utilize identity-based (i.e., taxonomic) analyses such as Bray–Curtis dissimilarity to infer ongoing ecosystem processes66,67. There are, however, exciting opportunities to go further by using additional tools from metacommunity ecology that are designed to infer and quantify assembly processes. Null models represent one set of tools that provide additional insight and complement traditional α-diversity and β-diversity analyses. By applying commonly used phylogenetic null models, we can investigate the processes responsible for structuring metabolite assemblages. First, to assess whether α-diversity was more or less structured than would be expected by random chance, we calculated both the net relatedness index (NRI) and nearest taxon index (NTI), which are z-scores quantifying deviation from null models for MPD and MNTD respectively23,65. For both these metrics, positive values indicate clustering within the dendrogram while negative values signify overdispersion65.
    Ranging from cold weather adaptation in forests68, labile carbon degradation in bacterial communities69, or host range/soil adaptations in root-associated mycobiomes70, these metrics have revealed patterns in phylogenetic trait conservation through different phylogenetic lineages71. Despite examining different ecosystems and scales, a common framework enabled researchers to develop consistent conceptual conclusions. In turn, these null models should provide a similar framework for metabolite assemblages, with varied interpretations dependent upon the dendrogram. For example, overdispersion observed on the MCD might suggest broadly distributed thermodynamic properties while it could indicate biochemically disconnected peaks on the TD. Such analyses will allow researchers to ask and answer questions regarding the development of meta-metabolomes.
    To further explore the ecological assembly processes structuring metabolite profiles, we calculated the β-nearest taxon index (βNTI; detailed extensively in Stegen et al. 2012, 2015). This metric compares the observed β-mean nearest taxon distance (βMNTD) between two communities to a null expectation generated by breaking observed dendrogram associations. While typically informed using abundance data, this null model still produces useful information with presence/absence data. When a comparison between two ecological communities significantly deviates from the null expectation (indicated by |βNTI |  > 2), we infer that some deterministic process is responsible for the observed pattern. These deterministic processes can be further separated into those which drive a divergence between communities, termed ‘variable selection’ (indicated by βNTI  > 2), and those which drive a convergence between communities, termed ‘homogeneous selection’ (indicated by βNTI  More

  • in

    Difference of ecological half-life and transfer coefficient in aquatic invertebrates between high and low radiocesium contaminated streams

    Study site
    The study sites were located approximately 20–75 km from the Fukushima Daiichi Nuclear Power Plant in Fukushima Prefecture, Japan (Fig. 1). According to an aircraft radioactivity survey reported by the Ministry of Education, Culture, Sports, Sciences, and Technology of Japan19, the air dose rate in this region was 0.3–3.2 μSv/h, and the deposition of cesium-134 and cesium-137 ranged from less than 64,000 to 940,000 Bq/m2 (Table 1) in June 2011. The study catchment area is mostly forested and dominated with deciduous trees. Other areas in the region are also forested as well, with Japanese cedar and cypress plantations used for timber production. A field survey was conducted at one headwater tributary (A) of the Nagase River and three headwater tributaries (B, C, and D) of the Kido River. The substrate of these sites was consisted with sand, cobble and rocks. Geological feature of the soil on all the sites was the same, biotite granite. Streams at sites B, C and D were covered with riparian forests and it was difficult for sunlight to penetrate directly. Stream width of site A was wider than sites B, C and D, so sunlight could penetrate through the forest cover and contact the stream surface only along the middle of the stream.
    Figure 1

    Study site in Fukushima Prefecture, Japan. Square: sampling sites, circle: FDNPP (Fukushima Daiichi Nuclear Power Plant). This map was generated by using software program Microsoft Paint Windows 10.

    Full size image

    Table 1 Air dose rate and the deposition of Cs according to an aircraft radioactivity survey by MEXT (2011), averaged value of dose rate 1-m above the ground on the sampling date from 2013 to 2019 (n = 23) and five environmental factors on four sites on the sampling date from 2013 to 2019 (n = 23).
    Full size table

    Sampling
    The air dose rate at 1- m above the ground was measured with a γ survey meter at the sampling site (TCS-172 NaI scintillation counter; ALOKA). The electrical conductivity (EC) of the streams was measured using a portable compact twin conductivity meter (B-173; Horiba); pH was measured using a portable compact twin pH meter (B-212; Horiba), and the dissolved oxygen (DO) was measured using a portable DO meter (DO-5509; Lutron). Stream velocity was measured using a portable meter (V-303, VC-301, KENEK). All parameters were measured at all sites on all sampling dates.
    Sand substrate, litter and algae were sampled from stream riffles at a depth of 10-15 cm from July 2013 to April 2019, as was reported in previous studies13. The sand substrate was sampled in each riffle to a depth of 5- cm. When sand was not immediately visible in the stream substrate, stones were removed and the sand underneath the stones was sampled. Litter shed in the water was collected after gentle hand-rinsing. Leaf litter forms the base of stream food webs. Periphytic algae were collected by brushing the pebbles or rocks with a toothbrush. These algae are also primary producers at the base of stream food webs. Prior to brushing, we gently hand-rinsed the stone surface to remove other organic matter and aquatic invertebrates in the periphyton.
    Aquatic invertebrates from thirteen groups (Perlidae Gen. spp., Nemouridae Gen. spp., Ephemera japonica, Ephemerellidae Gen. spp., Heptageniidae Gen. spp., Hydropsychidae Gen. spp., Stenopsychi spp., Rhyacophilidae Gen. spp., Epiophlebia superstes, Lanthus fujiacus, Tipulidae Gen. spp., and Corydalidae Gen. spp., Geothelphusa dehaani,) were qualitatively sampled from riffles at a depth of 10-15 cm at the four sites from July 2013 to April 2019. At each site, a D-frame net with a 1-mm mesh was placed downstream of the sampling area on the substrate in water. We then disturbed the substrate upstream of the net, allowing insects to drift into the D-frame net. The sampled aquatic invertebrates were identified to family level in the field and then frozen.
    Three bricks (210 × 100 × 60 mm) were placed separately within the stream riffle at a depth of 10–20 cm on August 25, 2014 at each of the four sites. Then, periphytic algae growing on the bricks were collected by brushing the substrate with a toothbrush. Before brushing, we gently hand-rinsed the brick surface in running water to remove other organic matter from the periphytic algae. The sampling was carried out eight times: in October and December 2014; March, May, June, July and November 2015; and April 2016. Stream velocity of right side, upper reaches side and left side of each brick were measured and averaged. This averaged value was used as the stream velocity of each periphytic algae sample.
    Radiocesium analysis
    Radiocesium was analysed according to the methods in previous studies10,20. Samples of sand substrate and litter were dried at 75 °C in an oven. Thereafter, samples of sand were placed in a sieve (mesh size 2 mm; Iida, Japan), and the sand that passed through the sieve was used, meaning that the sand substrate in this study included silt granules. Samples of algae were concentrated via evaporation and dried in an oven at 75 °C. Samples of aquatic invertebrates were also dried in an oven at 75 °C. All samples were homogenized and packed into 100-ml polystyrene containers (U-8). Gamma-ray spectrometric measurements were performed on each sample. The radioactive concentrations of cesium-134 (604 keV) and cesium-137 (662 keV) were measured using an HPGe coaxial detector system (GEM40P4-76, Seiko EG and G, Tokyo, Japan) at the Forestry and Forest Products Research Institute (FFPRI) with a time of 36,000 s or longer. Data with a standard error of  More

  • in

    Controlling biodiversity impacts of future global hydropower reservoirs by strategic site selection

    1.
    Bogdanov, D. et al. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10, 1077. https://doi.org/10.1038/s41467-019-08855-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    UNEP. Green Energy Choices: The benefits, risks and trade-offs of low-carbon technologies for electricity production. Report of the International Resource Panel (2016).

    3.
    United Nations. Transforming our world: The 2030 agenda for sustainable development—A/RES/70/1. (2015).

    4.
    Intergovernmental Panel on Climate Change. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (2018).

    5.
    Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nature Energy 2, 821–828. https://doi.org/10.1038/s41560-017-0006-y (2017).
    ADS  Article  Google Scholar 

    6.
    IEA. Hydropower. (Paris, 2020).

    7.
    Intergovernmental Panel on Climate Change. Hydropower. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (2011).

    8.
    Almeida, R. M. et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281. https://doi.org/10.1038/s41467-019-12179-5 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the sustainable development goals. Nat. Energy 3, 10–15. https://doi.org/10.1038/s41560-017-0036-5 (2018).
    ADS  Article  Google Scholar 

    10.
    Muller, M. Hydropower dams can help mitigate the global warming impact of wetlands. Nature 566, 315–317. https://doi.org/10.1038/d41586-019-00616-w (2019).
    CAS  Article  PubMed  Google Scholar 

    11.
    Pehl, M. et al. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2, 939–945. https://doi.org/10.1038/s41560-017-0032-9 (2017).
    ADS  CAS  Article  Google Scholar 

    12.
    Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489. https://doi.org/10.1016/j.jclepro.2019.03.001 (2019).
    Article  Google Scholar 

    13.
    Turgeon, K., Turpin, C., Gregory-Eaves, I. & Lawler, J. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecol. Lett. 22, 1501–1516. https://doi.org/10.1111/ele.13283 (2019).
    Article  PubMed  Google Scholar 

    14.
    Gracey, E. O. & Verones, F. Impacts from hydropower production on biodiversity in an LCA framework—review and recommendations. Int. J. Life Cycle Assess. 21, 412–428. https://doi.org/10.1007/s11367-016-1039-3 (2016).
    Article  Google Scholar 

    15.
    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502. https://doi.org/10.1890/100125 (2011).
    Article  Google Scholar 

    16.
    Dorber, M., May, R. & Verones, F. Modeling net land occupation of hydropower reservoirs in Norway for use in life cycle assessment. Environ. Sci. Technol. 52, 2375–2384. https://doi.org/10.1021/acs.est.7b05125 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    17.
    Strachan, I. B. et al. Does the creation of a boreal hydroelectric reservoir result in a net change in evaporation?. J. Hydrol. 540, 886–899. https://doi.org/10.1016/j.jhydrol.2016.06.067 (2016).
    ADS  Article  Google Scholar 

    18.
    Mekonnen, M. M. & Hoekstra, A. Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 16, 179–187. https://doi.org/10.5194/hess-16-179-2012 (2012).
    ADS  Article  Google Scholar 

    19.
    Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205. https://doi.org/10.1111/j.1365-2427.2009.02272.x (2010).
    Article  Google Scholar 

    20.
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshw. Biol. 60, 410–425. https://doi.org/10.1111/fwb.12506 (2015).
    Article  Google Scholar 

    21.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Hermoso, V., Clavero, M. & Green, A. J. Don’t let damage to wetlands cancel out the benefits of hydropower. Nature 568, 171–171. https://doi.org/10.1038/d41586-019-01140-7 (2019).
    CAS  Article  PubMed  Google Scholar 

    23.
    McAllister, D. E., Craig, J. F., Davidson, N., Delany, S. & Seddon, M. Biodiversity impacts of large dams. Background Paper Nr. 1 – Prepared for IUCN/UNEP/WCD (2001).

    24.
    Crook, D. A. et al. Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation. Sci. Total Environ. 534, 52–64. https://doi.org/10.1016/j.scitotenv.2015.04.034 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    Alho, C. J. Environmental effects of hydropower reservoirs on wild mammals and freshwater turtles in Amazonia: a review. Oecologia Australis 15, 593–604 (2011).
    Article  Google Scholar 

    26.
    Kitzes, J. & Shirley, R. Estimating biodiversity impacts without field surveys: a case study in northern Borneo. Ambio 45, 110–119. https://doi.org/10.1007/s13280-015-0683-3 (2016).
    CAS  Article  PubMed  Google Scholar 

    27.
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26. https://doi.org/10.1016/j.tree.2011.08.006 (2012).
    Article  PubMed  Google Scholar 

    28.
    Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 4. (Montreal, 2014).

    29.
    Bennett, E. M. et al. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 14, 76–85. https://doi.org/10.1016/j.cosust.2015.03.007 (2015).
    Article  Google Scholar 

    30.
    Opoku, A. Biodiversity and the built environment: Implications for the sustainable development goals (SDGs). Resour. Conserv. Recycl. 141, 1–7. https://doi.org/10.1016/j.resconrec.2018.10.011 (2019).
    Article  Google Scholar 

    31.
    Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093. https://doi.org/10.1038/s41893-019-0417-9 (2019).
    Article  Google Scholar 

    32.
    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129. https://doi.org/10.1126/science.aac7082 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    33.
    Nilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between sustainable development goals. Nature 534, 320–322. https://doi.org/10.1038/534320a (2016).
    ADS  Article  PubMed  Google Scholar 

    34.
    Bhaduri, A. et al. Achieving sustainable development goals from a water perspective. Front. Environ. Sci. 4, 64. https://doi.org/10.3389/fenvs.2016.00064 (2016).
    Article  Google Scholar 

    35.
    Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476. https://doi.org/10.1038/s41893-018-0135-8 (2018).
    Article  Google Scholar 

    36.
    Shin, S. et al. High resolution modeling of river-floodplain-reservoir inundation dynamics in the Mekong River Basin. Water Resour. Res. 56, e2019WR026449. https://doi.org/10.1029/2019wr026449 (2020).
    ADS  Article  Google Scholar 

    37.
    Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104. https://doi.org/10.1038/s41893-018-0022-3 (2018).
    Article  Google Scholar 

    38.
    Pokhrel, Y., Shin, S., Lin, Z., Yamazaki, D. & Qi, J. Potential disruption of flood dynamics in the Lower Mekong River Basin due to upstream flow regulation. Sci. Rep. 8, 17767. https://doi.org/10.1038/s41598-018-35823-4 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Ashraf, F. B. et al. Changes in short term river flow regulation and hydropeaking in Nordic rivers. Sci. Rep. 8, 17232. https://doi.org/10.1038/s41598-018-35406-3 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. 117, 3648. https://doi.org/10.1073/pnas.1912776117 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    41.
    Scherer, L. & Pfister, S. Hydropower’s biogenic carbon footprint. PLoS ONE 11, e0161947. https://doi.org/10.1371/journal.pone.0161947 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Scherer, L. & Pfister, S. Global water footprint assessment of hydropower. Renew. Energy 99, 711–720. https://doi.org/10.1016/j.renene.2016.07.021 (2016).
    Article  Google Scholar 

    43.
    Evans, A., Strezov, V. & Evans, T. J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 13, 1082–1088. https://doi.org/10.1016/j.rser.2008.03.008 (2009).
    Article  Google Scholar 

    44.
    Laborde, A., Habit, E., Link, O. & Kemp, P. Strategic methodology to set priorities for sustainable hydropower development in a biodiversity hotspot. Sci. Total Environ. 714, 136735. https://doi.org/10.1016/j.scitotenv.2020.136735 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Haga, C. et al. Scenario analysis of renewable energy-biodiversity nexuses using a forest landscape model. Front. Ecol. Evol. 8, 155. https://doi.org/10.3389/fevo.2020.00155 (2020).
    ADS  Article  Google Scholar 

    46.
    Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531. https://doi.org/10.1038/s41598-019-54980-8 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Gibon, T., Hertwich, E. G., Arvesen, A., Singh, B. & Verones, F. Health benefits, ecological threats of low-carbon electricity. Environ. Res. Lett. 12, 034023. https://doi.org/10.1088/1748-9326/aa6047 (2017).
    ADS  CAS  Article  Google Scholar 

    48.
    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019 (2011).
    ADS  Article  Google Scholar 

    49.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
    Article  Google Scholar 

    50.
    Dorber, M., Mattson, K. R., Sandlund, O. T., May, R. & Verones, F. Quantifying net water consumption of Norwegian hydropower reservoirs and related aquatic biodiversity impacts in life cycle assessment. Environ. Impact Assess. Rev. 76, 36–46. https://doi.org/10.1016/j.eiar.2018.12.002 (2019).
    Article  Google Scholar 

    51.
    Verones, F. et al. LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J. Clean. Prod. 161, 957–967 (2017).
    Article  Google Scholar 

    52.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  Article  Google Scholar 

    53.
    Critical Ecosystem Partnership Fund. Biodiversity Hotspot Shapefile. https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined (2016).

    54.
    Le Blanc, D. Towards integration at last? The sustainable development goals as a network of targets. Sustain. Dev. 23, 176–187. https://doi.org/10.1002/sd.1582 (2015).
    Article  Google Scholar 

    55.
    Mutel, C. et al. Overview and recommendations for regionalized life cycle impact assessment. Int. J. Life Cycle Assess. 24, 856–865. https://doi.org/10.1007/s11367-018-1539-4 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Popescu, V. D. et al. Quantifying biodiversity trade-offs in the face of widespread renewable and unconventional energy development. Sci. Rep. 10, 7603. https://doi.org/10.1038/s41598-020-64501-7 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Oliver, T. H. How much biodiversity loss is too much?. Science 353, 220. https://doi.org/10.1126/science.aag1712 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    58.
    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50. https://doi.org/10.1146/annurev-environ-042911-093511 (2012).
    Article  Google Scholar 

    59.
    Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21. https://doi.org/10.1038/s41561-018-0262-x (2019).
    ADS  CAS  Article  Google Scholar 

    60.
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288. https://doi.org/10.1126/science.aaf2201 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    61.
    Eloranta, A. P., Finstad, A. G., Helland, I. P., Ugedal, O. & Power, M. Hydropower impacts on reservoir fish populations are modified by environmental variation. Sci. Total Environ. 618, 313–322. https://doi.org/10.1016/j.scitotenv.2017.10.268 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    62.
    Worrall, T. P. et al. The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability. Hydrol. Sci. J. 59, 645–658. https://doi.org/10.1080/02626667.2013.825722 (2014).
    CAS  Article  Google Scholar 

    63.
    Holt, C. R., Pfitzer, D., Scalley, C., Caldwell, B. A. & Batzer, D. P. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Res. Appl. 31, 798–807. https://doi.org/10.1002/rra.2782 (2015).
    Article  Google Scholar 

    64.
    International Organisation for Standardization. ISO 14044:2006 Environmental management—Life cycle assessment—Principles and framework (2006).

    65.
    Jolliet, O. et al. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess 23, 2189–2207. https://doi.org/10.1007/s11367-018-1443-y (2018).
    CAS  Article  Google Scholar 

    66.
    Hirsch, P. E., Schillinger, S., Weigt, H. & Burkhardt-Holm, P. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower. PLoS ONE 9, e114889–e114889. https://doi.org/10.1371/journal.pone.0114889 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Gagnon, L., Bélanger, C. & Uchiyama, Y. Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30, 1267–1278. https://doi.org/10.1016/s0301-4215(02)00088-5 (2002).
    Article  Google Scholar 

    68.
    George, M. W., Hotchkiss, R. H. & Huffaker, R. Reservoir sustainability and sediment management. J. Water Resour. Plann. Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0000720 (2017).
    Article  Google Scholar 

    69.
    Yüksel, I. Hydropower for sustainable water and energy development. Renew. Sustain. Energy Rev. 14, 462–469. https://doi.org/10.1016/j.rser.2009.07.025 (2010).
    Article  Google Scholar 

    70.
    Hertwich, E. G. Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ. Sci. Technol. 47, 9604–9611. https://doi.org/10.1021/es401820p (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Bakken, T. H., Modahl, I. S., Raadal, H. L., Bustos, A. A. & Arnoy, S. Allocation of water consumption in multipurpose reservoirs. Water Policy 18, 932–947. https://doi.org/10.2166/wp.2016.009 (2016).
    Article  Google Scholar 

    72.
    Hanafiah, M. M., Xenopoulos, M. A., Pfister, S., Leuven, R. S. E. W. & Huijbregts, M. A. J. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ. Sci. Technol. 45, 5272–5278. https://doi.org/10.1021/es1039634 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    73.
    Tendall, D. M., Hellweg, S., Pfister, S., Huijbregts, M. A. J. & Gaillard, G. Impacts of river water consumption on aquatic biodiversity in life cycle assessment—a proposed method, and a case study for Europe. Environ. Sci. Technol. 48, 3236–3244. https://doi.org/10.1021/es4048686 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    74.
    Wang, J. et al. Assessing the water and carbon footprint of hydropower stations at a national scale. Sci. Total Environ. 676, 595–612. https://doi.org/10.1016/j.scitotenv.2019.04.148 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    75.
    Bakken, T. H., Modahl, I. S., Engeland, K., Raadal, H. L. & Arnøy, S. The life-cycle water footprint of two hydropower projects in Norway. J. Clean. Prod. 113, 241–250. https://doi.org/10.1016/j.jclepro.2015.12.036 (2016).
    Article  Google Scholar 

    76.
    Song, C., Gardner, K. H., Klein, S. J. W., Souza, S. P. & Mo, W. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renew. Sustain. Energy Rev. 90, 945–956. https://doi.org/10.1016/j.rser.2018.04.014 (2018).
    Article  Google Scholar 

    77.
    Aung, T. S., Fischer, T. B. & Azmi, A. S. Are large-scale dams environmentally detrimental? Life-cycle environmental consequences of mega-hydropower plants in Myanmar. Int. J. Life Cycle Assess. 25, 1749–1766. https://doi.org/10.1007/s11367-020-01795-9 (2020).
    CAS  Article  Google Scholar 

    78.
    Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. 115, 11891. https://doi.org/10.1073/pnas.1809426115 (2018).
    CAS  Article  PubMed  Google Scholar 

    79.
    United Nation Environmental Program. Green energy choices: The benefits, risks, and trade-offs of low-carbon technologies for electricity production. (2016).

    80.
    Edenhofer, O. et al. IPCC special report on renewable energy sources and climate change mitigation. (Prepared By Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2011).

    81.
    Laranjeiro, T., May, R. & Verones, F. Impacts of onshore wind energy production on birds and bats: recommendations for future life cycle impact assessment developments. Int. J. Life Cycle Assess 23, 2007–2023. https://doi.org/10.1007/s11367-017-1434-4 (2018).
    CAS  Article  Google Scholar 

    82.
    Bakken, T. H., Killingtveit, Å., Engeland, K., Alfredsen, K. & Harby, A. Water consumption from hydropower plants—review of published estimates and an assessment of the concept. Hydrol. Earth Syst. Sci. 17, 3983–4000. https://doi.org/10.5194/hess-17-3983-2013 (2013).
    ADS  Article  Google Scholar 

    83.
    Dorber, M., Kuipers, K. & Verones, F. Global characterization factors for terrestrial biodiversity impacts of future land inundation in life cycle assessment. Sci. Total Environ. 712, 134582. https://doi.org/10.1016/j.scitotenv.2019.134582 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2 (2001).
    Article  Google Scholar 

    85.
    Kuipers, K. J. J., Hellweg, S. & Verones, F. Potential consequences of regional species loss for global species richness: a quantitative approach for estimating global extinction probabilities. Environ. Sci. Technol. 53, 4728–4738. https://doi.org/10.1021/acs.est.8b06173 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    86.
    University of Montana. MODIS Global Evapotranspiration Project (MOD16), http://www.ntsg.umt.edu/project/modis/mod16.php.

    87.
    Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536. https://doi.org/10.1016/j.rse.2007.04.015 (2007).
    ADS  Article  Google Scholar 

    88.
    Xenopoulos, M. A. & Lodge, D. M. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity. Ecology 87, 1907–1914. https://doi.org/10.1890/0012-9658(2006)87[1907:gwtfus]2.0.co;2 (2006).
    Article  PubMed  Google Scholar 

    89.
    Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58(5), 403–414 (2008).
    Article  Google Scholar 

    90.
    Myhre, G. et al. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

    91.
    Verones, F. et al. LC-IMPACT: A regionalized life cycle damage assessment method. J. Ind. Ecol. 24, 1201–1219. https://doi.org/10.1111/jiec.13018 (2020).
    Article  Google Scholar 

    92.
    Thematic Mapping API. World Borders Dataset. http://thematicmapping.org/downloads/world_borders.php (2009).

    93.
    ESRI. ArcGis Desktop—ArcMap Version 10.8. https://desktop.arcgis.com/en/arcmap/ (2020). More

  • in

    Differential longitudinal establishment of human fecal bacterial communities in germ-free porcine and murine models

    Identifying core microbiotas in the human donors
    To compare the establishment of human fecal bacterial communities in HMA mice and piglets, we inoculated GF mice and piglets maintained in gnotobiotic isolators with fecal matter from four separate human donors. The donors selected had diverse microbial communities (Fig. 1) and represented different stages of human development (see “Methods” for donor information). All animals in a given isolator (for both mice and piglets) were inoculated with the inocula obtained from a single donor. Both recipient species of animals were inoculated twice during the study—the initial round of inoculations were performed after weaning and the second round of inoculations occurred two weeks after the first round of inoculations. All inocula were prepared at the same time under the same conditions and both mice and piglets were fed the exact same sterile solid diet.
    Fig. 1: Box-whisker plots comparing the alpha diversity of the inoculum aliquots among the different donors using the Shannon index.

    Statistical comparisons were performed using the Wilcoxon rank-sum test. Boxes with different letters indicate statistically significant differences (p  More

  • in

    Brazil’s Amazon Soy Moratorium reduced deforestation

    1.
    Schwartzman, S. & Zimmerman, B. Conservation alliances with indigenous peoples of the Amazon. Conserv. Biol. 19, 721–727 (2005).
    Google Scholar 
    2.
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688 (2005).
    Google Scholar 

    3.
    Malhi, Y. et al. Climate change, deforestation, and the fate of the amazon. Science 319, 169–172 (2008).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Assunção, J., Gandour, C. & Rocha, R. Deforestation slowdown in the Brazilian Amazon: prices or policies? Environ. Dev. Econ. 20, 697–722 (2015).
    Google Scholar 

    6.
    Assunção, J., Gandour, C. & Rocha, R. DETERring Deforestation in the Amazon: Environmental Monitoring and Law Enforcement (Climate Policy Initiative, 2017).

    7.
    Cisneros, E., Zhou, S. L. & Börner, J. Naming and shaming for conservation: evidence from the Brazilian Amazon. PLoS ONE 10, e0136402 (2015).
    PubMed  PubMed Central  Google Scholar 

    8.
    Arima, E. Y., Barreto, P., Araújo, E. & Soares-Filho, B. Public policies can reduce tropical deforestation: lessons and challenges from Brazil. Land Use Policy 41, 465–473 (2014).
    Google Scholar 

    9.
    Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Assunção, J. & Rocha, R. Getting Greener by Going Black: The Priority Municipalities in Brazil (Climate Policy Initiative, 2014).

    12.
    Assunção, J., Gandour, C., Rocha, R. & Rocha, R. The effect of rural credit on deforestation: evidence from the Brazilian Amazon. Econ. J. 130, 290–330 (2020).
    Google Scholar 

    13.
    Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Nepstad, D. C., Stickler, C. M. & Almeida, O. T. Globalization of the Amazon soy and beef industries: opportunities for conservation. Conserv. Biol. 20, 1595–1603 (2006).
    PubMed  Google Scholar 

    15.
    Gibbs, H. K. et al. Did ranchers and slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Brazil’s zero-deforestation pacts. Conserv. Lett. 9, 32–42 (2016).
    Google Scholar 

    16.
    Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite (INPE, 2018); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

    17.
    Eating up the Amazon (Greenpeace, 2006); https://www.greenpeace.org/usa/wp-content/uploads/legacy/Global/usa/report/2010/2/eating-up-the-amazon.pdf

    18.
    Soy Moratorium Announcement (ABIOVE, ANEC, 2006).

    19.
    Rudorff, B. F. T. et al. Remote sensing images to detect soy plantations in the Amazon biome—the Soy Moratorium Initiative. Sustainability 4, 1074–1088 (2012).
    Google Scholar 

    20.
    Trase Yearbook 2018: Sustainability in Forest-Risk Supply Chains: Spotlight on Brazilian Soy (Trase, 2018).

    21.
    Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2020).
    ADS  Google Scholar 

    22.
    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
    ADS  Google Scholar 

    23.
    Soy Moratorium: 2016/2017 Crop Year (ABIOVE, Agrosatelite, GTS, INPE, 2017).

    24.
    Rudorff, B. F. T. et al. The Soy Moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).
    ADS  Google Scholar 

    25.
    Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).
    ADS  Google Scholar 

    26.
    Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).
    Google Scholar 

    27.
    Abessa, D., Famá, A. & Buruaem, L. The systematic dismantling of Brazilian environmental laws risks losses on all fronts. Nat. Ecol. Evol. 3, 510–511 (2019).
    PubMed  Google Scholar 

    28.
    Dauvergne, P. & Lister, J. The prospects and limits of eco-consumerism: shopping our way to less deforestation? Organ. Environ. 23, 132–154 (2010).
    Google Scholar 

    29.
    Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. C. D. M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).
    PubMed  PubMed Central  Google Scholar 

    31.
    Svahn, J., Brunner, D. & Harding, T. Did the Soy Moratorium Reduce Deforestation in the Brazilian Amazon? A Counterfactual Analysis of the Impact of the Soy Moratorium on Deforestation in the Amazon Biome. MSc thesis, Norwegian School of Economics (2018).

    32.
    West, T. A. P., Börner, J. & Fearnside, P. M.Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Front. For. Glob. Change 2, 52 (2019).
    Google Scholar 

    33.
    Sy, V. D. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).
    ADS  Google Scholar 

    34.
    Moratatória da Soja: Monitoramento por Imagens de Satélites dos Plantios de Soja no Bioma Amazonia (ABIOVE & Agrosatélite, 2018); https://abiove.org.br/wp-content/uploads/2019/05/30012019-165924-portugues.pdf

    35.
    Alix-Garcia, J., Rausch, L. L., L’Roe, J., Gibbs, H. K. & Munger, J. Avoided deforestation linked to environmental registration of properties in the Brazilian Amazon: environmental registration in the Amazon. Conserv. Lett. 11, e12414 (2018).
    Google Scholar 

    36.
    Burgess, R., Costa, F. J. M. & Olken, B. A. Wilderness Conservation and the Reach of the State: Evidence from National Borders in the Amazon Working Paper 24861 (2018); https://doi.org/10.3386/w24861

    37.
    Silva Junior, C. H. L. et al. Fire responses to the 2010 and 2015/2016 Amazonian droughts. Front. Earth Sci. 7, 97 (2019).
    ADS  Google Scholar 

    38.
    Rudorff, B. F. T. & Risso, J. Geospatial Analyses of the Annual Crops Dynamic in the Brazilian Cerrado Biome: 2000 to 2014 (Agrosatélite Applied Geotechnology, 2015).

    39.
    Gollnow, F., Hissa, L., de, B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).
    Google Scholar 

    40.
    Zalles, V. et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl Acad. Sci. USA 116, 428–435 (2019).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Arima, E. Y., Richards, P., Walker, R. & Caldas, M. M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 6, 024010 (2011).
    ADS  Google Scholar 

    42.
    Börner, J., Wunder, S., Wertz-Kanounnikoff, S., Hyman, G. & Nascimento, N. Forest law enforcement in the Brazilian Amazon: costs and income effects. Glob. Environ. Change 29, 294–305 (2014).
    Google Scholar 

    43.
    Sills, E. O. et al. Estimating the impacts of local policy innovation: the synthetic control method applied to tropical deforestation. PLoS ONE 10, e0132590 (2015).
    PubMed  PubMed Central  Google Scholar 

    44.
    Börner, J., Kis-Katos, K., Hargrave, J. & König, K. Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon. PLoS ONE 10, e0121544 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.
    L’Roe, J., Rausch, L., Munger, J. & Gibbs, H. K. Mapping properties to monitor forests: landholder response to a large environmental registration program in the Brazilian Amazon. Land Use Policy 57, 193–203 (2016).
    Google Scholar 

    46.
    Azevedo, A. A. et al. Limits of Brazil’s Forest Code as a means to end illegal deforestation. Proc. Natl Acad. Sci. USA 114, 7653–7658 (2017).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Brown, J. C. & Koeppe, M. in Environment and the Law in Amazonia: A Plurilateral Encounter (eds Cooper, J. M. & Hunefeldt, C.) 110–126 (Sussex Academic Press, 2013).

    48.
    Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).
    Google Scholar 

    49.
    Garrett, R. D., Carlson, K. M., Rueda, X. & Noojipady, P. Assessing the potential additionality of certification by the Round Table on Responsible Soybeans and the Roundtable on Sustainable Palm Oil. Environ. Res. Lett. 11, 045003 (2016).
    ADS  Google Scholar 

    50.
    Le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).
    Google Scholar 

    51.
    Heilmayr, R., Carlson, K. M. & Benedict, J. J. Deforestation spillovers from oil palm sustainability certification. Environ. Res. Lett. 15, 075002 (2020).
    ADS  CAS  Google Scholar 

    52.
    Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28, 1715–1732 (2018).
    Google Scholar 

    53.
    Moffette, F. & Gibbs, H. Agricultural displacement and deforestation leakage in the Brazilian Legal Amazon. Land Econ. (in the press).

    54.
    Baylis, K. et al. Mainstreaming impact evaluation in nature conservation. Conserv. Lett. 9, 58–64 (2016).
    Google Scholar 

    55.
    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 12, 025004 (2017).
    ADS  Google Scholar 

    56.
    Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. 12, e12671 (2019).
    Google Scholar 

    57.
    S. Garcia, A. et al. Assessing land use/cover dynamics and exploring drivers in the Amazon’s Arc of Deforestation through a hierarchical, multi-scale and multi-temporal classification approach. Remote Sens. Appl. Soc. Environ. 15, 100233 (2019).
    Google Scholar 

    58.
    Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).
    PubMed  PubMed Central  Google Scholar 

    59.
    Richards, P. What drives indirect land use change? How Brazil’s agriculture sector influences frontier deforestation. Ann. Assoc. Am. Geogr. 105, 1026–1040 (2015).
    PubMed  PubMed Central  Google Scholar 

    60.
    Silva, C. A. & Lima, M. Soy Moratorium in Mato Grosso: deforestation undermines the agreement. Land Use Policy 71, 540–542 (2018).
    Google Scholar 

    61.
    Rausch, L. & Gibbs, H. Property arrangements and soy governance in the Brazilian state of Mato Grosso: implications for deforestation-free production. Land 5, 7 (2016).
    Google Scholar 

    62.
    Garrett, R. D. et al. Intensification in agriculture–forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).
    Google Scholar 

    63.
    Koch, N., zu Ermgassen, E. K. H. J., Wehkamp, J., Oliveira Filho, F. J. B. & Schwerhoff, G.Agricultural productivity and forest conservation: evidence from the Brazilian Amazon. Am. J. Agric. Econ. 101, 919–940 (2019).
    Google Scholar 

    64.
    Le Polain de Waroux, Y., Garrett, R. D., Heilmayr, R. & Lambin, E. F. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano. Proc. Natl Acad. Sci. USA 113, 4021–4026 (2016).
    ADS  CAS  PubMed  Google Scholar 

    65.
    Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).
    Google Scholar 

    66.
    Soterroni, A. C. et al. Expanding the Soy Moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    67.
    Governo alega ameaça à soberania nacional e apoia fim da Moratória da Soja. Aprosoja http://www.aprosoja.com.br/comunicacao/noticia/governo-alega-ameaca-a-soberania-nacional-e-apoia-fim-da-moratoria-da-soja (2019).

    68.
    Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).
    ADS  Google Scholar 

    69.
    Project MapBiomas—Collection 2.3 of Brazilian Land Cover & Use Map Series (MapBiomas, 2018); http://mapbiomas.org/

    70.
    Richards, P. D., Myers, R. J., Swinton, S. M. & Walker, R. T. Exchange rates, soybean supply response, and deforestation in South America. Glob. Environ. Change 22, 454–462 (2012).
    Google Scholar 

    71.
    Wing, C., Simon, K. & Bello-Gomez, R. A. Designing difference in difference studies: best practices for public health policy research. Annu. Rev. Public Health 39, 453–469 (2018).
    PubMed  Google Scholar 

    72.
    Freyaldenhoven, S., Hansen, C. & Shapiro, J. M. Pre-event trends in the panel event-study design. Am. Econ. Rev. 109, 3307–3338 (2019).
    Google Scholar 

    73.
    Lechner, M. The estimation of causal effects by difference-in-difference methods estimation of spatial panels. Found. Trends Econom. 4, 165–224 (2010).
    MATH  Google Scholar 

    74.
    Clarke, D. Estimating Difference-in-Differences in the Presence of Spillovers MPRA Paper 81604 (Univ, Library of Munich, 2017).

    75.
    Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2019).
    ADS  Google Scholar 

    76.
    Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. E. Forest conservation and slippage: evidence from Mexico’s National Payments for Ecosystem Services program. Land Econ. 88, 613–638 (2012).
    Google Scholar 

    77.
    Hertel, T. W. Economic perspectives on land use change and leakage. Environ. Res. Lett. 13, 075012 (2018).
    ADS  Google Scholar 

    78.
    Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global–local–global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).
    ADS  Google Scholar  More

  • in

    Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions

    1.
    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Blainey, P. C., Mosier, A. C., Potanina, A., Francis, C. A. & Quake, S. R. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6, e16626 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Thomas, T., Gilbert, J. & Meyer, F. Metagenomics -– a guide from sampling to data analysis. Microb. Inform. Exp. 2, 3 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Horgan, R. P. & Kenny, L. C. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol 13, 189–195 (2011).
    Google Scholar 

    5.
    Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).
    CAS  PubMed  Article  Google Scholar 

    6.
    Yu, F. B. et al. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. eLife 6, e26580 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res 47, D649–D659 (2019).
    CAS  PubMed  Article  Google Scholar 

    8.
    Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).
    CAS  PubMed  Article  Google Scholar 

    9.
    Berry, D. & Loy, A. Stable-isotope probing of human and animal microbiome function. Trends Microbiol 26, 999–1007 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Dumont, M. G. & Murrell, J. C. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).
    CAS  PubMed  Article  Google Scholar 

    12.
    Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13, 413–429 (2019).
    CAS  PubMed  Article  Google Scholar 

    13.
    Wang, Y., Huang, W. E., Cui, L. & Wagner, M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34–42 (2016).
    CAS  PubMed  Article  Google Scholar 

    14.
    Haider, S. et al. Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol. Microbiol 77, 687–700 (2010).
    CAS  PubMed  Article  Google Scholar 

    15.
    Huang, W. E. et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889 (2007).
    CAS  PubMed  Article  Google Scholar 

    16.
    Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).
    CAS  PubMed  Article  Google Scholar 

    17.
    Berry, D. et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl Acad. Sci. USA 112, E194–E203 (2015).
    CAS  PubMed  Article  Google Scholar 

    18.
    Malmstrom, R. R. & Eloe-Fadrosh, E. A. Advancing genome-resolved metagenomics beyond the shotgun. mSystems 4, e00118–e00119 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Neufeld, J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007).
    CAS  PubMed  Article  Google Scholar 

    20.
    Jing, X. et al. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ. Microbiol. 20, 2241–2255 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Wang, Y. et al. Raman activated cell ejection for isolation of single cells. Anal. Chem. 85, 10697–10701 (2013).
    CAS  PubMed  Article  Google Scholar 

    22.
    Singer, E., Wagner, M. & Woyke, T. Capturing the genetic makeup of the active microbiome in situ. ISME J 11, 1949–1963 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Huang, W. E., Ward, A. D. & Whiteley, A. S. Raman tweezers sorting of single microbial cells. Environ. Microbiol. Rep 1, 44–49 (2009).
    CAS  PubMed  Article  Google Scholar 

    24.
    Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).
    CAS  PubMed  Article  Google Scholar 

    25.
    Lee, K. S., Wagner, M. & Stocker, R. Raman-based sorting of microbial cells to link functions to their genes. Microb. Cell 7, 62–65 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Premvardhan, L., Bordes, L., Beer, A., Büchel, C. & Robert, B. Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy. J. Phys. Chem. B 113, 12565–12574 (2009).
    CAS  PubMed  Article  Google Scholar 

    27.
    Takano, H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci. Biotechnol. Biochem. 80, 1264–1273 (2016).
    CAS  PubMed  Article  Google Scholar 

    28.
    Wagstaff, K., Cardie, C., Rogers, S. & Schrödl, S. Constrained k-means clustering with background knowledge. in Proc. 18th International Conference on Machine Learning (eds Brodley, C. E. & Danyluk, A. P.) 577–584 (Morgan Kaufmann, 2001).

    29.
    Kanungo, T. et al. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Patt. Anal. Mach. Intell. 24, 881–892 (2002).
    Article  Google Scholar 

    30.
    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).
    CAS  PubMed  Article  Google Scholar 

    31.
    Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43, 404–409 (1972).
    CAS  PubMed  Article  Google Scholar 

    32.
    Ha, B. H., Lee, K. S., Jung, J. H. & Sung, H. J. Three-dimensional hydrodynamic flow and particle focusing using four vortices Dean flow. Microfluid. Nanofluid. 17, 647–655 (2014).
    CAS  Article  Google Scholar 

    33.
    Chu, H., Doh, I. & Cho, Y.-H. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Lab Chip 9, 686–691 (2009).
    CAS  PubMed  Article  Google Scholar 

    34.
    Gao, C. et al. Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat. Commun. 11, 1942 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Kitzinger, K. et al. Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nat. Commun. 11, 767 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Majed, N., Chernenko, T., Diem, M. & Gu, A. Z. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity. Environ. Sci. Technol. 46, 5010–5017 (2012).
    CAS  PubMed  Article  Google Scholar 

    37.
    Fernando, E. Y. et al. Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J 13, 1933–1946 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).
    CAS  PubMed  Article  Google Scholar 

    39.
    Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal–bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013).
    CAS  PubMed  Article  Google Scholar 

    43.
    Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M. & Daims, H. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 79, 2027–2037 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Pätzold, R. et al. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J. Microbiol. Methods 72, 241–248 (2008).
    PubMed  Article  CAS  Google Scholar 

    45.
    Wei, L. & Min, W. Electronic preresonance stimulated Raman scattering microscopy. J. Phys. Chem. Lett. 9, 4294–4301 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Gruber-Vodicka, H. R. et al. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc. Natl Acad. Sci. USA. 108, 12078–12083 (2011).
    CAS  PubMed  Article  Google Scholar 

    47.
    Lenz, R., Enders, K., Stedmon, C. A., MacKenzie, D. M. A. & Nielsen, T. G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100, 82–91 (2015).
    CAS  PubMed  Article  Google Scholar 

    48.
    Gillibert, R. et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 53, 9003–9013 (2019).
    CAS  PubMed  Article  Google Scholar 

    49.
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Zhang, P. et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal. Chem. 87, 2282–2289 (2015).
    CAS  PubMed  Article  Google Scholar 

    51.
    McIlvenna, D. et al. Continuous cell sorting in a flow based on single cell resonance Raman spectra. Lab Chip 16, 1420–1429 (2016).
    CAS  PubMed  Article  Google Scholar 

    52.
    Folick, A., Min, W. & Wang, M. C. Label-free imaging of lipid dynamics using coherent anti-stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy. Curr. Opin. Genet. Dev. 21, 585–590 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Hiramatsu, K. et al. High-throughput label-free molecular fingerprinting flow cytometry. Sci. Adv. 5, eaau0241 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Suzuki, Y. et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl Acad. Sci. USA 116, 15842–15848 (2019).
    CAS  PubMed  Article  Google Scholar 

    55.
    Nitta, N. et al. Raman image-activated cell sorting. Nat. Commun. 11, 3452 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Eek, K. M., Sessions, A. L. & Lies, D. P. Carbon-isotopic analysis of microbial cells sorted by flow cytometry. Geobiology 5, 85–95 (2007).
    CAS  Article  Google Scholar 

    57.
    Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J 10, 1939–1953 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Ling, L., Zhou, F., Huang, L. & Li, Z.-Y. Optical forces on arbitrary shaped particles in optical tweezers. J. Appl. Phys. 108, 073110 (2010).
    Article  CAS  Google Scholar 

    59.
    Bonessi, D., Bonin, K. & Walker, T. Optical forces on particles of arbitrary shape and size. J. Opt. A Pure Appl. Opt. 9, S228–S234 (2007).
    Article  Google Scholar 

    60.
    Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).
    CAS  Article  Google Scholar 

    62.
    Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).
    Article  Google Scholar 

    63.
    Kim, S., Kang, I., Seo, J.-H. & Cho, J.-C. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J 13, 2252–2263 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Li, T. et al. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10, 580–588 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Huang, W. E., Griffiths, R. I., Thompson, I. P., Bailey, M. J. & Whiteley, A. S. Raman microscopic analysis of single microbial cells. Anal. Chem. 76, 4452–4458 (2004).
    CAS  PubMed  Article  Google Scholar 

    66.
    McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).
    CAS  PubMed  Article  Google Scholar 

    67.
    Schuster, K. C., Reese, I., Urlaub, E., Gapes, J. R. & Lendl, B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal. Chem. 72, 5529–5534 (2000).
    CAS  PubMed  Article  Google Scholar 

    68.
    Dochow, S. et al. Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Anal. Bioanal. Chem. 405, 2743–2746 (2013).
    CAS  PubMed  Article  Google Scholar 

    69.
    Kodinariya, T. M. & Makwana, P. R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1, 90–95 (2013).
    Google Scholar 

    70.
    Bjerg, J. T. et al. Long-distance electron transport in individual, living cable bacteria. Proc. Natl Acad. Sci. USA. 115, 5786–5791 (2018).
    CAS  PubMed  Article  Google Scholar 

    71.
    Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).
    CAS  PubMed  Article  Google Scholar 

    72.
    Beier, B. D. & Berger, A. J. Method for automated background subtraction from Raman spectra containing known contaminants. Analyst 134, 1198–1202 (2009).
    CAS  PubMed  Article  Google Scholar 

    73.
    Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015).
    CAS  PubMed  Article  Google Scholar 

    75.
    Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Wang, Y. et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal. Chem. 88, 9443–9450 (2016).
    CAS  PubMed  Article  Google Scholar 

    77.
    Yuan, X. et al. Effect of laser irradiation on cell function and its implications in Raman spectroscopy. Appl. Environ. Microbiol. 84, e02508–e02517 (2018).
    CAS  PubMed  PubMed Central  Google Scholar  More