More stories

  • in

    Low oxygen levels caused by Noctiluca scintillans bloom kills corals in Gulf of Mannar, India

    Though the time and place of the origin of this bloom is unknown, the presumable causes of it were high temperatures, abundant nutrients, low tidal amplitude, and little current. According to fishermen, these bioluminescent blooms were first seen about 15 nautical miles offshore of the Mandapam coast between India and Sri Lanka on 6th September, and subsequently moved towards the shore (Fig. 2). Bloom of N. scintillans in 2008 was reported to affect all the marine organisms including corals in GoM12. On 14th September, our preliminary assessment revealed that corals in Shingle and Krusadai islands were possibly affected by the bloom. A great multitude of N. scintillans cells were found settled on corals and other benthic organisms in the affected areas. A greenish settlement was observable on live coral colonies and other benthic organisms including macro algae, coralline algae and sponges etc.(Fig. S2). Settling of N. scintillans on benthic organisms has been reported to cause significant damage to the reef organisms through asphyxiation12. At Shingle Island, the area of significant impact was about 8.1 hectares on the shoreward side of the Island (79°14′14.38″E, 9°14′44.23″N) at depths between 1 and 3 m (Fig. 3). At Krusadai Island, an area of 2.1 hectares in the shoreward side was found affected by the bloom (79°13′20.78″E, 9°15′00.88″N) at depths between 1 and 2 m. The rest of the reef areas in both of these islands were healthy without any impact. The settled cells of N. scintillans were found to be washed ashore during subsequent surveys. In addition to dead fishes, a multitude of benthic communities such as crustaceans, mollusks and echinoderms were also found dead on the bottom in the impacted areas. Surveys between 15 and 18th September 2019 confirmed that corals in other islands (Pullivasal, Poomarichan, Manoliputti, Manoli and Hare) were in good health, and without any noticeable impact due to the bloom. Shingle and Krusadai islands occur closest to the mainland, and the concentrated bloom appeared to get trapped by currents between the mainland shore and islands.
    Figure 2

    (a) Green tide of Noctiluca scintillans in the Gulf of Mannar; (b) image of N.scintillans cells; size of the grid is 1 mm2 (N. scintillans exhibits bioluminescence when disturbed).

    Full size image

    Figure 3

    Map showing the affected islands in the Mandapam group shown in Fig. 1. Base map was prepared by digitizing the georeferred Toposheet of Survey of India (http://www.surveyofindia.gov.in/) and field data using Open source GIS software (QGIS 3.10.6; https://qgis.org/en/site/forusers/download.html).

    Full size image

    On 14th September, coral mortality was not observed in the affected areas though the colonies were observed to be disturbed by the settling N. scintillans cells. Low dissolved oxygen levels have been reported to be the primary cause of benthic mortality during algal blooms22. Dissolved oxygen levels were 1.48 mg l−1 at Shingle Island and 2.02 mg l−1 at Krusadai Island in the affected areas. This compares to ‘normal’ levels for coral reefs of 5–8 mg l−1, and Haas et al.11 found that dissolved oxygen content less than 4 mg l−1 is detrimental to acroporid corals. Moreover, branching coral forms have been reported to be more susceptible to hypoxic episodes than spherical or massive forms5. Corals are routinely exposed to fluctuations in oxygen levels at the tissue level due to photosynthesis and respiration processes of endosymbionts7, but are negatively impacted when (sub-) lethal thresholds of hypoxia exposure are exceeded1,5,11. Lethal hypoxia thresholds appear to differ considerably between coral species, ranging between 0.5 and 4 mg O2 l−11,5,11, while sub-lethal hypoxia thresholds for corals are almost entirely unknown5.
    Seawater temperature can significantly impact dissolved oxygen levels23,24. Water temperature was 29.9 and 29.8º C (Table 1) at Shingle and Krusadai islands respectively and these levels are marginally higher than the normal levels for this particular time of the year. Apart from the summer months (April to June), temperature levels in GoM do not go higher than 29º C20. The concentration of N. scintillans was 43.4 × 105 and 27.3 × 105 cells l−1 at Shingle and Krusadai Islands respectively; pH and TDS were also high in the affected area (Table 1). Dissolved oxygen levels in other sites of these two islands and in other five islands were higher than 5 mg l−1.
    Table 1 Environmental characterization at the affected sites in Shingle and Krusadai Islands.
    Full size table

    During the next assessment on 17th of September 2019, severe coral mortality was observed at the affected sites. At Shingle Island, overall coral colony density was 134.25 (SE ± 3.28) no.100 m−2 (n = 537) within ten 20 m belt transects which is dominated by Acropora (64%) followed by Montipora (15%). Out of total 537 colonies, 33.52% (n = 180) were found dead (Fig. 4), which include 34.5 (SE ± 1.05) no.100 m−2 (n = 138) of Acropora, 7.75 (SE ± 0.75) no.100 m−2 (n = 31) of Montipora and 2.75 (SE ± 0.35) no.100 m−2 (n = 11) of Pocillopora. The death of coral colonies was so rapid that the coral tissue was intact on the colony surface and still had its natural colour (Fig. 5). When wafted with water by hand or with scuba air, the tissue peeled off exposing the skeleton (Supplementary video). Other observed genera such as Dipsastraea, Favites, Porites, Hydnophora, Goniastrea, Echinopora, Turbinaria, Platygyra, Goniopora and Symphyllia in the same site were all alive (Fig. S3), though with excess mucus production. This may be explained by differential lethal thresholds for oxygen levels at species and growth form levels5,19. At Krusadai Island, the overall coral density on 17th September was 66 (SE ± 2.54) no.100 m−2 (n = 132), dominated by Acropora. Among the counted colonies, 6 (SE ± 1.03) no.100 m−2 of Acropora were found recently dead while mortality was not observed in other available genera such as Montipora, Pocillopora, Dipsastraea, Favites, Porites and Turbinaria. Dissolved oxygen levels had increased to 3.78 mg l−1 at Shingle Island and to 4.02 mg l−1 at Krusadai Island at the affected sites and the water had started to become clear. The concentration of N. scintillans had reduced to 1.63 × 103 cells l−1 and 0.88 × 103 cells l−1 at Shingle and Krusadai Islands, respectively (Table 1).
    Figure 4

    Density of live and dead colonies of affected coral genera (Acropora, Montipora and Pocillopora) in Shingle Island, by date; the green line indicates the drastic decline of Acropora density between 17.09.2019 and 27.09.2019.

    Full size image

    Figure 5

    Rapid mortality of corals presumably due to low oxygen levels caused by Noctiluca scintillans; (a, b) Acropora; (c) Montipora; (d) Pocillopora.

    Full size image

    Assessment on 27th September 2019 at the impacted area in Shingle Island, showed that the overall density of coral colonies within ten 20 m transects was 135.75 (SE ± 2.82) no.100 m−2 (n = 543) and of them 70.35% (n = 382) of colonies belonging to Acropora, Montipora and Pocillopora were found dead revealing that the impact of algal bloom was more severe than expected (Fig. 4). It was almost two weeks since the corals had died and hence secondary algae had started colonizing the dead colonies. On the same day at the impacted area of Krusadai Island, overall coral density within five belt transects was 65.5 (SE ± 1.83) no.100 m−2 (n = 131), of which 9.09% (n = 12) of colonies belonging to Acropora were found dead. By 27th September, dissolved oxygen levels had increased to 6.02 and 5.73 mg l−1 respectively at the affected areas of Shingle and Krusadai islands (Table 1). N. scintillans cells were absent in all the sites indicating the end of bloom. On 04th October 2019, the overall coral colony density within 20 m belt transects was 138 (SE ± 2.08) no.100 m−2 (n = 552) and of them 71.23% (n = 393) colonies belonging to Acropora, Montipora and Pocillopora were found dead at the area of impact in Shingle Island (Fig. 4). No further mortality was witnessed in the affected area of Krusadai Island. Secondary algae have completely overgrown the dead coral colonies making the reef look green (Fig. S4). Dissolved oxygen levels were reasonably high at 7.13 and 7.24 mg l−1 respectively at Shingle and Krusadai Islands during this time (Table 1).
    Coral mortality due to algal bloom and consequent hypoxia has rarely been reported12,13,25. The present study reports that the impact of blooms can be severe on corals. Different coral species respond differently to low oxygen levels according to their respiration and photosynthesis5,26. Thus, low oxygen levels can orchestrate the coral mortality by affecting coral’s productivity and respiration7. Further, fast growing corals such as Acropora and Pocillopora have been reported to be more susceptible to low oxygen levels11,13,27. Fast growing coral species have faster metabolism rates28 and hence metabolic oxygen requirements are higher11,29. Thus, the mortality of fast growing species in the present study was presumably due to the low oxygen levels induced by N.scintillans bloom.
    Bleaching episodes in 2010 and 2016 had also caused significant mortality to these fast growing species in GoM19,20. Corals in GoM start to bleach when water temperature exceeds 30º C and the temperature levels during this bloom period ranged between 28.4 and 29.9º C. Though bleaching was not observed, heat stress might also have played its role in coral mortality along with low oxygen levels as the temperature level almost reached 30º C. Similar temperature levels were reported during the bloom of N. scintillans in 2008 in GoM12.
    Corals in Gulf of Mannnar are still recovering from the 2016 bleaching episode20 and hence the present decline is significant. Phase shifts on coral reefs are predominantly associated with shifts from hard coral-dominated communities to macroalgae-dominated ones30. Space competition between corals and other organisms such as algae and sponges has been reported to negatively impact the corals of GoM after the 2016 bleaching event20,31. At present, secondary algae have completely occupied the dead coral colonies, which will affect the coral recovery by hindering the attachment of new coral recruits during the next spawning season32. Recent studies suggest hypoxia increases coral susceptibility to bleaching27, and may increase disease prevalence and algal proliferation7. Thus algal blooms add to the existing array of threats to corals of GoM that needs to be understood more with further focused research.
    On account of the problems related to climate change, there has been a steady and severe decline of coral reefs in the past two decades. Bleaching and diseases have been reported to cause mass coral mortalities within a very short time. The observations of the present study alert us to possible mass mortality due to short-term hypoxic condition caused by algal blooms. Algal blooms and hypoxic conditions are predicted to occur more frequently in the future due to climate change14. Hence, it is likely that shallow water coral reefs will be affected more frequently by temporary low oxygen levels caused by algal blooms. More studies are, however, required to understand the mechanism of coral mortality due to algal blooms, impacts on community composition and the potential for subsequent recovery. More

  • in

    Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle

    1.
    Ekesi, S., Chabi-Olaye, A., Subramanian, S. & Borgemeister, C. Horticultural pest management and the African economy: successes, challenges and opportunities in a changing global environment. Acta Hortic. 911, 165–183 (2011).
    Article  Google Scholar 
    2.
    Pratt, C. F., Constantine, K. L. & Murphy, S. T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Secur. 14, 31–37 (2017).
    Article  Google Scholar 

    3.
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).
    Article  Google Scholar 

    4.
    Idriss, G. E. A. et al. Host range and effects of plant species on preference and fitness of Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. https://doi.org/10.1093/jee/toaa002 (2020).
    Article  PubMed  Google Scholar 

    5.
    Aigbedion-Atalor, P. O. et al. The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts. J. Econ. Entomol. 112, 2797–2807 (2019).
    PubMed  Article  Google Scholar 

    6.
    Biondi, A., Guedes, R. N. C., Wan, F.-H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).
    CAS  PubMed  Article  Google Scholar 

    7.
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
    Article  Google Scholar 

    8.
    Guedes, R. N. C. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. 92, 1329–1342 (2019).
    Article  Google Scholar 

    9.
    Dimbi, S., Maniania, N. K. & Ekesi, S. Horizontal transmission of Metarhizium anisopliae in fruit flies and effect of fungal infection on egg laying and fertility. Insects 4, 206–216 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Maniania, N. K., Ekesi, S. & Dolinski, C. Entomopathogens routinely used in pest control strategies: orchards in tropical climate. In Microbial Control of Insect and Mite Pests: From Theory to Practice (Elsevier Inc., 2016). https://doi.org/10.1016/B978-0-12-803527-6.00018-4.

    11.
    Mweke, A. et al. Evaluation of the entomopathogenic fungi Metarhizium anisopliae, Beauveria bassiana and Isaria sp. for the management of Aphis craccivora (Hemiptera: Aphididdae). J. Econ. Entomol. 111, 1587–1594 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Akutse, K. S. et al. Ovicidal effects of entomopathogenic fungal isolates on the invasive Fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Appl. Entomol. 143, 626–634 (2019).
    CAS  Article  Google Scholar 

    13.
    Akutse, K. S., Subramanian, S., Khamis, F. M., Ekesi, S. & Mohamed, S. A. Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol. https://doi.org/10.1111/jen.12812 (2020).
    Article  Google Scholar 

    14.
    Inglis, G. D., Goettel, M. S., Butt, T. M. & Strasser, H. Use of hyphomycetous fungi for managing insect pests. In Fungi as Biocontrol Agents: Progress, Problems and Potential (eds. Butt, T. M. & Magan, M.) 23–69 (2001). https://doi.org/10.1079/9780851993560.0023.

    15.
    Behie, S. W. & Bidochka, M. J. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl. Environ. Microbiol. 80, 1553–1560 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Akutse, K. S., Khamis, F. M., Ekesi, S., Wekesa, S. & Subramanian, S. Effect of endophytically-colonized tomato and nightshade host plants on life-history parameters of Tuta absoluta (Lepidoptera: Gelechiidae). (International Congress on Invertebrate Pathology and Microbial Control and 52nd Annual Meeting of the Society for Invertebrate Pathology & 17th Meeting of the IOBC‐WPRS Working Group “Microbial and Nematode Control of Invertebrate Pests”, 2019).

    17.
    Wilson, D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73, 274–276 (1995).
    Article  Google Scholar 

    18.
    Quesada-Moraga, E., Muñoz-Ledesma, F. J. & Santiago-Álvarez, C. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ. Entomol. 38, 723–730 (2009).
    CAS  PubMed  Article  Google Scholar 

    19.
    Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–664 (2016).
    CAS  PubMed  Article  Google Scholar 

    20.
    Latz, M. A. C., Jensen, B., Collinge, D. B. & Jørgensen, H. J. L. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol. Divers. 11, 555–567 (2018).
    Article  Google Scholar 

    21.
    Ownley, B. H. et al. Beauveria bassiana: endophytic colonization and plant disease control. J. Invertebr. Pathol. 98, 267–270 (2008).
    CAS  PubMed  Article  Google Scholar 

    22.
    Akello, J. & Sikora, R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control 61, 215–221 (2012).
    Article  Google Scholar 

    23.
    Akutse, K. S., Maniania, N. K., Fiaboe, K. K. M., Van den Berg, J. & Ekesi, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 6, 293–301 (2013).
    Article  Google Scholar 

    24.
    Russo, M. L. et al. Endophytic effects of Beauveria bassiana on Corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects 10, 2–9 (2019).
    Article  Google Scholar 

    25.
    Lahrmann, U. et al. Host-related metabolic cues affect colonization strategies of a root endophyte. Proc. Natl. Acad. Sci. USA 110, 13965–13970 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Fadiji, A. E. & Babalola, O. O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 8, 1–20 (2020).
    Article  Google Scholar 

    27.
    Gathage, J. W. et al. Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. Biocontrol 61, 741–753 (2016).
    Article  Google Scholar 

    28.
    Muvea, A. M. et al. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS ONE 9, 1–7 (2014).
    Article  CAS  Google Scholar 

    29.
    Powell, W. A., Klingeman, W. E., Ownley, B. H. & Gwinn, K. D. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). J. Entomol. Sci. 44, 391–396 (2009).
    Article  Google Scholar 

    30.
    Klieber, J. & Reineke, A. The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. J. Appl. Entomol. 140, 580–589 (2016).
    CAS  Article  Google Scholar 

    31.
    Resquín-romero, G., Garrido-jurado, I., Delso, C., Ríos-moreno, A. & Quesada-moraga, E. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr. Pathol. 136, 23–31 (2016).
    PubMed  Article  CAS  Google Scholar 

    32.
    Mutune, B. et al. Fungal endophytes as promising tools for the management of bean stem maggot Ophiomyia phaseoli on beans Phaseolus vulgaris. J. Pest Sci. 89, 993–1001 (2016).
    Article  Google Scholar 

    33.
    Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A. & Vega, F. E. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol. Res. 111, 748–757 (2007).
    CAS  PubMed  Article  Google Scholar 

    34.
    Bing, L. A. & Lewis, L. C. Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ. Entomol. 20, 1207–1211 (1991).
    Article  Google Scholar 

    35.
    Behie, S. W., Jones, S. J., Bidochka, M. J. & Hyde, K. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol. 13, 112–119 (2015).
    Article  Google Scholar 

    36.
    Akello, J. et al. Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J. Invertebr. Pathol. 96, 34–42 (2007).
    PubMed  Article  Google Scholar 

    37.
    Posada, F. J. & Vega, F. E. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens. J. Insect Sci. 5, 1–10 (2005).
    Article  Google Scholar 

    38.
    Demers, J. E., Gugino, B. K. & del Jiménez-Gasco, M. Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl. Environ. Microbiol. 81, 81–90 (2015).
    PubMed  Article  CAS  Google Scholar 

    39.
    Bogner, C. W. et al. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Prog. 15, 1–17 (2016).
    Article  Google Scholar 

    40.
    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Martin, J. T. Role of cuticle in the defense against plant disease. Annu. Rev. Phytopathol. 2, 81–100 (1964).
    Article  Google Scholar 

    42.
    Jensen, R. E., Enkegaard, A. & Steenberg, T. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14, 1–12 (2019).
    Google Scholar 

    43.
    Landa, B. B. et al. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J. Invertebr. Pathol. 114, 128–138 (2013).
    CAS  PubMed  Article  Google Scholar 

    44.
    Bing, L. A. & Lewis, L. C. Endophytic Beauveria bassiana (Balsamo) Vuillemin in corn: The influence of the plant growth stage and Ostrinia nubilalis (Hubner). Biocontrol Sci. Technol. 2, 39–47 (1992).
    Article  Google Scholar 

    45.
    Greenfield, M. et al. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol. Control 95, 40–48 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Card, S., Johnson, L., Teasdale, S. & Caradus, J. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol. 92, 1–19 (2016).
    Article  CAS  Google Scholar 

    47.
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Publ. Gr. 11, 789–799 (2013).
    CAS  Google Scholar 

    48.
    Tumuhaise, V. et al. Pathogenicity and performance of two candidate isolates of Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) in four liquid culture media for the management of the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). Int. J. Trop. Insect Sci. 35, 34–47 (2015).
    Article  Google Scholar 

    49.
    Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, 1–7 (2019).
    Article  CAS  Google Scholar 

    50.
    Barelli, L., Moreira, C. C. & Bidochka, M. J. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164, 1531–1540 (2018).
    CAS  PubMed  Article  Google Scholar 

    51.
    Wyrebek, M., Huber, C., Sasan, R. K. & Bidochka, M. J. Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiology 157, 2904–2911 (2011).
    CAS  PubMed  Article  Google Scholar 

    52.
    Muvea, A. M. et al. Behavioral responses of Thrips tabaci Lindeman to endophyte-inoculated onion plants. J. Pest Sci. 88, 555–562 (2015).
    Article  Google Scholar 

    53.
    Slansky, F. Jr. Insect nutrition: an adaptationist’s perspective. Florida Entomol. 65, 45–71 (1982).
    Article  Google Scholar 

    54.
    Carroll, G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69, 2–9 (1988).
    Article  Google Scholar 

    55.
    Allegrucci, N., Velazquez, M. S., Russo, M. L., Perez, E. & Scorsetti, A. C. Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: the use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera : Gelechiidae). J. Plant Prot. Res. 54, 331–337 (2017).
    Google Scholar 

    56.
    Barta, M. In planta bioassay on the effects of endophytic Beauveria strains against larvae of horse-chestnut leaf miner (Cameraria ohridella). Biol. Control 121, 88–98 (2018).
    Article  Google Scholar 

    57.
    Russo, M. L. et al. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. J. King Saud Univ. Sci. 31, 728–736 (2018).
    Article  Google Scholar 

    58.
    Contreras-cornejo, H. A., Macías-rodríguez, L. & Larsen, J. The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl. Soil Ecol. 124, 45–53 (2017).
    Article  Google Scholar 

    59.
    Contreras-Cornejo, H. A., Macías-Rodríguez, L., Del Val, E. & Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 92, 1–17 (2016).
    Article  CAS  Google Scholar 

    60.
    Coppola, M. et al. Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Sci. 24, 1025–1033 (2017).
    CAS  PubMed  Article  Google Scholar 

    61.
    Meera, M. S., Shivanna, M. B., Kageyama, K. & Hyakumachi, M. Persistence of induced systemic resistance in cucumber in relation to root colonization by plant growth promoting fungal isolates. Crop Prot. 14, 123–130 (1995).
    Article  Google Scholar 

    62.
    Lewis, L. C., Berry, E. C., Obrycki, J. J. & Bing, L. A. Aptness of insecticides (Bacillus thuringiensis and carbofuran ) with endophytic Beauveria bassiana, in suppressing larval populations of the European corn borer. Agric. Ecosyst. Environ. 57, 27–34 (1996).
    Article  Google Scholar 

    63.
    Qayyum, M. A., Wakil, W., Arif, M. J., Sahi, S. T. & Dunlap, C. A. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control 90, 200–207 (2015).
    Article  Google Scholar 

    64.
    Jallow, M. F. A., Dugassa-Gobena, D. & Vidal, S. Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod. Plant. Interact. 2, 53–62 (2008).
    Article  Google Scholar 

    65.
    Jaber, L. R. & Vidal, S. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecol. Entomol. 35, 25–36 (2010).
    Article  Google Scholar 

    66.
    Davis, T. S., Crippen, T. L., Hofstetter, R. W. & Tomberlin, J. K. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39, 840–859 (2013).
    CAS  PubMed  Article  Google Scholar 

    67.
    Silva, D. B., Bueno, V. H. P., Lins, J. C. & Van Lenteren, J. C. Life history data and population growth of Tuta absoluta at constant and alternating temperatures on two tomato lines. Bull. Insectol. 68, 223–232 (2015).
    Google Scholar 

    68.
    Pereyra, P. C. & Sánchez, N. E. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35, 671–676 (2006).
    PubMed  Article  Google Scholar 

    69.
    Dash, C. K. et al. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pathog. 125, 385–392 (2018).
    PubMed  Article  Google Scholar 

    70.
    Akello, J., Dubois, T., Coyne, D. & Kyamanywa, S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot. 27, 1437–1441 (2008).
    Article  Google Scholar 

    71.
    Golo, P. S. et al. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants. PLoS ONE 9, 1–9 (2014).
    Article  CAS  Google Scholar 

    72.
    Goettel, M. S. & Inglis, D. G. Fungi: Hyphomycetes. Manual of Techniques in Insect Pathology (1997). https://doi.org/10.1016/B978-012432555-5/50013-0.

    73.
    Schulz, B., Guske, S., Dammann, U. & Boyle, C. Endophyte-host interactions. II. Defining symbiosis of the endophyte–host interaction. Symbiosis 25, 213–227 (1998).
    Google Scholar 

    74.
    Inglis, G. D., Enkerli, J. & Goettel, M. S. Laboratory Techniques Used for Entomopathogenic Fungi. Hypocreales. Manual of Techniques in Invertebrate Pathology (Elsevier, New York, 2012). https://doi.org/10.1016/B978-0-12-386899-2.00007-5
    Google Scholar 

    75.
    Petrini, O. & Fisher, P. J. Fungal endophytes in Salicornia perennis. Trans. Br. Mycol. Soc. 87, 647–651 (1986).
    Article  Google Scholar 

    76.
    Aigbedion-Atalor, P. O. et al. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control 144, 1–8 (2020).
    Article  CAS  Google Scholar 

    77.
    Oliveira, F. A., da Silva, D. J. H., Leite, G. L. D., Jham, G. N. & Picanço, M. Resistance of 57 greenhouse-grown accessions of Lycopersicon esculentum and three cultivars to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Sci. Hortic. (Amsterdam) 119, 182–187 (2009).
    CAS  Article  Google Scholar 

    78.
    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).
    MathSciNet  MATH  Article  Google Scholar 

    79.
    De Mendiburu, F. agricolae: statistical procedures for agricultural research. R package version 1.3–2 https://CRAN.R-project.org/package=agricolae (2020).

    80.
    Therneau, T. A Package for Survival Analysis in R. R package version 3.1-12, https://CRAN.R-project.org/package=survival. (2020).

    81.
    Crawley, M. J. The R Book (Wiley, New York, 2007). https://doi.org/10.1002/9780470515075.
    Google Scholar 

    82.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar  More

  • in

    Antler cannibalism in reindeer

    1.
    McKintosh, E., Tabrizi, S. J. & Collinge, J. Prion diseases. J. Neuro. Virol. 9, 183–193 (2003).
    CAS  Google Scholar 
    2.
    Chen, C. & Dong, X. P. Epidemiological characteristics of human prion diseases. Infect. Dis. Poverty 5, 47 (2016).
    Article  Google Scholar 

    3.
    Huor, A. et al. The emergence of classical BSE from atypical/Nor98 scrapie. PNAS 116, 26853–26862 (2019).
    CAS  Article  Google Scholar 

    4.
    Prusiner, S. B. Prion diseases and the BSE crisis. Science 278, 245–251 (1997).
    CAS  Article  Google Scholar 

    5.
    Wadsworth, J. D. F. et al. The origin of the prion agent of kuru: molecular and biological strain typing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3747–3753 (2008).
    CAS  Article  Google Scholar 

    6.
    Liberski, P. P., Gajos, A., Sikorska, B. & Lindenbaum, S. Kuru, the first human prion disease. Viruses 11, 232 (2019).
    Article  Google Scholar 

    7.
    Haley, N. J. & Hoover, E. A. Chronic Wasting Disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).
    CAS  Article  Google Scholar 

    8.
    Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 88 (2016).
    Article  Google Scholar 

    9.
    Becker, R. Deadly animal prion disease appears in Europe. Nature https://doi.org/10.1038/nature.2016.19759 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Stokstad, E. Norway seeks to stamp out prion disease. Science 356, 12 (2017).
    ADS  CAS  Article  Google Scholar 

    11.
    Sutherland, W. J. et al. A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol. Evol. 33, 47–58 (2018).
    Article  Google Scholar 

    12.
    Nonno, R., Di Bari, M. A., Pirisinu, L., et al. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc Natl Acad Sci USA in press, (2020).

    13.
    Sutcliffe, A. J. Similarity of bones and antlers gnawed by deer to human artefacts. Nature 246, 428–430 (1973).
    ADS  CAS  Article  Google Scholar 

    14.
    Gambín, P., Ceacero, F., Garcia, A. J., Landete-Castillejos, T. & Gallego, L. Patterns of antler consumption reveal osteophagia as a natural mineral resource in key periods for red deer (Cervus elaphus). Eur. J. Wildl. Res. 63, 39 (2017).
    Article  Google Scholar 

    15.
    Klaus, G. & Schmid, B. Geophagy at natural licks and mammal ecology: a review. Mammalia 62, 481–497 (1999).
    Google Scholar 

    16.
    Mahaney, W. C. & Krishnamani, R. Understanding geophagy in animals: standard procedures for sampling soils. J. Chem. Ecol. 29, 1503–1523 (2003).
    CAS  Article  Google Scholar 

    17.
    Bazely, D. R. Carnivorous herbivores: mineral nutrition and the balanced diet. Trends Ecol. Evol. 4, 155–156 (1989).
    Article  Google Scholar 

    18.
    Loe, L. E. et al. Antler growth as a cost of reproduction in female reindeer. Oecologia 189, 601–609 (2019).
    ADS  Article  Google Scholar 

    19.
    Clutton-Brock, T. H., Albon, S. D. & Harvey, P. H. Antlers, body size and breeding group size in the Cervidae. Nature 285, 565–567 (1980).
    ADS  Article  Google Scholar 

    20.
    Schaefer, J. A. & Mahoney, S. P. Antlers on female caribou: biogeography of the bones of contention. Ecology 82, 3556–3560 (2001).
    Article  Google Scholar 

    21.
    Angers, R. C. et al. Chronic wasting disease prions in elk antler velvet. Emerg. Infect. Dis. 15, 696–703 (2009).
    CAS  Article  Google Scholar 

    22.
    Nieto-Diaz, M. et al. Deer antler innervation and regeneration. Front Biosci. 17, 1389–1401 (2012).
    CAS  Article  Google Scholar 

    23.
    Guiroy, D. C. et al. Neuronal degeneration and neurofilament accumulation in the trigeminal ganglia in creutzfeldt-jakob disease. Ann Neurol. 25, 102–106 (1989).
    CAS  Article  Google Scholar 

    24.
    Rolf, H. J. & Enderle, A. Hard fallow deer antler: a living bone till antler casting?. Anat. Rec. 255, 69–77 (1999).
    CAS  Article  Google Scholar 

    25.
    Huor, A. et al. Infectivity in bone marrow from sporadic CJD patients. J. Pathol. 243, 273–278 (2017).
    Article  Google Scholar 

    26.
    Davenport, K. A. et al. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer. PLoS ONE 12, e0183927 (2017).
    Article  Google Scholar 

    27.
    Mysterud, A. et al. The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere 10, e02931 (2019).
    Article  Google Scholar 

    28.
    Pirisinu, L. et al. A novel type of Chronic Wasting Disease detected in European moose (Alces alces) in Norway. Emerg. Infect. Dis. 24, 2210–2218 (2018).
    CAS  Article  Google Scholar 

    29.
    Vikøren, T. et al. First detection of Chronic Wasting Disease in a wild red deer (Cervus elaphus) in Europe. J. Wildl. Dis. 55, 970–972 (2019).
    Article  Google Scholar 

    30.
    Buschmann, A. et al. Atypical BSE in Germany – Proof of transmissibility and biochemical characterization. Vet. Microbiol. 117, 103–116 (2006).
    CAS  Article  Google Scholar 

    31.
    Benestad, S. L. et al. Cases of scrapie with unusal features in Norway and designation of a new type, Nor98. Vet. Rec. 153, 2002–2008 (2003).
    Article  Google Scholar 

    32.
    Estevez, J. A., Landete-Castillejos, T., García, A. J., Ceacero, F. & Gallego, L. Population management and bone structural effects in composition and radio-opacity of iberian red deer (Cervus elaphus hispanicus) antlers. Eur. J. Wildl. Res. 54, 215–223 (2008).
    Article  Google Scholar 

    33.
    Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health. Sci. Educ. 15, 625–632 (2019).
    Article  Google Scholar 

    34.
    Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930 (2007).
    ADS  CAS  Article  Google Scholar 

    35.
    Marion, M. S. et al. Experimental oral transmission of atypical scrapie to sheep. Emerg. Infect. Dis. 17, 848 (2011).
    Article  Google Scholar 

    36.
    Angers, R. C. et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328, 1154 (2010).
    ADS  CAS  Article  Google Scholar 

    37.
    Igel-Egalon, A., Béringue, V., Rezaei, H. & Sibille, P. Prion strains and transmission barrier phenomena. Pathogens 7, (2018).

    38.
    Le Dur, A. et al. Divergent prion strain evolution driven by PrPC expression level in transgenic mice. Nat. Commun. 8, 14170 (2017).
    ADS  Article  Google Scholar  More

  • in

    Temporal changes in reproductive success and optimal breeding decisions in a long-distance migratory bird

    1.
    Siikamäki, P. Limitation of reproductive success by food availability and timing of breeding in pied flycatchers. Ecology 79, 1789–1796. https://doi.org/10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2 (1998).
    Article  Google Scholar 
    2.
    Post, E., Bøving, P. S., Pedersen, C. & MacArthur, M. A. Synchrony between caribou calving and plant phenology in depredated and non-depredated populations. Can. J. Zool. 81, 1709–1714. https://doi.org/10.1139/z03-172 (2003).
    Article  Google Scholar 

    3.
    Both, C. & Visser, M. E. The effect of climate change on the correlation between avian life-history traits. Glob. Change Biol. 11, 1606–1613. https://doi.org/10.1111/j.1365-2486.2005.01038.x (2005).
    ADS  Article  Google Scholar 

    4.
    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).
    ADS  Article  PubMed  Google Scholar 

    5.
    Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131–144. https://doi.org/10.1111/j.1365-2656.2012.02020.x (2013).
    Article  PubMed  Google Scholar 

    6.
    Rowe, L., Ludwig, D. & Schluter, D. Time condition and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).
    Article  Google Scholar 

    7.
    Bêty, J., Gauthier, G. & Giroux, J.-F. Body condition, migration and timing of reproduction in snow geese: a test of the condition-dependent model of optimal clutch size. Am. Nat. 162, 110–121. https://doi.org/10.1086/375680 (2003).
    Article  PubMed  Google Scholar 

    8.
    Drent, R. H., Fox, A. D. & Stahl, J. Travelling to breed. J. Ornithol. 147, 122–134. https://doi.org/10.1007/s10336-006-0066-4 (2006).
    Article  Google Scholar 

    9.
    Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B. 277, 1259–1266. https://doi.org/10.1098/rspb.2009.1525 (2010).
    Article  PubMed  Google Scholar 

    10.
    Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Phil. Trans. R. Soc. B. 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).
    Article  PubMed  Google Scholar 

    11.
    Descamps, S., Bêty, J., Love, O. P. & Gilchrist, H. G. Individual optimization of reproduction in a long-lived migratory bird: a test of the condition-dependent model of laying date and clutch size. Funct. Ecol. 25, 671–681. https://doi.org/10.1111/j.1365-2435.2010.01824.x (2011).
    Article  Google Scholar 

    12.
    Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).
    Article  Google Scholar 

    13.
    Jean-Gagnon, F. et al. The impact of sea ice conditions on breeding decisions is modulated by body condition in an arctic partial capital breeder. Oecologia 186, 1–10. https://doi.org/10.1007/s00442-017-4002-5 (2018).
    ADS  Article  PubMed  Google Scholar 

    14.
    Durant, J. M., Hjermann, D. O., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283. https://doi.org/10.3354/cr033271 (2007).
    Article  Google Scholar 

    15.
    Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).
    Article  PubMed  Google Scholar 

    16.
    Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kellett, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ecology 98, 1869–1883. https://doi.org/10.1002/ecy.1856 (2017).
    Article  PubMed  Google Scholar 

    17.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178. https://doi.org/10.1111/j.1365-294X.2007.03413.x (2008).
    CAS  Article  PubMed  Google Scholar 

    19.
    Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B. 265, 1867–1870. https://doi.org/10.1098/rspb.1998.0514 (1998).
    Article  Google Scholar 

    20.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    21.
    Ross, M. V., Alisauskas, R. T., Douglas, D. C., Kellett, D. K. & Drake, K. L. Density-dependent and phenological mismatch effects on growth and survival in lesser snow and Ross’s goslings. J. Avian Biol. 49, e01748. https://doi.org/10.1111/jav.01748 (2018).
    Article  Google Scholar 

    22.
    Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Phil. Trans. R. Soc. B. 368, 20120482–20120482. https://doi.org/10.1098/rstb.2012.0482 (2013).
    Article  PubMed  Google Scholar 

    23.
    Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: the role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).
    ADS  Article  PubMed  Google Scholar 

    24.
    Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob. Change Biol. 21, 4364–4376. https://doi.org/10.1111/gcb.13057 (2015).
    ADS  Article  Google Scholar 

    25.
    Reséndiz-Infante, C., Gauthier, G. & Souchay, G. Consequences of a changing environment on the breeding phenology and reproductive success components in a long-distance migratory bird. Pop. Ecol. 62, 284–296. https://doi.org/10.1002/1438-390X.12046 (2020).
    Article  Google Scholar 

    26.
    Lecomte, N., Careau, V., Gauthier, G. & Giroux, J.-F. Predator behaviour and predation risk in the heterogeneous arctic environment. J. Anim. Ecol. 77, 439–447. https://doi.org/10.1111/j.1365-2656.2008.01354.x (2008).
    Article  PubMed  Google Scholar 

    27.
    Findlay, C. & Cooke, F. Synchrony in the lesser snow goose (Anser caerulescens caerulescens) II. The adaptive value of reproductive synchrony. Evolution 36, 786–799. https://doi.org/10.2307/2407892 (1982).
    Article  PubMed  Google Scholar 

    28.
    Bêty, J., Gauthier, G., Giroux, J.-F. & Korpimäki, E. Are goose nesting success and lemming cycles linked? Interplay between nest density and predators. Oikos 93, 388–400. https://doi.org/10.1034/j.1600-0706.2001.930304.x (2001).
    Article  Google Scholar 

    29.
    Dickey, M.-H., Gauthier, G. & Cadieux, M.-C. Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species. Glob. Change Biol. 14, 1973–1985. https://doi.org/10.1111/j.1365-2486.2008.01622.x (2008).
    ADS  Article  Google Scholar 

    30.
    Juhasz, C.-C., Shipley, B., Gauthier, G., Berteaux, D. & Lecomte, N. Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra. J. Anim. Ecol. 89, 704–715. https://doi.org/10.1111/1365-2656.13104 (2019).
    Article  PubMed  Google Scholar 

    31.
    Bêty, J., Gauthier, G., Korpimaki, E. & Giroux, J.-F. Shared predators and indirect trophic interactions: lemming cycles and arctic-nesting geese. J. Anim. Ecol. 71, 88–98. https://doi.org/10.1046/j.0021-8790.2001.00581.x (2002).
    Article  Google Scholar 

    32.
    Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).
    Article  PubMed  Google Scholar 

    33.
    Lohman, M. G. et al. Changes in behavior are unable to disrupt a trophic cascade involving a specialist herbivore and its food plant. Ecol. Evol. 9, 5281–5291. https://doi.org/10.1002/ece3.5118 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Aubry, L. M. et al. Climate change, phenology, and habitat degradation: drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 19, 149–160. https://doi.org/10.1111/gcb.12013 (2013).
    ADS  Article  Google Scholar 

    35.
    Massé, H., Rochefort, L. & Gauthier, G. Carrying capacity of wetland habitats used by breeding greater snow geese. J. Wildl. Manage. 65, 271–281. https://doi.org/10.2307/3802906 (2001).
    Article  Google Scholar 

    36.
    Valéry, L., Cadieux, M.-C. & Gauthier, G. Spatial heterogeneity of primary production as both cause and consequence of foraging patterns of an expanding Greater Snow Goose colony. Ecoscience 17, 9–19. https://doi.org/10.2980/17-1-3279 (2010).
    Article  Google Scholar 

    37.
    Gienapp, P., Postma, E. & Visser, M. E. Why breeding time has not responded to selection for earlier breeding in a songbird population. Evolution 60, 2381–2388. https://doi.org/10.1111/j.0014-3820.2006.tb01872.x (2006).
    Article  PubMed  Google Scholar 

    38.
    Van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664. https://doi.org/10.1111/j.1600-0706.2011.20083.x (2012).
    Article  Google Scholar 

    39.
    Gauthier, G., Bêty, J. & Hobson, K. A. Are greater snow geese capital breeders? New evidence from a stable-isotope model. Ecology 84, 3250–3264. https://doi.org/10.1890/02-0613 (2003).
    Article  Google Scholar 

    40.
    Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28, 1–7. https://doi.org/10.1016/j.cub.2018.05.077 (2018).
    CAS  Article  Google Scholar 

    41.
    Shutler, D., Clark, R. G., Fehr, C. & Diamond, A. W. Time and recruitment costs as currencies in manipulation studies on the costs of reproduction. Ecology 87, 2938–2946. https://doi.org/10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2 (2006).
    Article  PubMed  Google Scholar 

    42.
    Rockwell, R. F., Cooch, E. G., Thompson, C. B. & Cooke, F. Age and reproductive success in female lesser snow geese: experience, senescence and the cost of philopatry. J. Anim. Ecol. 62, 323–333. https://doi.org/10.2307/5363 (1993).
    Article  Google Scholar 

    43.
    Souchay, G., Gauthier, G. & Pradel, R. To breed or not: a novel approach to estimate breeding propensity and potential trade-offs in an Arctic-nesting species. Ecology 95, 2745–2756. https://doi.org/10.1890/13-1277.1 (2014).
    Article  Google Scholar 

    44.
    Bêty, J., Giroux, J.-F. & Gauthier, G. Individual variation in timing of migration: causes and reproductive consequences in greater snow geese (Anser caerulescens atlanticus). Behav. Ecol. Sociobiol. 57, 1–8. https://doi.org/10.1007/s00265-004-0840-3 (2004).
    Article  Google Scholar 

    45.
    Gauthier, G., Giroux, J.-F., Reed, A., Béchet, A. & Bélanger, L. Interactions between land use habitat use and population increase in greater snow geese: what are the consequences for natural wetlands?. Glob. Change Biol. 11, 856–868. https://doi.org/10.1111/j.1365-2486.2005.00944.x (2005).
    ADS  Article  Google Scholar 

    46.
    Cooke, F., Rockwell, R. F. & Lank, D. B. The Snow Geese of La Perouse Bay. Natural Selection in the Wild (Oxford University Press, Oxford, 1995).
    Google Scholar 

    47.
    Reed, A., Hughes, R. J. & Boyd, H. Patterns of distribution and abundance of greater snow geese on Bylot Island Nunavut Canada 1983–1998. Wildfowl 53, 53–65 (2002).
    Google Scholar 

    48.
    Mainguy, J., Gauthier, G., Giroux, J.-F. & Bêty, J. Gosling growth and survival in relation to brood movements in greater snow geese (Chen caerulescens atlantica). Auk 123, 1077–1089. https://doi.org/10.2307/25150221 (2006).
    Article  Google Scholar 

    49.
    Menu, S., Gauthier, G. & Reed, A. Survival of juvenile greater snow geese immediately after banding. J. Field Ornithol. 72, 282–290. https://doi.org/10.1648/0273-8570-72.2.282 (2001).
    Article  Google Scholar 

    50.
    Schubert, C. A. & Cooke, F. Egg-laying intervals in the lesser snow goose. Wilson Bull. 105, 414–426 (1993).
    Google Scholar  More

  • in

    Publisher Correction: Social value shift in favour of biodiversity conservation in the United States

    Affiliations

    Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
    Michael J. Manfredo, Tara L. Teel & Richard E. W. Berl

    School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
    Jeremy T. Bruskotter

    Department of Psychology, University of Michigan, Ann Arbor, MI, USA
    Shinobu Kitayama

    Authors
    Michael J. Manfredo

    Tara L. Teel

    Richard E. W. Berl

    Jeremy T. Bruskotter

    Shinobu Kitayama

    Corresponding author
    Correspondence to Michael J. Manfredo. More

  • in

    Soil fungal and bacterial communities in southern boreal forests of the Greater Khingan Mountains and their relationship with soil properties

    1.
    Gattinger, A., Palojärvi, A. & Schloter, M. Soil microbial communities and related Functions. in Perspectives for agroecosystem management (eds. Schröder P., Pfadenhauer J. & Munch J. C.) 279–292 (Elsevier, 2008).
    2.
    Renella, G. et al. Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol. Biochem. 36, 443–451 (2004).
    CAS  Article  Google Scholar 

    3.
    Ros, M., Pascual, J. A., Garcia, C., Hernandez, M. T. & Insam, H. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 38, 3443–3452 (2006).
    CAS  Article  Google Scholar 

    4.
    Krishnan, A., Alias, S. A., Wong, C. M. V. L., Pang, K. & Convey, P. Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol. 34, 1535–1542 (2011).
    Article  Google Scholar 

    5.
    Bronson, K. F. et al. Carbon and nitrogen pools of southern high plains cropland and grassland soils. Soil Sci. Soc. Am. J. 68, 1695 (2004).
    ADS  CAS  Article  Google Scholar 

    6.
    Liu, S. et al. Estimation of plot-level soil carbon stocks in China’s forests using intensive soil sampling. Geoderma 348, 107–114 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Kapusta, P., Sobczyk, A., Rożen, A. & Weiner, J. Species diversity and spatial distribution of enchytraeid communities in forest soils: effects of habitat characteristics and heavy metal contamination. Appl. Soil Ecol. 23, 187–198 (2003).
    Article  Google Scholar 

    8.
    Romanowicz, K. J. et al. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol. Ecol. 92, w149 (2016).
    Article  CAS  Google Scholar 

    9.
    Ilstedt, U. & Singh, S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol. Biochem. 37, 1407–1410 (2005).
    CAS  Article  Google Scholar 

    10.
    Liu, L., Gundersen, P., Zhang, T. & Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 44, 31–38 (2012).
    Article  CAS  Google Scholar 

    11.
    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).
    CAS  Article  Google Scholar 

    12.
    Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39, 1878–1887 (2007).
    CAS  Article  Google Scholar 

    13.
    Gadd, G. M. Microorganisms in soils: roles in genesis and functions. Soil Biology. 3, 325–356 (2005).
    CAS  Article  Google Scholar 

    14.
    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).
    ADS  Article  Google Scholar 

    15.
    Pietri, J. A. & Brookes, P. C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 40, 1856–1861 (2008).
    Article  CAS  Google Scholar 

    16.
    Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth. 2, 349–360 (2020).
    Article  Google Scholar 

    17.
    Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Global Change Biol. 24, e416–e431 (2018).
    Article  Google Scholar 

    18.
    Juday, G. P. Taiga. (2019) Available at: https://www.britannica.com/science/taiga (Accessed: October 15, 2020.

    19.
    Hu, L. et al. Spatiotemporal dynamics in vegetation GPP over the Great Khingan Mountains using GLASS products from 1982 to 2015. Remote Sens. Basel. 10, 488 (2018).
    ADS  Article  Google Scholar 

    20.
    Jiang, H., Apps, M. J., Peng, C., Zhang, Y. & Liu, J. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecol. Manag. 169, 65–82 (2002).
    Article  Google Scholar 

    21.
    Tang, H. et al. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China. Remote Sens.-Basel. 7, 11914–11932 (2015).

    22.
    Greene, D. F. et al. A review of the regeneration dynamics of North American boreal forest tree species. Can. J. Forest Res. 29, 824–839 (1999).
    ADS  Article  Google Scholar 

    23.
    Yuan, Z. Y. & Chen, H. Y. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit. Rev. Plant Sci. 29, 204–221 (2010).
    CAS  Article  Google Scholar 

    24.
    Sanderson, L. A., McLaughlin, J. A. & Antunes, P. M. The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry 85, 329–340 (2012).
    Article  Google Scholar 

    25.
    Kreutzweiser, D. P., Hazlett, P. W. & Gunn, J. M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: a review. Environ. Rev. 16, 157–179 (2008).
    CAS  Article  Google Scholar 

    26.
    Dhar, A. et al. Plant community development following reclamation of oil sands mine sites in the boreal forest: a review. Environ. Rev. 26, 286–298 (2018).
    Article  Google Scholar 

    27.
    Simard, D. G., Fyles, J. W., Paré, D. & Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 81, 229–237 (2001).
    CAS  Article  Google Scholar 

    28.
    Ohtonen, R. & Väre, H. Vegetation composition determines microbial activities in a boreal forest soil. Microb. Ecol. 36, 328–335 (1998).
    CAS  PubMed  Article  Google Scholar 

    29.
    Nilsson, M., Wardle, D. A. & Dahlberg, A. Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86, 16–26 (1999).
    Article  Google Scholar 

    30.
    Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573 (2010).
    PubMed  Article  Google Scholar 

    31.
    Buckley, D. H. & Schmidt, T. M. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5, 441–452 (2003).
    PubMed  Article  Google Scholar 

    32.
    Jangid, K. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 43, 2184–2193 (2011).
    CAS  Article  Google Scholar 

    33.
    Wal, A. V. D. et al. Fungal biomass development in a chronosequence of land abandonment. Soil Biol. Biochem. 38, 51–60 (2006).
    Article  CAS  Google Scholar 

    34.
    Fu, X. et al. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Sci. Total Environ. 502, 280–286 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Kalinina, O. et al. Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools. Geoderma 162, 196–206 (2011).
    ADS  CAS  Article  Google Scholar 

    36.
    Gao, Y. et al. Influence of forest type on dark-spored myxomycete community in subtropical forest soil, China. Soil Biol. Biochem. 138, 107606 (2019).
    CAS  Article  Google Scholar 

    37.
    Sheng, Y. et al. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. MicrobiologyOpen. 8, e874 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Vatani, L., Hosseini, S. M., Sarjaz, M. R. & Alavi, S. J. Tree species effects on albedo, soil carbon and nitrogen stocks in a temperate forest in Iran. Aus. J. For. Sci. 136, 283–310 (2019).
    Google Scholar 

    39.
    Bauhus, J., Paré, D. & Co Té, L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol. Biochem. . 30, 1077–1089 (1998).

    40.
    Dukunde, A., Schneider, D., Schmidt, M., Veldkamp, E. & Daniel, R. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front. Microbiol. 10, 1–17 (2019).
    Article  Google Scholar 

    41.
    Tajik, S., Ayoubi, S., Khajehali, J. & Shataee, S. Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arab. J. Geosci. 12, 368 (2019).
    Article  CAS  Google Scholar 

    42.
    Stingl, U. & Giovannoni, S. J. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).
    ADS  PubMed  Article  CAS  Google Scholar 

    43.
    Danger, M., Daufresne, T., Lucas, F., Pissard, S. & Lacroix, G. Does Liebig’s law of the minimum scale up from species to communities?. Oikos 117, 1741–1751 (2008).
    Article  Google Scholar 

    44.
    Sakurai, M., Suzuki, K., Onodera, M., Shinano, T. & Osaki, M. Analysis of bacterial communities in soil by PCR–DGGE targeting protease genes. Soil Biol. Biochem. 39, 2777–2784 (2007).
    CAS  Article  Google Scholar 

    45.
    Wang, Y. et al. Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils—a comparative study between broadleaf and coniferous plantations. Geoderma 355, 113914 (2019).
    ADS  CAS  Article  Google Scholar 

    46.
    Wan, X. et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil. 387, 103–116 (2015).
    CAS  Article  Google Scholar 

    47.
    Amtmann, A., Troufflard, S. & Armengaud, P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plantarum. 133, 582–691 (2008).
    Article  CAS  Google Scholar 

    48.
    Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plantarum. 133, 670–681 (2008).
    CAS  Article  Google Scholar 

    49.
    Markewitz, D. & Richter, D. D. Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. Forest Ecol. Manag. 130, 109–129 (2000).
    Article  Google Scholar 

    50.
    Tripler, C. E., Kaushal, S. S. & Likens, G. E. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).
    PubMed  Article  Google Scholar 

    51.
    Mori, T. et al. Testing potassium limitation on soil microbial activity in a sub-tropical forest. J. For. Res. 30, 2341–2347 (2019).
    CAS  Article  Google Scholar 

    52.
    Vuong, T. M. D., Zeng, J. Y. & Man, X. L. Spatial distribution andmonthly dynamics of soil carbon/nitrogen and hydrolases in Pinus sylvestris var. mongolica Litv. natural forest. Scientia Silvae Sinicae. 56, 40–47 (2020).

    53.
    Zeng, J. et al. An investigation into whether effect of tree species on soil microbial community is related with deciduous property or leaf shape. CATENA 195, 104699 (2020).
    Article  Google Scholar 

    54.
    Wu, Y. et al. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Appl. Soil Ecol. 43, 234–240 (2009).
    Article  Google Scholar 

    55.
    Washburn, C. & Arthur, M. A. Spatial variability in soil nutrient availability in an oak-pine forest: Potential effects of tree species. Can. J. For. Res. 33, 2321–2330 (2003).
    Article  Google Scholar 

    56.
    Azeez, J. O. Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria. J. For. Res. 30, 1903–1911 (2019).
    CAS  Article  Google Scholar 

    57.
    Ha, T. Effectiveness of the Vietnamese Good Agricultural Practice (VietGAP) on Plant Growth and Quality of Choy Sum (Brassica rapa var. parachinensis) in Northern Vietnam. Aceh International Journal of Science and Technology. 3, 80–87 (2014).

    58.
    Jia, Z. et al. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 7, 6924–6937 (2015).
    Article  CAS  Google Scholar 

    59.
    Zhang, Y., Sui, B., Shen, H. & Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: a comparison of random forest models with different predictors. Comput. Electron. Agric. 160, 23–30 (2019).
    Article  Google Scholar 

    60.
    Sun, H. et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 673, 502–510 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    61.
    Ye, C. et al. Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Sci. Total Environ. 664, (2019).

    62.
    Li, J., Zhou, L. & Lin, W. Calla lily intercropping in rubber tree plantations changes the nutrient content, microbial abundance, and enzyme activity of both rhizosphere and non-rhizosphere soil and calla lily growth. Ind. Crop. Prod. (2019).

    63.
    Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils. 6, 68–72 (1988).
    CAS  Article  Google Scholar 

    64.
    Ladd, J. N. & Butler, J. H. A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4, 19–30 (1972).
    CAS  Article  Google Scholar 

    65.
    Ross, D. J. & Roberts, H. S. Enzyme activities and oxygen uptakes of soils under pasture in temperature and rainfall sequences. Eur. J. Soil Sci. 21, 368–381 (1970).
    CAS  Article  Google Scholar 

    66.
    Sharma, N., Bhalla, T. C. & Bhatt, A. K. Partial purification and characterization of extracellular cellulase from a strain of Trichoderma viride isolated from forest soil. Folia Microbiol. 36, 353–359 (1991).
    CAS  Article  Google Scholar 

    67.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).
    CAS  Article  Google Scholar 

    70.
    Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 75, 7537–7541 (2009).
    CAS  Article  Google Scholar 

    71.
    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 1–7 (2011).
    CAS  Article  Google Scholar 

    72.
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    73.
    Oksanen, J. et al. Package “vegan”. Commun. Ecol. Package, Version 2, 1–295 (2013).
    Google Scholar 

    74.
    Box, J. F. Guinness, Gosset, Fisher, and small samples. Stat. Sci. 2, 45–52 (1987).
    MathSciNet  MATH  Article  Google Scholar 

    75.
    Holland, S. M. Principal Components Analysis (PCA) 30602–32501 (Department of Geology, University of Georgia, Athens, GA, 2008).
    Google Scholar 

    76.
    Vu, V. Q. ggbiplot: A ggplot2 based biplot. R package. 342, (2011).

    77.
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Article  Google Scholar 

    78.
    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Morphological function of toe fringe in the sand lizard Phrynocephalus mystaceus

    1.
    Higham, T. E. The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr. Comp. Biol. 47, 82–95 (2007).
    PubMed  Article  Google Scholar 
    2.
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Stud. Behav. 16, 229–249 (1986).
    Article  Google Scholar 

    3.
    Cooper, W. E. Jr. & Frederick, W. G. Optimal flight initiation distance. J. Theor. Biol. 244, 59–67 (2007).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    4.
    Darwin, C. The Voyage of the Beagle (Doubleday and Co, New York, 1962).
    Google Scholar 

    5.
    Arnold, E. N. Identifying the effects of history on adaptation – origins of different sand-diving techniques in lizards. J. Zool. 235, 351–388 (1995).
    Article  Google Scholar 

    6.
    Attum, O., Eason, P. & Cobbs, G. Morphology, niche segregation, and escape tactics in a sand dune lizard community. J. Arid Environ. 68, 564–573 (2007).
    ADS  Article  Google Scholar 

    7.
    Kacoliris, F., Williams, J. & Molinari, A. Selection of key features of vegetation and escape behavior in the sand dune lizard (Liolaemus multimaculatus). Anim. Biol. 60, 157–167 (2010).
    Article  Google Scholar 

    8.
    Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).
    Article  Google Scholar 

    9.
    Losos, J. B. & Sinervo, B. The effect of morphology and perch diameter on sprint performance of Anolis Lizards. J. Exp. Biol. 145, 23–30 (1989).
    Google Scholar 

    10.
    Losos, J. B. & Irschick, D. J. The effect of perch diameter on escape behavior of Anolis lizards: laboratory predictions and field tests. Anim. Behav. 51, 593–602 (1996).
    Article  Google Scholar 

    11.
    Luke, C. Convergent evolution of lizard toe fringes. Biol. J. Linn. Soc. 27, 1–16 (1986).
    ADS  Article  Google Scholar 

    12.
    Carothers, J. H. An experimental confirmation of morphological adaptation: toe fringes in the sand-dwelling lizard Uma scoparia. Evolution 40, 871–874 (1986).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Irschick, D. J. & Jayne, B. C. Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. J. Exp. Biol. 21, 273–287 (1998).
    Google Scholar 

    14.
    Korff, W. L. & McHenry, M. J. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides). J. Exp. Biol. 214, 122–130 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Bergmann, P. J. & Irschick, D. J. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards. Evolution 64, 1569–1582 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Li, C., Hsieh, S. T. & Goldman, D. I. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides). J. Exp. Biol. 215, 3293–3308 (2012).
    PubMed  Article  Google Scholar 

    17.
    Zhao, E. M., Zhao, K. T. & Zhou, K. Y. Fauna Sinica, Reptilian Vol. 2, Squamata (Beijing Science Press, Beijing, Lacertilia, 1999).
    Google Scholar 

    18.
    Solovyeva, E. N. et al. Cenozoic aridization in Central Eurasia shaped diversification of toad-headed agamas (Phrynocephalus; Agamidae, Reptilia). Peer. J. 6, e4543 (2018).
    PubMed  Article  CAS  Google Scholar 

    19.
    Jiang, Z. G. et al. Red List of China’s Vertebrates. Biodivers. Sci. 24, 550–551 (2016).
    Google Scholar 

    20.
    Du, W. G., Lin, C. X., Shou, L. & Ji, X. Morphological correlates of locomotor performance in four species of lizards using different habitats. Zool. Res. 26, 41–46 (2005).
    CAS  Google Scholar 

    21.
    Pérez, A. & Fabré, N. N. Spatial population structure of the Neotropical tiger catfish Pseudoplatystoma metaense: skull and otolith shape variation. J. Fish Biol. 82, 1453–1468 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Higham, T. E. & Russel, A. P. Divergence in locomotor performance, ecology, and morphology between two sympatric sister species of desert-dwelling gecko. Biol. J. Linn. Soc. 101, 860–869 (2010).
    Article  Google Scholar 

    23.
    King, R. B. Analyzing the relationship between clutch size and female body size in reptiles. J. Herpetol. 34, 148–150 (2000).
    Article  Google Scholar 

    24.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: apractical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).
    MATH  Google Scholar 

    25.
    Imdadullah, M., Aslam, M. & Altaf, S. mctest: an R package for detection of collinearity among regressors. R. J. 8, 495–505 (2016).
    Article  Google Scholar 

    26.
    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
    Article  Google Scholar 

    27.
    Garthwaite, P. H. An interpretation of partial least squares. J. Am. Stat. Ass. 89, 122–127 (1994).
    MathSciNet  MATH  Article  Google Scholar 

    28.
    Abdi, H. Partial least squares regression and projection on latent structure regression. Wiley Interdiscip. Rev. Comput. 2, 97–106 (2010).
    Article  Google Scholar 

    29.
    Lesku, J. A., Roth, T. C. II., Amlaner, C. J. & Lima, S. L. A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology. Am. Nat. 168, 441–453 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Mitchell, R. J. Testing evolutionary and ecological hypotheses using path analysis and structural equation modeling. Funct. Ecol. 6, 123–129 (1992).
    Article  Google Scholar 

    31.
    Wootton, J. T. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75, 151–165 (1994).
    Article  Google Scholar 

    32.
    Arnold, S. J. Species densities of predators and their prey. Am. Nat. 106, 220–236 (1972).
    Article  Google Scholar 

    33.
    Team, R. C. A Language and Environment for Statistical Computing. Vienna: the R Foundation for Statistical Computing. http://www.R-project.org/ (2020).

    34.
    Irschick, D. J. & Garland, T. Jr. Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu. Rev. Ecol. Syst. 32, 367–396 (2001).
    Article  Google Scholar 

    35.
    Damme, R. V. & Vanhooydonck, B. Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202 (2001).
    Article  Google Scholar 

    36.
    Ballinger, R. E., Nietfeldt, J. W. & Krupa, J. J. An experimental analysis of the role of the tail in a high running speed in Cnemidophorus sexlineatus (Reptilia; Squamata: Lacertilia). Herpetology 35, 114–116 (1979).
    Google Scholar 

    37.
    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).
    Article  Google Scholar 

    38.
    Johnson, T. P., Swoap, S. J., Bennett, A. F. & Josephson, R. K. Body size, muscle power output and limitations on burst locomotor performance in the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 185–197 (1993).
    Google Scholar 

    39.
    Punzo, F. Tail Autotomy and running speed in the lizards Cophosaurus texanus and Uma notata. J. Herpetol. 16, 329–331 (1982).
    Article  Google Scholar 

    40.
    Borges-Landáez, P. A. & Shine, R. Influence of toe-clipping on running speed in Eulamprus quoyii, an Australian scincid lizard. J. Herpetol. 37, 592–595 (2003).
    Article  Google Scholar 

    41.
    Vanhooydonck, B., Damme, R. V. & Aerts, P. Variation in speed, gait characteristics and microhabitat use in lacertid lizards. J. Exp. Biol. 205, 1037–1046 (2002).
    PubMed  Google Scholar 

    42.
    Darwin, C. R. On the Origin of Species by Means of Natural Selection (Harvard University Press, Cambridge, 1859).
    Google Scholar 

    43.
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    PubMed  Article  Google Scholar 

    44.
    Ricklefs, R. E. & Miles, D. B. Ecological and evolutionary inferences from morphology: an ecological perspective. In Ecological Morphology: Integrative and Organismal Biology (eds Wainwright, P. C. & Reilly, S. M.) 13–41 (University of Chicago Press, Chicago, 1994).
    Google Scholar 

    45.
    Dornburg, A., Sidlaukas, B., Santini, F. & Alfaro, N. M. E. The influence of an innovative locomotor strategy on the phenotypic diversifcation of triggerfsh (Family: Balistidae). Evolution 65, 1912–1926 (2011).
    PubMed  Article  Google Scholar 

    46.
    Vermeij, G. J. Historical contingency and the purported uniqueness of evolutionary innovations. Proc. Natl. Acad. Sci. USA 103, 1804–1809 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Collins, C. E. & Higham, T. E. Individuals of the common Namib Day Gecko vary in how adaptive simplification alters sprint biomechanics. Sci. Rep. 7, 15595 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Cameron, S. F., Wynn, M. L. & Wilson, R. S. Sex-specific trade-offs and compensatory mechanisms: bite force and sprint speed pose conflicting demands on the design of geckos (Hemidactylus frenatus). J. Exp. Biol. 216, 3781–3789 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Stebbins, R. C. Some aspects of the ecology of the iguanid genus Uma. Ecol. Monogr. 14, 311–332 (1944).
    Article  Google Scholar 

    50.
    Evans, J. S., Eifler, D. A. & Eifler, M. A. Sand-diving as an escape tactic in the lizard Meroles anchietae. J. Arid Environ. 140, 1–5 (2017).
    ADS  Article  Google Scholar 

    51.
    Halloy, M., Etheridge, R. & Burghardt, G. M. To bury in sand: Phylogenetic relationships among lizard species of the boulengeri group, Liolaemus (Reptilia: Squamata: Tropiduridae), based on behavioral characters. Herpetol. Monogr. 12, 1–37 (1998).
    Article  Google Scholar 

    52.
    Bauwens, D., Garland, T., Castilla, A. M. & Van Damme, R. Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49, 848–863 (1995).
    PubMed  PubMed Central  Google Scholar 

    53.
    Bonine, K. E. & Garland, T. J. Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. 248, 255–265 (1999).
    Article  Google Scholar 

    54.
    Shimada, T., Kadau, D., Shinbrot, T. & Herrmann, H. J. Swimming in granular media. Phys. Rev. E. 80, 020301 (2009).
    ADS  Article  CAS  Google Scholar 

    55.
    Maladen, R. D., Ding, Y., Li, C. & Goldman, D. I. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Sci. 325, 314–318 (2009).
    ADS  CAS  Article  Google Scholar 

    56.
    Sharpe, S. S., Ding, Y. & Goldman, D. I. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus. J. Exp. Biol. 216, 260–274 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Edwards, S., Herrel, A., Vanhooydonck, B., Measey, G. J. & Tolley, K. A. Diving in head first: morphology and performance is linked to predator escape strategy in desert lizards (Meroles, Lacertidae, Squamata). Biol. J. Linn. Soc. 119, 919–931 (2016).
    Article  Google Scholar 

    58.
    Bergmann, P. J., Pettinelli, K. J., Crockett, M. E. & Schaper, E. G. It’s just sand between the toes: how particle size and shape variation affect running performance and kinematics in a generalist lizard. J. Exp. Biol. 220, 3706–3716 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Arnold, E. N. Why do morphological phylogenies vary in quality—an investigation based on the comparative history of lizard clades. Proc. R. Soc. B. 240, 135–172 (1990).
    ADS  CAS  Google Scholar 

    60.
    Stellatelli, O. A., Block, C., Vega, L. E. & Cruz, F. B. Nonnative vegetation induces changes in predation pressure and escape behavior of two sand lizards (Liolaemidae: Liolaemus). Herpetology 71, 136–142 (2015).
    Article  Google Scholar 

    61.
    Etheridge, R. & de Queiroz, K. A phylogeny of Iguanidae. In Phylogenetic relationships of the lizard families, essays commemorating Charles L. Camp (eds Estes, R. & Pregill, G.) 283–368 (Stanford University Press, Stanford, 1988).
    Google Scholar 

    62.
    Pang, J. F. et al. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 27, 398–409 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Guo, X. & Wang, Y. Partitioned Bayesian analyses, dispersal—vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a reevaluation. Mol. Phylogenet. Evol. 45, 643–662 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Acid resistance of Masson pine (Pinus massoniana Lamb.) families and their root morphology and physiological response to simulated acid deposition

    1.
    Reis, S. et al. From acid rain to climate change. Science 338, 1153–1154 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Wang, L., Chen, Z., Shang, H., Wang, J. & Zhang, P. Y. Impact of simulated acid rain on soil microbial community function in Masson pine seedlings. Electron. J. Biotechnol. 17, 199–203 (2014).
    CAS  Article  Google Scholar 

    3.
    Wang, W. X. & Xu, P. J. Research progress in precipitation chemistry in China. Prog. Chem. 21, 266–281 (2010).
    Google Scholar 

    4.
    Meng, Y. et al. Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmos. Res. 222, 12–24 (2019).
    CAS  Article  Google Scholar 

    5.
    Busch, G. et al. Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario. Environ. Sci. Pollut. Res. 8, 95–102 (2001).
    CAS  Article  Google Scholar 

    6.
    Wang, Y. et al. Phenotypic response of tobacco leaves to simulated acid rain and its impact on photosynthesis. Int. J. Agric. Biol. 21, 391–398 (2019).
    CAS  Google Scholar 

    7.
    Ramlall, C. et al. Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. Physiol. Plant. 153, 149–160 (2015).
    CAS  PubMed  Article  Google Scholar 

    8.
    Wang, X. Q., Liu, Z., Niu, L. & Fu, B. Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: A proteomic analysis. Trees Struct. Funct. 27, 297–309 (2013).
    Article  CAS  Google Scholar 

    9.
    Tong, S. M. & Zhang, L. Q. Differential sensitivity of growth and net photosynthetic rates in five tree species seedlings under simulated acid rain stress. Pol. J. Environ. Stud. 23, 2259–2264 (2014).
    CAS  Article  Google Scholar 

    10.
    Wu, X. & Liang, C. J. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid. Environ. Sci. Pollut. Res. 24, 4860–4870 (2017).
    CAS  Article  Google Scholar 

    11.
    Hu, W. J. et al. Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels. Plant Soil 380, 285–303 (2014).
    CAS  Article  Google Scholar 

    12.
    Luo, S. P., He, B. H., Zeng, Q. P., Li, N. J. & Yang, L. Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. J. Mt. Sci. 17, 1398–1409 (2020).
    Article  Google Scholar 

    13.
    Zhang, M. Y., Wang, S. J., Wu, F. C., Yuan, X. H. & Zhang, Y. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 84, 311–322 (2007).
    CAS  Article  Google Scholar 

    14.
    Li, Y. F., Wang, Y. J., Wang, B. & Wang, Y. Q. Response of soil respiration and its components to simulated acid rain in a typical forest stand in the three gorges reservoir area. Environ. Sci. 40, 1457–1467. https://doi.org/10.13227/j.hjkx.201803170 (2019).
    Article  Google Scholar 

    15.
    Wu, G. Effect of acidic deposition on productivity of forest ecosystem and estimation of its economic losses in southern suburbs of Chongqing China. J. Environ. Sci-China 10, 83–88. http://kns.cnki.net/kns/detail/detail.aspx?FileName=HJKB802.010&DbName=CJFQ1998 (1998).

    16.
    Quan, W. X. & Ding, G. J. Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinusmassoniana Lamb.). Acta. Physiol. Plant. 39, 258 (2017).
    Article  CAS  Google Scholar 

    17.
    He, Y. L. et al. Physiological responses of needles of Pinus massoniana elite families to phosphorus stress in acid soil. J. For. Res. 24, 325–332 (2013).
    CAS  Article  Google Scholar 

    18.
    DeHayes, D. H., Schaberg, P. G., Hawley, G. J. & Strimbeck, G. R. Acid rain impacts on calcium nutrition and forest health. Bioscience 49, 789–800 (1999).
    Article  Google Scholar 

    19.
    Ju, S. M., Wang, L. P. & Chen, J. Y. Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryzasativa L. seedlings under acid rain stress. Silicon 12, 655–664 (2020).
    CAS  Article  Google Scholar 

    20.
    Ma, Y., Guo, L. Q., Wang, H. X., Bai, B. & Shi, D. C. Accumulation, distribution, and physiological contribution of oxalic acid and other solutes in an alkali-resistant forage plant, Kochiasieversiana, during adaptation to saline and alkaline conditions. J. Plant Nutr. Soil Sci. 174, 655–663 (2011).
    CAS  Article  Google Scholar 

    21.
    Rajniak, J. et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14, 442–450 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Zhang, H. et al. Colonization on cucumber root and enhancement of chlorimuron-ethyl degradation in rhizosphere by Hansschlegelia zhihuaiae S113 and root exudates. J. Agric. Food Chem. 66, 4584–4591 (2018).
    CAS  PubMed  Article  Google Scholar 

    23.
    Chen, Y. T., Wang, Y. & Yeh, K. C. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 39, 66–72 (2017).
    CAS  PubMed  Article  Google Scholar 

    24.
    Yan, F., Schubert, S. & Mengel, K. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zeamays L.) and broad bean (Viciafaba L.). Plant Physiol. 99, 415–421 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Hu, X. F., Wu, A. Q., Wang, F. C. & Chen, F. S. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation. Environ. Monit. Assess. 191, 99 (2019).
    PubMed  Article  CAS  Google Scholar 

    26.
    Ericsson, T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169, 205–214 (1995).
    Article  Google Scholar 

    27.
    Liu, J. X., Zhou, G. Y., Yang, C. W., Ou, Z. Y. & Peng, C. L. Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schimasuperba Gardn. & Champ. and Pinusmassoniana Lamb. to simulated acid rain at Dinghushan biosphere reserve, china. Acta Physiol. Plant. 29, 33–38 (2007).
    Article  CAS  Google Scholar 

    28.
    Liang, C. J. & Zhang, B. J. Effect of exogenous calcium on growth, nutrients uptake and plasma membrane H+-ATPase and Ca2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress. Ecotoxicol. Environ. Safe 165, 261–269 (2018).
    CAS  Article  Google Scholar 

    29.
    Li, X. W. et al. Boron alleviates aluminum toxicity by promoting root alkalization in transition zone via polar auxin transport. Plant Physiol. 177, 1254–1266 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Wagatsuma, T. The membrane lipid bilayer as a regulated barrier to cope with detrimental ionic conditions: making new tolerant plant lines with altered membrane lipid bilayer. Soil Sci. Plant Nutr. 63, 507–516 (2017).
    CAS  Article  Google Scholar 

    31.
    Liang, C. J., Ma, Y. J. & Li, L. R. Comparison of plasma membrane H+-ATPase response to acid rain stress between rice and soybean. Environ. Sci. Pollut. Res. 27, 6389–6400 (2020).
    CAS  Article  Google Scholar 

    32.
    Guo, Q., Liu, L. & Barkla, B. J. Membrane lipid remodeling in response to salinity. Int. J. Mol. Sci. 20, 4264 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    33.
    Pellet, D. M., Grunes, D. L. & Kochian, L. V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zeamays L.). Planta 196, 788–795 (1995).
    CAS  Article  Google Scholar 

    34.
    Wang, H. H. et al. Organic acids enhance the uptake of lead by wheat roots. Planta 225, 1483–1494 (2007).
    CAS  PubMed  Article  Google Scholar 

    35.
    Li, Z. R. et al. Effect of root exudates of intercropping vicia faba and arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. Int. J. Phytoremediat. 21, 4–13 (2019).
    CAS  Article  Google Scholar 

    36.
    Jia, H., Hou, D. Y., Dai, Y., Lu, H. L. & Yan, C. L. Effects of root exudates on the mobility of pyrene in mangrove sediment water system. CATENA 162, 396–401 (2018).
    CAS  Article  Google Scholar 

    37.
    Ahmed, I. M. et al. Physiological and molecular analysis on root growth associated with the tolerance to aluminumand drought individual and combined in Tibetan wild and cultivated barley. Planta 243, 973–985 (2016).
    CAS  PubMed  Article  Google Scholar 

    38.
    Wang, P., Bi, S. P., Wang, S. & Ding, Q. Y. Variation of wheat root exudates under aluminum stress. J. Agric. Food Chem. 54, 10040–10046 (2006).
    CAS  PubMed  Article  Google Scholar 

    39.
    Yao, Y. et al. Thallium-induced oxalate secretion from rice (Oryzasativa L.) root contributes to the reduction of Tl(III) to Tl(I). Environ. Exp. Bot. 155, 387–393 (2018).
    CAS  Article  Google Scholar 

    40.
    Javed, M. et al. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthusviridis L. and Portulacaoleracea L. under lead chloride stress. Environ. Sci. Pollut. Res. 25, 2958–2971 (2017).
    Article  CAS  Google Scholar 

    41.
    Wang, P., Bi, S. P., Ma, L. P. & Han, W. Y. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to the irrhizosphere pH and organic acids exuded from roots. J. Agric. Food. Chem. 54, 10033–10039 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Tu, J., Wang, H. S., Zhang, Z. F., Jin, X. & Li, W. Q. Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003. Atmos. Res. 73, 283–298 (2005).
    CAS  Article  Google Scholar 

    43.
    Liang, C. J. & Wang, W. M. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ. Sci. Pollut. Res. 20, 8182–8191 (2013).
    CAS  Article  Google Scholar 

    44.
    Tang, X. R., Li, W. P., Zuo, H. S. & Yin, Y. L. Study on the growth stability of Pinus Massoniana. J. Hunan For. Sci. Technol. 29, 20–24, http://kns.cnki.net/kns/detail/detail.aspx?FileName=HLKJ200204005&DbName=CJFQ2002 (2002) (in Chinese).

    45.
    Jia, X. M. et al. Comparative physiological responses and adaptive strategies of apple Malushalliana to salt, alkali and saline-alkali stress. Sci. Hortic. Amsterdam 245, 154–162 (2019).
    CAS  Article  Google Scholar 

    46.
    Inoue, S. & Kinoshita, T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol. 174, 531–538 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Wang, S. L., Fan, C. N. Q. & Wang, P. Determination of ultra-trace organic acid in Masson pine (Pinusmassoniana L.) by accelerated solvent extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 981–982, 1–8 (2015).
    Google Scholar 

    48.
    Yao, Y. W., Ren, B. L., Yang, Y., Huang, C. J. & Li, M. Y. Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process. J. Hazard. Mater. 361, 141–151 (2019).
    CAS  PubMed  Article  Google Scholar  More