More stories

  • in

    Publisher Correction: Social value shift in favour of biodiversity conservation in the United States

    Affiliations

    Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
    Michael J. Manfredo, Tara L. Teel & Richard E. W. Berl

    School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
    Jeremy T. Bruskotter

    Department of Psychology, University of Michigan, Ann Arbor, MI, USA
    Shinobu Kitayama

    Authors
    Michael J. Manfredo

    Tara L. Teel

    Richard E. W. Berl

    Jeremy T. Bruskotter

    Shinobu Kitayama

    Corresponding author
    Correspondence to Michael J. Manfredo. More

  • in

    Soil fungal and bacterial communities in southern boreal forests of the Greater Khingan Mountains and their relationship with soil properties

    1.
    Gattinger, A., Palojärvi, A. & Schloter, M. Soil microbial communities and related Functions. in Perspectives for agroecosystem management (eds. Schröder P., Pfadenhauer J. & Munch J. C.) 279–292 (Elsevier, 2008).
    2.
    Renella, G. et al. Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol. Biochem. 36, 443–451 (2004).
    CAS  Article  Google Scholar 

    3.
    Ros, M., Pascual, J. A., Garcia, C., Hernandez, M. T. & Insam, H. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 38, 3443–3452 (2006).
    CAS  Article  Google Scholar 

    4.
    Krishnan, A., Alias, S. A., Wong, C. M. V. L., Pang, K. & Convey, P. Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol. 34, 1535–1542 (2011).
    Article  Google Scholar 

    5.
    Bronson, K. F. et al. Carbon and nitrogen pools of southern high plains cropland and grassland soils. Soil Sci. Soc. Am. J. 68, 1695 (2004).
    ADS  CAS  Article  Google Scholar 

    6.
    Liu, S. et al. Estimation of plot-level soil carbon stocks in China’s forests using intensive soil sampling. Geoderma 348, 107–114 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Kapusta, P., Sobczyk, A., Rożen, A. & Weiner, J. Species diversity and spatial distribution of enchytraeid communities in forest soils: effects of habitat characteristics and heavy metal contamination. Appl. Soil Ecol. 23, 187–198 (2003).
    Article  Google Scholar 

    8.
    Romanowicz, K. J. et al. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol. Ecol. 92, w149 (2016).
    Article  CAS  Google Scholar 

    9.
    Ilstedt, U. & Singh, S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol. Biochem. 37, 1407–1410 (2005).
    CAS  Article  Google Scholar 

    10.
    Liu, L., Gundersen, P., Zhang, T. & Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 44, 31–38 (2012).
    Article  CAS  Google Scholar 

    11.
    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).
    CAS  Article  Google Scholar 

    12.
    Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39, 1878–1887 (2007).
    CAS  Article  Google Scholar 

    13.
    Gadd, G. M. Microorganisms in soils: roles in genesis and functions. Soil Biology. 3, 325–356 (2005).
    CAS  Article  Google Scholar 

    14.
    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).
    ADS  Article  Google Scholar 

    15.
    Pietri, J. A. & Brookes, P. C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 40, 1856–1861 (2008).
    Article  CAS  Google Scholar 

    16.
    Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth. 2, 349–360 (2020).
    Article  Google Scholar 

    17.
    Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Global Change Biol. 24, e416–e431 (2018).
    Article  Google Scholar 

    18.
    Juday, G. P. Taiga. (2019) Available at: https://www.britannica.com/science/taiga (Accessed: October 15, 2020.

    19.
    Hu, L. et al. Spatiotemporal dynamics in vegetation GPP over the Great Khingan Mountains using GLASS products from 1982 to 2015. Remote Sens. Basel. 10, 488 (2018).
    ADS  Article  Google Scholar 

    20.
    Jiang, H., Apps, M. J., Peng, C., Zhang, Y. & Liu, J. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecol. Manag. 169, 65–82 (2002).
    Article  Google Scholar 

    21.
    Tang, H. et al. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China. Remote Sens.-Basel. 7, 11914–11932 (2015).

    22.
    Greene, D. F. et al. A review of the regeneration dynamics of North American boreal forest tree species. Can. J. Forest Res. 29, 824–839 (1999).
    ADS  Article  Google Scholar 

    23.
    Yuan, Z. Y. & Chen, H. Y. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit. Rev. Plant Sci. 29, 204–221 (2010).
    CAS  Article  Google Scholar 

    24.
    Sanderson, L. A., McLaughlin, J. A. & Antunes, P. M. The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry 85, 329–340 (2012).
    Article  Google Scholar 

    25.
    Kreutzweiser, D. P., Hazlett, P. W. & Gunn, J. M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: a review. Environ. Rev. 16, 157–179 (2008).
    CAS  Article  Google Scholar 

    26.
    Dhar, A. et al. Plant community development following reclamation of oil sands mine sites in the boreal forest: a review. Environ. Rev. 26, 286–298 (2018).
    Article  Google Scholar 

    27.
    Simard, D. G., Fyles, J. W., Paré, D. & Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 81, 229–237 (2001).
    CAS  Article  Google Scholar 

    28.
    Ohtonen, R. & Väre, H. Vegetation composition determines microbial activities in a boreal forest soil. Microb. Ecol. 36, 328–335 (1998).
    CAS  PubMed  Article  Google Scholar 

    29.
    Nilsson, M., Wardle, D. A. & Dahlberg, A. Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86, 16–26 (1999).
    Article  Google Scholar 

    30.
    Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573 (2010).
    PubMed  Article  Google Scholar 

    31.
    Buckley, D. H. & Schmidt, T. M. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5, 441–452 (2003).
    PubMed  Article  Google Scholar 

    32.
    Jangid, K. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 43, 2184–2193 (2011).
    CAS  Article  Google Scholar 

    33.
    Wal, A. V. D. et al. Fungal biomass development in a chronosequence of land abandonment. Soil Biol. Biochem. 38, 51–60 (2006).
    Article  CAS  Google Scholar 

    34.
    Fu, X. et al. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Sci. Total Environ. 502, 280–286 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Kalinina, O. et al. Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools. Geoderma 162, 196–206 (2011).
    ADS  CAS  Article  Google Scholar 

    36.
    Gao, Y. et al. Influence of forest type on dark-spored myxomycete community in subtropical forest soil, China. Soil Biol. Biochem. 138, 107606 (2019).
    CAS  Article  Google Scholar 

    37.
    Sheng, Y. et al. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. MicrobiologyOpen. 8, e874 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Vatani, L., Hosseini, S. M., Sarjaz, M. R. & Alavi, S. J. Tree species effects on albedo, soil carbon and nitrogen stocks in a temperate forest in Iran. Aus. J. For. Sci. 136, 283–310 (2019).
    Google Scholar 

    39.
    Bauhus, J., Paré, D. & Co Té, L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol. Biochem. . 30, 1077–1089 (1998).

    40.
    Dukunde, A., Schneider, D., Schmidt, M., Veldkamp, E. & Daniel, R. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front. Microbiol. 10, 1–17 (2019).
    Article  Google Scholar 

    41.
    Tajik, S., Ayoubi, S., Khajehali, J. & Shataee, S. Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arab. J. Geosci. 12, 368 (2019).
    Article  CAS  Google Scholar 

    42.
    Stingl, U. & Giovannoni, S. J. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).
    ADS  PubMed  Article  CAS  Google Scholar 

    43.
    Danger, M., Daufresne, T., Lucas, F., Pissard, S. & Lacroix, G. Does Liebig’s law of the minimum scale up from species to communities?. Oikos 117, 1741–1751 (2008).
    Article  Google Scholar 

    44.
    Sakurai, M., Suzuki, K., Onodera, M., Shinano, T. & Osaki, M. Analysis of bacterial communities in soil by PCR–DGGE targeting protease genes. Soil Biol. Biochem. 39, 2777–2784 (2007).
    CAS  Article  Google Scholar 

    45.
    Wang, Y. et al. Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils—a comparative study between broadleaf and coniferous plantations. Geoderma 355, 113914 (2019).
    ADS  CAS  Article  Google Scholar 

    46.
    Wan, X. et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil. 387, 103–116 (2015).
    CAS  Article  Google Scholar 

    47.
    Amtmann, A., Troufflard, S. & Armengaud, P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plantarum. 133, 582–691 (2008).
    Article  CAS  Google Scholar 

    48.
    Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plantarum. 133, 670–681 (2008).
    CAS  Article  Google Scholar 

    49.
    Markewitz, D. & Richter, D. D. Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. Forest Ecol. Manag. 130, 109–129 (2000).
    Article  Google Scholar 

    50.
    Tripler, C. E., Kaushal, S. S. & Likens, G. E. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).
    PubMed  Article  Google Scholar 

    51.
    Mori, T. et al. Testing potassium limitation on soil microbial activity in a sub-tropical forest. J. For. Res. 30, 2341–2347 (2019).
    CAS  Article  Google Scholar 

    52.
    Vuong, T. M. D., Zeng, J. Y. & Man, X. L. Spatial distribution andmonthly dynamics of soil carbon/nitrogen and hydrolases in Pinus sylvestris var. mongolica Litv. natural forest. Scientia Silvae Sinicae. 56, 40–47 (2020).

    53.
    Zeng, J. et al. An investigation into whether effect of tree species on soil microbial community is related with deciduous property or leaf shape. CATENA 195, 104699 (2020).
    Article  Google Scholar 

    54.
    Wu, Y. et al. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Appl. Soil Ecol. 43, 234–240 (2009).
    Article  Google Scholar 

    55.
    Washburn, C. & Arthur, M. A. Spatial variability in soil nutrient availability in an oak-pine forest: Potential effects of tree species. Can. J. For. Res. 33, 2321–2330 (2003).
    Article  Google Scholar 

    56.
    Azeez, J. O. Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria. J. For. Res. 30, 1903–1911 (2019).
    CAS  Article  Google Scholar 

    57.
    Ha, T. Effectiveness of the Vietnamese Good Agricultural Practice (VietGAP) on Plant Growth and Quality of Choy Sum (Brassica rapa var. parachinensis) in Northern Vietnam. Aceh International Journal of Science and Technology. 3, 80–87 (2014).

    58.
    Jia, Z. et al. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 7, 6924–6937 (2015).
    Article  CAS  Google Scholar 

    59.
    Zhang, Y., Sui, B., Shen, H. & Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: a comparison of random forest models with different predictors. Comput. Electron. Agric. 160, 23–30 (2019).
    Article  Google Scholar 

    60.
    Sun, H. et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 673, 502–510 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    61.
    Ye, C. et al. Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Sci. Total Environ. 664, (2019).

    62.
    Li, J., Zhou, L. & Lin, W. Calla lily intercropping in rubber tree plantations changes the nutrient content, microbial abundance, and enzyme activity of both rhizosphere and non-rhizosphere soil and calla lily growth. Ind. Crop. Prod. (2019).

    63.
    Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils. 6, 68–72 (1988).
    CAS  Article  Google Scholar 

    64.
    Ladd, J. N. & Butler, J. H. A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4, 19–30 (1972).
    CAS  Article  Google Scholar 

    65.
    Ross, D. J. & Roberts, H. S. Enzyme activities and oxygen uptakes of soils under pasture in temperature and rainfall sequences. Eur. J. Soil Sci. 21, 368–381 (1970).
    CAS  Article  Google Scholar 

    66.
    Sharma, N., Bhalla, T. C. & Bhatt, A. K. Partial purification and characterization of extracellular cellulase from a strain of Trichoderma viride isolated from forest soil. Folia Microbiol. 36, 353–359 (1991).
    CAS  Article  Google Scholar 

    67.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).
    CAS  Article  Google Scholar 

    70.
    Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 75, 7537–7541 (2009).
    CAS  Article  Google Scholar 

    71.
    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 1–7 (2011).
    CAS  Article  Google Scholar 

    72.
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    73.
    Oksanen, J. et al. Package “vegan”. Commun. Ecol. Package, Version 2, 1–295 (2013).
    Google Scholar 

    74.
    Box, J. F. Guinness, Gosset, Fisher, and small samples. Stat. Sci. 2, 45–52 (1987).
    MathSciNet  MATH  Article  Google Scholar 

    75.
    Holland, S. M. Principal Components Analysis (PCA) 30602–32501 (Department of Geology, University of Georgia, Athens, GA, 2008).
    Google Scholar 

    76.
    Vu, V. Q. ggbiplot: A ggplot2 based biplot. R package. 342, (2011).

    77.
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Article  Google Scholar 

    78.
    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Morphological function of toe fringe in the sand lizard Phrynocephalus mystaceus

    1.
    Higham, T. E. The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr. Comp. Biol. 47, 82–95 (2007).
    PubMed  Article  Google Scholar 
    2.
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Stud. Behav. 16, 229–249 (1986).
    Article  Google Scholar 

    3.
    Cooper, W. E. Jr. & Frederick, W. G. Optimal flight initiation distance. J. Theor. Biol. 244, 59–67 (2007).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    4.
    Darwin, C. The Voyage of the Beagle (Doubleday and Co, New York, 1962).
    Google Scholar 

    5.
    Arnold, E. N. Identifying the effects of history on adaptation – origins of different sand-diving techniques in lizards. J. Zool. 235, 351–388 (1995).
    Article  Google Scholar 

    6.
    Attum, O., Eason, P. & Cobbs, G. Morphology, niche segregation, and escape tactics in a sand dune lizard community. J. Arid Environ. 68, 564–573 (2007).
    ADS  Article  Google Scholar 

    7.
    Kacoliris, F., Williams, J. & Molinari, A. Selection of key features of vegetation and escape behavior in the sand dune lizard (Liolaemus multimaculatus). Anim. Biol. 60, 157–167 (2010).
    Article  Google Scholar 

    8.
    Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).
    Article  Google Scholar 

    9.
    Losos, J. B. & Sinervo, B. The effect of morphology and perch diameter on sprint performance of Anolis Lizards. J. Exp. Biol. 145, 23–30 (1989).
    Google Scholar 

    10.
    Losos, J. B. & Irschick, D. J. The effect of perch diameter on escape behavior of Anolis lizards: laboratory predictions and field tests. Anim. Behav. 51, 593–602 (1996).
    Article  Google Scholar 

    11.
    Luke, C. Convergent evolution of lizard toe fringes. Biol. J. Linn. Soc. 27, 1–16 (1986).
    ADS  Article  Google Scholar 

    12.
    Carothers, J. H. An experimental confirmation of morphological adaptation: toe fringes in the sand-dwelling lizard Uma scoparia. Evolution 40, 871–874 (1986).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Irschick, D. J. & Jayne, B. C. Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. J. Exp. Biol. 21, 273–287 (1998).
    Google Scholar 

    14.
    Korff, W. L. & McHenry, M. J. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides). J. Exp. Biol. 214, 122–130 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Bergmann, P. J. & Irschick, D. J. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards. Evolution 64, 1569–1582 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Li, C., Hsieh, S. T. & Goldman, D. I. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides). J. Exp. Biol. 215, 3293–3308 (2012).
    PubMed  Article  Google Scholar 

    17.
    Zhao, E. M., Zhao, K. T. & Zhou, K. Y. Fauna Sinica, Reptilian Vol. 2, Squamata (Beijing Science Press, Beijing, Lacertilia, 1999).
    Google Scholar 

    18.
    Solovyeva, E. N. et al. Cenozoic aridization in Central Eurasia shaped diversification of toad-headed agamas (Phrynocephalus; Agamidae, Reptilia). Peer. J. 6, e4543 (2018).
    PubMed  Article  CAS  Google Scholar 

    19.
    Jiang, Z. G. et al. Red List of China’s Vertebrates. Biodivers. Sci. 24, 550–551 (2016).
    Google Scholar 

    20.
    Du, W. G., Lin, C. X., Shou, L. & Ji, X. Morphological correlates of locomotor performance in four species of lizards using different habitats. Zool. Res. 26, 41–46 (2005).
    CAS  Google Scholar 

    21.
    Pérez, A. & Fabré, N. N. Spatial population structure of the Neotropical tiger catfish Pseudoplatystoma metaense: skull and otolith shape variation. J. Fish Biol. 82, 1453–1468 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Higham, T. E. & Russel, A. P. Divergence in locomotor performance, ecology, and morphology between two sympatric sister species of desert-dwelling gecko. Biol. J. Linn. Soc. 101, 860–869 (2010).
    Article  Google Scholar 

    23.
    King, R. B. Analyzing the relationship between clutch size and female body size in reptiles. J. Herpetol. 34, 148–150 (2000).
    Article  Google Scholar 

    24.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: apractical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).
    MATH  Google Scholar 

    25.
    Imdadullah, M., Aslam, M. & Altaf, S. mctest: an R package for detection of collinearity among regressors. R. J. 8, 495–505 (2016).
    Article  Google Scholar 

    26.
    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
    Article  Google Scholar 

    27.
    Garthwaite, P. H. An interpretation of partial least squares. J. Am. Stat. Ass. 89, 122–127 (1994).
    MathSciNet  MATH  Article  Google Scholar 

    28.
    Abdi, H. Partial least squares regression and projection on latent structure regression. Wiley Interdiscip. Rev. Comput. 2, 97–106 (2010).
    Article  Google Scholar 

    29.
    Lesku, J. A., Roth, T. C. II., Amlaner, C. J. & Lima, S. L. A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology. Am. Nat. 168, 441–453 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Mitchell, R. J. Testing evolutionary and ecological hypotheses using path analysis and structural equation modeling. Funct. Ecol. 6, 123–129 (1992).
    Article  Google Scholar 

    31.
    Wootton, J. T. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75, 151–165 (1994).
    Article  Google Scholar 

    32.
    Arnold, S. J. Species densities of predators and their prey. Am. Nat. 106, 220–236 (1972).
    Article  Google Scholar 

    33.
    Team, R. C. A Language and Environment for Statistical Computing. Vienna: the R Foundation for Statistical Computing. http://www.R-project.org/ (2020).

    34.
    Irschick, D. J. & Garland, T. Jr. Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu. Rev. Ecol. Syst. 32, 367–396 (2001).
    Article  Google Scholar 

    35.
    Damme, R. V. & Vanhooydonck, B. Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202 (2001).
    Article  Google Scholar 

    36.
    Ballinger, R. E., Nietfeldt, J. W. & Krupa, J. J. An experimental analysis of the role of the tail in a high running speed in Cnemidophorus sexlineatus (Reptilia; Squamata: Lacertilia). Herpetology 35, 114–116 (1979).
    Google Scholar 

    37.
    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).
    Article  Google Scholar 

    38.
    Johnson, T. P., Swoap, S. J., Bennett, A. F. & Josephson, R. K. Body size, muscle power output and limitations on burst locomotor performance in the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 185–197 (1993).
    Google Scholar 

    39.
    Punzo, F. Tail Autotomy and running speed in the lizards Cophosaurus texanus and Uma notata. J. Herpetol. 16, 329–331 (1982).
    Article  Google Scholar 

    40.
    Borges-Landáez, P. A. & Shine, R. Influence of toe-clipping on running speed in Eulamprus quoyii, an Australian scincid lizard. J. Herpetol. 37, 592–595 (2003).
    Article  Google Scholar 

    41.
    Vanhooydonck, B., Damme, R. V. & Aerts, P. Variation in speed, gait characteristics and microhabitat use in lacertid lizards. J. Exp. Biol. 205, 1037–1046 (2002).
    PubMed  Google Scholar 

    42.
    Darwin, C. R. On the Origin of Species by Means of Natural Selection (Harvard University Press, Cambridge, 1859).
    Google Scholar 

    43.
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    PubMed  Article  Google Scholar 

    44.
    Ricklefs, R. E. & Miles, D. B. Ecological and evolutionary inferences from morphology: an ecological perspective. In Ecological Morphology: Integrative and Organismal Biology (eds Wainwright, P. C. & Reilly, S. M.) 13–41 (University of Chicago Press, Chicago, 1994).
    Google Scholar 

    45.
    Dornburg, A., Sidlaukas, B., Santini, F. & Alfaro, N. M. E. The influence of an innovative locomotor strategy on the phenotypic diversifcation of triggerfsh (Family: Balistidae). Evolution 65, 1912–1926 (2011).
    PubMed  Article  Google Scholar 

    46.
    Vermeij, G. J. Historical contingency and the purported uniqueness of evolutionary innovations. Proc. Natl. Acad. Sci. USA 103, 1804–1809 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Collins, C. E. & Higham, T. E. Individuals of the common Namib Day Gecko vary in how adaptive simplification alters sprint biomechanics. Sci. Rep. 7, 15595 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Cameron, S. F., Wynn, M. L. & Wilson, R. S. Sex-specific trade-offs and compensatory mechanisms: bite force and sprint speed pose conflicting demands on the design of geckos (Hemidactylus frenatus). J. Exp. Biol. 216, 3781–3789 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Stebbins, R. C. Some aspects of the ecology of the iguanid genus Uma. Ecol. Monogr. 14, 311–332 (1944).
    Article  Google Scholar 

    50.
    Evans, J. S., Eifler, D. A. & Eifler, M. A. Sand-diving as an escape tactic in the lizard Meroles anchietae. J. Arid Environ. 140, 1–5 (2017).
    ADS  Article  Google Scholar 

    51.
    Halloy, M., Etheridge, R. & Burghardt, G. M. To bury in sand: Phylogenetic relationships among lizard species of the boulengeri group, Liolaemus (Reptilia: Squamata: Tropiduridae), based on behavioral characters. Herpetol. Monogr. 12, 1–37 (1998).
    Article  Google Scholar 

    52.
    Bauwens, D., Garland, T., Castilla, A. M. & Van Damme, R. Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49, 848–863 (1995).
    PubMed  PubMed Central  Google Scholar 

    53.
    Bonine, K. E. & Garland, T. J. Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. 248, 255–265 (1999).
    Article  Google Scholar 

    54.
    Shimada, T., Kadau, D., Shinbrot, T. & Herrmann, H. J. Swimming in granular media. Phys. Rev. E. 80, 020301 (2009).
    ADS  Article  CAS  Google Scholar 

    55.
    Maladen, R. D., Ding, Y., Li, C. & Goldman, D. I. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Sci. 325, 314–318 (2009).
    ADS  CAS  Article  Google Scholar 

    56.
    Sharpe, S. S., Ding, Y. & Goldman, D. I. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus. J. Exp. Biol. 216, 260–274 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Edwards, S., Herrel, A., Vanhooydonck, B., Measey, G. J. & Tolley, K. A. Diving in head first: morphology and performance is linked to predator escape strategy in desert lizards (Meroles, Lacertidae, Squamata). Biol. J. Linn. Soc. 119, 919–931 (2016).
    Article  Google Scholar 

    58.
    Bergmann, P. J., Pettinelli, K. J., Crockett, M. E. & Schaper, E. G. It’s just sand between the toes: how particle size and shape variation affect running performance and kinematics in a generalist lizard. J. Exp. Biol. 220, 3706–3716 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Arnold, E. N. Why do morphological phylogenies vary in quality—an investigation based on the comparative history of lizard clades. Proc. R. Soc. B. 240, 135–172 (1990).
    ADS  CAS  Google Scholar 

    60.
    Stellatelli, O. A., Block, C., Vega, L. E. & Cruz, F. B. Nonnative vegetation induces changes in predation pressure and escape behavior of two sand lizards (Liolaemidae: Liolaemus). Herpetology 71, 136–142 (2015).
    Article  Google Scholar 

    61.
    Etheridge, R. & de Queiroz, K. A phylogeny of Iguanidae. In Phylogenetic relationships of the lizard families, essays commemorating Charles L. Camp (eds Estes, R. & Pregill, G.) 283–368 (Stanford University Press, Stanford, 1988).
    Google Scholar 

    62.
    Pang, J. F. et al. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 27, 398–409 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Guo, X. & Wang, Y. Partitioned Bayesian analyses, dispersal—vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a reevaluation. Mol. Phylogenet. Evol. 45, 643–662 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Acid resistance of Masson pine (Pinus massoniana Lamb.) families and their root morphology and physiological response to simulated acid deposition

    1.
    Reis, S. et al. From acid rain to climate change. Science 338, 1153–1154 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Wang, L., Chen, Z., Shang, H., Wang, J. & Zhang, P. Y. Impact of simulated acid rain on soil microbial community function in Masson pine seedlings. Electron. J. Biotechnol. 17, 199–203 (2014).
    CAS  Article  Google Scholar 

    3.
    Wang, W. X. & Xu, P. J. Research progress in precipitation chemistry in China. Prog. Chem. 21, 266–281 (2010).
    Google Scholar 

    4.
    Meng, Y. et al. Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmos. Res. 222, 12–24 (2019).
    CAS  Article  Google Scholar 

    5.
    Busch, G. et al. Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario. Environ. Sci. Pollut. Res. 8, 95–102 (2001).
    CAS  Article  Google Scholar 

    6.
    Wang, Y. et al. Phenotypic response of tobacco leaves to simulated acid rain and its impact on photosynthesis. Int. J. Agric. Biol. 21, 391–398 (2019).
    CAS  Google Scholar 

    7.
    Ramlall, C. et al. Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. Physiol. Plant. 153, 149–160 (2015).
    CAS  PubMed  Article  Google Scholar 

    8.
    Wang, X. Q., Liu, Z., Niu, L. & Fu, B. Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: A proteomic analysis. Trees Struct. Funct. 27, 297–309 (2013).
    Article  CAS  Google Scholar 

    9.
    Tong, S. M. & Zhang, L. Q. Differential sensitivity of growth and net photosynthetic rates in five tree species seedlings under simulated acid rain stress. Pol. J. Environ. Stud. 23, 2259–2264 (2014).
    CAS  Article  Google Scholar 

    10.
    Wu, X. & Liang, C. J. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid. Environ. Sci. Pollut. Res. 24, 4860–4870 (2017).
    CAS  Article  Google Scholar 

    11.
    Hu, W. J. et al. Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels. Plant Soil 380, 285–303 (2014).
    CAS  Article  Google Scholar 

    12.
    Luo, S. P., He, B. H., Zeng, Q. P., Li, N. J. & Yang, L. Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. J. Mt. Sci. 17, 1398–1409 (2020).
    Article  Google Scholar 

    13.
    Zhang, M. Y., Wang, S. J., Wu, F. C., Yuan, X. H. & Zhang, Y. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 84, 311–322 (2007).
    CAS  Article  Google Scholar 

    14.
    Li, Y. F., Wang, Y. J., Wang, B. & Wang, Y. Q. Response of soil respiration and its components to simulated acid rain in a typical forest stand in the three gorges reservoir area. Environ. Sci. 40, 1457–1467. https://doi.org/10.13227/j.hjkx.201803170 (2019).
    Article  Google Scholar 

    15.
    Wu, G. Effect of acidic deposition on productivity of forest ecosystem and estimation of its economic losses in southern suburbs of Chongqing China. J. Environ. Sci-China 10, 83–88. http://kns.cnki.net/kns/detail/detail.aspx?FileName=HJKB802.010&DbName=CJFQ1998 (1998).

    16.
    Quan, W. X. & Ding, G. J. Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinusmassoniana Lamb.). Acta. Physiol. Plant. 39, 258 (2017).
    Article  CAS  Google Scholar 

    17.
    He, Y. L. et al. Physiological responses of needles of Pinus massoniana elite families to phosphorus stress in acid soil. J. For. Res. 24, 325–332 (2013).
    CAS  Article  Google Scholar 

    18.
    DeHayes, D. H., Schaberg, P. G., Hawley, G. J. & Strimbeck, G. R. Acid rain impacts on calcium nutrition and forest health. Bioscience 49, 789–800 (1999).
    Article  Google Scholar 

    19.
    Ju, S. M., Wang, L. P. & Chen, J. Y. Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryzasativa L. seedlings under acid rain stress. Silicon 12, 655–664 (2020).
    CAS  Article  Google Scholar 

    20.
    Ma, Y., Guo, L. Q., Wang, H. X., Bai, B. & Shi, D. C. Accumulation, distribution, and physiological contribution of oxalic acid and other solutes in an alkali-resistant forage plant, Kochiasieversiana, during adaptation to saline and alkaline conditions. J. Plant Nutr. Soil Sci. 174, 655–663 (2011).
    CAS  Article  Google Scholar 

    21.
    Rajniak, J. et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14, 442–450 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Zhang, H. et al. Colonization on cucumber root and enhancement of chlorimuron-ethyl degradation in rhizosphere by Hansschlegelia zhihuaiae S113 and root exudates. J. Agric. Food Chem. 66, 4584–4591 (2018).
    CAS  PubMed  Article  Google Scholar 

    23.
    Chen, Y. T., Wang, Y. & Yeh, K. C. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 39, 66–72 (2017).
    CAS  PubMed  Article  Google Scholar 

    24.
    Yan, F., Schubert, S. & Mengel, K. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zeamays L.) and broad bean (Viciafaba L.). Plant Physiol. 99, 415–421 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Hu, X. F., Wu, A. Q., Wang, F. C. & Chen, F. S. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation. Environ. Monit. Assess. 191, 99 (2019).
    PubMed  Article  CAS  Google Scholar 

    26.
    Ericsson, T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169, 205–214 (1995).
    Article  Google Scholar 

    27.
    Liu, J. X., Zhou, G. Y., Yang, C. W., Ou, Z. Y. & Peng, C. L. Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schimasuperba Gardn. & Champ. and Pinusmassoniana Lamb. to simulated acid rain at Dinghushan biosphere reserve, china. Acta Physiol. Plant. 29, 33–38 (2007).
    Article  CAS  Google Scholar 

    28.
    Liang, C. J. & Zhang, B. J. Effect of exogenous calcium on growth, nutrients uptake and plasma membrane H+-ATPase and Ca2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress. Ecotoxicol. Environ. Safe 165, 261–269 (2018).
    CAS  Article  Google Scholar 

    29.
    Li, X. W. et al. Boron alleviates aluminum toxicity by promoting root alkalization in transition zone via polar auxin transport. Plant Physiol. 177, 1254–1266 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Wagatsuma, T. The membrane lipid bilayer as a regulated barrier to cope with detrimental ionic conditions: making new tolerant plant lines with altered membrane lipid bilayer. Soil Sci. Plant Nutr. 63, 507–516 (2017).
    CAS  Article  Google Scholar 

    31.
    Liang, C. J., Ma, Y. J. & Li, L. R. Comparison of plasma membrane H+-ATPase response to acid rain stress between rice and soybean. Environ. Sci. Pollut. Res. 27, 6389–6400 (2020).
    CAS  Article  Google Scholar 

    32.
    Guo, Q., Liu, L. & Barkla, B. J. Membrane lipid remodeling in response to salinity. Int. J. Mol. Sci. 20, 4264 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    33.
    Pellet, D. M., Grunes, D. L. & Kochian, L. V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zeamays L.). Planta 196, 788–795 (1995).
    CAS  Article  Google Scholar 

    34.
    Wang, H. H. et al. Organic acids enhance the uptake of lead by wheat roots. Planta 225, 1483–1494 (2007).
    CAS  PubMed  Article  Google Scholar 

    35.
    Li, Z. R. et al. Effect of root exudates of intercropping vicia faba and arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. Int. J. Phytoremediat. 21, 4–13 (2019).
    CAS  Article  Google Scholar 

    36.
    Jia, H., Hou, D. Y., Dai, Y., Lu, H. L. & Yan, C. L. Effects of root exudates on the mobility of pyrene in mangrove sediment water system. CATENA 162, 396–401 (2018).
    CAS  Article  Google Scholar 

    37.
    Ahmed, I. M. et al. Physiological and molecular analysis on root growth associated with the tolerance to aluminumand drought individual and combined in Tibetan wild and cultivated barley. Planta 243, 973–985 (2016).
    CAS  PubMed  Article  Google Scholar 

    38.
    Wang, P., Bi, S. P., Wang, S. & Ding, Q. Y. Variation of wheat root exudates under aluminum stress. J. Agric. Food Chem. 54, 10040–10046 (2006).
    CAS  PubMed  Article  Google Scholar 

    39.
    Yao, Y. et al. Thallium-induced oxalate secretion from rice (Oryzasativa L.) root contributes to the reduction of Tl(III) to Tl(I). Environ. Exp. Bot. 155, 387–393 (2018).
    CAS  Article  Google Scholar 

    40.
    Javed, M. et al. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthusviridis L. and Portulacaoleracea L. under lead chloride stress. Environ. Sci. Pollut. Res. 25, 2958–2971 (2017).
    Article  CAS  Google Scholar 

    41.
    Wang, P., Bi, S. P., Ma, L. P. & Han, W. Y. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to the irrhizosphere pH and organic acids exuded from roots. J. Agric. Food. Chem. 54, 10033–10039 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Tu, J., Wang, H. S., Zhang, Z. F., Jin, X. & Li, W. Q. Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003. Atmos. Res. 73, 283–298 (2005).
    CAS  Article  Google Scholar 

    43.
    Liang, C. J. & Wang, W. M. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ. Sci. Pollut. Res. 20, 8182–8191 (2013).
    CAS  Article  Google Scholar 

    44.
    Tang, X. R., Li, W. P., Zuo, H. S. & Yin, Y. L. Study on the growth stability of Pinus Massoniana. J. Hunan For. Sci. Technol. 29, 20–24, http://kns.cnki.net/kns/detail/detail.aspx?FileName=HLKJ200204005&DbName=CJFQ2002 (2002) (in Chinese).

    45.
    Jia, X. M. et al. Comparative physiological responses and adaptive strategies of apple Malushalliana to salt, alkali and saline-alkali stress. Sci. Hortic. Amsterdam 245, 154–162 (2019).
    CAS  Article  Google Scholar 

    46.
    Inoue, S. & Kinoshita, T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol. 174, 531–538 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Wang, S. L., Fan, C. N. Q. & Wang, P. Determination of ultra-trace organic acid in Masson pine (Pinusmassoniana L.) by accelerated solvent extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 981–982, 1–8 (2015).
    Google Scholar 

    48.
    Yao, Y. W., Ren, B. L., Yang, Y., Huang, C. J. & Li, M. Y. Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process. J. Hazard. Mater. 361, 141–151 (2019).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events

    1.
    Johnson, P. W. & Sieburth, J. M. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass1. Limnol. Oceanogr. 24, 928–935 (1979).
    ADS  Article  Google Scholar 
    2.
    Waterbury, J. B., Watson, S. W., Guillard, R. L. & Brand, L. E. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277, 293–294 (1979).
    ADS  Article  Google Scholar 

    3.
    Stockner, J. G. & Antia, N. J. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43, 2472–2503 (1986).
    Article  Google Scholar 

    4.
    Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. Bull. l’Institut Oceanogr. Monaco Spec. 19, 457–475 (1999).
    Google Scholar 

    5.
    Stal, L. J. & Staal, M. Nutrient control of cyanobacterial blooms in the Baltic Sea. Aquat. Microb. Ecol. 18, 165–173 (1999).
    Article  Google Scholar 

    6.
    Paczkowska, J. et al. Allochthonous matter: An important factor shaping the phytoplankton community in the Baltic Sea. J. Plankton Res. 39, 23–34 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Gaulke, A. K., Wetz, M. S. & Paerl, H. W. Picophytoplankton: A major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary. Estuar. Coast. Shelf Sci. 90, 45–54 (2010).
    ADS  CAS  Article  Google Scholar 

    8.
    Wang, K., Wommack, K. E. & Chen, F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl. Environ. Microbiol. 77, 7459–7468 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Olson, R. J., Zettler, E. R. & DuRand, M. D. Phytoplankton analysis using flow cytometry. In Handbook of Methods in Aquatic Microbial Ecology 175–186 (Lewis Publishers, Boca Raton, 1993).

    10.
    Li, W. K. W. Cytometric diversity in marine ultraphytoplankton. Limnol. Oceanogr. 42, 874–880 (1997).
    ADS  CAS  Article  Google Scholar 

    11.
    Collier, J. L. Flow cytometry and the single cell in phycology. J. Phycol. 36, 628–644 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Liu, H., Jing, H., Wong, T. H. C. & Chen, B. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environ. Microbiol. Rep. 6, 90–99 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    13.
    Rajaneesh, K. M. & Mitbavkar, S. Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary. Mar. Environ. Res. 92, 133–143 (2013).
    Article  CAS  Google Scholar 

    14.
    Albrecht, M., Pröschold, T. & Schumann, R. Identification of cyanobacteria in a eutrophic coastal lagoon on the southern Baltic coast. Front. Microbiol. 8, 923 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).
    Article  Google Scholar 

    16.
    Murrell, M. C. & Lores, E. M. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria. J. Plankton Res. 26, 371–382 (2004).
    Article  Google Scholar 

    17.
    Xia, X., Guo, W., Tan, S. & Liu, H. Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front. Microbiol. 8, 1254 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Phlips, E. J., Badylak, S. & Lynch, T. C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Ocean. 44, 1166–1175 (1999).
    Article  Google Scholar 

    19.
    Weisse, T. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In Advances in Microbial Ecology, vol 13 (ed. Jones, J. G.) 327–370 (Springer US, New York, 1993).

    20.
    Tomas, C. R. Identifying marine phytoplankton (Academic Press, New York, 1997).
    Google Scholar 

    21.
    Gobler, C. J., Renaghan, M. J. & Buck, N. J. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Oceanogr. 47, 129–141 (2002).
    ADS  Article  Google Scholar 

    22.
    Vaquer, A., Troussellier, M., Courties, C. & Bibent, B. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast). Limnol. Oceanogr. 41, 1821–1828 (1996).
    ADS  Article  Google Scholar 

    23.
    Calvo-Diaz, A. & Moran, X. A. G. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat. Microb. Ecol. 42, 159–174 (2006).
    Article  Google Scholar 

    24.
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Ocean. 49, 168–179 (2004).
    CAS  Article  Google Scholar 

    25.
    O’Kelly, C. J., Sieracki, M. E., Thier, E. C. & Hobson, I. C. A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J. Phycol. 39, 850–854 (2003).
    Article  Google Scholar 

    26.
    Péquin, B., Mohit, V., Poisot, T., Tremblay, R. & Lovejoy, C. Wind drives microbial eukaryote communities in a temperate closed lagoon. Aquat. Microb. Ecol. 78, 187–200 (2017).
    Article  Google Scholar 

    27.
    Bec, B. et al. Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat. Microb. Ecol. 63, 29–45 (2011).
    Article  Google Scholar 

    28.
    Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea–-responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).
    ADS  Article  Google Scholar 

    29.
    Chen, F., Wang, K., Kan, J., Suzuki, M. T. & Wommack, K. E. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S–23S rRNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 72, 2239–2243 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Paerl, H. W., Pinckney, J. L., Fear, J. M. & Peierls, B. L. Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar. Ecol. Prog. Ser. 166, 17–25 (1998).
    ADS  CAS  Article  Google Scholar 

    31.
    Peierls, B. L., Hall, N. S. & Paerl, H. W. Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: A comparison of two coastal plain north carolina estuaries. Estuar. Coasts 35, 1376–1392 (2012).
    Article  Google Scholar 

    32.
    Paerl, H. W. et al. Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry 141, 307–332 (2018).
    ADS  CAS  Article  Google Scholar 

    33.
    Wetz, M. S., Paerl, H. W., Taylor, J. C. & Leonard, J. A. Environmental controls upon picophytoplankton growth and biomass in a eutrophic estuary. Aquat. Microb. Ecol. 63, 133–143 (2011).
    Article  Google Scholar 

    34.
    Apple, J. K., Strom, S. L., Palenik, B. & Brahamsha, B. Variability in protist grazing and growth on different marine Synechococcus isolates. Appl. Environ. Microbiol. 77, 3074–3084 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Zwirglmaier, K., Spence, E. D., Zubkov, M. V., Scanlan, D. J. & Mann, N. H. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ. Microbiol. 11, 1767–1776 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Paz-Yepes, J., Brahamsha, B. & Palenik, B. Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc. Natl. Acad. Sci. 110, 12030–12035 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Wall, C., Rodgers, B., Gobler, C. & Peterson, B. Responses of loggerhead sponges Spechiospongia vesparium during harmful cyanobacterial blooms in a sub-tropical lagoon. Mar. Ecol. Prog. Ser. 451, 31–43 (2012).
    ADS  Article  Google Scholar 

    38.
    Hamilton, T. J., Paz-Yepes, J., Morrison, R. A., Palenik, B. & Tresguerres, M. Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour. Conserv. Physiol. 2, cuo020 (2014).
    Article  Google Scholar 

    39.
    Bales, J. D. Effects of Hurricane Floyd inland flooding, September–October 1999, on tributaries to Pamlico Sound, North Carolina. Estuaries 26, 1319–1328 (2003).
    Article  Google Scholar 

    40.
    Paerl, H. W. et al. Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift. Sci. Rep. 9, 10620 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Osburn, C. L., Rudolph, J. C., Paerl, H. W., Hounshell, A. G. & Van Dam, B. R. Lingering carbon cycle effects of Hurricane Matthew in North Carolina’s coastal waters. Geophys. Res. Lett. 46, 2654–2661 (2019).
    ADS  CAS  Article  Google Scholar 

    42.
    Paerl, H. W., Rossignol, K. L., Hall, S. N., Peierls, B. L. & Wetz, M. S. Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted neuse river estuary, North Carolina, USA. Estuar. Coasts 33, 485–497 (2010).
    CAS  Article  Google Scholar 

    43.
    Six, C., Sherrard, R., Lionard, M., Roy, S. & Campbell, D. A. Photosystem II and pigment dynamics among ecotypes of the green alga Ostreococcus. Plant Physiol. 151, 379–390 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Bec, B., Husseini-Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).
    CAS  Article  Google Scholar 

    45.
    Mohan, A. P., Jyothibabu, R., Jagadeesan, L., Lallu, K. R. & Karnan, C. Summer monsoon onset-induced changes of autotrophic pico-and nanoplankton in the largest monsoonal estuary along the west coast of India. Environ. Monit. Assess. 188, 93 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    46.
    Paerl, H. W. et al. Microbial indicators of aquatic ecosystem change: Current applications to eutrophication studies. In FEMS Microbiology Ecology 46, 233–246 (Elsevier, Amsterdam, 2003).

    47.
    NC Weather Forecast Office Newport/Morehead City. Post Tropical Cyclone Report—Hurricane Florence. National Weather Service (2018).

    48.
    Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).
    ADS  CAS  Article  Google Scholar 

    49.
    Schlitzer, R. Ocean Data View. (2020).

    50.
    Mangiafico, S. S. Summary and analysis of extension program evaluation in R, version 1.15. 0. Rutgers Coop. Extension, New Brunswick, NJ https//rcompanion. org/handbook/.[Google Sch. (2016).

    51.
    Siegel, A. F. Robust regression using repeated medians. Biometrika 69, 242–244 (1982).
    MATH  Article  Google Scholar 

    52.
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. http://www.R-project.org/. R Foundation for Statistical Computing (2014).

    53.
    Oksanen, J. et al. Package vegan. R Packag ver 254, (2013).

    54.
    Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).
    Article  Google Scholar 

    55.
    Simpson, G. L. ggvegan: ‘ggplot2’ Plots for the ‘vegan’ Package. (2015).

    56.
    Rudolph, J. C., Arendt, C. A., Hounshell, A. G., Paerl, H. W. & Osburn, C. L. Use of geospatial, hydrologic, and geochemical modeling to determine the influence of wetland-derived organic matter in coastal waters in response to extreme weather events. Front. Mar. Sci. 7, (2020). https://doi.org/10.3389/fmars.2020.00018

    57.
    Ray, R. T., Haas, L. W. & Sieracki, M. E. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Mar. Ecol. Prog. Ser. 52, 273–285 (1989).
    ADS  Article  Google Scholar 

    58.
    Marshall, H. G. & Nesius, K. K. Seasonal relationships between phytoplankton composition, abundance, and primary productivity in three tidal rivers of the lower Chesapeake Bay. J. Elisha Mitchell Sci. Soc. 109, 141–151 (1993).
    Google Scholar 

    59.
    Larsson, J. et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 8, 1892–1903 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Berry, D. L. et al. Shifts in Cyanobacterial strain dominance during the onset of harmful algal blooms in Florida Bay, USA. Microb. Ecol. 70, 361–371 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U. S. A. 107, 12941–12945 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Cabello-Yeves, P. J. et al. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 8, 1151 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 115, E2010–E2019 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Marsan, D., Place, A., Fucich, D. & Chen, F. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors. Front. Microbiol. 8, 1213 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc. Natl. Acad. Sci. U. S. A. 116, 16899–16908 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Paerl, H. W., Hall, N. S., Peierls, B. L., Rossignol, K. L. & Joyner, A. R. Hydrologic variability and its control of phytoplankton community structure and function in two shallow, coastal, lagoonal ecosystems: The Neuse and New River estuaries, North Carolina, USA. Estuar. Coasts 37, 31–45 (2014).
    Article  Google Scholar 

    68.
    Rae, B. D., Förster, B., Badger, M. R. & Price, G. D. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosynth. Res. 109, 59–72 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Cabello-Yeves, P. J. et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ. Microbiol. 20, 3757–3771 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Vörös, L., Callieri, C., V-Balogh, K. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).
    Article  Google Scholar 

    71.
    Osburn, C. L. et al. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front. Mar. Sci. 2, 127 (2016).
    MathSciNet  Article  Google Scholar 

    72.
    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    73.
    Anderson, S. R., Diou-Cass, Q. P. & Harvey, E. L. Short-term estimates of phytoplankton growth and mortality in a tidal estuary. Limnol. Oceanogr. 63, 2411–2422 (2018).
    ADS  Article  Google Scholar 

    74.
    Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986).
    CAS  Article  Google Scholar 

    75.
    Bianchi, T. S. Biogeochemistry of Estuaries (Oxford University Press, Oxford, 2007).
    Google Scholar 

    76.
    Coclet, C. et al. Trace metal contamination as a toxic and structuring factor impacting ultraphytoplankton communities in a multicontaminated Mediterranean coastal area. Prog. Oceanogr. 163, 196–213 (2018).
    Article  Google Scholar 

    77.
    Delpy, F. et al. Pico- and nanophytoplankton dynamics in two coupled but contrasting coastal bays in the NW Mediterranean Sea (France). Estuar. Coasts 41, 2039–2055 (2018).
    CAS  Article  Google Scholar 

    78.
    CDM Smith. City of Raleigh—Neuse River Water Quality Sampling Report. (2014).

    79.
    Fuller, N. J. et al. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the red sea. Appl. Environ. Microbiol. 69, 2430–2443 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Mackey, K. R. M. et al. Seasonal succession and spatial patterns of Synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping. Front. Microbiol. 8, 1496 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Gong, W. et al. Molecular insights into a dinoflagellate bloom. ISME J. 11, 439–452 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Ning, X., Cloern, J. E. & Cole, B. E. Spatial and temporal variability of picocyanobacteria Synechococcus sp. San Francisco Bay. Limnol. Oceanogr. 45, 695–702 (2000).
    ADS  CAS  Article  Google Scholar 

    83.
    Li, W. K. W. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Ocean. 39, 169–175 (1994).
    CAS  Article  Google Scholar 

    84.
    Jardillier, L., Zubkov, M. V., Pearman, J. & Scanlan, D. J. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 4, 1180–1192 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Morán, X. A. G. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: A major contribution to carbon fluxes. Aquat. Microb. Ecol. 49, 267–279 (2007).
    Article  Google Scholar 

    86.
    Christaki, U., Vázquez-Domínguez, E., Courties, C. & Lebaron, P. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Environ. Microbiol. 7, 1200–1210 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A Review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28, 726–749 (2005).
    Article  Google Scholar 

    88.
    Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. J. Sea Res. 53, 43–66 (2005).
    ADS  CAS  Article  Google Scholar 

    89.
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Worden, A. Z. & Not, F. Ecology and diversity of picoeukaryotes. Microb. Ecol. Ocean. 2, 159–205 (2008).
    Article  Google Scholar 

    91.
    Paerl, R. W., Bertrand, E. M., Allen, A. E., Palenik, B. & Azam, F. Vitamin B1 ecophysiology of marine picoeukaryotic algae: Strain-specific differences and a new role for bacteria in vitamin cycling. Limnol. Oceanogr. 60, 215–228 (2015).
    ADS  CAS  Article  Google Scholar 

    92.
    Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J. Phycol. 43, 78–89 (2007).
    CAS  Article  Google Scholar 

    93.
    McKie-Krisberg, Z. M. & Sanders, R. W. Phagotrophy by the picoeukaryotic green alga Micromonas: Implications for Arctic Oceans. ISME J. 8, 1953–1961 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Botebol, H. et al. Acclimation of a low iron adapted Ostreococcus strain to iron limitation through cell biomass lowering. Sci. Rep. 7, 327 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    95.
    Rodríguez, F. et al. Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ. Microbiol. 7, 853–859 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    96.
    Valdes-Weaver, L. M. et al. Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse-Pamlico estuarine continuum, North Carolina, USA. Limnol. Oceanogr. 51, 1410–1420 (2006).
    ADS  Article  Google Scholar 

    97.
    Wetz, M. S. & Paerl, H. W. Estuarine phytoplankton responses to hurricanes and tropical storms with different characteristics (trajectory, rainfall, winds). Estuar. Coasts 31, 419–429 (2008).
    CAS  Article  Google Scholar 

    98.
    Mojica, K. D. A., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. D. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Wang, K. & Chen, F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol. 10, 300–312 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Brussaard, C. P. D. Viral control of phytoplankton Ppopulations—a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    102.
    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).
    ADS  CAS  Article  Google Scholar 

    103.
    Moore, L. R., Ostrowski, M., Scanlan, D. J., Feren, K. & Sweetsir, T. Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquat. Microb. Ecol. 39, 257–269 (2005).
    Article  Google Scholar 

    104.
    Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Berg, G. M. B. M., Repeta, D. J. & LaRoche, J. The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high—molecular weight dissolved organic nitrogen. Limnol. Oceanogr. 48, 1825–1830 (2003).
    ADS  CAS  Article  Google Scholar 

    106.
    Martins, R., Fernandez, N., Beiras, R. & Vasconcelos, V. Toxicity assessment of crude and partially purified extracts of marine Synechocystis and Synechococcus cyanobacterial strains in marine invertebrates. Toxicon 50, 791–799 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl. Acad. Sci. U. S. A. 108, 4352–4357 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Waterbury, J. B. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynth. Picoplankt. 71–120 (1986).

    109.
    Easterling, D. R. et al. Precipitation change in the United States. (2017).

    110.
    Kossin, J. P. et al. Extreme storms. In Climate Science Special Report: Fourth National Climate Assessment, Volume I (eds. Wuebbles, D. J. et al.) 257–276 (U.S. Global Change Research Program, Washington, DC, 2017).

    111.
    Wuebbles, D. et al. CMIP5 climate model analyses: Climate extremes in the United States. Bull. Am. Meteorol. Soc. 95, 571–583 (2014).
    ADS  Article  Google Scholar 

    112.
    Kunkel, K. E. et al. North Carolina Climate Science Report. (2020).

    113.
    Yeo, S. K., Huggett, M. J., Eiler, A. & Rappé, M. S. Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS ONE 8, e56207 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    114.
    Montagna, P. A., Hu, X., Palmer, T. A. & Wetz, M. Effect of hydrological variability on the biogeochemistry of estuaries across a regional climatic gradient. Limnol. Oceanogr. 63, 2465–2478 (2018).
    ADS  CAS  Article  Google Scholar 

    115.
    Ares, Á. et al. Extreme storms cause rapid but short-lived shifts in nearshore subtropical bacterial communities. Environ. Microbiol. 22, 4571–4588 (2020).
    CAS  Article  Google Scholar 

    116.
    Marshall, H. G. Autotrophic picoplankton: their presence and significance in marine and freshwater ecosystems. Va. J. Sci. 53, (2002).

    117.
    Buitenhuis, E. T. et al. Picophytoplankton biomass distribution in the global ocean. Earth Syst. Sci. Data 4, 37–46 (2012).
    ADS  Article  Google Scholar 

    118.
    Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).
    ADS  CAS  Google Scholar 

    119.
    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
    ADS  Article  Google Scholar 

    120.
    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. 110, 9824–9829 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Hunter-Cevera, K. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    122.
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).
    Article  Google Scholar 

    123.
    Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).
    ADS  Article  Google Scholar  More

  • in

    Identifying likely transmissions in Mycobacterium bovis infected populations of cattle and badgers using the Kolmogorov Forward Equations

    1.
    Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101, 3747–3752 (2004).
    ADS  CAS  PubMed  MATH  Article  Google Scholar 
    2.
    Colizza, V., Barthélemy, M., Barrat, A. & Vespignani, A. Epidemic modeling in complex realities. Comptes Rendus Biol. 330, 364–374 (2007).
    Article  Google Scholar 

    3.
    Craft, M. E., Volz, E., Packer, C. & Meyers, L. A. Distinguishing epidemic waves from disease spillover in a wildlife population. Proc. R. Soc. B Biol. Sci. 276, 1777–1785 (2009).
    Article  Google Scholar 

    4.
    Vernon, M. C. & Keeling, M. J. Representing the UK’s cattle herd as static and dynamic networks. Proc. Biol. Sci. 276, 469–476 (2009).
    PubMed  Google Scholar 

    5.
    Kao, R. R., Green, D. M., Johnson, J. & Kiss, I. Z. Disease dynamics over very different time-scales: foot-and-mouth disease and scrapie on the network of livestock movements in the UK. J. R. Soc. Interface 4, 907–916 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140107–20140107 (2015).
    Article  Google Scholar 

    7.
    Chiner-Oms, Á. & Comas, I. Large genomics datasets shed light on the evolution of the Mycobacterium tuberculosis complex. Infect. Genet. Evol. https://doi.org/10.1016/j.meegid.2019.02.028 (2019).
    Article  PubMed  Google Scholar 

    8.
    Köser, C. U. et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N. Engl. J. Med. 366, 2267–2275 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Roetzer, A. et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 10, e1001387 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Kao, R. R., Haydon, D. T., Lycett, S. J. & Murcia, P. R. Supersize me: how whole-genome sequencing and big data are transforming epidemiology. Trends Microbiol. 22, 282–291 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Wymant, C. et al. PHYLOSCANNER: Inferring transmission from within- and between-host pathogen genetic diversity. Mol. Biol. Evol. 35, 719–733 (2018).
    CAS  PubMed  Article  Google Scholar 

    12.
    Gutiérrez, S., Michalakis, Y. & Blanc, S. Virus population bottlenecks during within-host progression and host-to-host transmission. Curr. Opin. Virol. 2, 546–555 (2012).
    PubMed  Article  CAS  Google Scholar 

    13.
    Buckee, C. O. F., Koelle, K., Mustard, M. J. & Gupta, S. The effects of host contact network structure on pathogen diversity and strain structure. Proc. Natl. Acad. Sci. USA 101, 10839–10844 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Rasmussen, D. A., Ratmann, O. & Koelle, K. Inference for nonlinear epidemiological models using genealogies and time series. PLoS Comput. Biol. 7, e1002136 (2011).
    ADS  MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Rasmussen, D. A., Volz, E. M. & Koelle, K. Phylodynamic inference for structured epidemiological models. PLoS Comput. Biol. 10, e1003570 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Rasmussen, D. A., Kouyos, R., Günthard, H. F. & Stadler, T. Phylodynamics on local sexual contact networks. PLoS Comput. Biol. 13, 1–23 (2017).
    Article  CAS  Google Scholar 

    17.
    Cottam, E. M. et al. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. R. Soc. B Biol. Sci. 275, 887–895 (2008).
    Article  Google Scholar 

    18.
    Ypma, R. J. F. et al. Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data. Proc. R. Soc. B Biol. Sci. 279, 444–450 (2012).
    CAS  Article  Google Scholar 

    19.
    Ypma, R. J. F., van Ballegooijen, W. M. & Wallinga, J. Relating phylogenetic trees to transmission trees of infectious disease outbreaks. Genetics 195, 1055–1062 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Morelli, M. J. et al. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput. Biol. 8, e1002768 (2012).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Lau, M. S. Y., Marion, G., Streftaris, G. & Gibson, G. A systematic Bayesian integration of epidemiological and genetic data. PLoS Comput. Biol. 11, 1–27 (2015).
    Article  CAS  Google Scholar 

    22.
    De Maio, N., Wu, C. H. & Wilson, D. J. SCOTTI: efficient reconstruction of transmission within outbreaks with the structured coalescent. PLoS Comput. Biol. 12, 1–23 (2016).
    Google Scholar 

    23.
    Li, L. M., Grassly, N. C. & Fraser, C. Quantifying transmission heterogeneity using both pathogen phylogenies and incidence time series. Mol. Biol. Evol. 34, 2982–2995 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Romero-Severson, E. O., Bulla, I. & Leitner, T. Phylogenetically resolving epidemiologic linkage. Proc. Natl. Acad. Sci. USA 113, 2690–2695 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    25.
    Firestone, S. M. et al. Reconstructing foot-and-mouth disease outbreaks: a methods comparison of transmission network models. Sci. Rep. 9, 4809 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Campbell, F., Strang, C., Ferguson, N., Cori, A. & Jombart, T. When are pathogen genome sequences informative of transmission events?. PLoS Pathog. 14, 1–21 (2018).
    Google Scholar 

    27.
    Allen, A. R. One bacillus to rule them all? Investigating broad range host adaptation in Mycobacterium bovis. Infect. Genet. Evol. 53, 68–76 (2017).
    PubMed  Article  Google Scholar 

    28.
    Biek, R. et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 8, e1003008 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Glaser, L. et al. Descriptive epidemiology and whole genome sequencing analysis for an outbreak of bovine tuberculosis in beef cattle and white-tailed deer in northwestern Minnesota. PLoS ONE 11, e0145735 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Orloski, K., Robbe-Austerman, S., Stuber, T., Hench, B. & Schoenbaum, M. Whole genome sequencing of Mycobacterium bovis isolated from livestock in the United States, 1989–2018. Front. Vet. Sci. 5, 1–10 (2018).
    Article  Google Scholar 

    31.
    Palmer, M. V. Mycobacterium bovis: characteristics of wildlife reservoir hosts. Transbound. Emerg. Dis. 60, 1–13 (2013).
    PubMed  Article  Google Scholar 

    32.
    Keeling, M. J. & Ross, J. V. On methods for studying stochastic disease dynamics. J. R. Soc. Interface 5, 171–181 (2008).
    CAS  PubMed  Article  Google Scholar 

    33.
    Sharkey, K. J. Deterministic epidemiological models at the individual level. J. Math. Biol. 57, 311–331 (2008).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    34.
    Stollenwerk, N. & Jansen, V. A. A. Meningitis, pathogenicity near criticality: the epidemiology of meningococcal disease as a model for accidental pathogens. J. Theor. Biol. 222, 347–359 (2003).
    PubMed  MATH  Article  Google Scholar 

    35.
    Delahay, R. J. et al. Long-term temporal trends and estimated transmission rates for Mycobacterium bovis infection in an undisturbed high-density badger (Meles meles) population. Epidemiol. Infect. 141, 1445–1456 (2013).
    CAS  PubMed  Article  Google Scholar 

    36.
    Crispell, J. et al. Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. Elife https://doi.org/10.7554/eLife.45833.001 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Ford, C. B. et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 43, 482–488 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Colangeli, R. et al. Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS ONE 9, 1–9 (2014).
    MathSciNet  Article  CAS  Google Scholar 

    39.
    Didelot, X., Fraser, C., Gardy, J., Colijn, C. & Malik, H. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34, 997–1007 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Lycett, S. J. et al. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217 (2016).
    Article  CAS  Google Scholar 

    41.
    Saulnier, E., Gascuel, O. & Alizon, S. Inferring epidemiological parameters from phylogenies using regression-ABC: a comparative study. PLoS Comput. Biol. 13, 1–31 (2017).
    Article  CAS  Google Scholar 

    42.
    De Maio, N., Worby, C. J., Wilson, D. J. & Stoesser, N. Bayesian reconstruction of transmission within outbreaks using genomic variants. PLoS Comput. Biol. 14, 1–23 (2018).
    Google Scholar 

    43.
    Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Brooks-Pollock, E., Roberts, G. O. & Keeling, M. J. A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature 511, 228–231 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Campbell, F., Cori, A., Ferguson, N. & Jombart, T. Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data. PLOS Comput. Biol. 15, e1006930 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Robertson, A., Palphramand, K. L., Carter, S. P. & Delahay, R. J. Group size correlates with territory size in European badgers: implications for the resource dispersion hypothesis?. Oikos 124, 507–514 (2015).
    Article  Google Scholar 

    48.
    Roper, T. Badger (Collins, London, 2010).
    Google Scholar 

    49.
    Drewe, J. A., Tomlinson, A. J., Walker, N. J. & Delahay, R. J. Diagnostic accuracy and optimal use of three tests for tuberculosis in live badgers. PLoS ONE 5, e11196 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Álvarez, J. et al. Research in Veterinary Science Bovine tuberculosis : within-herd transmission models to support and direct the decision-making process. Res. Vet. Sci. 97, S61–S68 (2014).
    PubMed  Article  Google Scholar 

    52.
    Rossi, G. et al. Epidemiological modelling for the assessment of bovine tuberculosis surveillance in the dairy farm network in Emilia-Romagna (Italy). Epidemics 11, 62–70 (2015).
    PubMed  Article  Google Scholar 

    53.
    Kao, R. R., Roberts, M. G. & Ryan, T. J. A model of bovine tuberculosis control in domesticated cattle herds. Proc. R. Soc. B Biol. Sci. 264, 1069–1076 (1997).
    ADS  CAS  Article  Google Scholar 

    54.
    Conlan, A. J. K. et al. Estimating the hidden burden of bovine tuberculosis in Great Britain. PLoS Comput. Biol. 8, e1002730 (2012).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    O’Hare, A., Orton, R. J., Bessell, P. R. & Kao, R. R. Estimating epidemiological parameters for bovine tuberculosis in British cattle using a Bayesian partial-likelihood approach. Proc. R. Soc. B Biol. Sci. 281, 20140248 (2014).
    Article  Google Scholar 

    56.
    Rossi, G., Aubry, P., Dubé, C. & Smith, R. L. The spread of bovine tuberculosis in Canadian shared pastures: data, model, and simulations. Transbound. Emerg. Dis. 66, 562–577 (2019).
    PubMed  Article  Google Scholar 

    57.
    R Core Team. R: A Language and Environment for Statistical Computing. (2018).

    58.
    Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: package deSolve. J. Stat. Softw. 33, 1–25 (2010).
    Google Scholar 

    59.
    Lawes, J. R. et al. Bovine TB surveillance in Great Britain in 2014. Vet. Rec. 178, 310–315 (2016).
    CAS  PubMed  Article  Google Scholar 

    60.
    Trewby, H. et al. Use of bacterial whole-genome sequencing to investigate local persistence and spread in bovine tuberculosis. Epidemics 14, 26–35 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Crispell, J. et al. Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. BMC Genom. 18, 180 (2017).
    Article  CAS  Google Scholar 

    62.
    Salvador, L. C. M. et al. Disease management at the wildlife-livestock interface: using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan. USA. Mol. Ecol. https://doi.org/10.1111/mec.15061 (2019).
    Article  PubMed  Google Scholar 

    63.
    Brooks-Pollock, E. et al. Age-dependent patterns of bovine tuberculosis in cattle. Vet. Res. 44, 1 (2013).
    Article  Google Scholar  More

  • in

    Impact of individual demographic and social factors on human–wildlife interactions: a comparative study of three macaque species

    1.
    Dickman, A. J. & Hazzah, L. Money, myths and man-eaters: Complexities of human–wildlife conflict. In Problematic Wildlife (ed. Angelici, F. M.) 339–356 (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-22246-2_16.
    Google Scholar 
    2.
    Nyhus, P. J. Human–wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).
    Article  Google Scholar 

    3.
    Carter, N. H. et al. Coupled human and natural systems approach to wildlife research and conservation. Ecol. Soc. 19, 43 (2014).
    Article  Google Scholar 

    4.
    Dirzo, R. et al. Defaunation in the anthropocene. Science (80–) 345, 401–406 (2014).
    ADS  CAS  Article  Google Scholar 

    5.
    Balasubramaniam, K. N. et al. Addressing the challenges of human–wildlife conflict research using coupled natural and human systems. Biol. Conserv. Rev.

    6.
    McDonald, A. M. H., Rea, R. V. & Hesse, G. Perceptions of moose-human conflicts in an urban environment. ALCES 48, 123–130 (2012).
    Google Scholar 

    7.
    Berger-Tal, O. et al. A systematic survey of the integration of animal behavior into conservation. Conserv. Biol. 30, 744–753 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32, 567–577 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science (80–) 359, 466–469 (2018).
    ADS  CAS  Article  Google Scholar 

    10.
    Lischka, S. A. et al. A conceptual model for the integration of social and ecological information to understand human–wildlife interactions. Biol. Conserv. 225, 80–87 (2018).
    Article  Google Scholar 

    11.
    Morrow, K. S., Glanz, H., Ngakan, P. O. & Riley, E. P. Interactions with humans are jointly influenced by life history stage and social network factors and reduce group cohesion in moor macaques (Macaca maura). Sci. Rep. 9, 1–12 (2019).
    Article  CAS  Google Scholar 

    12.
    Dickman, A. J. From cheetahs to chimpanzees: A comparative review of the drivers of human-carnivore conflict and human-primate conflict. Folia Primatol. 83, 377–387 (2013).
    Article  Google Scholar 

    13.
    Chiyo, P. I., Moss, C. J. & Alberts, S. C. The influence of life history milestones and association networks on crop-raiding behavior in male african elephants. PLoS One 7, 20 (2012).
    Google Scholar 

    14.
    Maréchal, L. et al. Impacts of tourism on anxiety and physiological stress levels in wild male Barbary macaques. Biol. Conserv. 144, 2188–2193 (2011).
    Article  Google Scholar 

    15.
    Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Cons. 157, 309–316 (2013).
    Article  Google Scholar 

    16.
    Devaux, C. A., Mediannikov, O., Medkour, H. & Raoult, D. Infectious disease risk across the growing human–non human primate interface: A review of the evidence. Front. Public Health 7, 1–22 (2019).
    Article  Google Scholar 

    17.
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).
    PubMed  Article  Google Scholar 

    19.
    LaBarge, L. R., Hill, R. A., Berman, C. M., Margulis, S. W. & Allan, A. T. L. Anthropogenic influences on primate antipredator behavior and implications for research and conservation. Am. J. Primatol. 82, 1–13 (2020).
    Article  Google Scholar 

    20.
    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
    Article  Google Scholar 

    21.
    Hockings, K. J., Anderson, J. R. & Matsuzawa, T. Socioecological adaptations by chimpanzees, Pan troglodytes verus, inhabiting an anthropogenically impacted habitat. Anim. Behav. 83, 801–810 (2012).
    Article  Google Scholar 

    22.
    Carne, C., Semple, S., MacLarnon, A., Majolo, B. & Maréchal, L. Implications of tourist–macaque interactions for disease transmission. EcoHealth 14, 704–717 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Morzillo, A. T., de Beurs, K. M. & Martin-Mikle, C. J. A conceptual framework to evaluate human–wildlife interactions within coupled human and natural systems. Ecol. Soc. 19, 44 (2014).
    Article  Google Scholar 

    24.
    Balasubramaniam, K. N. et al. Using a coupled natural and human systems approach to understand the behavioral dimensions of human–primate interfaces.

    25.
    Fuentes, A. Ethnoprimatology and the anthropology of the human–primate interface. Annu. Rev. 41, 101–117 (2012).
    Google Scholar 

    26.
    Radhakrishna, S. & Sinha, A. Less than wild? Commensal primates and wildlife conservation. J. Biosci. 36, 749–753 (2011).
    PubMed  Article  Google Scholar 

    27.
    Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).
    Article  Google Scholar 

    28.
    Fuentes, A. & Gamerl, S. Disproportionate participation by age/sex classes in aggressive interactions between long-tailed macaques (Macaca fascicularis) and human tourists at Padangtegal monkey forest, Bali, Indonesia. Am. J. Primatol. 66, 197–204 (2005).
    PubMed  Article  Google Scholar 

    29.
    Hsu, M. J., Kao, C. C. & Agoramoorthy, G. Interactions between visitors and formosan macaques (Macaca cyclopis) at Shou-Shan Nature Park, Taiwan. Am. J. Primatol. 71, 214–222 (2009).
    PubMed  Article  Google Scholar 

    30.
    Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).
    Article  Google Scholar 

    32.
    Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160310 (2017).
    Article  Google Scholar 

    33.
    Mitani, J. C., Gros-Louis, J. & Richards, A. F. Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates. Am. Nat. 147, 966–980 (1996).
    Article  Google Scholar 

    34.
    Marty, P. R. et al. Individuals in urban dwelling primate species face unequal benefits associated with living in an anthropogenic environment. Rev. (2019).

    35.
    Fehlmann, G. et al. Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments. Sci. Rep. 7, 1–8 (2017).
    CAS  Article  Google Scholar 

    36.
    Beisner, B. A. et al. Human–wildlife conflict: Proximate predictors of aggression between humans and rhesus macaques in India. Am. J. Phys. Anthropol. 156, 286–294 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Fa, J. E. Visitor-directed aggression among the Gibraltar macaques. Zoo Biol. 11, 43–52 (1992).
    Article  Google Scholar 

    38.
    Bruintjes, R. & Radford, A. N. Context-dependent impacts of anthropogenic noise on individual and social behaviour in a cooperatively breeding fish. Anim. Behav. 85, 1343–1349 (2013).
    Article  Google Scholar 

    39.
    Lacy, K. E. & Martins, E. P. The effect of anthropogenic habitat usage on the social behaviour of a vulnerable species, Cyclura nubila. Anim. Conserv. 6, 3–9 (2003).
    Article  Google Scholar 

    40.
    Ram, S., Venkatachalam, S. & Sinha, A. Changing social strategies of wild female bonnet macaques during natural foraging and on provisioning. Curr. Sci. 84, 780–790 (2003).
    Google Scholar 

    41.
    Maréchal, L., MacLarnon, A., Majolo, B. & Semple, S. Primates’ behavioural responses to tourists: Evidence for a trade-off between potential risks and benefits. Sci. Rep. 6, 1–11 (2016).
    Article  CAS  Google Scholar 

    42.
    Kaburu, S. S. K. et al. Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta). Behaviour 156, 1255–1282 (2019).
    Article  Google Scholar 

    43.
    Marty, P. R. et al. Time constraints imposed by anthropogenic environments alter social behaviour in long-tailed macaques. Anim. Behav. 150, 157–165 (2019).
    Article  Google Scholar 

    44.
    Balasubramaniam, K. N. et al. Impact of anthropogenic factors on affiliative behaviors among bonnet macaques. Am. J. Phys. Anthropol. 171, 704–717 (2020).
    PubMed  Article  Google Scholar 

    45.
    Belton, L. E., Cameron, E. Z. & Dalerum, F. Social networks of spotted hyenas in areas of contrasting human activity and infrastructure. Anim. Behav. 135, 13–23 (2018).
    Article  Google Scholar 

    46.
    Chilvers, B. L. & Corkeron, P. J. Trawling and bottlenose dolphins’ social structure. Proc. R. Soc. B 268, 1901–1905 (2001).
    CAS  PubMed  Article  Google Scholar 

    47.
    Jacobs, A., Sueur, C., Deneubourg, J. L. & Petit, O. Social network influences decision making during collective movements in Brown lemurs (Eulemur fulvus fulvus). Int. J. Primatol. 32, 721–736 (2011).
    Article  Google Scholar 

    48.
    Bode, N. W. F., Wood, A. J. & Franks, D. W. The impact of social networks on animal collective motion. Anim. Behav. 82, 29–38 (2011).
    Article  Google Scholar 

    49.
    Sueur, C., MacIntosh, A. J. J., Jacobs, A. T., Watanabe, K. & Petit, O. Predicting leadership using nutrient requirements and dominance rank of group members. Behav. Ecol. Sociobiol. 67, 457–470 (2013).
    Article  Google Scholar 

    50.
    Schino, G. Grooming, competition and social rank among female primates: A meta-analysis. Anim. Behav. 62, 265–271 (2001).
    Article  Google Scholar 

    51.
    Balasubramaniam, K. N. & Berman, C. M. Grooming interchange for resource tolerance: Biological markets principles within a group of free-ranging rhesus macaques. Behaviour 154, 1145–1176 (2017).
    Article  Google Scholar 

    52.
    Overduin-de Vries, A. M., de Vries, H., Vermande, M. M., Reijntjes, A. H. A. & Sterck, E. H. M. Both aggressive and affiliative behaviour facilitate resource access in high-ranking female long-tailed macaques (Macaca fascicularis). Behaviour 157, 267–287 (2020).
    Article  Google Scholar 

    53.
    Kurita, H., Sugiyama, Y., Ohsawa, H., Hamada, Y. & Watanabe, T. Changes in demographic parameters of Macaca fuscata at Takasakiyama in relation to decrease of provisioned foods. Int. J. Primatol. 29, 1189–1202 (2008).
    Article  Google Scholar 

    54.
    Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29, 555–564 (2007).
    Article  Google Scholar 

    55.
    Wey, T., Blumstein, D. T., Shen, W. & Jordán, F. Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 75, 333–344 (2008).
    Article  Google Scholar 

    56.
    Dunbar, R. I. M. Time: A hidden constraint on the behavioural ecology of baboons. Behav. Ecol. Sociobiol. 31, 35–49 (1992).
    Article  Google Scholar 

    57.
    Sinha, A., Mukhopadhyay, K., Datta-Roy, A. & Ram, S. Ecology proposes, behaviour disposes: Ecological variability in social organization and male behavioural strategies among wild bonnet macaques. Curr. Sci. 89, 1166–1179 (2005).
    Google Scholar 

    58.
    Thierry, B. Unity in diversity: Lessons from macaque societies. Evol. Anthropol. 16, 224–238 (2007).
    Article  Google Scholar 

    59.
    Balasubramaniam, K. N. et al. Hierarchical steepness and phylogenetic models: Phylogenetic signals in Macaca. Anim. Behav. 83, 20 (2012).
    Article  Google Scholar 

    60.
    van Schaik, C. P. The ecology of social relationships amongst female primates. In Comparative Socioecology (eds Standen, V. & Foley, R. A.) 195–218 (Blackwell, New York, 1989).
    Google Scholar 

    61.
    Morales, J. C. & Melnick, D. J. Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. J. Hum. Evol. 34, 1–23 (1998).
    CAS  PubMed  Article  Google Scholar 

    62.
    Gumert, M. D. A common monkey of Southeast Asia: Longtailed macaque populations, ethnophoresy, and their occurrence in human environments. In Monkeys on the Edge: Ecology and Management of longTailed Macaques and their Interface with Humans (eds Gumert, M. D. et al.) 3–43 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    63.
    Southwick, C. H. & Siddiqi, M. F. Primate commensalism: The Rhesus Monkey in India. Rev. Ecol. (Terre Vie) 49, 223–231 (1994).
    Google Scholar 

    64.
    Sinha, A. & Mukhopadhyay, K. The monkey in the Town’s commons, revisited: An anthropogenic history of the Indian Bonnet Macaque. In The Macaque Connection: Cooperation and Conflict between Humans and Macaques (eds Radhakrishna, S. et al.) 187–208 (Springer, Berlin, 2013). https://doi.org/10.1007/978-1-4614-3967-7.
    Google Scholar 

    65.
    Kaburu, S. S. K. et al. Rates of human–macaque interactions affect grooming behavior among urban-dwelling rhesus macaques (Macaca mulatta). Am. J. Phys. Anthropol. 168, 92–103 (2018).
    PubMed  Article  Google Scholar 

    66.
    Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–267 (1974).
    CAS  Article  Google Scholar 

    67.
    Martin, P. & Bateson, P. Measuring Behaviour (Cambridge University Press, Cambridge, 1993).
    Google Scholar 

    68.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2009).
    Google Scholar 

    69.
    Fujii, K. et al. Perc: Using Percolation and Conductance to Find Information Flow Certainty in a Direct Network. (R Package Version 0.1., 2015).

    70.
    Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. Package ‘statnet’. R Packag. (2008).

    71.
    Shannon, P. et al. Cytoscape: A software environment for integrated models. Genome Res. 13, 2498–2504 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, Berlin, 2002).
    Google Scholar 

    73.
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Article  Google Scholar 

    74.
    Richards, S. A. Testing ecological theory using the information-theoretic approach: Examples and cautionary results. Ecology 86, 2805–2814 (2005).
    Article  Google Scholar 

    75.
    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    76.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 20 (2015).
    Article  Google Scholar 

    77.
    Bolker, B., Skaug, H., Magnusson, A. & Nielsen, A. Getting started with the glmmADMB package. R Packag. ver. 2.0–8 12 (2012).

    78.
    Mckinney, T. A classification system for describing anthropogenic influence on nonhuman primate populations. Am. J. Primatol. 77, 715–726 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Silk, J. B. Kin selection in primate groups. Int. J. Primatol. 23, 849–875 (2002).
    Article  Google Scholar 

    80.
    Marty, P. R., Hodges, K., Agil, M. & Engelhardt, A. Alpha male replacements and delayed dispersal in crested macaques (Macaca nigra). Am. J. Primatol. 79, 1–8 (2017).
    Article  Google Scholar 

    81.
    Janson, C. H. Social correlates of individual spatial choice in foraging groups of brown capuchin monkeys, Cebus apella. Anim. Behav. 40, 910–921 (1990).
    Article  Google Scholar 

    82.
    Hemelrijk, C. K. Towards the integration of social dominance and spatial structure. Anim. Behav. 59, 1035–1048 (2000).
    CAS  PubMed  Article  Google Scholar 

    83.
    VanderWaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. 83, 406–414 (2014).
    PubMed  Article  Google Scholar 

    84.
    Lusseau, D. et al. Quantifying the influence of sociality on population structure in bottlenose dolphins. J. Anim. Ecol. 75, 14–24 (2006).
    PubMed  Article  Google Scholar 

    85.
    Pfeiffer, M. B., Iglay, R. B., Seamans, T. W., Blackwell, B. F. & DeVault, T. L. Deciphering interactions between white-tailed deer and approaching vehicles. Transp. Res. Part D 79, 102251 (2020).
    Article  Google Scholar 

    86.
    Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311 (1971).
    CAS  PubMed  Article  Google Scholar 

    87.
    Hall, C. L. & Fedigan, L. M. Spatial benefits afforded by high rank in white-faced capuchins. Anim. Behav. 53, 1069–1082 (1997).
    Article  Google Scholar 

    88.
    Johnson, M. L. Exploratory behavior and dispersal: A graphical model. Can. J. Zool. 67, 2325–2328 (1989).
    Article  Google Scholar 

    89.
    Marty, P. R. Dispersal and immigration strategies in primate males. Malayan Nat. J. 69, 353–356 (2017).
    Google Scholar 

    90.
    Marty, P. R., Hodges, K., Heistermann, M., Agil, M. & Engelhardt, A. Is social dispersal stressful? A study in male crested macaques (Macaca nigra). Horm. Behav. 87, 62–68 (2017).
    CAS  PubMed  Article  Google Scholar 

    91.
    Brent, L. J. N., Semple, S., Dubuc, C., Heistermann, M. & MacLarnon, A. Social capital and physiological stress levels in free-ranging adult female rhesus macaques. Physiol. Behav. 102, 76–83 (2011).
    CAS  PubMed  Article  Google Scholar 

    92.
    Brent, L. J. N. Friends of friends: Are indirect connections in social networks important to animal behaviour?. Anim. Behav. 103, 211–222 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution (N. Y.) 57, 717–745 (2003).
    Google Scholar 

    94.
    Garamszegi, L. Z. & Møller, A. P. Effects of sample size and intraspecific variation in phylogenetic comparative studies: A meta-analytic review. Biol. Rev. 85, 797–805 (2010).
    PubMed  Google Scholar 

    95.
    Balasubramaniam, K. N. et al. The influence of phylogeny, social style, and sociodemographic factors on macaque social network structure. Am. J. Primatol. 80, 20 (2018).
    Article  Google Scholar 

    96.
    Balasubramaniam, K. N. et al. Affiliation and disease risk: Social networks mediate gut microbial transmission among rhesus macaques. Anim. Behav. 151, 131–143 (2019).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Calculation of external climate costs for food highlights inadequate pricing of animal products

    Outline
    In this section, first, we outline the method as a whole to give the reader an orientation and context for the following two parts. Second, we discuss the input data (for quantification and monetization). Third, we explain the merging of all input data, and thus the calculation of the output data. Finally, we address the influence of uncertainties on our method. The reference year for this analysis is 2016, and the reference country is Germany, which is listed as the third most affected country in the Global Climate Risk Index 2020 Ranking70.
    Method in short
    We differentiate between two steps within this method of calculating food-category-specific externalities and the resulting external costs. These are first the quantification and second the monetization of externalities from GHGs (visualized in Fig. 3). We use this bottom-up approach following the example of Grinsven et al.10, who conducted a cost-benefit analysis of reactive nitrogen emissions from the agricultural sector. This two-stepped method also allows the adequately differentiated assessment for GHG emissions of various food categories.
    Fig. 3: Visualization of the method.

    The method includes quantifying and monetizing product-specific externalities. In the case of Germany, emission data were obtained from the Global Emission Model for Integrated Systems (GEMIS)44. We used production data from the German Federal Statistical Office88 and AMI89,90, and calculated the emission difference between organic and conventional production based on a meta-analytical approach (see “Results” subsection on input data for quantification). The category-specific emission data were calculated on the basis of these input data. The emission cost rate was obtained from the German Federal Environmental Agency (UBA)32. The category-specific external costs were determined on the basis of the previously developed price-quantity-framework (see “Results” subsection on input data for monetization).

    Full size image

    The quantification includes the determination of food-specific GHG emissions—also known as carbon footprints39—occurring from cradle to farmgate by the usage of a material-flow analysis tool. Carbon footprints are understood within this paper in line with Pandey et al.71 where all climate-relevant gases, which (in addition to CO2) include methane (CH4) and nitrous oxide (N2O), are considered. Their 100-year CO2 equivalents conversion factors are henceforth defined as 28 and 265, respectively72. Here, the material-flow analysis tool GEMIS (Global Emission model for Integrated Systems)44 is used, which offers data for a variety of conventionally farmed foodstuff. As GEMIS data focus on emissions from conventional agricultural systems, we carried out the distinction to organic systems ourselves. We determined the difference in GHG emissions between the systems by applying meta-analytical methods to studies comparing the systems’ GHG emissions directly to one another. Meta-analysis is commonly used in the agricultural context, for example, when comparing the productivity of both systems57,58,59 or their performance1.
    For better communicability, we first aggregate the 11 food-specific datasets given in GEMIS to the broader food categories plant-based, animal-based, and dairy by weighting them with their German production quantities (cf. “Results“ subsection on quantification). On top of that, LUC emissions are calculated for conventional foodstuff.
    Through monetization, these emission data are translated into monetary values, which constitute the category-specific external costs. The ratio of external costs to the foodstuff’s producer price represents the percentage which would have to be added on top of the current food price to internalize externalities from GHGs and depict the true value of the examined foodstuff.
    Input data for quantification
    Starting with the data on food-specific emissions, GEMIS is used because of its large database of life-cycle data on agricultural products with a geographic focus on Germany. GEMIS is a World-Bank acknowledged tool for their platform on climate-smart planning and drew on 671 references, which are traced back to 13 different databases. The German Federal Environmental Agency uses GEMIS as a database for their projects and reports establishing it to be an adequate tool for the German context especially73,74. This tool is provided by the International Institute for Sustainability Analysis and Strategy (IINAS). GEMIS offers a complete view on the life cycle of a product, from primary energy and resource extraction to the construction and usage of facilities and transport systems. As GEMIS only offers data for the year 2010, we conducted a linear regression on the basis of the prevailing emission trend for the German agricultural context in order to align the data with the reference year 201675. For this, annual German emission data from 2000 to 2015 from the Federal Environmental Agency of Germany was used76. On every level of the process chain, data on energy- and material-input, as well as data on output of waste material and emissions, are provided by GEMIS. These data consist partly of self-compiled data from IINAS and partly of data from third-party academic research or other life-cycle assessment tools. Specific information on the data sources is available for every dataset of a product. In this study, the system boundaries for assessing food-specific GHG emissions span from cradle to farmgate. This means that we consider all resource inputs and outputs during production up to the point of selling by the primary producer (farmgate). This includes emissions from all production-relevant transports as well as emissions linked to the preliminary building of production-relevant infrastructure.
    We specify that for animal-based products, emissions from feed production, as a necessary resource input, are assigned to these animal-based products. Such emissions naturally should include LUC emissions. LUC emissions are of negligible proportion for locally grown products, as agricultural land area is slightly decreasing in Germany47. Thus, we have to focus solely on imported feed for conventional animal-based and dairy products. Organic feed is not considered as article 14d of the EU-Eco regulation stipulates that organic farms have to primarily use feed which they produce themselves or which was produced from other organic farms in the same region77. The region is understood as the same or the directly neighboring federal state46. Although the EU-Eco regulation does not completely rule out fodder imports from foreign countries, it limits its application significantly. Also, one has to consider that over 60% of the organic agricultural area belongs to organic farming associations78. These associations stipulate even stricter rules than the standard EU-eco regulation. Examples are Bioland, where imports from other EU and third countries are only allowed as a time-limited exception79, Naturland, where additionally imports of soy are banned completely80, or Neuland, that ban any fodder imports from overseas81. We thus assume that the emissions that could possibly be caused by organic farming in Germany through the import of feed constitute a negligibly small fraction of the total emissions of a product. Thus, we follow common assumptions from the literature82,83,84 and calculate no LUC emissions for organic products. For conventional products, we calculate LUC emissions by application of the method of Ponsioen and Blonk45. This method allows the calculation of LUC emissions for a specific crop in a specific country for a specific year. With regards to the year, we apply our reference year 2016. With regards to crop and country one has to keep in mind that in the case of Germany, the net imports of feed are the highest for soymeal, followed by maize and rapeseed meal, making up over 90% of all net positive feed imports85. Maize and rapeseed meal are both imported mainly from Russia and Ukraine (93% and 87% of all imports86). Taken together, the crop area of Russia and Ukraine is decreasing by 150,000 ha/year (data from 1990 to 2015 were used87). Following Ponsioen and Blonk45, we thus assume that there are no LUC emissions of agricultural products from these countries. This leaves us with soymeal, of which 97% are imported from Argentina and Brazil. We thus calculate LUC emissions of soymeal for Argentina and Brazil, respectively. Data are used from Ponsioen and Blonk45, except for the data of the crop area, where updated data from FAOSTAT are used in order to match the reference year. We then weigh those country-specific emission values according to their import quantity. This results in 2.54 kg CO2eq/kg soymeal. To incorporate this value into the conventional emission data from GEMIS, we map the LUC emissions to all the soymeal inputs connected to the food-specific products.
    For aggregation to narrow categories, we categorize every dataset from GEMIS into one of the eleven narrow food categories. The choice of separation into these specific categories is based on the categorization of the German Federal Office of Statistics88 from which production data were obtained. According to one category’s yearly production quantity, we incorporate every food product into the weighted mean of its corresponding food category. Thus, the higher a food’s production quantity, the greater the weight of this product’s emission data in the broad category’s emission mean. All data on the production quantities refer to food produced in Germany in the year 2016. For this weighting and aggregation step, only production quantities used for human nutrition were considered, thus feed and industry usage of food are ruled out (in contrast to emission calculation, where feed is indeed considered). Besides the German Federal Office of Statistics88, the source for this data is the German Society for Information on the Agricultural Market (AMI)89,90. Only production data for conventional production is used. Thereby, we imply ratios of production quantities across the food categories for organic production that are equal to those of conventional production. This does not fully reflect the current situation of organic production properties but allows for a fair comparison between the emission data of organic and conventional food categories. Doing otherwise would create ratios between emission values of organic and conventional broad categories that would not be representative of the ratios between organic and conventional narrow categories. In Table 4, all production data are listed, whereby total production quantities in 1000 t can be found in the right column. Translating these into percentage shares, the column right to the narrow category’s column represents the shares of the specific foods inside the narrow categories, whereas the column right to the broad category’s column represents the shares of the narrow categories inside the broad categories. These shares are expressed in formula 2a and 2b (see “Method and data” subsection on output data) by the terms (frac{{p_{b,n,conv}}}{{P_{b,conv}}}) (share in broad categories) and (frac{{q_{b,n,i,conv}}}{{p_{b,n,conv}}}) (share in narrow categories).
    We aggregate GEMIS emission data (qb,n,i,conv) to narrow (eb,n,conv) and broad categories (Eb,conv) by multiplying the respective emission data with the shares from Table 3 (cf. formula 2a and b, “Method and data“ subsection on output data). From these conventional emission values, we derive emissions for organic production. For narrow as well as broad categories, the respective conventional emission values are multiplied with the applicable emission differences Db,org/conv (cf. Table 2).
    With these data, we aggregate the above mentioned eleven food categories to three broad categories: plant-based, animal-based, and dairy. Besides the obvious differentiation between animal- and plant-based products, dairy is considered separately from other animal-based products because of its relatively high production volume and its, in contrast to that, relatively low externalities. Because the weighted mean of the three main categories is affected by the production quantities of its corresponding subcategories, mapping dairy into the animal-based category would otherwise distort the emission data of this very category.
    As outlined before, only data regarding externalities of conventional agricultural production are included in GEMIS and could therefore be aggregated. Nevertheless, by applying meta-analytical methods regarding the percentage difference of GHG emissions between conventional and organic production, we derive the emission data for organic production for each of the broad categories (plant-based, animal-based, and dairy). It has to be noted that LUC emissions are consistently excluded at this level of calculation. To derive emission differences between organic and conventional farming, research was conducted by snowball sampling from already existing and thematically fitting meta-analysis, by keyword searching in research databases, as well as forward and backward search on the basis of already-known sources. Criteria for selected studies were climatic and regulative comparability to Germany. In the selected studies, relative externalities between conventional and organic farming are compared in relation to the cropland. To cover a reasonably relevant period, we decided to search for studies published within the past 50 years (from 1969 to 2018) and could therefore identify fifteen relevant studies, spanning from 1995 to 2015. Four of these studies have Germany as their reference country while the other eleven focus on other European countries (Denmark, France, Ireland, Netherlands, Spain, UK; please consult Table 2 for specifics). The weighted mean of the individual study results amounts to the difference in GHG emissions between the two farming production systems. As the selected studies are based on geophysical measurements and not on inferential statistics, a weighting based on the standard error of the primary study results like in standard meta-analysis91 was not possible. We aimed for a system that weights the underlying studies regarding their quality and therefore including their results weighted accordingly in our calculations. Within the scope of classic meta-analyses92, the studies’ individual quality is estimated according to their reported standard error (SE), which is understood as a measure of uncertainty: the smaller the SE, the higher the weight that is assigned to the regarding the source. Due to the varying estimation methods of considered studies, the majority of considered papers does not report measures of deviation for their results. These state definite values; therefore, there is no information about the precision of the results at hand. Against this background, we have decided to use a modified approach to estimate the considered papers’ qualities93. Following van Ewijk et al.94 and Haase et al.95, we apply three relevant context-sensitive variables to approximate the standard error of the dependent variable and thereby evaluate the quality of each publication: the newer the paper (compared to the timeframe between 1995 and 2018), the higher we assume the quality of reported results. The more often a paper was cited per year (measured on the basis of Google Scholar), the higher the paper’s reputation. The higher the publishing journal’s impact factor (measured with the SciMago journal ranking), the higher its reputation and therefore, the paper’s quality. For every paper, the three indicators publishing year (shortened with PY in Table 2), citations/year (CY), and journal rank (SJR) rank a paper’s impact on a scale from 1 to 10, where 1 describes the lowest qualitative rank and 10 the highest. The sum of these three factors (SUM) then determines the weight of a paper’s result in the mean value (WEIGHT). The papers’ reported emission differences between organic and conventional (diff. org/conv) are weighted with the papers’ specifically calculated WEIGHTS and finally aggregated to the emission difference between both systems.
    With this approach, we weight results of qualitatively valuable papers higher and are therefore able to reduce the level of uncertainty in the estimated values because standard errors could—due to inconsistencies in the underlying studies—not be used. The results of this meta-analytical approach are listed in Table 2 (cf. “Results” subsection on quantification); further details can be found in Supplementary Note 1 and Supplementary Table 1. The studies considered compare GHG emissions of farming systems in relation to the crop/farm area. However, since our study aims to compare GHG emissions in relation to the weight of foodstuff, we include the difference in yield (yield gap) between the two farming systems for plant-based products and the difference in productivity (productivity gap) for animal-based and dairy products. For plant-based products, the yield gap is 117%, meaning that conventional farming produces 17% more plant-based products than organic farming in a given area. This gap was derived from three comprehensive meta studies57,58,59 and weighted as just described for the emission difference between organic and conventional farming. For animal-based as well as dairy products, the productivity gap could be determined with the same studies used for the meta-analytical estimation of the emission differences22,23,24,25,28,95. The productivity gap is 179% for animal-based and 152% for dairy products. In line with Sanders and Hess63, the yield (or productivity) difference (frac{{yield_{conv}}}{{yield_{org}}}) affects the calculation of the food-weight-specific emission difference (frac{{GHG_{org;food;weight}}}{{GHG_{conv;food;weight}}} = D_{org/conv}) between both farming systems: the yield difference is hereby multiplied with the cropland-specific emission difference (frac{{GHG_{org;cropland}}}{{GHG_{conv;crioland}}}). Resulting from this, the emission difference can be formulated as follows:

    $$D_{org/conv} = frac{{GHG_{org;food;weight}}}{{GHG_{conv;food;weight}}} = frac{{GHG_{org;cropland}}}{{GHG_{conv;cropland}}} times frac{{yield_{conv}}}{{yield_{org}}}$$
    (1)

    If the yield difference were not included, emissions from organic farming would appear lower than they actually are as organic farming has lower emissions per kg of foodstuff but also lower yields per area. With formula 1, we adjust for that.
    Input data for monetization
    Monetization of these externalities requires data on GHG costs as well as data on the food categories’ producer prices.
    The cost rate for CO2 equivalents used in this study stems from the guidelines of the German Federal Environment Agency (UBA) on estimating external ecological costs32. They recommend a cost rate of 180 € per ton of CO2 equivalents. This value is very close to the value of the 5th IPCC Assessment Report (173.5 €/tCO2eq), where the mean of all (up to this point) available studies with a time preference rate of 1% was determined33. The cost rate from the German Federal Environment Agency’s guideline is based on the cost damage model FUND96 and includes an equity weighting as well as a time preference rate of 1% for future damages. In this model, different impact categories are considered in order to estimate external costs from GHG emissions. Damage costs can be differentiated as benefit losses such as lowered life expectancy or agricultural yield losses and costs of damage reduction such as medical treatment costs or water purification costs97. Following UBA, these damage costs are analyzed in the following categories: agriculture, forestry, sea-level rise, cardiovascular and respiratory disorders related to cold and heat stress, malaria, dengue fever, schistosomiasis, diarrhea, energy consumption, water resources, and unmanaged ecosystems96. Using a cost-benefit-analysis (CBA), an adequate level of emissions is reached when marginal abatement costs are equal with damage costs. In a CBA external damage, costs can therefore be conceptualized as a price surcharge necessary to effect their optimal reduction98.
    For the pricing of the food categories, we determine the total amount of proceeds that farmers accumulate for their sold foodstuff in €99 for each category (producer price) divided by its total production quantity. Thereby we calculate the relative price per ton for each foodstuff. We solely refer to producer prices as the system boundaries only reach until the farmgate.
    Calculating output data
    Output data include the aggregation and separation of food-specific categories to the broader categories of animal- and plant-based products, as well as conventional and organic products. As previously explained, such aggregation and separation are needed because the underlying material-flow analysis tool only lists food-specific emission data for conventionally produced foodstuff. Combining the input data, we are now able to quantify and monetize externalities of GHGs for different food categories.
    For quantification, we separate between the following two steps: first, the aggregation of emissions data to broader categories and second the differentiation between conventional and organic farming systems. We iterate these steps two times, once for broad categories of animal-based products, plant-based products, and dairy and once for more narrow categories of vegetables, fruits, root crops, legumes, cereal, and oilseeds on the plant-based side as well as milk, eggs, poultry, ruminant, and pig on the animal-based side. Figure 4 displays the whole process of quantification schematically before we describe it in detail in the following text.
    Fig. 4: Visualization of the quantification process.

    Quantification as well as corresponding input and output data are displayed. Data from the Global Emissions Model for Integrated Systems (GEMIS)44 (gb,n,i,conv) and production data88,89,90 (qb,n,i,conv) are combined, and emission data for broad (Eb,conv) and narrow (eb,n,conv) categories are derived for conventional production. Organic emission values are calculated by multiplication of conventional emission values (Eb,org and eb,n,org) with the emission difference (Db,org/conv) (cf. “Input data for quantification”).

    Full size image

    Concerning the reasoning behind the method, the question that might come to mind is why the differentiation between farming systems happens after the aggregation and not before. This is due to the fact that the proportional production quantities of specific food as well as food categories to each other differ from conventional to organic production. Let us imagine aggregation would take place after the differentiation of farming systems: for example, beef actually makes up over 50% of all produced food in the organic animal-based product category, while it only accounts for 25% of the conventional animal-based product category (cf. production values in Table 3). As beef production produces the highest emissions of all foodstuffs, these high emissions would be weighted far stronger in the organic category than in the conventional category and thereby producing a higher mean for the organic animal-based product category than for the conventional one. As can be seen from this example, the organic animal-based product category could have a higher mean of emissions than the conventional animal-based product category while still having lower emissions for each individual organic animal-based product than conventional production. Deriving GHG emissions of foodstuff before aggregating to broader categories would thus be problematic and create means not representative for the elements that make up the broader category. To prevent this problem, the chosen method in this paper is thus to first aggregate to the chosen level of granularity (broad or narrow food categories) and then to derive emissions of organic production from conventional production data.
    The first step of aggregation consists first of aggregating food-specific emission data from GEMIS gb,n,i,conv to the narrow categories eb,n,conv and second aggregating emission data from the narrow categories to the broad categories Eb,conv. As mentioned before and remarked in the respective indices, all these data only refer to conventional production up to this point. For both steps, the method is identical. The aggregation to narrow categories is represented in (2a) where eb,n,conv stands for the emissions of the narrow category n, which itself is part of the broad category b. Input data from GEMIS are remarked as gb,n,i,conv, whereby the index i refers to the ith element of category n. It’s production quantity is qb,n,i,conv. pb,n,conv represents the production quantity of the narrow category n. I (and N in formula 2b) represents the highest index of an element in a narrow (or a broad) category.

    $$e_{b,n = x,conv} = mathop {sum }limits_{i in n = x}^I g_{b,n,i,conv} times frac{{q_{b,n,i,conv}}}{{p_{b,n,conv}}}$$
    (2a)

    The aggregation to broad categories is described by formula 2b whereby Eb,conv are the emissions and Pb,conv the production quantity of broad category b.

    $$E_{b = x,conv} = mathop {sum }limits_{n in b = x}^N e_{b,n,conv} times frac{{p_{b,n,conv}}}{{P_{b,conv}}}.$$
    (2b)

    In the second step, we calculate emission values for organic production by multiplying the calculated emission difference Db,org/conv between both farming systems (cf. “Input data for quantification”) with the conventional emission values. These organic emission values are denoted as Eb,org for broad categories and eb,n,org for narrow categories.
    To calculate the costs Cb of category-specific emissions, we multiply the cost rate P for CO2 equivalents with the category-specific emission data Eb or eb,n (depending on whether broad or narrow categories are observed). Further, we determine percentage surcharge costs (Delta _b) by setting these costs in relation to the producer price ppb of the respective food category: (Delta _b = frac{{C_b}}{{pp_b}}) (the calculation is analogue for narrow categories). These surcharge costs represent the price increase necessary to internalize all externalities from GHG emissions for a specific food category.
    Dealing with uncertainties
    Due to the interdisciplinarity and novelty of our study, we connect several methodological approaches and refer to various sources for data. Against this background, we had to accept some uncertainties while assembling and using the developed framework for our calculation. The studies included in our meta-analytical approach of calculating the difference between organic and conventional emission values, for one, are not fully consistent in the methodologies each of them uses (refer to Supplementary Table 1 for details). Furthermore, from the results of all included studies, it is apparent that there exists a wide range of emission differences between the farming practices, depending on the paper’s scope and examined produce21. We attempted to account for this by performing the studies according to their fit regarding the object of research (cf. “Input data for quantification”). Due to insufficient availability of the data for the emission differences between organic and conventional on the basis of each narrow category, an average for the emission difference was used. This possibly results in imprecisions during the internalization of the external costs on the level of all narrow categories. Therefore, we focus on the aggregated broad categories, as this uncertainty can be evaded here. Furthermore, the in literature reported price factor for CO2 equivalents is volatile over time, impacting the results of this paper. It is to be expected that the external costs of GHG emissions are likely to rise in the future (cf. subsection on research aim and literature review). Also, our study’s scope is confined to the assessment of the current production situation within the German agricultural sector. Therefore, we do not account for future developments regarding a changing agricultural production landscape after internalization of the accounted external costs. We do, however, discuss possible effects on demand patterns as well as the environmental and social performance of the agricultural sector in “Discussion”. Regarding the incorporated LUC emissions, there appears to be a lacking scientific consensus on a general method of calculation for such emissions45,100,101,102. We thus want to emphasize that these additional emissions should be treated with caution and are thereby displayed separately from the other data.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More