Acceleration predicts energy expenditure in a fat, flightless, diving bird
1.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Article Google Scholar
2.
Tomlinson, S. et al. Applications and implications of ecological energetics. Trends Ecol. Evol. 29, 280–290 (2014).
PubMed Article PubMed Central Google Scholar
3.
Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies; a reappraisal. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13040 (2018).
Article PubMed PubMed Central Google Scholar
4.
Stearns, S. C. The Evolution of Life Histories (OUP Oxford, Oxford, 1992).
Google Scholar
5.
Green, J. A., Boyd, I. L., Woakes, A. J., Warren, N. L. & Butler, P. J. Evaluating the prudence of parents: Daily energy expenditure throughout the annual cycle of a free-ranging bird, the macaroni penguin Eudyptes chrysolophus. J. Avian Biol. 40, 529–538 (2009).
Article Google Scholar
6.
Halsey, L. G. et al. Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long-term heart rate measurements. Funct. Ecol. 33, 260–272 (2019).
Article Google Scholar
7.
Butler, P. J., Green, J. A., Boyd, I. L. & Speakman, J. R. Measuring metabolic rate in the field: The pros and cons of the doubly labelled water and heart rate methods. Funct. Ecol. 18, 168–183 (2004).
Article Google Scholar
8.
Green, J. A. The heart rate method for estimating metabolic rate: Review and recommendations. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 158, 287–304 (2011).
PubMed Article CAS PubMed Central Google Scholar
9.
Green, J. A., Halsey, L. G., Wilson, R. P. & Frappell, P. B. Estimating energy expenditure of animals using the accelerometry technique: Activity, inactivity and comparison with the heart-rate technique. J. Exp. Biol. 212, 471–482 (2009).
CAS PubMed Article PubMed Central Google Scholar
10.
Speakman, J. R. Doubly Labelled Water: Theory and Practice (Chapman and Hall, London, 1997).
Google Scholar
11.
Yoda, K. et al. A new technique for monitoring the behaviour of free-ranging Adélie penguins. J. Exp. Biol. 204, 685–690 (2001).
CAS PubMed PubMed Central Google Scholar
12.
Wilson, R. P. et al. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: The case of the cormorant. J. Anim. Ecol. 75, 1081–1090 (2006).
PubMed Article PubMed Central Google Scholar
13.
Gleiss, A. C., Wilson, R. P. & Shepard, E. L. C. Making overall dynamic body acceleration work: On the theory of acceleration as a proxy for energy expenditure. Methods Ecol. Evol. 2, 23–33 (2011).
Article Google Scholar
14.
Ropert-Coudert, Y. & Wilson, R. P. Trends and perspectives in animal-attached remote sensing. Front. Ecol. Environ. 3, 437–444 (2005).
Article Google Scholar
15.
Gatt, M. C., Quetting, M., Cheng, Y. & Wikelski, M. Dynamic body acceleration increases by 20% during flight ontogeny of Greylag Geese (Anser anser). J. Avian Biol. 1, 2235 (2019).
Google Scholar
16.
Van Walsum, T. A. et al. Exploring the relationship between flapping behaviour and accelerometer signal during ascending flight, and a new approach to calibration. Ibis (Lond. 1859) 162, 13–26 (2020).
Article Google Scholar
17.
Elliott, K. H. Measurement of flying and diving metabolic rate in wild animals: Review and recommendations. Comparat. Biochem. Physiol. Part A Mol. Integr. Physiol. 202, 63–77 (2016).
CAS Article Google Scholar
18.
Fahlman, A., Svärd, C., Rosen, D. S., Jones, D. R. & Trites, A. W. Metabolic costs of foraging and the management of O2 and CO2 stores in Steller sea lions. J. Exp. Biol. 211, 3573–3580 (2008).
PubMed Article PubMed Central Google Scholar
19.
Payne, N. L. et al. Accelerometry estimates field metabolic rate in giant Australian cuttlefish Sepia apama during breeding. J. Anim. Ecol. 80, 422–430 (2011).
PubMed Article PubMed Central Google Scholar
20.
Wright, S., Metcalfe, J. D., Hetherington, S. & Wilson, R. P. Estimating activity-specific energy expenditure in a teleost fish, using accelerometer loggers. Mar. Ecol. Prog. Ser. 496, 19–32 (2014).
ADS Article Google Scholar
21.
Bidder, O. R. et al. Does the treadmill support valid energetics estimates of field locomotion?. Integr. Comp. Biol. 57, 301–319 (2017).
PubMed Article PubMed Central Google Scholar
22.
Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 00, 1–10 (2019).
Google Scholar
23.
Jeanniard-du-Dot, T., Trites, A. W., Arnould, J. P. Y., Speakman, J. R. & Guinet, C. Activity-specific metabolic rates for diving, transiting, and resting at sea can be estimated from time–activity budgets in free-ranging marine mammals. Ecol. Evol. 7, 2969–2976 (2017).
PubMed PubMed Central Article Google Scholar
24.
Hicks, O. et al. Validating accelerometry estimates of energy expenditure across behaviours using heart rate data in a free-living seabird. J. Exp. Biol. 220, 1875–1881 (2017).
PubMed PubMed Central Article Google Scholar
25.
Elliott, K. H., Le Vaillant, M., Kato, A., Speakman, J. R. & Ropert-Coudert, Y. Accelerometry predicts daily energy expenditure in a bird with high activity levels. Biol. Lett. 9, 1–4 (2013).
Article Google Scholar
26.
Bishop, C. M. et al. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 147, 250–254 (2015).
ADS Article CAS Google Scholar
27.
Stothart, M. R., Elliott, K. H., Wood, T., Hatch, S. A. & Speakman, J. R. Counting calories in cormorants: Dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants. J. Exp. Biol. 219, 2192–2200 (2016).
PubMed Article PubMed Central Google Scholar
28.
Karasov, W. H. Daily energy expenditure and the cost of activity in mammals. Integr. Comp. Biol. 32, 238–248 (1992).
Google Scholar
29.
Lovvorn, J. R. Thermal substitution and aerobic efficiency: Measuring and predicting effects of heat balance on endotherm diving energetics. Philos. Trans. R. Soc. B Biol. Sci. 362, 2079–2093 (2007).
CAS Article Google Scholar
30.
Lewden, A., Enstipp, M. R., Picard, B., Van Walsum, T. & Handrich, Y. High peripheral temperatures in king penguins while resting at sea: Thermoregulation versus fat deposition. J. Exp. Biol. 220, 3084–3094 (2017).
PubMed Article PubMed Central Google Scholar
31.
Halsey, L. G., Shepard, E. L. C. & Wilson, R. P. Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 158, 305–314 (2011).
Article CAS Google Scholar
32.
Elliott, K. H. Measurement of flying and diving metabolic rate in wild animals: Review and recommendations. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 202, 63–77 (2016).
CAS Article Google Scholar
33.
Wilson, R. P. & Culik, B. M. The cost of a hot meal: Facultative specific dynamic action may ensure temperature homeostasis in post-ingestive endotherms. Comp. Biochem. Physiol. Part A Physiol. 100, 151–154 (1991).
CAS Article Google Scholar
34.
Halsey, L. G. et al. Assessing the validity of the accelerometry technique for estimating the energy expenditure of diving double-crested cormorants Phalacrocorax auritus. Physiol. Biochem. Zool. 84, 230–237 (2011).
CAS PubMed Article PubMed Central Google Scholar
35.
Ladds, M. A., Rosen, D. A. S., Slip, D. J. & Harcourt, R. G. Proxies of energy expenditure for marine mammals: An experimental test of ‘the time trap’. Sci. Rep. 7, 1–10 (2017).
CAS Article Google Scholar
36.
Qasem, L. et al. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?. PLoS ONE 7, e31187 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
37.
Sparling, C. E., Thompson, D., Fedak, M. A., Gallon, S. L. & Speakman, J. R. Estimating field metabolic rates of pinnipeds: Doubly labelled water gets the seal of approval. Funct. Ecol. 22, 245–254 (2008).
Article Google Scholar
38.
Ropert-Coudert, Y. et al. Two recent massive breeding failures in an adélie penguin colony call for the creation of a Marine Protected area in D’Urville Sea/Mertz. Front. Mar. Sci. 5, 1–7 (2018).
Article Google Scholar
39.
Chappell, M. A., Shoemaker, V. H., Janes, D. N., Maloney, S. K. & Bucher, T. L. Energetics of foraging in breeding Adélie penguins. Ecology 74, 2450–2461 (1993).
Article Google Scholar
40.
Nagy, K. A. & Obst, B. S. Food and energy requirements of Adelie penguins (Pygoscelis adeliae) on the Antarctic Peninsula. Physiol. Zool. 65, 1271–1284 (1992).
Article Google Scholar
41.
Culik, B. Y. B. & Wilson, R. P. Swimming energetics and performance of instrumented Adélie penguins (Pygoscelis Adeliae). J. Exp. Biol. 158, 355–368 (1991).
Google Scholar
42.
Kooyman, G. L., Gentry, R. L., Bergman, W. P. & Hammel, H. T. Heat loss in penguins during immersion and compression. Comp. Biochem. Physiol. Part A Physiol. 54, 75–80 (1976).
CAS Article Google Scholar
43.
Fahlman, A., Wilson, R., Svärd, C., Rosen, D. A. S. & Trites, A. W. Activity and diving metabolism correlate in Steller sea lion Eumetopias jubatus. Aquat. Biol. 2, 75–84 (2008).
Article Google Scholar
44.
Gleiss, A. C., Dale, J. J., Holland, K. N. & Wilson, R. P. Accelerating estimates of activity-specific metabolic rate in fishes: Testing the applicability of acceleration data-loggers. J. Exp. Mar. Bio. Ecol. 385, 85–91 (2010).
Article Google Scholar
45.
Halsey, L. G., Jones, T. T., Jones, D. R., Liebsch, N. & Booth, D. T. Measuring energy expenditure in sub-adult and hatchling sea turtles via accelerometry. PLoS ONE 6, 2 (2011).
Article CAS Google Scholar
46.
Halsey, L. G. et al. The relationship between oxygen consumption and body acceleration in a range of species. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152, 197–202 (2009).
CAS PubMed Article PubMed Central Google Scholar
47.
Halsey, L. G. et al. Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: Tests with an easy model species, Homo sapiens. Zoology. https://doi.org/10.1016/j.zool.2007.07.011 (2008).
Article PubMed PubMed Central Google Scholar
48.
Gleiss, A. C., Gruber, S. H. & Wilson, R. P. Multi-channel data-logging: Towards determination of behaviour and metabolic rate in free-swimming sharks. Tag. Track. Mar. Anim. Electron. Dev. 9, 211–228 (2009).
Google Scholar
49.
Gómez-Laich, A., Wilson, R. P., Quintana, F. & Shepard, E. Identification of imperial cormorant Phalacrocorax atriceps behaviour using accelerometers. Endanger. Species Res. 10, 29–37 (2008).
Article Google Scholar
50.
Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. & Trites, A. W. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct. Ecol. 31, 377–386 (2016).
Article Google Scholar
51.
Gómez-Laich, A., Wilson, R. P., Gleiss, A. C., Shepard, E. L. C. & Quintana, F. Use of overall dynamic body acceleration for estimating energy expenditure in cormorants. J. Exp. Mar. Bio. Ecol. 399, 151–155 (2011).
Article Google Scholar
52.
Fahlman, A., Schmidt, A., Handrich, Y., Woakes, A. J. & Butler, P. J. Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water. Am. J. Physiol. Integr. Comp. Physiol. 289, R670–R679 (2005).
CAS Article Google Scholar
53.
Ciancio, J. E., Quintana, F., Sala, J. E. & Wilson, R. P. Cold birds under pressure: Can thermal substitution ease heat loss in diving penguins?. Mar. Biol. 163, 1–15 (2016).
Article CAS Google Scholar
54.
Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13040 (2019).
Article PubMed PubMed Central Google Scholar
55.
Lifson, N. & McClintock, R. Theory of use of the turnover rates of body water for measuring energy and material balance. J. Theor. Biol. 12, 46–74 (1966).
CAS PubMed Article PubMed Central Google Scholar
56.
Speakman, J. R. & Król, E. Comparison of different approaches for the calculation of energy expenditure using doubly labeled water in a small mammal. Physiol. Biochem. Zool. 78, 650–667 (2005).
PubMed Article PubMed Central Google Scholar
57.
Beaulieu, M. et al. Sex-specific parental strategies according to the sex of offspring in the Adélie penguin. Behav. Ecol. 20, 878–883 (2009).
Article Google Scholar
58.
Berman, E. S. F. et al. Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, off-axis integrated cavity output spectroscopy. Anal. Chem. 84, 9768–9773 (2012).
CAS PubMed PubMed Central Article Google Scholar
59.
Nagy, K. A. Doubly labeled water method (3 HH 18 O): A guide to its use. Oecologia 59, 1–45 (1983).
Article Google Scholar
60.
Speakman, J. R. How should we calculate CO2 production in DLW studies of mammals. Funct. Ecol. 7, 746–750 (1993).
Google Scholar
61.
Visser, G. H. & Schekkerman, H. Validation of the doubly labeled water method in growing precocial birds: The importance of assumptions concerning evaporative water loss. Physiol. Biochem. Zool. 72, 740–749 (1999).
CAS PubMed Article PubMed Central Google Scholar
62.
Van Trigt, R. et al. Validation of the DLW method in Japanese quail at different water fluxes using laser and IRMS. J. Appl. Physiol. 93, 2147–2154 (2002).
PubMed Article PubMed Central Google Scholar
63.
Culik, B. et al. Energy requirements of Adélie penguin (Pygoscelis adeliae) chicks. J. Comp. Physiol. B 160, 61–70 (1990).
CAS PubMed Article PubMed Central Google Scholar
64.
Wilson, R. P. et al. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 25, 101–105 (1997).
Google Scholar
65.
Collins, P. M. et al. Interpreting behaviors from accelerometry: A method combining simplicity and objectivity. Ecol. Evol. 5, 4642–4654 (2015).
PubMed PubMed Central Article Google Scholar
66.
Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S. & Elliott, K. A comparison of techniques for classifying behavior from accelerometers for two species of seabird. Ecol. Evol. https://doi.org/10.1002/ece3.4740 (2019).
Article PubMed PubMed Central Google Scholar
67.
R Core Team. R: A language and environment for statistical computing. (2019). More