Effect of temperature on the unimodal size scaling of phytoplankton growth
1.
Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010).
CAS Article Google Scholar
2.
Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).
PubMed Article PubMed Central Google Scholar
3.
Chavez, F. P., Messié, M. & Pennington, J. T. marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).
PubMed Article PubMed Central Google Scholar
4.
Kleiber, M. Body size and metabolism. Hilgardia J. Agric. Sci. 6, 315–353 (1932).
CAS Article Google Scholar
5.
Gillooly, J. F. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
ADS CAS PubMed Article PubMed Central Google Scholar
6.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Article Google Scholar
7.
Raven, J. A. Why are there no picoplanktonic O2 evolvers with volumes less than 10–19 m3?. J. Plankton Res. 16, 565–580 (1994).
Article Google Scholar
8.
Bec, B., Collos, Y., Vaquer, A., Mouillot, D. & Souchu, P. Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes. Limnol. Oceanogr. 53, 863–867 (2008).
ADS Article Google Scholar
9.
Chen, B. & Liu, H. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55, 965–972 (2010).
ADS CAS Article Google Scholar
10.
Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).
PubMed Article PubMed Central Google Scholar
11.
Ward, B. A., Marañón, E., Sauterey, B., Rault, J. & Claessen, D. The size dependence of phytoplankton growth rates: a trade-off between nutrient uptake and metabolism. Am. Nat. 189, 170–177 (2016).
PubMed Article PubMed Central Google Scholar
12.
Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).
ADS Article Google Scholar
13.
Sal, S., Alonso-Saez, L., Bueno, J., Garcıa, F. C. & Lopez-Urrutia, A. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60, 1212–1221 (2015).
ADS Article Google Scholar
14.
Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).
ADS Article Google Scholar
15.
Chen, B. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37, 285–292 (2015).
Article Google Scholar
16.
Thomas, M. K., Kremer, C. T. & Litchman, E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Glob. Ecol. Biogeogr. 25, 75–86 (2016).
Article Google Scholar
17.
Heinle, M. The effects of light, temperature and nutrients on coccolithophores and implications for biogeochemical models (Doctoral dissertation, University of East Anglia, Norwich, United Kingdom). (2013).
18.
Kruskopf, M. & Flynn, K. J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 169, 841–842 (2006).
Article CAS Google Scholar
19.
Flynn, K. J. & Raven, J. A. What is the limit for photoautotrophic plankton growth rates?. J. Plankton Res. 39, 13–22 (2016).
Article CAS Google Scholar
20.
Prakash, A., Skoglund, L., Rystad, B. & Jensen, A. Growth and cell-size distribution of marine planktonic algae in batch and dialysis cultures. J. Fish. Res. Board Canada 30, 143–155 (1973).
Article Google Scholar
21.
Xia, L., Huang, R., Li, Y. & Song, S. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLoS ONE 12, e0186434 (2017).
PubMed PubMed Central Article CAS Google Scholar
22.
Verdy, A., Follows, M. & Flierl, G. Optimal phytoplankton cell size in an allometric model. Mar. Ecol. Prog. Ser. 379, 1–12 (2009).
ADS Article Google Scholar
23.
Kempes, C. P., Dutkiewicz, S. & Follows, M. J. Growth, metabolic partitioning, and the size of microorganisms. Proc. Natl. Acad. Sci. U.S.A. 109, 495–500 (2012).
ADS CAS PubMed Article Google Scholar
24.
Stawiarski, B., Buitenhuis, E. T. & Quéré, C. L. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).
Article Google Scholar
25.
Martiny, A. C., Ma, L., Mouginot, C., Chandler, J. W. & Zinser, E. R. Interactions between thermal acclimation, growth rate, and phylogeny influence prochlorococcus elemental stoichiometry. PLoS ONE 11, 1–12 (2016).
Article CAS Google Scholar
26.
Mackey, K. R. M. et al. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol. 163, 815–829 (2013).
CAS PubMed PubMed Central Article Google Scholar
27.
Demory, D. et al. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME J. 13, 132–146 (2018).
PubMed PubMed Central Article Google Scholar
28.
Pittera, J. et al. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J. 8, 1221–1236 (2014).
CAS PubMed PubMed Central Article Google Scholar
29.
Barton, S. & Yvon-Durocher, G. Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnol. Oceanogr. 64, 2081–2091 (2019).
ADS Article Google Scholar
30.
Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
ADS Article Google Scholar
31.
Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).
CAS PubMed Article PubMed Central Google Scholar
32.
Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).
ADS CAS Article Google Scholar
33.
Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).
ADS CAS Article Google Scholar
34.
Gutierrez-Rodríguez, A., Selph, K. E. & Landry, M. R. Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments. J. Plankton Res. 38, 271–289 (2015).
PubMed PubMed Central Article Google Scholar
35.
Worden, A. Z. & Binder, B. J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159–174 (2003).
Article Google Scholar
36.
DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U.S. A. 107, 12941–12945 (2010).
ADS CAS PubMed PubMed Central Article Google Scholar
37.
García, F. C. et al. The allometry of the smallest: superlinear scaling of microbial metabolic rates in the Atlantic Ocean. ISME J. 10, 1029–1036 (2016).
PubMed Article CAS Google Scholar
38.
Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).
Article Google Scholar
39.
Marãnón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).
Article CAS Google Scholar
40.
Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19, 1–14 (2005).
Article CAS Google Scholar
41.
Tsuda, A. et al. A mesoscale iron enrichment in the Western subarctic Pacific induces a large centric diatom bloom. Science 300, 958–961 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar
42.
Latasa, M., Landry, M. R., Schlüter, L. & Bidigare, R. R. Pigment-specific growth and grazing rates of phytoplankton in the central equatorial pacific. Limnol. Oceanogr. 42, 289–298 (1997).
ADS CAS Article Google Scholar
43.
Cavender-Bares, K. K., Mann, E. L., Chisholm, S. W., Ondrusek, M. E. & Bidigare, R. R. Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol. Oceanogr. 44, 237–246 (1999).
ADS CAS Article Google Scholar
44.
Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).
ADS Article CAS Google Scholar
45.
Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15161 (2020).
Article PubMed PubMed Central Google Scholar
46.
Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).
ADS Article Google Scholar
47.
Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R. D. Temperature, resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 57, 1266–1278 (2012).
ADS Article Google Scholar
48.
Chisholm, S. W. Phytoplankton Size. Prim. Product. Biogeochem. Cycles Sea 02139, 213–237 (1992).
Article Google Scholar
49.
Montes-Pérez, J. J. et al. Intermediate-size cell dominance in the phytoplankton community of an eutrophic, estuarine ecosystem (Guadalhorce River, Southern Spain). Hydrobiologia 847, 2241–2254 (2020).
Article CAS Google Scholar
50.
Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs?. Limnol. Oceanogr. 62, 806–817 (2016).
ADS Article Google Scholar
51.
Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
Google Scholar
52.
Johnson, F. & Lewin, I. The growth rate of E. coli in relation to temperature, Quinine and Coenzyme. J. Cell Physiol. 28, 47–75 (1946).
CAS Article Google Scholar
53.
Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A. 108, 10591–10596 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar More
