More stories

  • in

    Effect of temperature on the unimodal size scaling of phytoplankton growth

    1.
    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010).
    CAS  Article  Google Scholar 
    2.
    Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Chavez, F. P., Messié, M. & Pennington, J. T. marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Kleiber, M. Body size and metabolism. Hilgardia J. Agric. Sci. 6, 315–353 (1932).
    CAS  Article  Google Scholar 

    5.
    Gillooly, J. F. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    7.
    Raven, J. A. Why are there no picoplanktonic O2 evolvers with volumes less than 10–19 m3?. J. Plankton Res. 16, 565–580 (1994).
    Article  Google Scholar 

    8.
    Bec, B., Collos, Y., Vaquer, A., Mouillot, D. & Souchu, P. Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes. Limnol. Oceanogr. 53, 863–867 (2008).
    ADS  Article  Google Scholar 

    9.
    Chen, B. & Liu, H. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55, 965–972 (2010).
    ADS  CAS  Article  Google Scholar 

    10.
    Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Ward, B. A., Marañón, E., Sauterey, B., Rault, J. & Claessen, D. The size dependence of phytoplankton growth rates: a trade-off between nutrient uptake and metabolism. Am. Nat. 189, 170–177 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).
    ADS  Article  Google Scholar 

    13.
    Sal, S., Alonso-Saez, L., Bueno, J., Garcıa, F. C. & Lopez-Urrutia, A. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60, 1212–1221 (2015).
    ADS  Article  Google Scholar 

    14.
    Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).
    ADS  Article  Google Scholar 

    15.
    Chen, B. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37, 285–292 (2015).
    Article  Google Scholar 

    16.
    Thomas, M. K., Kremer, C. T. & Litchman, E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Glob. Ecol. Biogeogr. 25, 75–86 (2016).
    Article  Google Scholar 

    17.
    Heinle, M. The effects of light, temperature and nutrients on coccolithophores and implications for biogeochemical models (Doctoral dissertation, University of East Anglia, Norwich, United Kingdom). (2013).

    18.
    Kruskopf, M. & Flynn, K. J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 169, 841–842 (2006).
    Article  CAS  Google Scholar 

    19.
    Flynn, K. J. & Raven, J. A. What is the limit for photoautotrophic plankton growth rates?. J. Plankton Res. 39, 13–22 (2016).
    Article  CAS  Google Scholar 

    20.
    Prakash, A., Skoglund, L., Rystad, B. & Jensen, A. Growth and cell-size distribution of marine planktonic algae in batch and dialysis cultures. J. Fish. Res. Board Canada 30, 143–155 (1973).
    Article  Google Scholar 

    21.
    Xia, L., Huang, R., Li, Y. & Song, S. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLoS ONE 12, e0186434 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Verdy, A., Follows, M. & Flierl, G. Optimal phytoplankton cell size in an allometric model. Mar. Ecol. Prog. Ser. 379, 1–12 (2009).
    ADS  Article  Google Scholar 

    23.
    Kempes, C. P., Dutkiewicz, S. & Follows, M. J. Growth, metabolic partitioning, and the size of microorganisms. Proc. Natl. Acad. Sci. U.S.A. 109, 495–500 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Stawiarski, B., Buitenhuis, E. T. & Quéré, C. L. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).
    Article  Google Scholar 

    25.
    Martiny, A. C., Ma, L., Mouginot, C., Chandler, J. W. & Zinser, E. R. Interactions between thermal acclimation, growth rate, and phylogeny influence prochlorococcus elemental stoichiometry. PLoS ONE 11, 1–12 (2016).
    Article  CAS  Google Scholar 

    26.
    Mackey, K. R. M. et al. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol. 163, 815–829 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Demory, D. et al. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME J. 13, 132–146 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Pittera, J. et al. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J. 8, 1221–1236 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Barton, S. & Yvon-Durocher, G. Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnol. Oceanogr. 64, 2081–2091 (2019).
    ADS  Article  Google Scholar 

    30.
    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
    ADS  Article  Google Scholar 

    31.
    Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).
    ADS  CAS  Article  Google Scholar 

    33.
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).
    ADS  CAS  Article  Google Scholar 

    34.
    Gutierrez-Rodríguez, A., Selph, K. E. & Landry, M. R. Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments. J. Plankton Res. 38, 271–289 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Worden, A. Z. & Binder, B. J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159–174 (2003).
    Article  Google Scholar 

    36.
    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U.S. A. 107, 12941–12945 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    García, F. C. et al. The allometry of the smallest: superlinear scaling of microbial metabolic rates in the Atlantic Ocean. ISME J. 10, 1029–1036 (2016).
    PubMed  Article  CAS  Google Scholar 

    38.
    Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).
    Article  Google Scholar 

    39.
    Marãnón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).
    Article  CAS  Google Scholar 

    40.
    Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19, 1–14 (2005).
    Article  CAS  Google Scholar 

    41.
    Tsuda, A. et al. A mesoscale iron enrichment in the Western subarctic Pacific induces a large centric diatom bloom. Science 300, 958–961 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Latasa, M., Landry, M. R., Schlüter, L. & Bidigare, R. R. Pigment-specific growth and grazing rates of phytoplankton in the central equatorial pacific. Limnol. Oceanogr. 42, 289–298 (1997).
    ADS  CAS  Article  Google Scholar 

    43.
    Cavender-Bares, K. K., Mann, E. L., Chisholm, S. W., Ondrusek, M. E. & Bidigare, R. R. Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol. Oceanogr. 44, 237–246 (1999).
    ADS  CAS  Article  Google Scholar 

    44.
    Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).
    ADS  Article  CAS  Google Scholar 

    45.
    Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15161 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).
    ADS  Article  Google Scholar 

    47.
    Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R. D. Temperature, resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 57, 1266–1278 (2012).
    ADS  Article  Google Scholar 

    48.
    Chisholm, S. W. Phytoplankton Size. Prim. Product. Biogeochem. Cycles Sea 02139, 213–237 (1992).
    Article  Google Scholar 

    49.
    Montes-Pérez, J. J. et al. Intermediate-size cell dominance in the phytoplankton community of an eutrophic, estuarine ecosystem (Guadalhorce River, Southern Spain). Hydrobiologia 847, 2241–2254 (2020).
    Article  CAS  Google Scholar 

    50.
    Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs?. Limnol. Oceanogr. 62, 806–817 (2016).
    ADS  Article  Google Scholar 

    51.
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 

    52.
    Johnson, F. & Lewin, I. The growth rate of E. coli in relation to temperature, Quinine and Coenzyme. J. Cell Physiol. 28, 47–75 (1946).
    CAS  Article  Google Scholar 

    53.
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A. 108, 10591–10596 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Temporal division of labor in an aphid social system

    1.
    Wilson, E. O. The Insect Societies (Harvard University Press, Cambridge, 1971).
    Google Scholar 
    2.
    Wilson, E. O. Sociobiology: The New Synthesis (Harvard University Press, Cambridge, 1975).
    Google Scholar 

    3.
    Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects (Princeton University Press, Princeton, 1978).
    Google Scholar 

    4.
    Seeley, T. D. Honeybee Ecology: A Study of Adaptation in Social Life (Princeton University Press, Princeton, 1985).
    Google Scholar 

    5.
    Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).
    Article  Google Scholar 

    6.
    Robinson, G. E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665 (1992).
    CAS  PubMed  Article  Google Scholar 

    7.
    Beshers, S. N. & Fewell, J. H. Models of division of labor in social insects. Annu. Rev. Entomol. 46, 413–440 (2001).
    CAS  PubMed  Article  Google Scholar 

    8.
    Johnson, B. R. Within-nest temporal polyethism in the honey bee. Behav. Ecol. Sociobiol. 62, 777–784 (2008).
    Article  Google Scholar 

    9.
    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).
    Google Scholar 

    10.
    Crosland, M. W. J., Lok, C. M., Wong, T. C., Shakarad, M. & Traniello, J. F. A. Division of labour in a lower termite: The majority of tasks are performed by older workers. Anim. Behav. 54, 999–1012 (1997).
    CAS  PubMed  Article  Google Scholar 

    11.
    Hinze, B. & Leuthold, R. H. Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insect. Soc. 46, 392–397 (1999).
    Article  Google Scholar 

    12.
    Cameron, S. A. Temporal patterns of division of labor among workers in the primitively eusocial bumble bee, Bombus griseocoffis (Hymenoptera: Apidae). Ethology 80, 137–151 (1989).
    Article  Google Scholar 

    13.
    Naug, D. & Gadagkar, R. The role of age in temporal polyethism in a primitively eusocial wasp. Behav. Ecol. Sociobiol. 42, 37–47 (1998).
    Article  Google Scholar 

    14.
    Biedermann, P. H. W. & Taborsky, M. Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. USA 108, 17064–17069 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Wakano, J. N., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).
    Article  Google Scholar 

    16.
    Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42, 91–110 (2011).
    Article  Google Scholar 

    17.
    Stern, D. L. & Foster, W. A. The evolution of soldiers in aphids. Biol. Rev. 71, 27–79 (1996).
    CAS  PubMed  Article  Google Scholar 

    18.
    Aoki, S. & Kurosu, U. A review of the biology of Cerataphidini (Hemiptera, Aphididae, Hormaphidinae), focusing mainly on their life cycles, gall formation, and soldiers. Psyche 2010, 380351 (2010).
    Google Scholar 

    19.
    Abbot, P., Tooker, J. & Lawson, S. P. Chemical ecology and sociality in aphids: Opportunities and directions. J. Chem. Ecol. 44, 770–784 (2018).
    CAS  PubMed  Article  Google Scholar 

    20.
    Aoki, S. Colophina clematis (Homoptera, Pemphigidae), an aphid species with” soldiers”. Kontyu 5, 276–282 (1977).
    Google Scholar 

    21.
    Aoki, S. & Kurosu, U. Gall cleaning by the aphid Hormaphis betulae. J. Ethol. 9, 51–55 (1989).
    Google Scholar 

    22.
    Benton, T. G. & Foster, W. A. Altruistic housekeeping in a social aphid. Proc. R. Soc. B 247, 199–202 (1992).
    ADS  Article  Google Scholar 

    23.
    Aoki, S. & Kurosu, U. Soldiers of Astegopteryx styraci (Homoptera, Aphidoidea) clean their gall. Jpn. J. Entomol. 57, 407–416 (1989).
    Google Scholar 

    24.
    Aoki, S., Kurosu, U. & Stern, D. L. Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin Ceratoglyphina bambusae. Anim. Behav. 42, 865–866 (1991).
    Article  Google Scholar 

    25.
    Kurosu, U., Narukawa, J., Buranapanichpan, S. & Aoki, S. Head-plug defense in a gall aphid. Insect. Soc. 53, 86–91 (2006).
    Article  Google Scholar 

    26.
    Kurosu, U., Aoki, S. & Fukatsu, T. Self-sacrificing gall repair by aphid nymphs. Proc. R. Soc. B 270, S12–S14 (2003).
    PubMed  Article  Google Scholar 

    27.
    Pike, N. & Foster, W. Fortress repair in the social aphid species Pemphigus spyrothecae. Anim. Behav. 67, 909–914 (2004).
    Article  Google Scholar 

    28.
    Kutsukake, M., Shibao, H., Uematsu, K. & Fukatsu, T. Scab formation and wound healing of plant tissue by soldier aphid. Proc. R. Soc. B 276, 1555–1563 (2009).
    PubMed  Article  Google Scholar 

    29.
    Kutsukake, M. et al. Exaggeration and cooption of innate immunity for social defense. Proc. Natl. Acad. Sci. USA 116, 8950–8959 (2019).
    CAS  PubMed  Article  Google Scholar 

    30.
    Aoki, S. Evolution of sterile soldiers in aphids. In Animal Societies: Theories andFacts (eds Ito, Y. et al.) 53–65 (Japan Scientific Societies Press, Tokyo, 1987).
    Google Scholar 

    31.
    Aoki, S. & Kurosu, U. Social aphids. In Encyclopedia of Social Insects (ed. Starr, C. K.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-319-90306-4_107-1.
    Google Scholar 

    32.
    Aoki, S. & Kurosu, U. Biennial galls of the aphid Astegopteryx styraci on a temperate deciduous tree Styrax obassia. Acta Phytopathol. Entomol. Hung. 25, 57–65 (1990).
    Google Scholar 

    33.
    Shibao, H., Kutsukake, M., Lee, J. & Fukatsu, T. Maintenance of soldier-producing aphids on an artificial diet. J. Insect Physiol. 48, 495–505 (2002).
    CAS  PubMed  Article  Google Scholar 

    34.
    Shibao, H., Lee, J. M., Kutsukake, M. & Fukatsu, T. Aphid soldier differentiation: density acts on both embryos and newborn nymphs. Naturwissenschaften 90, 501–504 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Shibao, H., Kutsukake, M. & Fukatsu, T. Density triggers soldier production in a social aphid. Proc. R. Soc. B 271, S71–S74 (2004).
    PubMed  Article  Google Scholar 

    36.
    Shibao, H., Kutsukake, M. & Fukatsu, T. The proximate cue of density-dependent soldier production in a social aphid. J. Insect Physiol. 50, 143–147 (2004).
    CAS  PubMed  Article  Google Scholar 

    37.
    Shibao, H., Kutsukake, M. & Fukatsu, T. Density-dependent induction and suppression of soldier differentiation in an aphid social system. J. Insect Physiol. 50, 995–1000 (2004).
    CAS  PubMed  Article  Google Scholar 

    38.
    Shibao, H., Kutsukake, M., Matsuyama, S., Fukatsu, T. & Shimada, M. Mechanisms regulating caste differentiation in an aphid social system. Commun. Integr. Biol. 3, 1–5 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Kutsukake, M. et al. Venomous protease of aphid soldier for colony defense. Proc. Natl. Acad. Sci. USA 101, 11338–11343 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Stern, D. L., Aoki, S. & Kurosu, U. A test of geometric hypotheses for soldier investment patterns in the gall producing tropical aphid Cerataphis fransseni (Homoptera, Hormaphididae). Insect. Soc. 41, 457–460 (1994).
    Article  Google Scholar 

    41.
    Pike, N., Braendle, C. & Foster, W. A. Seasonal extension of the soldier instar as a route to increased defence investment in the social aphid Pemphigus spyrothecae. Ecol. Entomol. 29, 89–95 (2004).
    Article  Google Scholar 

    42.
    Pike, N. Specialised placement of morphs within the gall of the social aphid Pemphigus spyrothecae. BMC Evol. Biol. 7, 18 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Uematsu, K., Kutsukake, M., Fukatsu, T., Shimada, M. & Shibao, H. Altruistic colony defense by menopausal female insects. Curr. Biol. 20, 1182–1186 (2010).
    CAS  PubMed  Article  Google Scholar 

    44.
    Uematsu, K., Shimada, M. & Shibao, H. Juveniles and the elderly defend, the middle-aged escape: division of labour in a social aphid. Biol. Let. 9, 20121053 (2013).
    Article  Google Scholar 

    45.
    Abe, T., Bignell, D. E., Higashi, M. & Abe, Y. Termites: Evolution, Sociality, Symbioses, Ecology (Springer, Berlin, 2000).
    Google Scholar 

    46.
    Shibao, H. Lack of kin discrimination in the eusocial aphid Pseudoregma bambucicola (Homoptera: Aphididae). J. Ethol. 17, 17–24 (1999).
    Article  Google Scholar 

    47.
    Abbot, P., Withgott, J. H. & Moran, N. A. Genetic conflict and conditional altruism in social aphid colonies. Proc. Natl. Acad. Sci. USA 98, 12068–12071 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Abbot, P. & Chhatre, V. Kin structure provides no explanation for intruders in social aphids. Mol. Ecol. 16, 3659–3670 (2007).
    CAS  PubMed  Article  Google Scholar 

    49.
    Kutsukake, M. et al. An insect-induced novel plant phenotype for sustaining social life in a closed system. Nat. Commun. 3, 1187 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Kutsukake, M. et al. Evolution of soldier-specific venomous protease in social aphids. Mol. Biol. Evol. 25, 2627–2641 (2008).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Water constraints drive allometric patterns in the body shape of tree frogs

    1.
    Adams, D. C. & Nistri, A. Ontogenetic convergence and evolution of foot morphology in european cave salamanders (Family: Plethodontidae). BMC Evol. Biol. 10, 216 (2010).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Baken, E. K., Mellenthin, L. E. & Adams, D. C. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach. Evolution 74, 476–486 (2020).
    PubMed  Article  Google Scholar 

    3.
    Martinez, P. A. et al. The contribution of neutral evolution and adaptive processes in driving phenotypic divergence in a model mammalian species, the andean fox Lycalopex culpaeus. J. Biogeogr. 45, 1114–1125 (2018).
    Article  Google Scholar 

    4.
    Vidal-García, M., Byrne, P. G., Roberts, J. D. & Keogh, J. S. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of australo-papuan myobatrachid frogs. J. Evol. Biol. 27, 181–192 (2014).
    PubMed  Article  Google Scholar 

    5.
    Adams, D. C. Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders. BMC Evol. Biol. 10, 72 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Losos, J. B. Ecological character displacement and the study of adaptation. Proc. Natl. Acad. Sci. 97, 5693–5695 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Moen, D. S., Irschick, D. J. & Wiens, J. J. Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc. R. Soc. B. 280, 20132156 (2013).
    PubMed  Article  Google Scholar 

    8.
    Amado, T. F., Bidau, C. J. & Olalla-Tárraga, M. Á. Geographic variation of body size in new world anurans: energy and water in a balance. Ecography 42, 456–466 (2019).
    Article  Google Scholar 

    9.
    Gouveia, S. F. et al. Biophysical modeling of water economy can explain geographic gradient of body size in anurans. Am. Nat. 193, 51–58 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodríguez, M. Á. Geographic body size gradients in tropical regions: water deficit and anuran body size in the brazilian cerrado. Ecography 32, 581–590 (2009).
    Article  Google Scholar 

    11.
    Cooney, C. R. et al. Ecology and allometry predict the evolution of avian developmental durations. Nat. Commun. 11, 1–9 (2020).
    Article  CAS  Google Scholar 

    12.
    Kriegman, S., Cheney, N. & Bongard, J. How morphological development can guide evolution. Sci. Rep. 8, 1–10 (2018).
    Article  CAS  Google Scholar 

    13.
    Moczek, A. P. Re-evaluating the environment in developmental evolution. Front. Ecol. Evol. 3, 1–8 (2015).
    Article  Google Scholar 

    14.
    Richter-Boix, A., Tejedo, M. & Rezende, E. L. Evolution and plasticity of anuran larval development in response to desiccation. a comparative analysis. Ecol. Evol. 1, 15–25 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Castro, K. M. S. A., do Santos, M. P., Brito, M. F. G., Bidau, C. J. & Martinez, P. A. Ontogenetic allometry conservatism across five teleost orders. J. Fish Biol. 93, 745–749 (2018).
    Article  Google Scholar 

    16.
    Skúlason, S. et al. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol. Rev. 94, 1786–1808 (2019).
    PubMed  Article  Google Scholar 

    17.
    Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
    Article  Google Scholar 

    18.
    Thompson, D. A. On Growth and Form (Cambridge University Press, Cambridge, 1917).
    Google Scholar 

    19.
    Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? (Cambridge University Press, Cambridge, 1984).
    Google Scholar 

    20.
    Amado, T. F., Pinto, M. G. M. & Olalla-Tárraga, M. Á. Anuran 3d models reveal the relationship between surface area-to-volume ratio and climate. J. Biogeogr. 46, 1429–1437 (2019).
    Google Scholar 

    21.
    Ashton, K. G. Do amphibians follow bergmann’s rule?. Can. J. Zool. 80, 708–716 (2002).
    Article  Google Scholar 

    22.
    Glazier, D. Effects of contingency versus constraints on the body-mass scaling of metabolic rate. Challenges 9, 4 (2018).
    Article  Google Scholar 

    23.
    Gouveia, S. F. & Correia, I. Geographical clines of body size in terrestrial amphibians: water conservation hypothesis revisited. J. Biogeogr. 43, 2075–2084 (2016).
    Article  Google Scholar 

    24.
    Lindsey, C. C. Body sizes of poikilotherm vertebrates at different latitudes. Evolution 20, 456–465 (1966).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Bergmannn, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud. 1, 595–708 (1847).
    Google Scholar 

    26.
    Nevo, E. Adaptive variation in size of cricket frogs. Ecology 54, 1271–1281 (1973).
    Article  Google Scholar 

    27.
    Tracy, C. R., Christian, K. A. & Tracy, C. R. Not just small, wet, and cold : effects of body size and skin resistance on thermoregulation and arboreality of frogs. Ecology 91, 1477–1484 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Wells, K. D. The Ecology and Behavior of Amphibians (The University of Chicago Press, Chicago, 2007).
    Google Scholar 

    29.
    Perez, D., Sheehy, C. M. & Lillywhite, H. B. Variation of organ position in snakes. J. Morphol. 280, 1798–1807 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Amiel, J. J., Chua, B., Wassersug, R. J. & Jones, D. R. Temperature-dependent regulation of blood distribution in snakes. J. Exp. Biol. 214, 1458–1462 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Canals, M. Thermal ecology of small animals. Biol Res 31, 367–374 (1998).
    Google Scholar 

    32.
    Tracy, C. R. A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 46, 293–326 (1976).
    Article  Google Scholar 

    33.
    Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–640 (1966).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Klingenberg, C. P. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol. Rev. 73, 79–123 (1998).
    CAS  PubMed  Article  Google Scholar 

    35.
    Klingenberg, C. P. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev. Genes Evol. 226, 113–137 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Voje, K. L., Hansen, T. F., Egset, C. K., Bolstad, G. H. & Pélabon, C. Allometric constraints and the evolution of allometry. Evolution 68, 866–885 (2014).
    PubMed  Article  Google Scholar 

    37.
    Pélabon, C. et al. Evolution of morphological allometry. Ann. N. Y. Acad. Sci. 1320, 58–75 (2014).
    ADS  PubMed  Article  Google Scholar 

    38.
    Duellman, W. E., Marion, A. B. & Hedges, S. B. Phylogenetics, classification, and biogeography of the treefrogs (amphibia: anura: arboranae). Zootaxa 4104, 001–109 (2016).
    Article  Google Scholar 

    39.
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Phil. Trans. R. Soc. B. 368, 20120341 (2013).
    PubMed  Article  Google Scholar 

    40.
    Landis, M. J. & Schraiber, J. G. Pulsed evolution shaped modern vertebrate body sizes. Proc. Natl. Acad. Sci. U. S. A. 114, 13224–13229 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Levy, D. L. & Heald, R. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8, a019166 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Boutilier, R. G., Stiffler, D. F. & Toews, D. Exchange of respiratory gases, ions, and water in amphibious and aquatic amphibians. In Environmental Physiology of Amphibians (eds Feder, M. E. & Burggren, W. W.) 81–124 (University of Chicago Press, Chicago, 1992).
    Google Scholar 

    43.
    Spotila, J. R., O’connor, M. P. & Bakken, G. S. Biophysics of heat and mass transfer. In Environmental Physiology of the Amphibians (eds Feder, M. E. & Burggren, W. W.) 59–80 (University of Chicago Press, Chicago, 1992).
    Google Scholar 

    44.
    Sanger, T. J. et al. Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution 67, 2180–2193 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Navas, C. A., Antoniazzi, M. M. & Jared, C. A preliminary assessment of anuran physiological and morphological adaptation to the caatinga, a brazilian semi-arid environment. Int. Congr. Ser. 1275, 298–305 (2004).
    Article  Google Scholar 

    46.
    Wiley, D. F. et al. Evolutionary Morphing Minneapolis, MN, USA Minneapolis, MN, USA (IEEE Computer Society, Minneapolis, 2005).
    Google Scholar 

    47.
    Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Dryden, I. L. & Mardia, K. V. Statistical Shape Analysis (Wiley, Hoboken, 1998).
    Google Scholar 

    49.
    Adams, D. C. A generalized k statistic for estimating phylogenetic signal from shape and other high-dimenstional multivariate data. Syst. Biol. 63(5), 685–697 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).
    PubMed  Article  Google Scholar 

    51.
    Adams, D. C. & Otárola-Castillo, E. Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
    Article  Google Scholar 

    52.
    Fox, J. & Hong, J. Effect displays in r for multinomial and proportional-odds logit models: extensions to the effects package. J. Stat. Softw. 32, 1–24 (2009).
    Article  Google Scholar 

    53.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016). More

  • in

    Explainable identification and mapping of trees using UAV RGB image and deep learning

    Study site
    The study site was the Kamigamo Experimental Station of Kyoto University, located in a suburban area of Kyoto, Japan (Supplementary Figure S1). This area is located in a warm and humid climate zone, with an elevation of 109–225 m above sea level. The mean annual precipitation and temperature are 1582 mm and 14.6 °C, respectively. The overall area is 46.8 ha. 65% of the area is naturally generated forest, primarily consisting of Japanese cypress (Chamaecyparis obtuse) and some broad-leaved trees such as oak (Quercus serrata or Quercus glauca). Within this area, 28% is planted forest, mainly consisting of foreign coniferous species. 7% consists of sample gardens, nurseries, or buildings.
    In this work, we focused on the northern part (an area of 11 ha) of the Kamigamo Experimental Station, containing a naturally regenerated forest of Japanese cypress, and a managed forest of Metasequoia (Metasequoia glyptostroboides), strobe pine (Pinus strobus), slash pine (Pinus elliottii), and taeda pine (Pinus taeda).
    Remote sensing data
    Flight campaigns were conducted around noon in two seasons: on October 2, 2016, which is the end of the leaf season, and November 20, 2016, the peak of the fall leaf offset season. We used UAV DJI Phantom 4 (DJI, Shenzhen China). The UAV had an onboard camera with a 1/2.3 CMOS sensor that can capture RGB spectral information. The UAV was operated automatically using the DroneDeploy v2.66 application (https://ww.dronedeploy.com, Infatics Inc., San Francisco, United States). On October 2, we set flight parameters as follows: both the overlap and sidelap were set to 75%, and the flight height was set to 80 m from the take-off ground level. However, we failed to align some parts of the images; thus, we changed the overlap and height parameters to 80% and 100 m on November 20. We used 10 ground-control points (GCPs) for reducing the error of the GPS with the images. From the images taken by the UAV, we produced an orthomosaic photo and a digital surface model (DSM) using the Agisoft PhotoScan Professional v1.3.4 software (https://www.agisoft.com, Agisoft LLC, St. Petersburg, Russia). An orthomosaic photo is an image that is composed of multiple overhead images corrected for perspective and scale. The parameter settings used in generating the orthomosaic photo are shown in Supplementary Table S1. These parameters are for November 20. The parameters for October 2 differ only in that the ground sampling distance (GSD) were approximately one centimetre. GSD of the orthomosaic photo and DSM was approximately 5 cm and 10 cm, respectively.
    Segmentation and preparation of supervised data
    The technological workflow of the individual tree image segmentation and extraction method we used is summarised in Fig. 1. First, we segmented each tree crown using UAV image (orthomosaic photo), a DSM, and a slope model. Second, we visually constructed the ground truth map. Third, we extracted each tree image with a ground truth label. Further details are discussed in sections from “Object-based tree crown segmentation” to “Tree image extraction with ground truth label”.
    Figure 1

    Workflow for supervised images extraction.

    Full size image

    Object-based tree crown segmentation
    At the segmentation stage, we segmented at the tree level. First, we constructed a slope model by calculating the slope from the DSM using the ArcGIS Desktop v10.4 software (https://www.esri.com, Environmental Systems Research Institute, Inc., Redlands, United States). The slope model showed the maximum rate of elevation change between each cell and its neighbours, such that the borders of trees were emphasised. From the orthomosaic photo, the DSM, and the slope model, tree crown segmentation was performed in the eCognition Developer v9.0.0 software (https://www.trimble.com, Trimble, Inc., Sunnyvale, United States) using the ‘Multiresolution Segmentation’ algorithm36. The parameter values were adjusted by trial and error. The tree crown map made by this segmentation process is shown in Fig. 2 with enlarged images for visual confirmation of the result, and the best parameters are presented in Supplementary Table S2.
    Figure 2

    Whole area and representative enlarged tree crown map. The blue line show grid-line of segmented polygons. The white rectangle shows the location of enlarged area, and light blue polygons are used for evaluating the accuracy of tree segmentation. This map was constructed via multiresolution segmentation using colour, DSM, and Slope model. This figure was created using ArcGIS Desktop v10.6 software (https://www.esri.com, Environmental Systems Research Institute, Inc., Redlands, United States).

    Full size image

    Herein, we evaluated the accuracy of the segmentation. The segmented crowns were placed into the following five categories according to their spatial relationships with the visually confirmed reference crown. The five categories, set based on a previous study 37, and illustrated in Supplementary Figure S2, are as follows.
    (a) Matched: If the overlap of the segmented polygon and the reference crown was more than 80%, the segmented polygon was categorized as “Matched”.
    (b) Nearly matched: If the overlap of the segmented polygon and the reference crown was 60–80%, the segmented polygon was categorized as “Nearly matched”.
    (c) Split: If the overlap of the segmented polygon and the reference crown was 20–60%, the segmented polygon was categorized as “Split”.
    (d) Merged: If multiple reference crowns covered by the segmented polygon, and even one overlap was more than 20%, the segmented polygon was categorized as “Merged”. If the segmented polygon had only one class reference crowns, the polygon was categorized as “one class merged”. If the segmented polygon had multiple class reference crowns, the polygon was categorized as “multiple class merged”.
    (e) Fragmented: If one or multiple reference crowns covered by the segmented polygon, and their respective overlaps were less than 20%, the segmented polygon was considered as a “fragmented polygon”.
    We calculated the segmentation accuracy of trees at four areas: Areas 1–4. Area 1 was a deciduous coniferous forest and Area 2 was a strobe pine forest, for which we calculated the entire area. Area 3 was a slash pine and taeda pine forest, for which we calculated part of the areas. Area 4 was a naturally regenerated forest, for which we calculated 1 ha in area. As a result, some segmented images had multiple tree crowns, but this method almost succeeded in separating each tree class (Table 1).
    Table 1 Accuracy statistics of the tree crown maps. (Area 1: deciduous coniferous tree; Area 2: strobe pine forest; Area 3: slash pine and taeda pine forest; Area 4: naturally regenerated forest).
    Full size table

    Ground truth label attachment to tree crown map
    After segmentation, we classified segmented images into the following seven classes: deciduous broad-leaved tree, deciduous coniferous tree, evergreen broad-leaved tree, Chamaecyparis obtuse, Pinus elliottii or Pinus taeda, Pinus strobus, and non-forest. The ‘non-forest’ class included understory vegetation and bare land, as well as artificial structures. For deciding these classes, we conducted field research. We set three rectangular plots sized 30 m × 30 m and checked the tree species, regarding the classes we decided could be identified from the November 20 drone images. The Pinus elliottii or Pinus taeda class consisted of two Pinus species, because these two species are difficult to identify from drone images. At the ground truth map-making phase, we visually attached the class label to each tree crown, using nearest neighbour classification in the eCognition software to improve operational efficiency, which was then used for forest mapping38 (Fig. 3). More specifically, we chose some image objects as training samples and applied that algorithm to the overall tree crowns. In subsequent steps, by adding wrongly classified objects to correct classes of the training samples, we improved the accuracy of the ground truth map.
    Figure 3

    Segmentation and ground truth map-making result. The tree classes found in the image on the left are represented by the colours explained in the legend in the figure on the right. This figure was created using ArcGIS Desktop v10.6 software (https://www.esri.com, Environmental Systems Research Institute, Inc., Redlands, United States).

    Full size image

    Tree image extraction with ground truth label
    From the orthomosaic photos of the two season and the ground truth map, we extracted each tree image with a class label using the ‘Extract by Mask’ function in ArcGIS. There were some inappropriate images, such as fragments of trees, those difficult to be interpreted or classified visually, and those including multiple classes; thus, we manually deleted inappropriate images and placed wrongly classified images into the correct class by group consensus. Representative images of the tree classes are shown in Figs. 4 and 5. The number of extracted images and that of arranged images are shown in Supplementary Table S3. After arrangement, the number of each class ranged from 37 to 416. The images had a wide range of sizes, but the length of one side of the largest image was approximately 400 pixels.
    Figure 4

    Representative extracted images from each class in the November 20 images. These images were segmented well at each tree crown level. However, the image of Pinus strobus includes several tree images. The image of the non-forest class shows the roof of a house.

    Full size image

    Figure 5

    Representative extracted images from each class in the October 2 images. These images were extracted from the same tree crown map polygon as the November 20 images.

    Full size image

    After extraction, we resized the images from October 2 to the size of images from November 20 in order to align the two season conditions. Thus, all images were adjusted to the size of images taken from a height of approximately 100 m.
    Machine learning
    To construct a model for object identification, we used the publicly available package PyTorch v0.4.139 as a deep learning framework and four standard neural network models—specifically, AlexNet23, VGG1640, Resnet18, and Resnet15241—for fine-tuning. Fine-tuning is an effective method to improve the learning performance, especially when the amount of data is insufficient for training42. We used each neural network model, which had been learned with the ImageNet dataset43, and trained all neural network layers using our data. At the CNN training phase, we augmented the training images eight times by flipping and rotating them. Further augmentation did not improve accuracy. For the input to the CNN, we applied ‘random resized crop’ at a scale of 224 × 224 pixel size for training, which crops the given image to a random size and aspect ratio. For validation and training, we resized the images into 256 × 256 pixel sizes and used ‘centre crop’ at a scale of 224 × 224 pixel size. These cropping algorithms extracted only one resized image (patch) from each cropped image. The ranges of the other learning settings are outlined in Supplementary Table S4.
    To evaluate the performance of the CNN, we used SVM as a machine learning platform. We used the average and standard deviation of each band and GLCM texture values as features. GLCM is a spatial co-occurrence matrix that computes the relationships of pixel values, and uses these relationships to compute the texture statistics44. For calculating GLCM, images with a large number of data bits result in huge computational complexity. In this case, the images that were converted to grey scale were 8-bit data. It is known that reduction of bit size causes only minor decrease in classification accuracy; hence, we rescaled from 8-bit to 5-bit45,46. After calculation of GLCM, we extracted five GLCM texture features (angular second moment (ASM), contrast, dissimilarity, entropy, and homogeneity). Their algorithms are defined in Eqs. (1)–(5):

    $$begin{array}{c}ASM=sum_{i,j}^{N}{(P}_{i,j}{)}^{2} end{array}$$
    (1)

    $$begin{array}{c}Contrast=sum_{i,j}^{N}{P}_{i,j}{left(i-jright)}^{2}end{array}$$
    (2)

    $$begin{array}{c}Dissimilarity=sum_{i,j}^{N}{P}_{i,j}left|i-jright|end{array}$$
    (3)

    $$begin{array}{c}Entropy=sum_{i,j}^{N}{P}_{i,j}mathrm{log}left({P}_{i,j}right)end{array}$$
    (4)

    $$begin{array}{c}Homogeneity=sum_{i,j}^{N}{P}_{i,j}/(1+{left(i-jright)}^{2})end{array}$$
    (5)

    where ({P}_{i,j}) is the GLCM at the pixel which is located in row number i and column number j. We obtained these GLCM texture features at each pixel, excluding pixels close to the image margin, and then calculated their mean and standard deviation for each image. Another important parameter that affects classification performance is the kernel size47,48. To determine the most suitable kernel size for GLCM operation, we calculated GLCM texture features with various kernel sizes of 3, 11, 19, 27, 35, 43, 51, and 59. For SVM validation, we used radial basis function (rbf) kernel and conducted a parameter grid search in the range of gamma from ({10}^{-1}) to ({10}^{-5}) and cost from 1 to ({10}^{5}). As a result of the grid search, we obtained the best validation accuracy and the best parameters at each GLCM kernel size (Supplementary Figure S3). The validation accuracy slightly increased along with the increase in kernel size, and the accuracy stopped increasing at the 51 × 51 kernel size. Considering this result, we adopted the 51 × 51 kernel size and the best parameters as follows: gamma and cost were ({10}^{-2}) and ({10}^{3}) in the fall peak season, and ({10}^{-3}) and ({10}^{4}) in the green leaf season, respectively. We then used these parameters for SVM learning and the comparative evaluation.
    For machine learning, we divided the data into training, validation, and testing sets. The validation dataset was used for hyperparameters tuning such as learning rate, batch size for deep learning, and kernel size, cost, and gamma values for SVM. In the testing phase, we used the data which had not been used for training and parameter tuning. Validation accuracy is not suitable for comparing performance as a final result because validation accuracy can be higher than testing accuracy; we tuned the hyperparameters to get higher accuracy using the validation data. Using testing data, we can exclude the bias of parameter tuning. We also used a kind of cross-validation because we had a limited amount of data and decreased the contingency of accuracy. In this case, we randomly divided all the images evenly into four datasets and used two of them for training, one for validation, and one for testing. Subsequently, we interchanged successively the datasets used for training, validation, and testing. This process was repeated four times. For the accuracy evaluation and confusion matrix, we used total accuracy and all the images.
    For this calculation, we used a built to order (BTO) desktop computer with a Xeon E5-2640 CPU, 32 GB RAM, and a Geforce GTX 1080 graphics card; the OS was Ubuntu 16.04.
    Evaluation
    For evaluation, we used the overall accuracy, Cohen’s Kappa coefficient49, and the macro average F1 score. F1 score is the harmonic mean of Recall and Precision. In this study, the number of images acquired for each class varied significantly. The overall accuracy, which is typically utilised for evaluating the machine learning performance, is subject to the difference in the amount of data available to each class. Therefore, we used the Kappa and F1 score, which is suitable for evaluating imbalanced dataset accuracy, as well as overall accuracy to obtain an objective evaluation. Additionally, for evaluating the per-class accuracy, we used the F1 score of each class. More

  • in

    Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia

    Samples included in this dataset were taken from olive trees sampled from November 2013 until April 2018 by the Apulian Regional Phytosanitary Service. From April 2016 to April 2018, sampling was done only in the buffer zone and containment zone (Fig. 1) and was structured in quadrats of one hectares (ha) area, with at least one sample collected in each quadrat. Within each quadrat, priority was given to sample symptomatic trees and if within the quadrat several trees showed disease symptoms, these were also sampled and individually tested. Samples consisted of mature olive twigs (at least 8 twigs/tree), collected close to symptomatic branches, or from the 4 cardinal points of the canopy when sampling asymptomatic trees. The samples were first tested for X. fastidiosa by using Enzyme-linked immunosorbent assay (ELISA)21. All ELISA-positive samples, and those yielding doubtful ELISA results, plus 3% of the negative samples, were subsequently tested using quantitative PCR.
    The total data set comprises 409,515 records and 7 columns. The columns are the ID number of the measurement, longitude, latitude, result (0 for negative on X. fastidiosa presence, 1 for positive), day, year, and month. The number of rows was reduced to 298,230 rows after removing NA (not available) values for the result column or missing coordinates for the longitude and latitude columns. We initially tried to work with the point data as observed, but found that these data were extremely difficult to analyse, presumably because of large variability in the data leading to very flat likelihood surfaces that did not support convergence of the optimization algorithms tested for fitting spatial expansion models (Simplex, Simulated annealing, etc.). We therefore grouped the observation data in 1-km wide distance classes from the port of Gallipoli, the likely origin of the disease invasion (latitude: 40.055851, longitude: 17.992615)22 and calculated the proportion of infected trees in each class. We thus obtained a reduced data set with approximately 200 distance classes comprising an inner circle of 1 km radius, and concentric rings of 1 km width each, with for each class the number of sampled trees and the number of infected trees. We then analysed the relationship between the proportion of infected trees and the distance from Gallipoli (Fig. 4). This relationship was first identified separately for each year, and subsequently by assuming a constant rate of displacement over time (i.e. the rate of spread) of a disease front with a fixed shape.
    Figure 4

    Relationship between proportion of positive samples per each km ring (Y-axis) and distance to Gallipoli (X-axis; km). Points with different colour represents different years.

    Full size image

    We expected a high proportion of positive samples at short distance from Gallipoli, with the proportion declining with increasing distance. Therefore, we chose for the shape of the disease front the following deterministic functions (1) a negative exponential function, (2) a decreasing logistic function, and (3) a constrained negative exponential function (CNE; constrained to have a maximum proportion diseased trees (p = 1.0)) (Table 1). The shape of the tail of the invasion front is in many instances exponential18,23,24,25,26, but the proportion of disease cannot exceed one, hence the CNE was used as a modification of an exponential relationship. The sampled data is binary count data (number of positive samples out of the total number of samples at a given distance) and the distance is transformed to discrete distance circles. Because the data are based on a known number of samples in each distance class with a stochastic number of positive outcomes, we chose the binomial distribution and the beta-binomial distribution as candidate stochastic models for fitting the model to the data (Table 1). The binomial model is a model for count data with a defined maximum (N), assuming a fixed probability of “success” (infection). The beta-binomial takes overdispersion into account by drawing the probability of success from a beta distribution around the mean probability of success. The probability of success, i.e. the proportion of positive samples, depends on the distance from Gallipoli and the time since first detection. In our model for the invasion front, the mean probability of disease presence at a distance (x) from Gallipoli is described by the deterministic part of the model (e.g. logistic), while the beta-binomial variability in the detection result is described by an overdispersion parameter (theta) which increases in value as the variance tends towards the variance of the binomial distribution (Bolker, 2008). Mathematically, the parameter θ equals the sum of the parameters (a + b), where (a) and (b) are the shape parameters of the beta distribution27. Given a same mean, the beta-binomial distribution has a larger variance than the binomial distribution (Table 1). The beta-binomial distribution tends to the binomial distribution as (theta) gets large. For all model fits, we calculated the AIC (Akaike information criterion):

    $${text{AIC}} = 2k – 2 log left( L right)$$
    (1)

    Table 1 Deterministic and stochastic models used for fitting all combinations of deterministic and stochastic models.
    Full size table

    where (k) is the number of estimated parameters, log is the natural logarithm, and L is the likelihood27. The model with the lowest AIC was selected as the most supported model. Models with a difference in AIC from the minimum AIC model of two or less are considered equivalent. In that case, we selected the simplest model.
    Next, we used the two best fitting models (see “Results” section), the logistic function with beta-binomial distribution and the CNE function with beta-binomial distribution, to analyse the speed with which X. fastidiosa spreads through Puglia. To keep the models in a simplified form, it can be assumed that the dispersal front retains its shape over time and space and moves in space at a constant rate28,29. Therefore, for this analysis the deterministic functions from Table 1 are modified to include a yearly spread rate c (km per year) and time variable t (year):

    $${text{Logistic}};{text{function:}};p_{l} = frac{1}{{1 + {text{exp}}left( {rleft( {x – (x_{50} + ct} right)} right))}}$$
    (2)

    $${text{CNE}};{text{function:}};p_{c} = left{ {begin{array}{ll} 1 & { mid; x < x_{100} + ct,} \ {exp left( { - rleft( {x - left( {x_{100} + ct} right)} right)} right) } & {mid; x ge x_{100} + ct.} \ end{array} } right.$$ (3) where (p_{l}) and (p_{c}) are the proportion of positive measurements of the logistic and CNE functions respectively, (r) is the relative growth rate of the disease in the tail in km-1, (x) is the distance in km from the disease origin, Gallipoli, (x_{50}) is the (negative) x-value (distance from Gallipoli) of the half-maximum of the curve at (t = 0) in km, (x_{100}) is the (negative) (x)-value where the CNE function curve reaches a value of 1.0 at (t = 0) in km, (t) is the time since 2013 in years, and the parameter c is the rate of spread in km per year. With these equations, one curve for every (t) (year) is displayed. 95% confidence limits (CLs) were calculated with the likelihood ratio test method27. To test the adequacy of the methodology for estimating the shape of the invasion front and the rate of spread, we did stochastic simulations in which we generated data on an expanding disease, collected samples in the same spatially heterogeneous manner from the simulated data as we did for the actual data sets, and re-estimated the rate of spread from the data. The estimated parameter values were then compared to the known parameter input values. The simulations were done using the logistic function and CNE function for the shape of the disease front and a beta-binomial distribution to describe variability. Data was randomly generated using a beta-binomial distribution for every distance circle according to the expected proportion of disease ((p)) calculated from the deterministically moving front, while the number of samples (N) within each distance circle was the same as in the empirical data. Again, a constant shape and rate of spread of the dispersal front is assumed29. Because of the uncertainty regarding the location of the front when sampling started (2013) and the rate of spread, the parameters that describe these aspects of the model, (x_{50}) (logistic) or (x_{100}) (CNE) and (c) respectively, were also varied in the stochastic simulations. For the logistic function, the parameters (r) (the relative growth rate of the disease in the tail) and (theta) (overdispersion) were fixed at 0.08 km−1 and 1 respectively, while parameter (x_{50}) was varied from − 40 to − 5 km from Gallipoli with steps of 5 km, and the parameter (c) was varied from 5 to 16 km per year with steps of 1 km per year. For the CNE function, the parameters (r) and (theta) were again fixed at 0.08 km−1 and 1 respectively, while parameter (x_{100}) was varied from − 45 to − 10 km with steps of 5 km, and parameter (c) was varied from 5 to 16 km per year with steps of 1 km per year. Data generation and estimation of parameters was done 10 times for each combination of parameters. For every combination of the location parameter, (x_{50}) or (x_{100}), and the rate of range expansion, c, the mean difference between the set rate of spread and the estimated rate of spread was calculated ((X_{i}); where i is the index for a parameter combination). Using the generated set of differences Xi, we calculated the mean bias ((overline{X})): $$overline{X} = frac{{mathop sum nolimits_{i}^{n} X_{i} }}{n}$$ (4) where (n) is the total number of parameter combinations. We also calculated the root-mean-squared error (RMSE): $${text{RMSE}} = sqrt {frac{{mathop sum nolimits_{i}^{n} X_{i}^{2} }}{n}}$$ (5) We estimated the width of the invasion front using a logistic shape of the invasion front. Width was calculated as the distance between the 1st and 99th percentile of the front or between the 5th and 95th percentile. For this, a curve at any point in time can be used since the curves have the same shape, and the width is the same in every year (Fig. 6). For the logistic function and the calculation of the 1st and 99th percentile the following applies: $$frac{1}{{1 + {text{exp}}left( {rleft( {x_{99} - left( {x_{50} + ct} right)} right)} right)}} = 0.99$$ (6) $$frac{1}{{1 + {text{exp}}left( {rleft( {x_{1} - left( {x_{50} + ct} right)} right)} right)}} = 0.01$$ (7) This is solved to find: $$x_{1} - x_{99} = frac{{2{text{log}}left( {99} right)}}{r}$$ (8) where log is the natural logarithm. Using Eq. (7), we also estimate the supposed starting time of the logistic growth of the disease by calculating (t) for (x_{1} = 0). To assess the sensitivity of our analysis to the point of origin, for which we chose Gallipoli in accordance with the best available evidence, we repeated our analyses of the shape of the front and the rate of spread when assuming different points of origin. For this we use three fictitious origin locations (Fig. 1): Santa Maria di Leuca, Otranto, and Maglie. We choose Santa Maria di Leuca and Otranto because these are also cities in Puglia with ports. We choose Maglie because it lies approximately in between the other three locations. These locations are not chosen because we think they are plausible points where Xylella could have been introduced for the first time, but only because they are suitable locations for a sensitivity analysis. To further asses the sensitivity of choosing Gallipoli as the point of origin, we repeat our simulations when generating data with Santa Maria di Leuca, Otranto, or Maglie as the point of origin, but analyse this data assuming Gallipoli as the point of origin. All calculations and model fitting were done in R 3.6.030. The complete dataset and details on the data analysis are available in the R script online at https://github.com/DBKottelenberg/OQDS_Xf_Puglia. More

  • in

    The impact of injury on apparent survival of whale sharks (Rhincodon typus) in South Ari Atoll Marine Protected Area, Maldives

    1.
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).
    PubMed  Article  CAS  Google Scholar 
    2.
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, 590 (2014).
    Article  Google Scholar 

    3.
    Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O. & Kuparinen, A. Life-history correlates of extinction risk and recovery potential. Ecol. Appl. 22, 1061–1067 (2012).
    PubMed  Article  Google Scholar 

    4.
    Frisk, M. & Miller, T. J. Life histories and vulnerability to exploitation of elasmobranchs: Inferences from elasticity, perturbation and phylogenetic analyses. Artic. J. Northwest Atl. Fish. Sci. https://doi.org/10.2960/J.v35.m514 (2005).
    Article  Google Scholar 

    5.
    Carr, L. A. et al. Illegal shark fishing in the Galápagos Marine Reserve. Mar. Policy 39, 317–321 (2013).
    Article  Google Scholar 

    6.
    Dharmadi, F. & Satria, F. African Journal of Marine Science Fisheries management and conservation of sharks in Indonesia. Afr. J. Mar. Sci. 37, 249–258 (2015).
    Article  Google Scholar 

    7.
    Heupel, M., Carlson, J. & Simpfendorfer, C. Shark nursery areas: Concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser. 337, 287–297 (2007).
    ADS  Article  Google Scholar 

    8.
    Meylan, P. A., Meylan, A. B. & Gray, J. A. The ecology and migrations of sea turtles 8. Tests of the developmental habitat hypothesis. Bull. Am. Museum Nat. Hist. 357, 1–70 (2011).
    Article  Google Scholar 

    9.
    Jennings, D. E., Gruber, S. H., Franks, B. R., Kessel, S. T. & Robertson, A. L. Effects of large-scale anthropogenic development on juvenile lemon shark (Negaprion brevirostris) populations of Bimini, Bahamas. Environ. Biol. Fishes 83, 369–377 (2008).
    Article  Google Scholar 

    10.
    Kinney, M. J. & Simpfendorfer, C. A. Reassessing the value of nursery areas to shark conservation and management. Conserv. Lett. 2, 53–60 (2009).
    Article  Google Scholar 

    11.
    Healy, T. J., Hill, N. J., Chin, A. & Barnett, A. A global review of elasmobranch tourism activities, management and risk. Mar. Policy 118, 103964 (2020).
    Article  Google Scholar 

    12.
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).
    Article  Google Scholar 

    13.
    Claudet, J., Loiseau, C., Sostres, M. & Correspondence, M. Z. Underprotected marine protected areas in a global biodiversity hotspot. One Earth https://doi.org/10.1016/j.oneear.2020.03.008 (2020).
    Article  Google Scholar 

    14.
    Pierce, S. & Norman, B. Rhincodon typus. IUCN Red List Threat. Species e-T19488A2, (2016).

    15.
    CITES. Convention on international trade in endangered species of wild fauna and flora. Amendments to Appendices I and II of CITES. (2000).

    16.
    Convention on Migratory Species. Proposal for the inclusion of the whale shark (Rhincodon typus) on Appendix I of the convention CMS convention on migratory species. (2017).

    17.
    Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R97–R98 (2017).
    CAS  PubMed  Article  Google Scholar 

    18.
    Reeve-Arnold, K. E., Kinni, J., Newbigging, R., Pierce, S. J. & Roques, K. Sustaining whale shark tourism in a diminishing population. In (Hamad bin Khalifa University Press, HBKU Press, 2016). https://doi.org/10.5339/qproc.2016.iwsc4.49.

    19.
    Pravin, P. Whale Shark in the Indian Coast—Need for conservation. Curr. Sci. 79, 310–315 (2000).
    Google Scholar 

    20.
    Li, W., Wang, Y. & Norman, B. A preliminary survey of whale shark Rhincodon typus catch and trade in China: An emerging crisis. J. Fish Biol. 80, 1608–1618 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Hearn, A. R. et al. Adult female whale sharks make long-distance movements past Darwin Island (Galapagos, Ecuador) in the Eastern Tropical Pacific. Mar. Biol. 163, 1–12 (2016).
    Article  Google Scholar 

    22.
    Wilson, S. G., Polovina, J. J., Stewart, B. S. & Meekan, M. G. Movements of whale sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia. Mar. Biol. 148, 1157–1166 (2006).
    Article  Google Scholar 

    23.
    Hueter, R. E., Tyminski, J. P. & de la Parra, R. Horizontal movements, migration patterns, and population structure of whale sharks in the Gulf of Mexico and northwestern Caribbean Sea. PLoS ONE 8, e71883 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Robinson, D. P. et al. Some like it hot: Repeat migration and residency of whale sharks within an extreme natural environment. PLoS ONE 12, e0185360 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Araujo, G. et al. Photo-ID and telemetry highlight a global whale shark hotspot in Palawan, Philippines. Sci. Rep. 9, 1–12 (2019).
    Article  CAS  Google Scholar 

    26.
    Bradshaw, C. J. A., Fitzpatrick, B. M., Steinberg, C. C., Brook, B. W. & Meekan, M. G. Decline in whale shark size and abundance at Ningaloo Reef over the past decade: The world’s largest fish is getting smaller. Biol. Conserv. 141, 1894–1905 (2008).
    Article  Google Scholar 

    27.
    Speed, C. W. et al. Scarring patterns and relative mortality rates of Indian Ocean whale sharks. J. Fish Biol. 72, 1488–1503 (2008).
    Article  Google Scholar 

    28.
    Lester, E. et al. Multi-year patterns in scarring, survival and residency of whale sharks in Ningaloo Marine Park, Western Australia. Mar. Ecol. Prog. Ser. 634, 115–125 (2020).
    ADS  Article  Google Scholar 

    29.
    Rowat, D. & Brooks, K. S. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80, 1019–1056 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Cochran, J. E. M. et al. Multi-method assessment of whale shark (Rhincodon typus) residency, distribution, and dispersal behavior at an aggregation site in the Red Sea. PLoS ONE 14, e0222285 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Copping, J. P., Stewart, B. D., McClean, C. J., Hancock, J. & Rees, R. Does bathymetry drive coastal whale shark (Rhincodon typus) aggregations?. PeerJ 6, e4904 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Norman, B. M. et al. Undersea constellations: The global biology of an endangered marine megavertebrate further informed through citizen science. Bioscience 67, 1029–1043 (2017).
    Article  Google Scholar 

    33.
    Donati, G. et al. New insights into the South Ari atoll whale shark, Rhincodon typus, aggregation. In (Hamad bin Khalifa University Press, HBKU Press, 2016). https://doi.org/10.5339/qproc.2016.iwsc4.16.

    34.
    Riley, M. J., Hale, M. S., Harman, A. & Rees, R. G. Analysis of whale shark Rhincodon typus aggregations near South Ari Atoll, Maldives Archipelago. Aquat. Biol. 8, 145–150 (2010).
    Article  Google Scholar 

    35.
    Rowat, D., Meekan, M. G., Engelhardt, U., Pardigon, B. & Vely, M. Aggregations of juvenile whale sharks (Rhincodon typus) in the Gulf of Tadjoura, Djibouti. Environ. Biol. Fishes 80, 465–472 (2007).
    Article  Google Scholar 

    36.
    Cagua, E. F. et al. Acoustic telemetry reveals cryptic residency of whale sharks. Biol. Lett. 11, 20150092 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Thomson, J. A. et al. Feeding the world’s largest fish: Highly variable whale shark residency patterns at a provisioning site in the Philippines. R. Soc. Open Sci. 4, 170394 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Perry, C. T. et al. Comparing length-measurement methods and estimating growth parameters of free-swimming whale sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Mar. Freshw. Res. 69, 1487 (2018).
    Article  Google Scholar 

    39.
    Riley, M. J., Harman, A. & Rees, R. G. Evidence of continued hunting of whale sharks Rhincodon typus in the Maldives. Environ. Biol. Fishes 86, 371–374 (2009).
    Article  Google Scholar 

    40.
    Cagua, E. F., Collins, N., Hancock, J. & Rees, R. Whale shark economics: A valuation of wildlife tourism in South Ari Atoll. Maldives. PeerJ 2, e515 (2014).
    PubMed  Article  Google Scholar 

    41.
    Arzoumanian, Z., Holmberg, J. & Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J. Appl. Ecol. 42, 999–1011 (2005).
    Article  Google Scholar 

    42.
    Bradshaw, C. J. A., Mollett, H. F. & Meekan, M. G. Inferring population trends for the world’s largest fish from mark recapture estimates of survival. J. Anim. Ecol. 76, 480–489 (2007).
    PubMed  Article  Google Scholar 

    43.
    Holmberg, J., Norman, B. & Arzoumanian, Z. Estimating population size, structure, and residency time for whale sharks Rhincodon typus through collaborative photo-identification. Endanger. Species Res. 7, 39–53 (2009).
    Article  Google Scholar 

    44.
    Rowat, D., Gore, M., Meekan, M. G., Lawler, I. R. & Bradshaw, C. J. A. Aerial survey as a tool to estimate whale shark abundance trends. J. Exp. Mar. Biol. Ecol. 368, 1–8 (2009).
    Article  Google Scholar 

    45.
    Acuña-Marrero, D. et al. Whale shark (Rhincodon typus) seasonal presence, residence time and habitat use at darwin island, galapagos marine reserve. PLoS ONE 9, e115946 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Schwarz, C. J., Bailey, R. E., Irvine, J. R. & Dalziel, F. C. Estimating salmon spawning escapement using capture-recapture methods. Can. J. Fish. Aquat. Sci. 50, 1181–1197 (1993).
    Article  Google Scholar 

    47.
    Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860 (1996).
    MathSciNet  MATH  Article  Google Scholar 

    48.
    Whitehead, H. Analysis of animal movement using opportunistic individual identifications: Application to sperm whales. Ecology 82, 1417–1432 (2001).
    Article  Google Scholar 

    49.
    QGIS.org. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2020).

    50.
    Van Tienhoven, A. M., Den Hartog, J. E., Reijns, R. A. & Peddemors, V. M. A computer-aided program for pattern-matching of natural marks on the spotted raggedtooth shark Carcharias taurus. J. Appl. Ecol. 44, 273–280 (2007).
    Article  Google Scholar 

    51.
    RStudio Team. RStudio: Integrated Development for R. (2015).

    52.
    Laake, J. L. RMark: An R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep. 2013-01 Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., (2013). https://doi.org/10.1017/CBO9781107415324.004.

    53.
    Schwarz, C., Arnason, A., Cooch, E. & White, G. Jolly-Seber models in MARK. Progr. MARK–a gentle Introd. 18th Ed. (2018).

    54.
    Cooch, E. & White, G. Program MARK: A gentle introduction (13th ed.). available online with MARK Program. (2006).

    55.
    Whitehead, H. SOCPROG programs: Analysing animal social structures. Behav. Ecol. Sociobiol. 63, 765–778 (2009).
    Article  Google Scholar 

    56.
    Whitehead, H. Selection of models of lagged identification rates and lagged association rates using AIC and QAIC. Commun. Stat. Simul. Comput. 36, 1233–1246 (2007).
    MathSciNet  MATH  Article  Google Scholar 

    57.
    Buckland, S. T. & Garthwaite, P. H. Quantifying precision of mark-recapture estimates using the bootstrap and related methods. Biometrics 47, 255 (1991).
    Article  Google Scholar 

    58.
    Rohner, C. A. et al. No place like home? High residency and predictable seasonal movement of whale sharks off Tanzania. Front. Mar. Sci. 7, 423 (2020).
    Article  Google Scholar 

    59.
    Norman, B. M., Whitty, J. M., Beatty, S. J., Reynolds, S. D. & Morgan, D. L. Do they stay or do they go? Acoustic monitoring of whale sharks at Ningaloo Marine Park, Western Australia. J. Fish Biol. 91, 1713–1720 (2017).
    CAS  PubMed  Article  Google Scholar 

    60.
    Araujo, G. et al. Population structure and residency patterns of whale sharks, Rhincodon typus, at a provisioning site in Cebu, Philippines. PeerJ 2014, e543 (2014).
    Article  Google Scholar 

    61.
    Prebble, C. et al. Limited latitudinal ranging of juvenile whale sharks in the Western Indian Ocean suggests the existence of regional management units. Mar. Ecol. Prog. Ser. 601, 167–183 (2018).
    ADS  Article  Google Scholar 

    62.
    Araujo, G. et al. Population structure and residency patterns of whale sharks, Rhincodon typus, at a provisioning site in Cebu, Philippines. PeerJ 2, e543 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Akhilesh, K. V. et al. Landings of whale sharks Rhincodon typus Smith, 1828 in Indian waters since protection in 2001 through the Indian Wildlife (Protection) Act, 1972. Environ. Biol. Fishes 96, 713–722 (2013).
    Article  Google Scholar 

    64.
    Heyman, W., Graham, R., Kjerfve, B. & Johannes, R. Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize. Mar. Ecol. Prog. Ser. 215, 275–282 (2001).
    ADS  Article  Google Scholar 

    65.
    Meekan, M. et al. Population size and structure of whale sharks Rhincodon typus at Ningaloo Reef, Western Australia. Mar. Ecol. Prog. Ser. 319, 275–285 (2006).
    ADS  Article  Google Scholar 

    66.
    Cochran, J. E. M. et al. Population structure of a whale shark Rhincodon typus aggregation in the Red Sea. J. Fish Biol. 89, 1570–1582 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Araujo, G. et al. Population structure, residency patterns and movements of whale sharks in Southern Leyte, Philippines: Results from dedicated photo-ID and citizen science. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 237–252 (2017).
    Article  Google Scholar 

    68.
    Robinson, D. P. et al. Population structure, abundance and movement of whale sharks in the Arabian Gulf and the Gulf of Oman. PLoS ONE 11, e0158593 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    McCoy, E. et al. Long-term photo-identification reveals the population dynamics and strong site fidelity of adult whale sharks to the coastal waters of Donsol, Philippines. Front. Mar. Sci. 5, 271 (2018).
    Article  Google Scholar 

    70.
    Araujo, G. et al. In-water methods reveal population dynamics of a green turtle Chelonia mydas foraging aggregation in the Philippines. Endanger. Species Res. 40, 207–218 (2019).
    Article  Google Scholar 

    71.
    Sleeman, J. C. et al. To go or not to go with the flow: Environmental influences on whale shark movement patterns. J. Exp. Mar. Biol. Ecol. 390, 84–98 (2010).
    Article  Google Scholar 

    72.
    Calambokidis, J., Laake, J. L. & Klimek, A. Abundance and population structure of seasonal gray whales in the Pacific Northwest, 1998–2008. Sc/62/Brg32, Vol. 2008 (2010).

    73.
    Branstetter, S. Early Life-History Implications of Selected Carcharhinoid and Lamnoid Sharks of the Northwest Atlantic. Elasmobranchs as Living Resour. Adv. Biol. Ecol. Syst. Status Fish. (1990).

    74.
    Parker, J. H. & Gischler, E. Modern foraminiferal distribution and diversity in two atolls from the Maldives, Indian Ocean. Mar. Micropaleontol. 78, 30–49 (2011).
    ADS  Article  Google Scholar 

    75.
    Halvorsen, M. B., Casper, B. M., Woodley, C. M., Carlson, T. J. & Popper, A. N. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds. PLoS ONE 7, e38968 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Haskell, P. J. et al. Monitoring the effects of tourism on whale shark Rhincodon typus behaviour in Mozambique. ORYX 49, 492–499 (2015).
    Article  Google Scholar 

    77.
    Quiros, A. L. Tourist compliance to a Code of Conduct and the resulting effects on whale shark (Rhincodon typus) behavior in Donsol, Philippines. Fish. Res. 84, 102–108 (2007).
    Article  Google Scholar 

    78.
    Araujo, G., Vivier, F., Labaja, J. J., Hartley, D. & Ponzo, A. Assessing the impacts of tourism on the world’s largest fish Rhincodon typus at Panaon Island, Southern Leyte, Philippines. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 986–994 (2017).
    Article  Google Scholar 

    79.
    Finger, J. S. et al. Rate of movement of juvenile lemon sharks in a novel open field, are we measuring activity or reaction to novelty?. Anim. Behav. 116, 75–82 (2016).
    Article  Google Scholar 

    80.
    Cade, D. E. et al. Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies. J. Exp. Biol. 223, jeb.224402 (2020).
    Article  Google Scholar 

    81.
    Archie, E. A. Wound healing in the wild: stress, sociality, and energetic costs affect wound healing in natural populations. Parasite Immunol. 35, n/a-n/a (2013).

    82.
    Baker, M. R., Swanson, P. & Young, G. Injuries from non-retention in gillnet fisheries suppress reproductive maturation in escaped fish. PLoS ONE 8, e69615 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Neat, F. C., Taylor, A. C. & Huntingford, F. A. Proximate costs of fighting in male cichlid fish: The role of injuries and energy metabolism. Anim. Behav. 55, 875–882 (1998).
    CAS  PubMed  Article  Google Scholar 

    84.
    Meekan, M. G., Fuiman, L. A., Davis, R., Berger, Y. & Thums, M. Swimming strategy and body plan of the world’s largest fish: Implications for foraging efficiency and thermoregulation. Front. Mar. Sci. 2, 64 (2015).
    Article  Google Scholar 

    85.
    Chin, A., Mourier, J. & Rummer, J. L. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury. Conserv. Physiol. 3(1) (2015).

    86.
    Tierney, K. B. & Farrell, A. P. The relationships between fish health, metabolic rate, swimming performance and recovery in return-run sockeye salmon, Oncorhynchus nerka (Walbaum). J. Fish Dis. 27, 663–671 (2004).
    CAS  PubMed  Article  Google Scholar 

    87.
    McGregor, F., Richardson, A. J., Armstrong, A. J., Armstrong, A. O. & Dudgeon, C. L. Rapid wound healing in a reef manta ray masks the extent of vessel strike. PLoS ONE 14, e0225681 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375 (2011).
    CAS  PubMed  Article  Google Scholar 

    89.
    Mateus, A. P., Anjos, L., Cardoso, J. R. & Power, D. M. Chronic stress impairs the local immune response during cutaneous repair in gilthead sea bream (Sparus aurata L.). Mol. Immunol. 87, 267–283 (2017).
    CAS  PubMed  Article  Google Scholar 

    90.
    Environmental Protection Agency. Maldivian Whale Shark Tourist Encounter Guidelines. (2009).

    91.
    Leston, F. A. L. Monitoring Tourist Pressure on Whale Shark (Rhincodon typus) Behaviour in South Ari MPA, Maldive) Behaviour in South Ari MPA, Maldive (The University of Edinburgh, Edinburgh, 2016).
    Google Scholar 

    92.
    Kallsen, H. Regulation of Whale Shark Tourism: A Data Driven Approach for the South Ari Marine Protected Area (Syddansk Universitet, Odense, 2018).
    Google Scholar 

    93.
    Montero-Quintana, A. N., Vázquez-Haikin, J. A., Merkling, T., Blanchard, P. & Osorio-Beristain, M. Ecotourism impacts on the behaviour of whale sharks: An experimental approach. ORYX 54, 270–275 (2020).
    Article  Google Scholar 

    94.
    Bouyoucos, I. A., Simpfendorfer, C. A. & Rummer, J. L. Estimating oxygen uptake rates to understand stress in sharks and rays. Rev. Fish Biol. Fish. 29, 297–311 (2019).
    Article  Google Scholar 

    95.
    Semeniuk, C. A. D., Bourgeon, S., Smith, S. L. & Rothley, K. D. Hematological differences between stingrays at tourist and non-visited sites suggest physiological costs of wildlife tourism. Biol. Conserv. 142, 1818–1829 (2009).
    Article  Google Scholar 

    96.
    Van Rijn, J. A. & Reina, R. D. Distribution of leukocytes as indicators of stress in the Australian swellshark, Cephaloscyllium laticeps. Fish Shellfish Immunol. 29, 534–538 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    97.
    Barnett, A., Payne, N. L., Semmens, J. M. & Fitzpatrick, R. Ecotourism increases the field metabolic rate of whitetip reef sharks. Biol. Conserv. 199, 132–136 (2016).
    Article  Google Scholar 

    98.
    Mau, R. Managing for conservation and recreation: The Ningaloo whale shark experience. J. Ecotourism 7, 213–225 (2008).
    Article  Google Scholar 

    99.
    Martin, R. A. A review of behavioural ecology of whale sharks (Rhincodon typus). Fish. Res. 84, 10–16 (2007).
    ADS  Article  Google Scholar 

    100.
    Skomal, G. B. & Mandelman, J. W. The physiological response to anthropogenic stressors in marine elasmobranch fishes: A review with a focus on the secondary response. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 146–155 (2012).
    Article  CAS  Google Scholar 

    101.
    Pankhurst, N. W. The endocrinology of stress in fish: An environmental perspective. Gen. Comp. Endocrinol. 170, 265–275 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Renshaw, G. M. C., Kutek, A. K., Grant, G. D. & Anoopkumar-Dukie, S. Forecasting elasmobranch survival following exposure to severe stressors. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 101–112 (2012).
    Article  CAS  Google Scholar 

    103.
    Lester, E. et al. Using an electronic monitoring system and photo identification to understand effects of tourism encounters on whale sharks in Ningaloo Marine Park. Tour. Mar. Environ. 14, 121–131 (2019).
    Article  Google Scholar  More

  • in

    Nematode epibionts on skin of the Florida manatee, Trichechus manatus latirostris

    1.
    Cobb, N. A. Nematodes and their relationships.Yearbook Dept. Agric. 1914, 457–490 (Dept. Agric, Washington DC, 1914).
    2.
    Blaxter, M. Nematodes: The worm and its relatives. PLoS Biol. 9, 4 (2011).
    Article  Google Scholar 

    3.
    Kiontke, K. & Fitch, D. H. A. Nematodes. Curr. Biol. 23, 19 (2013).
    Article  Google Scholar 

    4.
    Sommer, R. J. Pristionchus pacificus. In A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) (Brill, Netherlands, 2015).
    Google Scholar 

    5.
    Beck, C. & Forrester, D. J. Helminths of the Florida manatee, Trichechus manatus latirostris, with a discussion and summary of the parasites of Sirenians. J. Parasitol. 74, 628–637. https://doi.org/10.2307/3282182 (1988).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fürst von Lieven, A., Uni, S., Ueda, K., Barbuto, M. & Bain, O. Cutidiplogaster manati n. gen., n. sp. (Nematoda: Diplogastridae) from skin lesions of a West Indian manatee (Sirenia) from the Okinawa Churaumi Aquarium. Nematology. 13, 51–59. https://doi.org/10.1163/138855410X500082 (2011).
    Article  Google Scholar 

    7.
    Bledsoe, E. L. et al. A comparison of biofouling communities associated with free-ranging and captive Florida manatees (Trichechus manatus latirostris). Mar. Mammal. Sci. 22, 997–1003. https://doi.org/10.1111/j.1748-7692.2006.00053.x (2006).
    Article  Google Scholar 

    8.
    Kanzaki, N. & Giblin-Davis, R. M. Diplogastrid systematics and phylogeny. In Nematology Monographs & Perspectives 11: Pristionchus pacificus—A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) 43–76 (Brill, Amsterdam, 2015).
    Google Scholar 

    9.
    Abolafia, J. Order Rhabditida: suborder Rhabditina. In Freshwater Nematodes: Ecology and Taxonomy (eds Abebe, E. et al.) 696–721 (CABI Publishing, Wallingford, 2006).
    Google Scholar 

    10.
    Kanzaki, N., Ragsdale, E. J. & Giblin-Davis, R. M. Revision of the paraphyletic genus Koerneria Meyl, 1960 and resurrection of two other genera of Diplogastridae (Nematoda). ZooKeys. 442, 17–30. https://doi.org/10.3897/zookeys.442.7459 (2014).
    Article  Google Scholar 

    11.
    Romeyn, K., Bouwman, L. A. & Admiraal, W. Ecology and cultivation of the herbivorous brackish-water nematode Eudiplogaster pararmatus. Mar. Ecol. Prog. Ser. 12, 145–153 (1983).
    ADS  Article  Google Scholar 

    12.
    Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R. & Manzoor, M. Nematodes associated with palm and sugarcane weevils in South Florida with description of Acrostichus floridensis n. sp. Nematology. 19, 515–531. https://doi.org/10.1163/15685411-00003065 (2017).
    Article  Google Scholar 

    13.
    Troccoli, A., Oreste, M., Tarasco, E., Fanelli, E. & De Luca, F. Mononchoides macrospiculum n. sp. (Nematoda: Neodiplogaster) and Teratorhabditis synpapillata Sudhaus, 1985 (Nematoda: Rhabditidae): Nematode associates of Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) in Italy. Nematology 17, 953–966. https://doi.org/10.1163/15685411-00002916 (2015).
    Article  Google Scholar 

    14.
    Steel, H. et al. Mononchoides composticola n. sp. (Nematoda: Diplogastridae) associated with composting processes: Morphological, molecular and autecological characterization. Nematology 13, 347–363. https://doi.org/10.1163/138855410X523023 (2011).
    Article  Google Scholar 

    15.
    Susoy, V. et al. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci. Adv. 2, e1501031. https://doi.org/10.1126/sciadv.1501031 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Mayer, W. E., Herrmann, M. & Sommer, R. J. Molecular phylogeny of beetle associated diplogastrid nematodes suggests host switching rather than nematode-beetle coevolution. BMC Evol. Biol. 9, 212. https://doi.org/10.1186/1471-2148-9-212 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Sudhaus, W. & Fürst von Lieven, A. A phylogenetic classification and catalogue of the Diplogastridae (Secernentea, Nematoda). J. Nematode Morph. Syst. 6, 43–90 (2003).
    Google Scholar 

    18.
    Halvorsen, K. M. & Keith, E. O. Immunosuppression cascade in the Florida manatee (Trichechus manatus latirostris). Aquat. Mamm. 34, 412–419. https://doi.org/10.1578/AM.34.4.2008.412 (2008).
    Article  Google Scholar 

    19.
    Palopoli, M. F. et al. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages. Proc. Natl. Acad. Sci. USA 112, 15958–15963. https://doi.org/10.1073/pnas.1512609112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    20.
    Ingels, J., Valdes, Y. & Pontes, L. P. Meiofauna life on loggerhead sea turtles-diversely structured abundance and biodiversity hotspots that challenge the meiofauna paradox. Diversity. 12(5), 203 (2020).
    Article  Google Scholar 

    21.
    Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R., Wood, L. A. & Kaufman, P. E. Sudhausia floridensis n. sp. (Diplogastridae) isolated from Onthophagus tuberculifrons (Scarabaeidae) from Florida, USA. Nematology. 19, 575–586. https://doi.org/10.1163/15685411-00003071 (2017).
    Article  Google Scholar 

    22.
    Giblin-Davis, R. M. et al. Stomatal ultrastructure, molecular phylogeny, and description of Parasitodiplogaster laevigata n. sp. (Nematoda: Diplogastridae), a parasite of fig wasps. J. Nematol. 38, 137–149 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Kanzaki, N., Giblin-Davis, R. M., Ye, W., Herre, E. A. & Center, B. J. Parasitodiplogaster species associated with Pharmacosycea figs in Panama. Nematology. 16, 607–619. https://doi.org/10.1163/15685411-00002791 (2014).
    Article  Google Scholar 

    24.
    Shih, P.-Y. et al. Newly identified nematodes from Mono Lake exhibit extreme arsenic resistance. Curr. Biol. 29, 3339–3344. https://doi.org/10.1016/j.cub.2019.08.024 (2019).
    CAS  Article  PubMed  Google Scholar 

    25.
    Bonde, R. K. et al. Biomedical health assessments of the Florida manatee in Crystal River—Providing opportunities for training during the capture, handling, and processing of this endangered aquatic mammal. J. Mar. Anim. Ecol. 5, 17–28 (2012).
    Google Scholar 

    26.
    Yoder, M. et al. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8, 367–376. https://doi.org/10.1163/156854106778493448 (2006).
    CAS  Article  Google Scholar 

    27.
    Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N. & Kanzaki, N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology 99, 1365–1369. https://doi.org/10.1094/PHYTO-99-12-1365 (2009).
    CAS  Article  PubMed  Google Scholar 

    28.
    Tanaka, R., Kikuchi, T., Aikawa, T. & Kanzaki, N. Simple and quick methods for nematode DNA preparation. Appl. Entomol. Zool. 47, 291–294. https://doi.org/10.1007/s13355-012-0115-9 (2012).
    CAS  Article  Google Scholar 

    29.
    Ye, W., Giblin-Davis, R. M., Braasch, H., Morris, K. & Thomas, W. K. Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 43, 1185–1197. https://doi.org/10.1016/j.ympev.2007.02.006 (2007).
    CAS  Article  PubMed  Google Scholar 

    30.
    Holterman, M. et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23, 1792–1800. https://doi.org/10.1093/molbev/msl044 (2006).
    CAS  Article  PubMed  Google Scholar 

    31.
    Slos, D., Couvreur, M. & Bert, W. Hidden diversity in mushrooms explored: A new nematode species, Neodiplogaster unguispiculata sp. n. (Rhabditida, Diplogastridae), with a key to the species of Neodiplogaster. Zool. Anz. 276, 71–85. https://doi.org/10.1016/j.jcz.2018.07.004 (2018).
    Article  Google Scholar 

    32.
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. https://doi.org/10.1093/nar/gkf436 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28. https://doi.org/10.1093/nar/gkt389 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
    CAS  Article  Google Scholar 

    36.
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large modelspace. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Kanzaki, N., Ekino, T., Ide, T., Masuya, H. & Degawa, Y. Three new species of parasitaphelenchids, Parasitaphelenchus frontalis n. sp., P. costati n. sp., and Bursaphelenchus hirsutae n. sp. (Nematoda: Aphelenchoididae), isolated from bark beetles from Japan. Nematology 20, 957–1005. https://doi.org/10.1163/15685411-00003189 (2018).
    Article  Google Scholar  More

  • in

    Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird

    1.
    Norris, D. R. Carry-over effects and habitat quality in migratory populations. Oikos 109(1), 178–186 (2005).
    Article  Google Scholar 
    2.
    Ockendon, N., Leech, D. & Pearce-Higgins, J. W. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carryover effects from wintering grounds. Biol. Lett. 9(6). https://doi.org/10.1098/rsbl.2013.0669 (2013).

    3.
    Lehikoinen, A., Kilpi, M. & Öst, M. Winter climate affects subsequent breeding success of common eiders. Glob. Change Biol. 12(7), 1355–1365 (2006).
    ADS  Article  Google Scholar 

    4.
    Bearhop, S., Hilton, G. M., Votier, S. C. & Waldron, S. Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Biol. Lett. 271. https://doi.org/10.1098/rsbl.2003.0129 (2004).

    5.
    Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143(4), 698–722 (1994).
    Article  Google Scholar 

    6.
    Morrison, C. A., Alves, J. A., Gunnarsson, T. G., Þórisson, B. & Gill, J. A. Why do earlier-arriving migratory birds have better breeding success? Ecol. Evol. 9(15), 8856–8864 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Gill, J. A. et al. The buffer effect and large-scale population regulation in migratory birds. Nature 412, 436–438 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Finch, T., Pearce-Higgins, J. W., Leech, D. I. & Evans, K. L. Carry-over effects from passage regions are more important than breeding climate in determining the breeding phenology and performance of three avian migrants of conservation concern. Biodivers. Conserv. 23, 2427–2444 (2014).
    Article  Google Scholar 

    9.
    Legagneux, P., Fast, P. L. F., Gauthier, G. & Bêty, J. Manipulating individual state during migration provides evidence for carry-over effects modulated by environmental conditions. Proc. R. Soc. B. 279, 876–883 (2012).
    PubMed  Article  Google Scholar 

    10.
    Newton, I. The Migration Ecology of Birds (Academic Press, London, 2008).
    Google Scholar 

    11.
    Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett., 11(1). https://doi.org/10.1098/rsbl.2014.0944 (2015).

    12.
    Bregnballe, T., Frederiksen, M. & Gregersen, J. Effects of distance to wintering area on arrival date and breeding performance in Great Cormorants Phalacrocorax carbo. Ardea. 94(3), 619–630 (2006).
    Google Scholar 

    13.
    Hötker, H. Arrival of Pied Avocets Recurvirostra avosetta at the breeding site: effects of winter quarters and consequences for reproductive success. Ardea. 90(3), 379–387 (2002).
    Google Scholar 

    14.
    Lundberg, P. The evolution of partial migration in birds. Trends Ecol. Evol. 3(7), 172–175 (1988).
    CAS  PubMed  Article  Google Scholar 

    15.
    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. Partial migration: An introduction. Oikos 120(12), 1761–1763 (2011).
    Article  Google Scholar 

    16.
    Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).
    PubMed  Article  Google Scholar 

    17.
    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B. 278, 2848–2856 (2011).
    CAS  PubMed  Article  Google Scholar 

    18.
    Griswold, C. K., Taylor, C. M. & Norris, D. R. The evolution of migration in a seasonal environment. Proc. R. Soc. B. 277, 2711–2720 (2010).
    PubMed  Article  Google Scholar 

    19.
    Chapman, B. B., Brönmark, C., Nilsson, J-Å. & Hansson, L-A. The ecology and evolution of partial migration. Oikos. 120(12), 1764–1775 (2011).
    Article  Google Scholar 

    20.
    Kokko, H. Directions in modelling partial migration: How adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos 120(12), 1826–1837 (2011).
    Article  Google Scholar 

    21.
    Newton, I. Population limitation in migrants. Ibis. 146(2), 197–226 (2004).
    Article  Google Scholar 

    22.
    Robinson, R. A. et al. Travelling through a warming world: Climate change and migratory species. Endanger. Species Res. 7(2), 87–99 (2009).
    ADS  Article  Google Scholar 

    23.
    IPCC. Summary for Policymakers in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Stocker, T.F. et al.) (Cambridge University Press, 2013).

    24.
    Berthold, P. Genetic basis and evolutionary aspects of bird migration. Adv. Study Behav. 33, 175–229 (2003).
    Article  Google Scholar 

    25.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.S.A. 105(42), 16195–16200 (2008).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    de Zoeten, T. & Pulido, F. How migratory populations become resident. Proc. R. Soc. B, 287, 20193011. https://doi.org/10.1098/rspb.2019.3011 (2020).

    27.
    Negro, J. J., de la Riva, M. & Bustamante, J. Patterns of winter distribution and abundance of Lesser Kestrel (Falco naumanni) in Spain. J. Raptor Res. 25, 30–35 (1991).
    Google Scholar 

    28.
    Anderson, A. M., Novak, S. J., Smith, J. F., Steenhof, K. & Heath, J. Nesting phenology, mate choice, and genetic divergence within a partially migratory population of American Kestrels. Auk. 133(1), 99–109 (2016).
    Article  Google Scholar 

    29.
    Lok, T., Veldhoen, L., Overdijk, O., Tinbergen, J. M. & Piersma, T. An age-dependent fitness cost of migration? Old trans-Saharan migrating spoonbills breed later than those staying in Europe, and late breeders have lower recruitment. J. Anim. Ecol. 86(5), 998–1009 (2017).
    PubMed  Article  Google Scholar 

    30.
    Catry, I. et al. Individual variation in migratory movements and winter behaviour of Iberian Lesser Kestrels Falco naumanni revealed by geolocators. Ibis. 153(1), 154–164 (2011).
    Article  Google Scholar 

    31.
    Rodríguez, C., Tapia, L., Kieny, F. & Bustamante, J. Temporal changes in lesser kestrel (Falco naumanni) diet during the breeding season in southern Spain. J. Raptor Res. 44(2), 120–128 (2010).
    Article  Google Scholar 

    32.
    Grist, H. et al. Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. J. Anim. Ecol. 86(5), 1010–1021 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Morganti, M., Ambrosini, R. & Sarà, M. Different trends of neighboring populations of Lesser Kestrel: effects of climate and other environmental conditions. Popul. Ecol. 61(3), 300–314 (2019).
    Article  Google Scholar 

    34.
    Hegemann, A., Marra, P. P. & Tieleman, B. I. Causes and consequences of partial migration in a passerine bird. Am. Nat. 186(4), 531–546 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Palacín, C., Alonso, J. C., Martín, C. A. & Alonso, J. A. Changes in bird-migration patterns associated with human-induced mortality. Conserv. Biol. 31(1), 106–115 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS One 10(7). https://doi.org/10.1371/journal.pone.0132312 (2015).

    37.
    Wilson, S., LaDeau, S. L., Tøttrup, A. P. & Marra, P. P. Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird. Ecology 92(9), 1789–1798 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Pilard, P., Lelong, V., Sonko, A. & Riols, C. Suivi et conservation du dortoir de rapaces insectivores (faucon crécerellette Falco naumanni et elanion naucler Chelictinia riocourii) de l’Ile de Kousmar (Kaolack/Sénégal). Alauda. 79(4), 295–312 (2011).
    Google Scholar 

    39.
    Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. & Afanasyev, V. Geolocators map the wintering grounds of threatened lesser kestrels in Africa. Divers. Distrib. 15(6), 1010–1016 (2009).
    Article  Google Scholar 

    40.
    Norris, D. R. & Taylor, C. M. Predicting the consequences of carry-over effects for migratory populations. Biol. Lett. 2(1). https://doi.org/10.1098/rsbl.2005.0397 (2006).

    41.
    Marra, P. P. et al. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. B. 282, 20150624. https://doi.org/10.1098/rspb.2015.0624 (2015).
    Article  Google Scholar 

    42.
    Negro, J. J. Falco naumanni Lesser Kestrel. BWP Update. 1, 49–56 (1997).
    Google Scholar 

    43.
    Bustamante, J. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Bio. Conserv. 80(2), 153–160 (1997).
    Article  Google Scholar 

    44.
    Lepley, M., Brun, L., Foucart, A. & Pilard, P. Régime et comportement alimentaires du faucon crécerellette Falco naumanni en crau en période de reproduction et post-reproduction. Alauda. 68(3), 177–184 (2000).
    Google Scholar 

    45.
    Donázar, J. A., Negro, J. J. & Hiraldo, F. Functional analysis of mate-feeding in the Lesser Kestrel Falco naumanni. Ornis Scand. 23, 190–194 (1992).
    Article  Google Scholar 

    46.
    Braziotis, S. et al. Patterns of postnatal growth in a small falcon, the lesser kestrel Falco naumanni (Fleischer, 1818) (Aves: Falconidae). Eur. Zool. J. 84(1), 277–285 (2017).
    Article  Google Scholar 

    47.
    Donázar, J. A., Negro, J. J. & Hiraldo, F. A note on the adoption of alien young by lesser kestrels Falco naumanni. Ardea. 77, 443–444 (1991).
    Google Scholar 

    48.
    Rakhimberdiev, E. et al. Comparing inferences of solar geolocation data against high-precision GPS data: Annual movements of a double-tagged black-tailed godwit. J. Avian Biol. 47(4), 589–596 (2016).
    Article  Google Scholar 

    49.
    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J Anim. Ecol. 89, 221–236 (2020).
    PubMed  Article  Google Scholar 

    50.
    Forsman, D. The Raptors of Europe and the Middle East: A Handbook of Field Identification (Christopher Helm, London, 2006).
    Google Scholar 

    51.
    Bounas, A. Premigratory moult in the lesser kestrel Falco naumanni. Avocetta. 43, 49–54 (2019).
    Google Scholar 

    52.
    Gilbert, N. Movement and Foraging Ecology of Partially Migrant Birds in a Changing World (University of East Anglia, Norwich, 2015).
    Google Scholar 

    53.
    Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere. 3, 44. https://doi.org/10.1890/ES12-00018.1 (2012).
    Article  Google Scholar 

    54.
    Tella, J. L. & Forero, M. G. Farmland habitat selection of wintering lesser kestrels in a Spanish pseudosteppe: implications for conservation strategies. Biodivers. Conserv. 9, 433–441 (2000).
    Article  Google Scholar 

    55.
    Piersma, T. & Davidson, N. Confusions of mass and size. Auk 108, 441–444 (1991).
    Google Scholar 

    56.
    Wood, A. S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4’. in R Package Version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).

    57.
    Bates, D., Machler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67. https://doi.org/10.18637/jss.v067.i01 (2015).

    58.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50(3), 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar 

    59.
    Rousset, F. & Ferdy, J. B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37(8), 781–790 (2014).
    Article  Google Scholar 

    60.
    Shmueli, G. A useful distribution for fitting discrete data: Revival of the Conway–Maxwell–Poisson distribution. J. R. Stat. Soc. Ser. C App. Stat. 54, 127–142 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    61.
    Lynch, H. J., Thorson, J. T. & Shelton, A. O. Dealing with under- and over-dispersed count data in life history, spatial, and community ecology. Ecology 95(11), 3173–3180 (2014).
    Article  Google Scholar 

    62.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    63.
    Bartoń, K. MuMIn: Multi-model inference. in R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).

    64.
    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96(9), 2370–2382 (2015).
    PubMed  Article  Google Scholar 

    65.
    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, http://www.r-project.org, 2018).

    66.
    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land. Process. DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
    Article  Google Scholar 

    67.
    Büttner, G. CORINE land cover and land cover change products. in Land Use and Cover Mapping in Europe. (eds. Manakos, I. & Braun, M.) 55–74 (Springer, 2014).

    68.
    Franco, A. M. A., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).
    Article  Google Scholar  More