More stories

  • in

    Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching

    1.
    Sullivan, D. Composting biosolids into high quality agricultural product. BioCycle 51, 39–40 (2010).
    Google Scholar 
    2.
    Wang, X., Chen, T., Ge, Y. & Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 160, 554–558 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Borjesson, G. & Katterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 112, 369–385 (2018).
    Article  Google Scholar 

    4.
    Kelly, J. J., Favila, E., Hundal, L. S. & Marlin, J. C. Assessment of soil microbial communities in surface applied mixtures of Illinois River sediments and biosolids. Appl. Soil Ecol. 36, 176–183 (2007).
    Article  Google Scholar 

    5.
    Kelly, J. J., Polocht, K., Grancharova, T. & Hundal, L. S. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl. Environ. Microbiol. 77, 6551–6558 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Nakatani, A. S. et al. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biol. Biochem. 43, 106–114 (2011).
    CAS  Article  Google Scholar 

    7.
    Wang, M. & Xue., J., Horswell, J., Kimberley, M.O. & Huang, Z. ,. Long-term biosolids application alters the composition of soil microbiakl groups and nutrient status in a pine plantation. Biol. Fert. Soils 53, 799–809 (2017).
    CAS  Article  Google Scholar 

    8.
    Zaleski, K. J., Josephson, K. L., Gerba, C. P. & Pepper, I. L. Potential regrowth and recolonization of Salmonellae and indicators in biosolids and biosolid-amended soil. Appl. Environ. Microbiol. 71, 3701–3708 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Singh, R. P. & Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358 (2008).
    CAS  Article  Google Scholar 

    10.
    Sigua, C. Recycling biosolids and lack-dredged materials to pasture-based animal agriculture: alternative nutrient sources for forage productivity and sustainability. A review. Agron. Sustain. Dev. 29, 143–160 (2009).
    CAS  Article  Google Scholar 

    11.
    McBride, M. B. Toxic metal accumulation from agricultural use of sludge—are USEPA regulations protective?. J. Environ. Qual. 24, 5–18 (1995).
    CAS  Article  Google Scholar 

    12.
    Navarro, I. et al. Environmental risk assessment of perfluoroalkyl substances and halogenated flame retardants released from biosolids-amended soils. Chemosphere 210, 147–155 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Mantovi, P., Baldoni, G. & Toderi, G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res. 39, 289–296 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Paramashivam, D. et al. Effect of pine waste and pine biochar on nitrogen mobility in biosolids. J. Environ. Qual. 45, 360–367 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Willen, A., Junestedt, C., Rodhe, L., Pell, M. & Jonsson, H. Sewage sludge as fertiliser—environmental assessment of storage and land application options. Water Sci. Technol. 75, 1034–1050 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Weaver, D. M. & Reed, A. E. G. Patterns of nutrient status and fertiliser practice on soils of the south coast of Western Australia. Agric. Ecosyst. Environ. 67, 37–53 (1998).
    Article  Google Scholar 

    17.
    Knowles, O. A., Robinson, B. H., Contangelo, A. & Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 409, 3206–3210 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. & Murphy, D. V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324 (2012).
    CAS  Article  Google Scholar 

    19.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221 (2012).
    CAS  Article  Google Scholar 

    20.
    Shanmugam, S., Abbott, L. K. & Murphy, D. V. Clay addition to lime-amended biosolids overcomes water repellence and provides nitrogen supply in an acid sandy soil. Soil Biol. Fert. Soils 50, 1047–1059 (2014).
    CAS  Article  Google Scholar 

    21.
    Paramashivam, D., Dickinson, N. M., Clough, T. J., Horswell, J. & Robinson, B. H. Potential environmental benefits from blending biosolids with other organic amendments before application to land. J. Environ. Qual. 46, 481–489 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Samara, E., Matsi, T., Zdragas, A. & Barbayiannis, N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge’s fertilization capacity. Environ. Sci. Polut. R. 26, 35387–35398 (2019).
    CAS  Article  Google Scholar 

    23.
    Djajadi, Abbott, L. K. & Hinz, C. Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma 183, 19–24 (2012).
    ADS  Article  Google Scholar 

    24.
    Ma, B., Lv, X., Cai, Y., Chang, S. X. & Dyke, M. F. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol. Biochem. 123, 45–53 (2018).
    CAS  Article  Google Scholar 

    25.
    Dilly, O., Blume, H.-P. & Munch, J. C. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319–339 (2003).
    CAS  Article  Google Scholar 

    26.
    Lehmann, J. et al. Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011).
    CAS  Article  Google Scholar 

    27.
    Liang, B. et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006).
    ADS  CAS  Article  Google Scholar 

    28.
    Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. & Condron, L. M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73–84 (2012).
    CAS  Article  Google Scholar 

    29.
    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Wang, D., Felice, M. L. & Scow, K. M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil Ecol. 152, 103570 (2020).
    Article  Google Scholar 

    32.
    Wu, H. et al. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl. Microbiol. Biotechnol. 100, 8583–8591 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Xu, H.-J. et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 48, 9391–9399 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Solaiman, Z. M., Abbott, L. K. & Murphy, D. V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phorphorus cycling. Sci. Rep.-U.K. 9, 5062 (2019).
    ADS  Article  CAS  Google Scholar 

    35.
    Cao, H. et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 135, 25–32 (2019).
    Article  Google Scholar 

    36.
    Zhang, K. et al. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fert. Soils 53, 77–87 (2017).
    CAS  Article  Google Scholar 

    37.
    Gartler, J., Robinson, B., Burton, K. & Clucas, L. Carbonaceous soil amendments to biofortify crop plants with zinc. Sci. Total Environ. 465, 308–313 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation. Soil Biol. Biochem. 26, 1221–1231 (1994).
    Article  Google Scholar 

    39.
    Wang, H., Kimberley, M. O. & Schlegelmilch, M. Biosolids-derived nitrogen mineralisation and transformation in forest soils. J. Environ. Qual. 32, 1851–1856 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Atkinson, C. J., Fitzgerald, J. & Hipps, N. Potential mechanisms for achieving agricultural benefits fromm biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010).
    CAS  Article  Google Scholar 

    41.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 13, 483–490 (2014).
    Article  Google Scholar 

    42.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Soil microbial responses to biochar varying in particle size, surface and pore properties. Pedosphere 25, 770–780 (2015).
    Article  Google Scholar 

    43.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Biochar-soil interactions in four agricultural soils. Pedosphere 25, 729–736 (2015).
    CAS  Article  Google Scholar 

    44.
    Petersen, S. O. et al. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Till Res. 72, 139–152 (2003).
    Article  Google Scholar 

    45.
    Warman, P. R. & Termeer, W. C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils. Bioresour. Technol. 96, 955–961 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Campos, T., Chear, G., Leles, P. D., Silva, M. & Santos, F. Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Amniente 26, e20180399 (2019).
    Article  Google Scholar 

    47.
    Peoples, M. et al. Factors affecting the potential contributions of N2 Fuxation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).
    CAS  Article  Google Scholar 

    48.
    Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).
    CAS  Article  Google Scholar 

    49.
    Mickan, B. S., Abbott, L. K., Stefanova, K. & Solaiman, Z. M. Interactions between biochar and mycorrhizal fungi in water-stressed agricultural soil. Mycorrhiza 26, 565–574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Hale, S. E. et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612–1619 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Zheng, J., Stewart, C. E. & Cotrufo, M. F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 41, 1361–1370 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 48, 47–50 (2012).
    CAS  Article  Google Scholar 

    53.
    Verhoeven, E. & Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agric. Ecosyst. Environ. 191, 27–38 (2014).
    CAS  Article  Google Scholar 

    54.
    Hamza, M. A. & Anderson, W. K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54, 273–282 (2003).
    Article  Google Scholar 

    55.
    Asadishad, B. et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52, 1908–1918 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Mossa, A.-W., Dickinson, M. J., West, H. M., Young, S. D. & Crout, N. M. J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 224, 16–25 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Sullivan, T. S., Stromberger, M. E. & Paschke, M. W. Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland. Soil Biol. Biochem. 38, 449–459 (2006).
    CAS  Article  Google Scholar 

    58.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Jenkins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Anton Van Leeuwenhoek 95, 319–334 (2009).
    Article  Google Scholar 

    60.
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhang, X., Liu, W., Zhang, G., Jiang, L. & Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 81, 275–281 (2015).
    CAS  Article  Google Scholar 

    62.
    Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    O’Brien, F. J. M. et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the Avon River critical zone observatory, Western Australia. Front. Microbiol. 10, 1486. https://doi.org/10.3389/fmicb.2019.01486 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Zeng, Q. C., Dong, Y. H. & An, S. S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau. China. Plos One. 11, e015289 (2016).
    Google Scholar 

    66.
    Gigliucci, F., Brambilla, G., Tozzoli, R., Michelacci, V. & Morabito, S. Comparative analysis of metagenomes of Italian top soil improvers. Environ. Res. 155, 108–115 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Mendez, M. O., Neilson, J. W. & Maier, R. M. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 74, 3899–3907 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Kim, J.-S., Dungan, R. S. & Crowley, D. Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol. Fert. Soils 44, 1003–1011 (2008).
    CAS  Article  Google Scholar 

    70.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Jenkins, S. N. et al. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem. 42, 1624–1631 (2010).
    CAS  Article  Google Scholar 

    72.
    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744–744 (2016).
    PubMed  PubMed Central  Google Scholar 

    75.
    Barton, L., Gleeson, D. B., Maccarone, L. D., Zuniga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?. Soil Biol. Biochem. 62, 28–35 (2013).
    CAS  Article  Google Scholar 

    76.
    Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).
    CAS  Article  Google Scholar 

    77.
    Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).
    CAS  Article  Google Scholar 

    78.
    Fisk, L. M., Maccarone, L. D., Barton, L. & Murphy, D. V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 88, 214–223 (2015).
    CAS  Article  Google Scholar 

    79.
    Wu, J. & Brookes, P. C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem. 37, 507–515 (2005).
    CAS  Article  Google Scholar 

    80.
    Rayment, G. & Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata Press, Melbourne, 1992).
    Google Scholar 

    81.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    82.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol. 31, 814–821 (2013).
    CAS  Article  Google Scholar 

    83.
    Mori, H. et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6, 1621–1624 (2012).
    CAS  Article  Google Scholar 

    85.
    Mickan, B. S., Abbott, L. K., Fan, J., Hart, M. M., Siddique, K. H. M., Solaiman, Z. M. & Jenkins, S. N. Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fert Soils. 54, 55–70 (2018).
    Article  Google Scholar 

    86.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan. (2010). More

  • in

    Past and future potential range changes in one of the last large vertebrates of the Australian continent, the emu Dromaius novaehollandiae

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl. Acad. Sci. 103, 632–636 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Latinne, A. et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. J. Biogeogr. 42, 1714–1726 (2015).
    Article  Google Scholar 

    4.
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Knick, S. T. & Rotenberry, J. T. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds. Ecology 81, 220–227 (2000).
    Article  Google Scholar 

    6.
    Enright, N. J. & Thomas, I. Pre-European fire regimes in Australian ecosystems. Geogr. Compass 2, 979–1011 (2008).
    Article  Google Scholar 

    7.
    Bowman, D. M. The impact of Aboriginal landscape burning on the Australian biota. N. Phytolog. 140, 385–410 (1998).
    Article  Google Scholar 

    8.
    Rule, S. et al. The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Gillespie, R., Brook, B. W. & Baynes, A. Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa Aust. J Palaeontol. 30, 163–186 (2006).
    Article  Google Scholar 

    10.
    Roberts, R. G. et al. New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Nat. Acad. Sci. 112, 4531–4540 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS One 3, e1745 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Bradshaw, C. J. Little left to lose: Deforestation and forest degradation in Australia since European colonization. J. Plant Ecol. 5, 109–120 (2012).
    Article  Google Scholar 

    15.
    Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. Emu 113, 168–176 (2013).
    Article  Google Scholar 

    16.
    Rogers, R. Dispersal of germinable seeds by emus in semi-arid Queensland. Emu 94, 132–134 (1994).
    Article  Google Scholar 

    17.
    Bradford, M. G. & Westcott, D. A. Consequences of Southern Cassowary (Casuarius casuarius, L) gut passage and deposition pattern on the germination of rainforest seeds. Austral. Ecol. 35, 325–333 (2010).
    Article  Google Scholar 

    18.
    Dawson, T., Read, D., Russell, E. & Herd, R. Seasonal variation in daily activity patterns, water relations and diet of emus. Emu 84, 93–102 (1984).
    Article  Google Scholar 

    19.
    Quin, B. Diet and habitat of Emus Dromaius novaehollandiae in the Grampians Ranges, south-western Victoria. Emu 96, 114–122 (1996).
    Article  Google Scholar 

    20.
    Higgins, S., Nathan, R. & Cain, M. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?. Ecology 84, 1945–1956 (2003).
    Article  Google Scholar 

    21.
    Calviño-Cancela, M., Dunn, R. R., Van Etten, E. J. & Lamont, B. Emus as non-standard seed dispersers and their potential for long-distance dispersal. Ecography 29, 632–640 (2006).
    Article  Google Scholar 

    22.
    Calviño-Cancela, M., He, T. & Lamont, B. B. Distribution of myrmecochorous species over the landscape and their potential long-distance dispersal by emus and kangaroos. Divers. Distrib. 14, 11–17 (2008).
    Article  Google Scholar 

    23.
    McGrath, R. & Bass, D. Seed dispersal by emus on the New South Wales north-east coast. Emu 99, 248–252 (1999).
    Article  Google Scholar 

    24.
    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Vidal, M. M., Pires, M. M. & Guimarães, P. R. Jr. Large vertebrates as the missing components of seed-dispersal networks. Biol. Cons. 163, 42–48 (2013).
    Article  Google Scholar 

    26.
    Ruxton, G. D. & Schaefer, H. M. The conservation physiology of seed dispersal. Philos. Trans. R. Soc. B Biol. Sci. 367, 1708–1718 (2012).
    Article  Google Scholar 

    27.
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).
    CAS  Article  Google Scholar 

    28.
    Miller, G. H. & Fogel, M. L. Calibrating δ18O in Dromaius novaehollandiae (emu) eggshell calcite as a paleo-aridity proxy for the Quaternary of Australia. Geochim. Cosmochim. Acta 193, 1–13 (2016).
    ADS  CAS  Article  Google Scholar 

    29.
    Breckwoldt, R. Wildlife in the home paddock. Nat. Conserv. Farm. 20, 20 (1983).
    Google Scholar 

    30.
    Le Souëf, D. Extinct Tasmanian Emu. Emu Austral. Ornithol. 3, 229–231 (1904).
    Article  Google Scholar 

    31.
    Thomson, V. A. et al. Genetic diversity and drivers of dwarfism in extinct island emu populations. Biol. Lett. 14, 20 (2018).
    Article  Google Scholar 

    32.
    Department of Planning, Industry and Environment (DPIE) (2002). Emu population in the New South Wales North Coast Bioregion and Port Stephens local government area. NSW Sci. Determ. 20, 20 (2018).
    Google Scholar 

    33.
    Franklin, J. Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16, 321–330 (2010).
    Article  Google Scholar 

    34.
    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Glazier, D. S. & Eckert, S. E. Competitive ability, body size and geographical range size in small mammals. J. Biogeogr. 29, 81–92 (2002).
    Article  Google Scholar 

    36.
    Gaston, K. J. How large is a species’ geographic range?. Oikos 20, 434–438 (1991).
    Article  Google Scholar 

    37.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    38.
    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Article  Google Scholar 

    39.
    Östergård, H. & Ehrlén, J. Among population variation in specialist and generalist seed predation—the importance of host plant distribution, alternative hosts and environmental variation. Oikos 111, 39–46 (2005).
    Article  Google Scholar 

    40.
    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).
    Article  Google Scholar 

    41.
    Thuiller, W., Araújo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe?. J. Biogeogr. 31, 353–361 (2004).
    Article  Google Scholar 

    42.
    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. 98, 4534–4539 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Davies, S. J. J. F., Beck, M. W. R. & Kruiskamp, J. P. Results of banding 154 emus in Western Australia. Wildl. Res. 16, 77–79 (1971).
    Article  Google Scholar 

    44.
    Pople, A., Cairns, S. & Grigg, G. Distribution and abundance of emus Dromaius novaehollandiae in relation to the environment in the South Australian pastoral zone. Emu 91, 222–229 (1991).
    Article  Google Scholar 

    45.
    Davies, S. Aspects of a study of emus in semi-arid Western Australia. Proc. Ecol. Soc. Aust. 3, 160–166 (1968).
    Google Scholar 

    46.
    Coddington, C. L. & Cockburn, A. The mating system of free-living emus. Aust. J. Zool. 43, 365–372 (1995).
    Article  Google Scholar 

    47.
    Taylor, E. L., Blache, D., Groth, D., Wetherall, J. D. & Martin, G. B. Genetic evidence for mixed parentage in nests of the emu (Dromaius novaehollandiae). Behav. Ecol. Sociobiol. 47, 359–364 (2000).
    Article  Google Scholar 

    48.
    Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius casuarius) in North Queensland, Australia. Biotropica 40, 338–343 (2008).
    Article  Google Scholar 

    49.
    Moore, L. Population ecology of the southern cassowary Casuarius casuarius johnsonii, Mission Beach north Queensland. J. Ornithol. 148, 357–366 (2007).
    Article  Google Scholar 

    50.
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).
    Article  Google Scholar 

    51.
    Grice, D., Caughley, G. & Short, J. Density and distribution of emus. Wildl. Res. 12, 69–73 (1985).
    Article  Google Scholar 

    52.
    Nield, A. P., Enright, N. J. & Ladd, P. G. Study of seed dispersal by Emu (Dromaius novaehollandiae) in the Jarrah (Eucalyptus marginata) forests of south-western Australia through satellite telemetry. Emu 115, 29–34 (2015).
    Article  Google Scholar 

    53.
    Davies, S. The food of emus. Aust. J. Ecol. 3, 411–422 (1978).
    Article  Google Scholar 

    54.
    Osborne, W. & Green, K. Seasonal changes in composition, abundance and foraging behavior of birds in the snowy mountains. Emu 92, 93–105 (1992).
    Article  Google Scholar 

    55.
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    56.
    Mackey, B. G. & Lindenmayer, D. B. Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28, 1147–1166 (2001).
    Article  Google Scholar 

    57.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Article  Google Scholar 

    58.
    Warren, M. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Thomas, C. D. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 139–145 (2000).
    CAS  Article  Google Scholar 

    60.
    Quigley, M. C., Horton, T., Hellstrom, J. C., Cupper, M. L. & Sandiford, M. Holocene climate change in arid Australia from speleothem and alluvial records. Holocene 20, 1093–1104 (2010).
    ADS  Article  Google Scholar 

    61.
    Shulmeister, J. & Lees, B. G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. Holocene 5, 10–18 (1995).
    ADS  Article  Google Scholar 

    62.
    Weber, L. C., VanDerWal, J., Schmidt, S., McDonald, W. J. & Shoo, L. P. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. J. Biogeogr. 41, 222–238 (2014).
    Article  Google Scholar 

    63.
    Avilés, J. M., Soler, J. J. & Pérez-Contreras, T. Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proc. R. Soc. Lond. B Biol. Sci. 273, 2821–2829 (2006).
    Google Scholar 

    64.
    Lahti, D. C. & Ardia, D. R. Shedding light on bird egg color: Pigment as parasol and the dark car effect. Am. Nat. 187, 547–563 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Magige, F. J., Moe, B. & Røskaft, E. The white colour of the Ostrich (Struthio camelus) egg is a trade-off between predation and overheating. J. Ornithol. 149, 323–328 (2008).
    Article  Google Scholar 

    66.
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Article  Google Scholar 

    67.
    Maloney, S. & Dawson, T. Thermoregulation in a large bird, the emu (Dromaius novaehollandiae). J. Comp. Physiol. B. 164, 464–472 (1994).
    Article  Google Scholar 

    68.
    Dawson, T., Herd, R. & Skadhauge, E. Water turnover and body water distribution during dehydration in a large arid-zone bird, the emu, Dromaius novaehollandiae. J. Comp. Physiol. 153, 235–240 (1983).
    Article  Google Scholar 

    69.
    McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).
    Article  Google Scholar 

    70.
    Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Dickman, C. R. Impact of exotic generalist predators on the native fauna of Australia. Wildl. Biol. 2, 185–195 (1996).
    Article  Google Scholar 

    72.
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Article  Google Scholar 

    73.
    Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species—climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).
    ADS  Article  Google Scholar 

    74.
    Thuiller, W. et al. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr. 12, 313–325 (2003).
    Article  Google Scholar 

    75.
    Pfennigwerth, S. “The mighty cassowary”: The discovery and demise of the King Island emu. Arch. Nat. Hist. 37, 74–90 (2010).
    Article  Google Scholar 

    76.
    Heupink, T. H., Huynen, L. & Lambert, D. M. Ancient DNA suggests Dwarf and ‘Giant’Emu are conspecific. PLoS One 6, e18728 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 7, 744–751 (2019).
    Article  Google Scholar 

    78.
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com (2020).

    79.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    PubMed  Article  Google Scholar 

    81.
    Molloy, S. W., Davis, R. A., Dunlop, J. A. & van Etten, E. Applying surrogate species presences to correct sample bias in species distribution models: A case study using the Pilbara population of the Northern Quoll. Nat. Conserv. 18, 27–46 (2017).
    Google Scholar 

    82.
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall, London, 2015).
    Google Scholar 

    83.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 25, 1965–1978 (2005).
    Article  Google Scholar 

    84.
    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramme. Remote Sens. 57, 241–262 (2003).
    ADS  Article  Google Scholar 

    85.
    Werner, M. Shuttle radar topography mission (SRTM) mission overview. Frequenz 55, 75–79 (2001).
    ADS  Article  Google Scholar 

    86.
    ESRI, ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute (2011).

    87.
    Hill, M. J., Lesslie, R., Barry, A. & Barry, S. A simple, portable, spatial multi-criteria analysis shell–MCAS-S. In MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand. 12–15 (2005).

    88.
    Australian Government Department of Agriculture, Water and the Environment (ABARES), Australian Fire Frequency (1988–2015), Australian Government. http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification (2016).

    89.
    Australian Government Department of Environmen and Energy, Australian Vegetation Attribute Manual: National Vegetation Information System, Version 6.0, Canberra (2018).

    90.
    National Aeronautics and Space Administration Socioeconomic Data and Applications Center. Gridded Population of the World v4 (2017).

    91.
    Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN). Last of the Wild Project, Version 2: Global Human Footprint Dataset (Geographic). NASA Socioeconomic Data and Applications Center (SEDAC). Columbia University. Palisades, NY (2005).

    92.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    93.
    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Article  Google Scholar 

    94.
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    95.
    Marquaridt, D. W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12, 591–612 (1970).
    Article  Google Scholar 

    96.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    97.
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).
    Article  Google Scholar 

    98.
    Anderson, R. P. & Gonzalez, I. Jr. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).
    Article  Google Scholar 

    99.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    100.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    101.
    Hegel, T. M., Cushman, S. A., Evans, J. & Huettmann, F. Spatial Complexity, Informatics, and Wildlife Conservation 273–311 (Springer, Tokoyo, 2010).
    Google Scholar 

    102.
    Pearce, J. L. & Boyce, M. S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43, 405–412 (2006).
    Article  Google Scholar 

    103.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    104.
    Otto-Bliesner, B. L. et al. Last glacial maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).
    ADS  Article  Google Scholar 

    105.
    Bi, D. et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 63, 41–64 (2012).
    Article  Google Scholar 

    106.
    Cooper, A. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Yonezawa, T. et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 27, 68–77 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
    Article  Google Scholar 

    109.
    Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. dismo: Species distribution modeling. R package v1.1-4 (2017). More

  • in

    Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants

    1.
    Becerra, J. X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl Acad. Sci. USA 112, 6098–6103 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth? Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Grimaldi, D. A. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).

    4.
    Strong, D. R., Lawton, J. H. & Southwood, R. Insects on Plants: Community Patterns and Mechanisms (Harvard University Press, 1984).

    5.
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Article  Google Scholar 

    6.
    Thompson, J. N. Concepts of coevolution. Trends Ecol. Evol. 4, 179–183 (1989).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Mitter, C., Farrell, B. & Wiegmann, B. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am. Nat. 132, 107–128 (1988).
    Article  Google Scholar 

    8.
    Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Berenbaum, M. & Specialization, P. F. Chemical Mediation of Host-plant Specialization: The Papilionid Paradigm. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (University of California Press, 2008).

    10.
    Winter, S., Friedman, A. L. L., Astrin, J. J., Gottsberger, B. & Letsch, H. Timing and host plant associations in the evolution of the weevil tribe Apionini (Apioninae, Brentidae, Curculionoidea, Coleoptera) indicate an ancient co-diversification pattern of beetles and flowering plants. Mol. Phylogenet. Evol. 107, 179–190 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Kergoat, G. J. et al. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nat. Commun. 9, 5089 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Wheat, C. W. et al. The genetic basis of a plant–insect coevolutionary key innovation. Proc. Natl Acad. Sci. USA 104, 20427–20431 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Calla, B. et al. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: Birth, death and adaptation. Mol. Ecol. 26, 6021–6035 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Nallu, S. et al. The molecular genetic basis of herbivory between butterflies and their host plants. Nat. Ecol. Evol. 2, 1418–1427 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Karageorgi, M. et al. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574, 409–412 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Sahoo, R. K., Warren, A. D., Collins, S. C. & Kodandaramaiah, U. Hostplant change and paleoclimatic events explain diversification shifts in skipper butterflies (Family: Hesperiidae). BMC Evol. Biol. 17, 174 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Condamine, F. L., Rolland, J., Höhna, S., Sperling, F. A. H. & Sanmartín, I. Testing the role of the red queen and court jester as drivers of the macroevolution of apollo butterflies. Syst. Biol. 67, 940–964 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Letsch, H. et al. Climate and host-plant associations shaped the evolution of ceutorhynch weevils throughout the Cenozoic. Evolution 72, 1815–1828 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Winkler, I. S., Mitter, C. & Scheffer, S. J. Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies. Proc. Natl Acad. Sci. USA 106, 18103–18108 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).
    PubMed  Article  Google Scholar 

    23.
    Janz, N. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 42, 71–89 (2011).
    Article  Google Scholar 

    24.
    Suchan, T. & Alvarez, N. Fifty years after Ehrlich and Raven, is there support for plant–insect coevolution as a major driver of species diversification? Entomol. Exp. Appl. 157, 98–112 (2015).
    Article  Google Scholar 

    25.
    Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).
    CAS  PubMed  Article  Google Scholar 

    26.
    Simon, J.-C. et al. Genomics of adaptation to host-plants in herbivorous insects. Brief. Funct. Genomics 14, 413–423 (2015).
    CAS  PubMed  Article  Google Scholar 

    27.
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA 114, 9641–9646 (2017).
    CAS  PubMed  Article  Google Scholar 

    28.
    Hua, X. & Bromham, L. Darwinism for the genomic age: connecting mutation to diversification. Front. Genet. 8, 12 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Hembry, D. H. & Weber, M. G. Ecological interactions and macroevolution: a new field with old roots. Annu. Rev. Ecol. Evol. Syst. 51, (2020).

    30.
    Scriber, J. M., Tsubaki, Y. & Lederhouse, R. C. Swallowtail Butterflies: Their Ecology and Evolutionary Biology (Scientific Publishers, 1995).

    31.
    Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47, 57–92 (2002).
    CAS  PubMed  Article  Google Scholar 

    32.
    Schmeiser, H. H., Stiborovà, M. & Arlt, V. M. Chemical and molecular basis of the carcinogenicity of Aristolochia plants. Curr. Opin. Drug Discov. Dev. 12, 141–148 (2009).
    CAS  Google Scholar 

    33.
    Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013).
    PubMed  Article  CAS  Google Scholar 

    34.
    Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15, 267–277 (2012).
    PubMed  Article  Google Scholar 

    35.
    Simonsen, T. J. et al. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27, 113–137 (2011).
    Article  Google Scholar 

    36.
    Berenbaum, M. R., Favret, C. & Schuler, M. A. On defining ‘Key Innovations’ in an adaptive radiation: cytochrome P450s and Papilionidae. Am. Nat. 148, S139–S155 (1996).
    Article  Google Scholar 

    37.
    Cohen, M. B., Schuler, M. A. & Berenbaum, M. R. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl Acad. Sci. USA 89, 10920–10924 (1992).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Li, W., Schuler, M. A. & Berenbaum, M. R. Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. Proc. Natl Acad. Sci. USA 100(Suppl.), 14593–14598 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Thompson, J. N. Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies. Evolution 42, 118–128 (1988).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Thompson, J. N., Wehling, W. & Podolsky, R. Evolutionary genetics of host use in swallowtail butterflies. Nature 344, 148–150 (1990).
    ADS  Article  Google Scholar 

    41.
    Berenbaum, M. R. & Feeny, P. P. in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (ed. Tilmon, K.) 2–19 (University of California Press, 2008).

    42.
    Zakharov, E. V., Caterino, M. S. & Sperling, F. A. H. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst. Biol. 53, 193–215 (2004).
    PubMed  Article  Google Scholar 

    43.
    Braby, M., Trueman, J. & Eastwood, R. When and where did troidine butterflies (Lepidoptera: Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous. Invertebr. Syst. 19, 113–143 (2005).
    Article  Google Scholar 

    44.
    Condamine, F. L., Silva-Brandão, K. L., Kergoat, G. J. & Sperling, F. A. Biogeographic and diversification patterns of Neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia. BMC Evol. Biol. 12, 82 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace. Sci. Rep. 5, 11860 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Allio, R. et al. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Syst. Biol. 69, 38–60 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    McKenna, D. D., Sequeira, A. S., Marvaldi, A. E. & Farrell, B. D. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc. Natl Acad. Sci. USA.106, 7083–7088 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Takahashi, D. & Setoguchi, H. Molecular phylogeny and taxonomic implications of Asarum (Aristolochiaceae) based on ITS and matK sequences. Plant Species Biol. 33, 28–41 (2018).
    Article  Google Scholar 

    49.
    Wanke, S. et al. Evolution of Piperales—matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Mol. Phylogenet. Evol. 42, 477–497 (2007).
    CAS  PubMed  Article  Google Scholar 

    50.
    Neinhuis, C., Wanke, S., Hilu, K. W., Müller, K. & Borsch, T. Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trnL-trnF sequences. Plant Syst. Evol. 250, 7–26 (2005).
    Article  Google Scholar 

    51.
    Wanke, S., González, F. & Neinhuis, C. Systematics of pipevines: combining morphological and fast‐evolving molecular characters to investigate the relationships within subfamily Aristolochioideae. Int. J. Plant Sci. 167, 1215–1227 (2006).
    CAS  Article  Google Scholar 

    52.
    González, F. et al. Present trans-Pacific disjunct distribution of Aristolochia subgenus Isotrema (Aristolochiaceae) was shaped by dispersal, vicariance and extinction. J. Biogeogr. 41, 380–391 (2014).
    Article  Google Scholar 

    53.
    Durden, C. J. & Rose, H. Butterflies from the Middle Eocene: The Earliest Occurrence of Fossil Papilionoidea (Lepidoptera) (Prarce-Sellards Ser. Tax. Mem. Mus., 1978).

    54.
    Sohn, J., Labandeira, C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 3286, 1–132 (2012).
    Article  Google Scholar 

    55.
    de Jong, R. Estimating time and space in the evolution of the Lepidoptera. Tijdschr. voor Entomol. 150, 319–346 (2007).
    Article  Google Scholar 

    56.
    Hofmann, C.-C. & Zetter, R. Upper Cretaceous sulcate pollen from the Timerdyakh formation, Vilui Basin (Siberia). Grana 49, 170–193 (2010).
    Article  Google Scholar 

    57.
    Meller, B. The first fossil Aristolochia (Aristolochiaceae, Piperales) leaves from Austria. Palaeontol. Electron 17, 1–17 (2014).
    Google Scholar 

    58.
    Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. Ser. B 344, 305–311 (1994).
    ADS  CAS  Article  Google Scholar 

    59.
    Nee, S. Birth-death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).
    Article  Google Scholar 

    60.
    Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: Decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Crisp, M. D. & Cook, L. G. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Xue, B. et al. Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae. Mol. Phylogenet. Evol. 142, 106659 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Folk, R. A. et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proc. Natl Acad. Sci. USA 116, 10874–10882 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Sun, M. et al. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Cheng, T. et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 1, 1747–1756 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Rane, R. V. et al. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 31, 131–138 (2019).
    MathSciNet  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Cong, Q., Borek, D., Otwinowski, Z. & Grishin, N. V. Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Rep. 10, 910–919 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Li, X. et al. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat. Commun. 6, 8212 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Nishikawa, H. et al. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat. Genet. 47, 405–409 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Thomas, G. W. C. & Hahn, M. W. Determining the null model for detecting adaptive convergence from genomic data: a case study using echolocating mammals. Mol. Biol. Evol. 32, 1232–1236 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Zou, Z. & Zhang, J. No genome-wide protein sequence convergence for echolocation. Mol. Biol. Evol. 32, 1237–1241 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).

    76.
    Yang, Z. Computational Molecular Evolution (Oxford University Press, 2006).

    77.
    Venkat, A., Hahn, M. W. & Thornton, J. W. Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nat. Ecol. Evol. 2, 1280–1288 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Mendes, F. K. & Hahn, M. W. Gene tree discordance causes apparent substitution rate variation. Syst. Biol. 65, 711–721 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).
    ADS  CAS  PubMed Central  Article  Google Scholar 

    80.
    Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11, 3795 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    McGee, M. D. et al. The ecological and genomic basis of explosive adaptive radiation. Nature 586, 75–79 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Thomas, G. W. C. et al. Gene content evolution in the arthropods. Genome Biol. 21, 15 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    de Medeiros, B. A. S. & Farrell, B. D. Evaluating species interactions as a driver of phytophagous insect divergence. bioRxiv https://doi.org/10.1101/842153 (2019).

    84.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    86.
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Ronquist, F. et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133 (2004).
    CAS  PubMed  Article  Google Scholar 

    92.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. & Douzery, E. J. P. Comparison of bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20, 248–254 (2003).
    CAS  PubMed  Article  Google Scholar 

    94.
    Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES Science Gateway. Evol. Bioinforma. 11, EBO.S21501 (2015).
    Article  Google Scholar 

    95.
    Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).
    PubMed  Article  Google Scholar 

    96.
    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    97.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Smith, M. E., Singer, B. & Carroll, A. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geol. Soc. Am. Bull. 115, 549–565 (2003).
    ADS  CAS  Article  Google Scholar 

    99.
    de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1–63 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    100.
    Scudder, S. H. Fossil butterflies. Mem. Am. Assoc. Adv. Sci. 1, 1–99 (1875).
    Google Scholar 

    101.
    Rasnitsyn, A. P. & Zherikhin, V. V. in History of Insects 437–446 (Kluwer Academic Publishers, 2002).

    102.
    Rebel, H. Doritites bosniaskii. Sitzungsberichte der akademie der wissenschaften. Mathematischen-Naturwissenschaftliche classe. Abt. 1 Mineral. Biol. Erdkd. 1, 734–741 (1898).
    Google Scholar 

    103.
    Carpenter, F. Treatise on Invertebrate Paleontology: Arthropoda 4. Superclass Hexapoda (Geological Society of America, 1992).

    104.
    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).
    Article  Google Scholar 

    105.
    Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Toussaint, E. F. A. & Condamine, F. L. To what extent do new fossil discoveries change our understanding of clade evolution? A cautionary tale from burying beetles (Coleoptera: Nicrophorus). Biol. J. Linn. Soc. 117, 686–704 (2016).
    Article  Google Scholar 

    107.
    Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778 (2008).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    108.
    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
    CAS  PubMed  Article  Google Scholar 

    109.
    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).
    PubMed  Article  Google Scholar 

    110.
    Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    111.
    Igarashi, S. The classification of the Papilionidae mainly based on the morphology of their immature stages. Lepid. Sci. 34, 41–96 (1984).
    Google Scholar 

    112.
    Collins, N. M. & Morris, M. Threatened Swallowtail Butterflies of the World: the IUCN Red Data Book (IUCN, 1985).

    113.
    Tyler, H. A., Brown, K. S. & Wilson, K. H. Swallowtail Butterflies of the Americas: A Study in Biological Dynamics, Ecological Diversity, Biosystematics, and Conservation (Scientific Publishers, 1994).

    114.
    Ree, R. H., Moore, B. R., Webb, C. O. & Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    115.
    Massoni, J., Couvreur, T. L. & Sauquet, H. Five major shifts of diversification through the long evolutionary history of Magnoliidae (Angiosperms). BMC Evol. Biol. 15, 49 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    116.
    Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).
    Article  Google Scholar 

    117.
    Miller, J. T., Murphy, D. J., Ho, S. Y. W., Cantrill, D. J. & Seigler, D. Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Aust. J. Bot. 61, 436–445 (2013).
    Article  Google Scholar 

    118.
    Michalak, I., Zhang, L.-B. & Renner, S. S. Trans-Atlantic, trans-Pacific and trans-Indian Ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. J. Biogeogr. 37, 1214–1226 (2010).
    Article  Google Scholar 

    119.
    Wu, S.-D. et al. Evolution of asian interior arid-zone biota: Evidence from the diversification of asian Zygophyllum (Zygophyllaceae). PLoS ONE 10, e0138697 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    120.
    Chase, M. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
    Article  Google Scholar 

    121.
    Christenhusz, M. J. M., Vorontsova, M. S., Fay, M. F. & Chase, M. W. Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Bot. J. Linn. Soc. 178, 501–528 (2015).
    Article  Google Scholar 

    122.
    Gonzáles, F., Rudall, P. J. & Furness, C. A. Microsporogenesis and systematics of Aristolochiaceae. Bot. J. Linn. Soc. 137, 221–242 (2001).
    Article  Google Scholar 

    123.
    González, F. & Rudall, P. The questionable affinities of Lactoris: evidence from branching pattern, inflorescence morphology, and stipule development. Am. J. Bot. 88, 2143–2150 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    124.
    Isnard, S. et al. Growth form evolution in Piperales and its relevance for understanding angiosperm diversification: An integrative approach combining plant architecture, anatomy, and biomechanics. Int. J. Plant Sci. 173, 610–639 (2012).
    Article  Google Scholar 

    125.
    Wagner, S. T. et al. Major trends in stem anatomy and growth forms in the perianth-bearing Piperales, with special focus on Aristolochia. Ann. Bot. 113, 1139–1154 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    126.
    Nickrent, D. L. et al. Molecular data place Hydnoraceae with Aristolochiaceae. Am. J. Bot. 89, 1809–1817 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    127.
    Kelly, L. M. & González, F. Phylogenetic relationships in Aristolochiaceae. Syst. Bot. 28, 236–249 (2003).
    Google Scholar 

    128.
    Naumann, J. et al. Single-copy nuclear genes place haustorial Hydnoraceae within piperales and reveal a cretaceous origin of multiple parasitic angiosperm lineages. PLoS ONE 8, e79204 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    129.
    Salomo, K. et al. The emergence of earliest angiosperms may be earlier than fossil evidence indicates. Syst. Bot. 42, 607–619 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    130.
    Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).
    Article  Google Scholar 

    131.
    Naumann, J. et al. Detecting and characterizing the highly divergent plastid genome of the nonphotosynthetic parasitic plant Hydnora visseri (Hydnoraceae). Genome Biol. Evol. 8, 345–363 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    132.
    Jost, M., Naumann, J., Rocamundi, N., Cocucci, A. A. & Wanke, S. The first plastid genome of the Holoparasitic genus Prosopanche (Hydnoraceae). Plants 9, 306 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    133.
    Zavada, M. S. & Benson, J. M. First fossil evidence for the primitive angiosperm family Lactoricidae. Am. J. Bot. 74, 1590–1594 (1987).
    Article  Google Scholar 

    134.
    Gamerro, J. C. & Barreda, V. New fossil record of Lactoridaceae in southern South America: a palaeobiogeographical approach. Bot. J. Linn. Soc. 158, 41–50 (2008).
    Article  Google Scholar 

    135.
    Smith, S. Y. & Stockey, R. A. Establishing a fossil record for the perianthless Piperales: Saururus tuckerae sp. nov. (Saururaceae) from the Middle Eocene Princeton Chert. Am. J. Bot. 94, 1642–1657 (2007).
    PubMed  Article  Google Scholar 

    136.
    Massoni, J., Doyle, J. & Sauquet, H. Fossil calibration of Magnoliidae, an ancient lineage of angiosperms. Palaeontol. Electron. 18, 1–25 (2015).
    Google Scholar 

    137.
    Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 36, 2324–2337 (2009).
    Article  Google Scholar 

    138.
    Beeravolu, C. R. & Condamine, F. L. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. bioRxiv https://doi.org/10.1101/038695 (2016).

    139.
    Scotese, C. R. A continental drift flipbook. J. Geol. 112, 729–741 (2004).
    ADS  Article  Google Scholar 

    140.
    Blakey, R. C. Gondwana paleogeography from assembly to breakup—a 500 m.y. odyssey. Geol. Soc. Am. Spec. Pap. 441, 1–28 (2008).
    Google Scholar 

    141.
    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
    ADS  Article  Google Scholar 

    142.
    Chacón, J. & Renner, S. S. Assessing model sensitivity in ancestral area reconstruction using Lagrange: a case study using the Colchicaceae family. J. Biogeogr. 41, 1414–1427 (2014).
    Article  Google Scholar 

    143.
    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    144.
    FitzJohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    145.
    Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    146.
    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    147.
    Höhna, S. et al. A Bayesian approach for estimating branch-specific speciation and extinction rates. bioRxiv https://doi.org/10.1101/555805 (2019).

    148.
    May, M. R., Höhna, S. & Moore, B. R. A Bayesian approach for detecting the impact of mass-extinction events on molecular phylogenies when rates of lineage diversification may vary. Methods Ecol. Evol. 7, 947–959 (2016).
    Article  Google Scholar 

    149.
    Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    150.
    Rabosky, D. L. Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60, 1152–1164 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    151.
    FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
    Article  Google Scholar 

    152.
    Scriber, J. M. in Chemical Ecology of Insects (eds Bell, W. J. & Cardé, R. T.) 159–202 (Springer US, 1984).

    153.
    Davis, M. P., Midford, P. E. & Maddison, W. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification. BMC Evol. Biol. 13, 38 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    154.
    Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    155.
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    156.
    Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).
    Article  Google Scholar 

    157.
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    158.
    Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    159.
    Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
    Article  Google Scholar 

    160.
    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    161.
    Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    162.
    Höhna, S., May, M. R. & Moore, B. R. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. Bioinformatics 32, 789–791 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    163.
    Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    164.
    Partha, R. et al. Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. eLife 6, e25884 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    165.
    Wu, J., Yonezawa, T. & Kishino, H. Rates of molecular evolution suggest natural history of life history traits and a Post-K-Pg nocturnal bottleneck of placentals. Curr. Biol. 27, 3025–3033 (2017).
    CAS  PubMed  Article  Google Scholar 

    166.
    Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    167.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    168.
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    169.
    Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    170.
    Simion, P. et al. A software tool ‘CroCo’ detects pervasive cross-species contamination in next generation sequencing data. BMC Biol. 16, 28 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    171.
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    172.
    Di Franco, A., Poujol, R., Baurain, D. & Philippe, H. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evol. Biol. 19, 21 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    173.
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    174.
    Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    175.
    Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).
    CAS  PubMed  Article  Google Scholar 

    176.
    Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).
    CAS  PubMed  Article  Google Scholar 

    177.
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  Article  PubMed  Google Scholar 

    178.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    179.
    Bauer, D. F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67, 687–690 (1972).
    MATH  Article  Google Scholar 

    180.
    Diekmann, Y. & Pereira-Leal, J. B. Gene tree affects inference of sites under selection by the branch-site test of positive selection. Evol. Bioinforma. 11, 11–17 (2015).
    Article  Google Scholar 

    181.
    Mallick, S., Gnerre, S., Muller, P. & Reich, D. The difficulty of avoiding false positives in genome scans for natural selection. Genome Res. 19, 922–933 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    182.
    Fletcher, W. & Yang, Z. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol. Biol. Evol. 27, 2257–2267 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    183.
    Jordan, G. & Goldman, N. The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol. Biol. Evol. 29, 1125–1139 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    184.
    Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10, 285–311 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    185.
    Galtier, N. & Duret, L. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet. 23, 273–277 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    186.
    Ratnakumar, A. et al. Detecting positive selection within genomes: the problem of biased gene conversion. Philos. Trans. R. Soc. Ser. B 365, 2571–2580 (2010).
    CAS  Article  Google Scholar 

    187.
    Guéguen, L. et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Mol. Biol. Evol. 30, 1745–1750 (2013).
    PubMed  Article  CAS  Google Scholar 

    188.
    Wickham, H. & Grolemund, G. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data (O’Reilly Media, Inc., Canada, 2016).

    189.
    Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2.’ CRAN Repos. 2, R2 (2016).

    190.
    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
    CAS  PubMed  Article  Google Scholar 

    191.
    Redelings, B. Erasing errors due to alignment ambiguity when estimating positive selection. Mol. Biol. Evol. 31, 1979–1993 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    192.
    Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).
    CAS  Article  PubMed  Google Scholar 

    193.
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    194.
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Variation in size and shape of toxin glands among cane toads from native-range and invasive populations

    1.
    Caro, T. M. Antipredator Defenses in Birds and Mammals (University of Chicago Press, 2005).
    2.
    Emlen, D. J. The evolution of animal weapons. Annu. Rev. Ecol. Evol. Syst. 39, 387–413 (2008).
    Article  Google Scholar 

    3.
    Toledo, L. F., Sazima, I. & Haddad, C. F. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).
    Article  Google Scholar 

    4.
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).
    Article  Google Scholar 

    5.
    Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305–314 (2011).
    ADS  PubMed  Article  Google Scholar 

    6.
    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2011).
    Article  Google Scholar 

    7.
    Longson, C. G. & Joss, J. M. P. Optimal toxicity in animals: Predicting the optimal level of chemical defences. Funct. Ecol. 20, 731–735 (2006).
    Article  Google Scholar 

    8.
    Relyea, R. A. Predators come and predators go: The reversibility of predator-induced traits. Ecology 84, 1840–1848 (2003).
    Article  Google Scholar 

    9.
    Tollrian, R. & Harvell, D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, 1999).

    10.
    Daly, D., Higginson, A. D., Chen, D., Ruxton, G. D. & Speed, M. P. Density-dependent investment in costly anti-predator defenses: An explanation for the weak survival benefit of group living. Ecol. Lett. 15, 576–583 (2012).
    PubMed  Article  Google Scholar 

    11.
    Kosmala, G., Brown, G. P. & Shine, R. Thin-skinned invaders: Geographic variation in the structure of the skin among populations of cane toads (Rhinella marina). Biol. J. Linn. Soc. 131, 611–621 (2020).
    Article  Google Scholar 

    12.
    Duellman, W. E. & Trueb, L. Biology of Amphibians (McGraw-Hill, 1994).

    13.
    Wells, K. The Ecology and Behavior of Amphibians (University of Chicago Press, 2007).

    14.
    König, E., Bininda-Emonds, O. R. P. & Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 63, 96–117 (2014).
    PubMed  Article  CAS  Google Scholar 

    15.
    Hettyey, A., Tóth, Z. & Van Buskirk, J. Inducible chemical defences in animals. Oikos 123, 1025–1028 (2014).
    Article  Google Scholar 

    16.
    Blennerhasset, R., Bell-Anderson, K., Shine, R. & Brown, G. P. The cost of chemical defence: The impact of toxin depletion on growth and behaviour of cane toads (Rhinella marina). Proc. R. Soc. B. 286, 20190867 (2019).
    Article  CAS  Google Scholar 

    17.
    Chen, W., Hudson, C. M., DeVore, J. L. & Shine, R. Sex and weaponry: The distribution of toxin-storage glands on the bodies of male and female cane toads (Rhinella marina). Ecol. Evol. 7, 8950–8957 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    O’Donohoe, M. A. et al. Diversity and evolution of the parotoid macrogland in true toads (Anura: Bufonidae). Zool. J. Linn. Soc. 187, 453–478 (2019).
    Article  Google Scholar 

    19.
    Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 85, 253–291 (2010).
    PubMed  Article  Google Scholar 

    20.
    Ujvari, B. et al. Isolation breeds naivety: island living robs Australian varanid lizards of toad-toxin immunity via four-base-pair mutation. Evolution 67, 289–294 (2013).
    PubMed  Article  Google Scholar 

    21.
    Pearcy, A. Selective feeding in Keelback snakes Tropidonophis mairii in an Australian wetland. Aust. Zool. 35, 843–845 (2011).
    Article  Google Scholar 

    22.
    Llewelyn, J. et al. Behavioural responses of an Australian colubrid snake (Dendrelaphis punctulatus) to a novel toxic prey item (the Cane Toad Rhinella marina). Biol. Invasions 20, 2507–2516 (2018).
    Article  Google Scholar 

    23.
    van Bocxlaer, I. et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327, 679–682 (2010).
    ADS  PubMed  Article  CAS  Google Scholar 

    24.
    Hudson, C. M., Vidal-García, M., Murray, T. G. & Shine, R. The accelerating anuran: evolution of locomotor performance in cane toads (Rhinella marina, Bufonidae) at an invasion front. Proc. R. Soc. B 287, 20201964 (2020).
    PubMed  Article  Google Scholar 

    25.
    Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane toads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Ward-Fear, G., Pearson, D. J., Brown, G. P. & Shine, R. Ecological immunization: in situ training of free-ranging predatory lizards reduces their vulnerability to invasive toxic prey. Biol. Lett. 12, 20150863 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Crossland, M. R., Brown, G. P., Anstis, M., Shilton, C. & Shine, R. Mass mortality of native anuran tadpoles in tropical Australia due to the invasive cane toad (Bufo marinus). Biol. Conserv. 141, 2387–2394 (2008).
    Article  Google Scholar 

    28.
    Hayes, R. A., Crossland, M. R., Hagman, M., Capon, R. J. & Shine, R. Ontogenetic variation in the chemical defences of cane toads (Bufo marinus): Toxin profiles and effects on predators. J. Chem. Ecol. 35, 391–399 (2009).
    CAS  PubMed  Article  Google Scholar 

    29.
    Hagman, M., Hayes, R. A., Capon, R. J. & Shine, R. Alarm cues experienced by cane toad tadpoles affect post-metamorphic morphology and chemical defences. Funct. Ecol. 23, 126–132 (2009).
    Article  Google Scholar 

    30.
    Üveges, B. et al. Age-and environment-dependent changes in chemical defences of larval and post-metamorphic toads. BMC Evol. Biol. 17, 137 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Üveges, B. et al. Chemical defense of toad tadpoles under risk by four predator species. Ecol. Evol. 9, 6287–6299 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Bókony, V., Üveges, B., Verebélyi, V., Ujhegyi, N. & Móricz, Á. M. Toads phenotypically adjust their chemical defences to anthropogenic habitat change. Sci. Rep. 9, 3163 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Hettyey, A. et al. Predator-induced changes in the chemical defence of a vertebrate. J. Anim. Ecol. 88, 1925–1935 (2019).
    PubMed  Article  Google Scholar 

    34.
    Hudson, C. M, Brown, G. P., Stuart, K. & Shine, R. Sexual and geographic divergence in head widths of invasive cane toads, Rhinella marina (Anura: Bufonidae) is driven by both rapid evolution and plasticity. Biol. J. Linn. Soc. 124, 188–199 (2018).

    35.
    Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Hudson, C. M., McCurry, M. R., Lundgren, P., McHenry, C. R. & Shine, R. Constructing an invasion machine: The rapid evolution of a dispersal-enhancing phenotype during the cane toad invasion of Australia. PLoS ONE 11, e0156950 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hudson, C. M., Brown, G. P. & Shine, R. It is lonely at the front: Contrasting evolutionary trajectories in male and female invaders. R. Soc. Open Sci. 3, 160687 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Brown, G., Kelehear, C. & Shine, R. The early toad gets the worm: Cane toads at an invasion front benefit from higher prey availability. J. Anim. Ecol. 82, 854–862 (2013).
    PubMed  Article  Google Scholar 

    39.
    Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than time. Proc. Natl Acad. Sci. USA 108, 5708–5711 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Phillips, B. & Shine, R. The morphology, and hence impact, of an invasive species (the cane toad, Bufo marinus) changes with time since colonization. Anim. Conserv. 8, 407–413 (2005).
    Article  Google Scholar 

    41.
    Roff, D. A. Comparing sire and dam estimates of heritability: Jackknife and likelihood approaches. Heredity 100, 32–38 (2008).
    CAS  PubMed  Article  Google Scholar 

    42.
    Kliber, A. & Eckert, C. G. Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59, 1900–1913 (2005).
    CAS  PubMed  Google Scholar 

    43.
    Shine, R. Cane Toad Wars (University of California Press, 2018).

    44.
    Toledo, R. C. & Jared, C. Cutaneous adaptations to water balance in amphibians. Comp. Biochem. Physiol. A 105, 593–608 (1993).
    Article  Google Scholar 

    45.
    Kosmala, G., Brown, G. P., Shine, R. & Christian, K. Skin resistance to water gain and loss has changed in cane toads (Rhinella marina) during their Australian invasion. Ecol. Evol. 10, 13071–13079 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Crossland, M. R. & Shine, R. Cues for cannibalism: Cane toad tadpoles use chemical signals to locate and consume conspecific eggs. Oikos 120, 327–332 (2011).
    Article  Google Scholar 

    47.
    DeVore, J. L., Crossland, M. & Shine, R. Tradeoffs affect the adaptive value of plasticity: Stronger cannibal-induced defenses incur greater costs in toad larvae. Ecol. Monogr. https://doi.org/10.1002/ecm.1426 (2020).
    Article  Google Scholar 

    48.
    Greenlees, M. J. & Shine, R. Impacts of eggs and tadpoles of the invasive cane toad (Bufo marinus) on aquatic predators in tropical Australia. Austral Ecol. 36, 53–58 (2011).
    Article  Google Scholar 

    49.
    Somaweera, R., Crossland, M. R. & Shine, R. Assessing the potential impact of invasive cane toads on a commercial freshwater fishery in tropical Australia. Wildl. Res. 38, 380–385 (2011).
    Article  Google Scholar 

    50.
    Cao, Y., Cui, K., Pan, H., Wu, J. & Wang, L. The impact of multiple climatic and geographic factors on the chemical defences of Asian toads (Bufo gargarizans Cantor). Sci. Rep. 9, 17236 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Hague, M. T. J., Stokes, A. N., Feldman, C. R., Brodie, E. D. Jr. & Brodie, E. D. III. The geographic mosaic of arms race coevolution is closely matched to prey population structure. Evol. Lett. 4, 317–332 (2020).

    52.
    Jared, C. et al. Parotoid macroglands in toad (Rhinella jimi): Their structure and functioning in passive defence. Toxicon 54, 197–207 (2009).
    CAS  PubMed  Article  Google Scholar 

    53.
    Toledo, R. C. & Jared, C. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. A 111, 1–29 (1995).
    ADS  Article  Google Scholar 

    54.
    Maciel, N. M. et al. Composition of indolealkylamines of Bufo rubescens cutaneous secretions compared to six other Brazilian bufonids with phylogenetic implications. Comp. Biochem. Physiol. B 134, 641–649 (2003).
    PubMed  Article  CAS  Google Scholar 

    55.
    Sciani, J. M., Angeli, C. B., Antoniazzi, M. M., Jared, C. & Pimenta, D. C. Differences and similarities among parotoid macrogland secretions in South American toads: A preliminary biochemical delineation. Sci. World J. 2013, 937407 (2013).
    Article  CAS  Google Scholar 

    56.
    Habermehl, G. Venomous Animals and Their Toxins (Springer-Verlag, 1981).

    57.
    Garrett, C. M. & Boyer, D. M. Bufo marinus (cane toad) predation. Herpetol. Rev. 24, 148 (1993).
    Google Scholar 

    58.
    Pineau, X. & Romanoff, C. Envenomation of domestic carnivores. Rec. Méd. Vét. 171, 182–192 (1995).
    Google Scholar 

    59.
    Sakate, M. & Lucas de Oliveira, P. C. Toad envenoming in dogs: effects and treatment. J. Venom. Anim. Toxins 6, 52–62 (2000).

    60.
    Slade, R. W. & Moritz, C. Phylogeography of Bufo marinus from its natural and introduced ranges. Proc. R. Soc. B 265, 769–777 (1998).
    CAS  PubMed  Article  Google Scholar 

    61.
    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B 274, 1413–1419 (2007).
    PubMed  Article  Google Scholar 

    62.
    Urban, M., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, 134–148 (2008).
    Article  Google Scholar 

    63.
    Nullet, D., Juvik, J. O. & Wall, A. A Hawaiian mountain climate cross-section. Clim. Res. 5, 131–137 (1995).
    Article  Google Scholar 

    64.
    Kelehear, C. & Shine, R. Non-reproductive male cane toads (Rhinella marina) withhold sex-identifying information from their rivals. Biol. Lett. 15, 2019046 (2019).
    Article  Google Scholar 

    65.
    Shine, R., Everitt, C., Woods, D. & Pearson, D. J. An evaluation of methods used to cull invasive cane toads in tropical Australia. J. Pest Sci. 91, 1081–1091 (2018).
    Article  Google Scholar 

    66.
    Phillips, B. L. et al. Parasites and pathogens lag behind their host during periods of host range-advance. Ecology 91, 872–881 (2010).
    PubMed  Article  Google Scholar 

    67.
    Hudson, C. M., Brown, G. P. & Shine, R. Effects of toe-clipping on growth, body condition, and locomotion of cane toads (Rhinella marina). Copeia 105, 257–260 (2017).
    Article  Google Scholar 

    68.
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
    PubMed  Article  Google Scholar  More

  • in

    Biological performance and oviposition preference of tomato pinworm Tuta absoluta when offered a range of Solanaceous host plants

    1.
    di Castri, F. History of biological invasions with emphasis on the Old World. In Biological invasions: a global perspective, (ed. Drake J., di Castri, F., Groves, R., Kruger, F., Mooney, H. A., Rejmanek, M., Williamson, M.) 1–30 (Wiley, New York, 1989).
    2.
    Reeve, E. Domestication of Plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley (ed. Zohary, D. & Hopf, M.) (Clarendon Press, Oxford, 1994).

    3.
    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
    Article  Google Scholar 

    4.
    Worner, S. P. & Gevrey, M. Modelling global insect pest species assemblages to determine risk of invasion. J. Appl. Ecol. 43, 858–867 (2006).
    Article  Google Scholar 

    5.
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).
    Article  Google Scholar 

    6.
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
    Article  Google Scholar 

    7.
    Sridhar, V., Chakravarthy, A. K. & Asokan, R. New record of the invasive South American tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India. Pest. Manag. Hort. 20, 148–154 (2014).
    Google Scholar 

    8.
    Galdino, T. V. S. et al. Is the performance of a specialist herbivore affected by female choices and the adaptability of the offspring?. PLoS ONE 10, 1–18 (2015).
    Article  CAS  Google Scholar 

    9.
    Campos, M. R., Biondi, A., Adiga, A., Guedes, R. N. C. & Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 90, 787–796 (2017).
    Article  Google Scholar 

    10.
    Cherif, A. & François, V. A review of Tuta absoluta (Lepidoptera: Gelechiidae) host plants and their impact on management strategies. Biotechnol. Agron. Soc. Environ. 23 (4) (2019).

    11.
    Picanço, M. C., Bacci, L., Crespo, A. L. B., Miranda, M. M. M. & Martins, J. C. Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agric. For. Entomol. 9, 327–335 (2007).
    Article  Google Scholar 

    12.
    Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread, and Management of the Invasive South American Tomato Pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guedes, R. N. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. https://doi.org/10.1007/s10340-019-01086-9 (2019).
    Article  Google Scholar 

    14.
    Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2019).
    Article  Google Scholar 

    15.
    Luna, M. G. et al. Biological control of Tuta absoluta in Argentina and Italy: evaluation of indigenous insects as natural enemies. EPPO Bulletin 42, 260–267 (2012).
    ADS  Article  Google Scholar 

    16.
    Bacci, L. et al. Natural mortality factors influencing the tomato leafminer Tuta absoluta in open-field tomato crops in South America. Pest Manage. Sci. https://doi.org/10.1002/ps.5173 (2019).
    Article  Google Scholar 

    17.
    Megido, R. C., Brostaux, Y., Haubruge, E. & Verheggen, F. J. Propensity of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), to develop on four potato plant varieties. Am. Potato J. 90, 255–260 (2013).
    Article  Google Scholar 

    18.
    Sylla, S., Brévault, T., Monticelli, L. S., Diarra, K. & Desneux, N. Geographic variation of host preference by the invasive tomato leaf miner Tuta absoluta: implications for host range expansion. J. Pest Sci. https://doi.org/10.1007/s10340-019-01094-9 (2019).
    Article  Google Scholar 

    19.
    Vargas, H. C. Observaciones sobre la biologıa y enemigos naturales de la polilla del tomate, Gnorimoschema absoluta (Meyrick) (Lepidoptera: Gelechiidae). Idesia 1, 75–110 (1970).
    Google Scholar 

    20.
    Gilardón, E., Pocovi, M., Hernández, C., Collavino, G. & Olsen, A. Papel da 2-tridecanona e dos tricomas glandulares tipo VI na resistência do tomateiro a Tuta absoluta. Pesqui. Agropecu. Bras. 36, 929–933 (2001).
    Article  Google Scholar 

    21.
    Pereyra, P. C. & Sánchez, N. E. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35, 671–676 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Moreira, L. A. et al. Antibiosis of eight Lycopersicon genotypes to Tuta absoluta (Lepidoptera: Gelechiidae). Rer. Ceres 56, 283–287 (2009).
    Google Scholar 

    23.
    Negi, S., Sharma, P. L., Sharma, K. C. & Verma, S. C. Effect of host plants on developmental and population parameters of invasive leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Phytoparasitica 46, 213–221 (2018).
    Article  Google Scholar 

    24.
    Satishchandra, K. N., Chakravarthy, A. K., Özgökçe, M. S. & Atlihan, R. Population growth potential of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato, potato, and eggplant. J. Appl. Entomol. 143, 518–526 (2019).
    Article  Google Scholar 

    25.
    Younes, A. A., Zohdy, N. Z. M., Abulfadl, H. A. & Fathy, R. Life table parameters of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), on three solanaceous host plants. Afr. Entomol. 27, 461–467 (2019).
    Article  Google Scholar 

    26.
    Cherif, A., Attia-Barhoumi, S., Mansour, R., Zappalà, L. & Grissa-Lebdi, K. Elucidating key biological parameters of Tuta absoluta on different host plants and under various temperature and relative humidity regimes. Entomol. Gen. https://doi.org/10.1127/entomologia/2019/0685 (2019).
    Article  Google Scholar 

    27.
    Knapp, S. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J. Exp. Bot. 53, 2001–2022 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Silva, G. A. et al. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manage. Sci. 67, 913–920 (2011).
    ADS  CAS  Article  Google Scholar 

    29.
    Southwood, T. R. E. & Hendersen, P. A. Ecological Methods (ed. Southwood, T. R. E. & Hendersen, P. A.) (Blackwell Science, 2000).

    30.
    Maia, H. N., Luiz, A. A. J. & Campanhola, C. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J. Econ. Entomol. 93, 511–518 (2000).
    Article  Google Scholar 

    31.
    Paré, P. W. & Tumlinson, J. H. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121, 325–332 (1999).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Feeny, P., Stadler, E., Ahman, I. & Carter, M. Effects of plant odor on oviposition by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). J. Insect. Behav. 2, 803–827 (1989).
    Article  Google Scholar 

    33.
    Proffit, M. et al. Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J. Chem. Ecol. 37, 565–574 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Friedman, M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 1054, 143–155 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Antônio, A. D. C., Silva, D. J. H. D., Picanço, M. C., Santos, N. T. & Fernandes, M. E. S. Tomato plant inheritance of antixenotic resistance to tomato leafminer. Pesqui. Agropecu. Bras. 46, 74–80 (2011).
    Article  Google Scholar 

    36.
    Miranda, M. M. M., Picanço, M., Zanuncio, J. C. & Guedes, R. N. C. Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci. Technol. 8, 597–606 (1998).
    Article  Google Scholar 

    37.
    Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Krainacker, D. A., Carey, J. R. & Vargas, R. I. Effect of larval host on life history traits on the Mediterranean fruit fly Ceratitis capitata. Oecologia 73, 583–590 (1987).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Razmjou, J., Naseri, B. & Hemati, S. A. Comparative performance of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on various host plants. J. Pest. Sci. 87, 29–37 (2014).
    Article  Google Scholar 

    40.
    Calvo, D. & Molina, J. M. Fecundity-body size relationship and other reproductive aspects of Streblote panda (Lepidoptera: Lasiocampidae). Ann. Entomol. Soc. Am. 98, 191–196 (2005).
    Article  Google Scholar 

    41.
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2000).
    Article  Google Scholar 

    42.
    Boggs, C. L. & Freeman, K. D. Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144, 353–361 (2005).
    ADS  PubMed  Article  Google Scholar 

    43.
    Tammaru, T., Esperk, T. & Castellanos, I. No evidence for costs of being large in females of Orgyia spp. (Lepidoptera, Lymantriidae): larger is always better. Oecologia 133, 430–438 (2002).
    ADS  PubMed  Article  Google Scholar 

    44.
    Calvo, D. & Molina, J. M. Utilization of blueberry by the lappet moth Streblote panda Hübner (Lepidoptera: Lasiocampidae): survival, development and larval performance. J. Econ. Entomol. 97, 957–963 (2004).
    CAS  PubMed  Article  Google Scholar 

    45.
    Kanle Satishchandra, N., Chakravarthy, A. K., Özgökçe, M. S. & Atlihan, R. Population growth potential of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato, potato, and eggplant. J. Appl. Entomol. 143, 518–526 (2019).
    Article  Google Scholar 

    46.
    Gotelli, N. J. A primer of ecology (ed. Gotelli, N. J.) (Sinauer Associates Incorporated Press, 1995).

    47.
    Birch, L. The intrinsic rate of natural increase of an insect population. J. Econ. Entomol. 17, 15–26 (1948).
    Google Scholar 

    48.
    Lage, J., Skovmand, B. & Andersen, S. B. Characterization of greenbug (Homoptera: Aphididae) resistance in synthetic hexaploid wheats. J. Econ. Entomol. 96, 1922–1928 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Smith, C. M. Plant Resistance to Arthropods: Molecular and Conventional Approaches (ed. Smith, C. M.) (Springer, Berlin, 2005).

    50.
    Fathi, S. A. A., Bozorg-Amirkalaee, M. & Sarfaraz, R. M. Preference and performance of Plutella xylostella (L.) (Lepidoptera: Plutellidae) on canola cultivars. J. Pest Sci. 84, 41–47 (2011).
    Article  Google Scholar 

    51.
    Thomazini, A. P. B. W., Vendramim, J. D., Brunherotto, R. & Lopes, M. T. Efeito de genótipos de tomateiro sobre a biologia e oviposição de Tuta absoluta (Meyrick) (Lep.: Gelechiidae). Neotrop. Entomol. 30, 283–288 (2001).
    Article  Google Scholar 

    52.
    Boiça Junior, A. L., Bottega, D. B., Lourenção, A. L. & Rodrigues, N. E. L. Não preferência para oviposição e alimentação por Tuta absoluta (Meyrick) em genótipos de tomateiro. Arq. Inst. Biol. 79, 541–548 (2012).
    Article  Google Scholar 

    53.
    Erdogan, P. & Babaroglu, N. E. Life table of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J. Agric. Facul. Gaziosmanpasa Univ. 31, 80–89 (2014).
    Google Scholar 

    54.
    Malakar, R. & Tingey, W. M. Glandular trichomes of Solanum berthaultii and its hybrids with potato deter oviposition and impair growth of potato tuber moth. Entomol. Exp. Appl. 94, 249–257 (2000).
    Article  Google Scholar 

    55.
    Horgan, F. G., Quiring, D. T., Lagnaoui, A., Salas, A. R. & Pelletier, Y. Periderm and cortex based resistance to tuber feeding Phthorimaea operculella in two wild potato species. Entomol. Exp. Appl. 125, 249–258 (2007).
    Article  Google Scholar 

    56.
    Mackauer, M. Genetic problems in the production of biological control agents. Annu. Rev. Entomol. 21, 369–385 (1976).
    Article  Google Scholar 

    57.
    Spielman, D. & Brook, B. W. Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA 101, 15261–15264 (2000).
    ADS  Article  CAS  Google Scholar 

    58.
    Urbaneja, A., Vercher, R., Navarro, V., García Marí, F. & Porcuna, J. L. La polilla del tomate, Tuta absoluta. Phytoma 194, 16–23 (2007).
    Google Scholar 

    59.
    Campos, R. G. Control químico del “minador de hojas y tallos de la papa” (Scrobipalpula absoluta Meyrick) en el valle del Cañete. Rev. Peru Entomol. 19, 102–106 (1976).
    Google Scholar 

    60.
    Garzia, T. G. Physalis peruviana L. (Solanaceae), a host plant of Tuta absoluta in Italy. IOBC/WPRS Bull 49, 231–232 (2009).

    61.
    Bawin, T., Dujeu, D., De Backer, L., Francis, F. & Verheggen, F. J. Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species. Can. Entomol. 148, 434–442 (2016).
    Article  Google Scholar  More

  • in

    Disturbance type determines how connectivity shapes ecosystem resilience

    Connectivity confers resilience
    We observed inherently higher grazing performance in better-connected, unperturbed systems (Fig. 2a,f). The two better-connected systems (connectivity = 14.5; 21.6) had significantly higher grazing performance than the least-connected system (connectivity = 9.6), demonstrating a positive, non-linear, relationship between connectivity and ecosystem function in the controls (Fig. 2a,f; S1, S2). Physical disturbances, however, did not appear to dramatically alter this relationship at the system level (Fig. 2b,c), despite clear impacts on performance in the affected patch (Fig. 2g,h).
    Figure 2

    Grazing performance in response to ten experimental disturbance treatments at three connectivity levels. Grazing performance is algal consumption as a proportion of total algae available (mean ± SE). In d: both stressors were applied to the same patch (same). In e: stressors were applied to different patches (diff).

    Full size image

    Each disturbance regime resulted in a significant decrease in grazing performance within the affected patch (Fig. 2f:j; S2), but not always across the entire system (e.g. Fig. 2a:e; S1). Impacts within affected areas were sometimes offset at the whole system level by increases within unstressed patches because the stressors themselves triggered animal aggregations in unstressed regions. For example, the animals typically left heat-stressed areas, sometimes finding refuge in the unstressed patch. This meant that unstressed protected areas sometimes returned higher grazing performance than in the control scenarios, offsetting losses in the affected patch and resulting in no significant change in performance across the whole system (Fig. 2b,c).
    Multiple stressor scenarios
    Multiple stressors had variable effects on the shape of the connectivity-resilience relationship (Fig. 2; Extended data Fig. 2). When heat-stress and harvesting were applied to the same patch, grazing performance was heavily reduced under all connectivity scenarios, but the shape of the connectivity-resilience relationship remained positive (Fig. 2d,i). However, when applied to different patches, these effects were strongly antagonistic. Heat-stress offset the effect of harvesting, creating a slight negative relationship between connectivity and resilience. There was a loss in grazing performance at higher connectivity levels and, by contrast, a slight gain at the lowest connectivity (Fig. 2e,j). Heat-stress likely encouraged animals to move away from the hotter patch, into the harvesting patch. These patches were in closer proximity in better-connected systems, making animal congregations in the harvesting patch more likely, thus increasing the relative impact of harvesting and changing the shape of the connectivity-resilience relationship.
    Disease interactions
    We applied a 50% consumption penalty for infected individuals in disease simulations, representing a realistic simulation of real-world diseases that can hinder animal performance. White-spot disease, for example, affects shrimp consumption rates before causing mortality, allowing the disease to spread while also suppressing consumption rates27. Some diseases may have different magnitudes of effect on individuals. Thus, we also simulated stronger disease effects by reducing grazing rates for infected crabs by 100%. In general, the simulated disease infected more crabs at higher connectivity levels (Extended data Fig. 3), leading to higher consumption penalties with increasing connectivity in most scenarios (Fig. 3a,b). The 50% disease effect level did not negate the inherent benefits of connectivity observed in unperturbed systems (Fig. 2), but at a more strongly negative relationship between connectivity and grazing performance was observed under a 100% penalty (Fig. 3b). Thus, disease had a higher impact on ecosystem function in better-connected systems (Fig. 3; Extended data Fig. 4).
    Figure 3

    Box and violin plots of effect size for each of the (a) 50% and (b) 100% disease effect scenarios and (c) standard error plot of variation across all spatial scales and connectivity levels. Linear model (dashed line) in (a) and (b) provided as visual guide of direction of trend. Data in (c) are the grand-averages of within-treatment standard errors.

    Full size image

    There was also less variability in grazing performance with higher connectivity, but not significantly (Fig. 3c). The within-treatment standard error in grazing performance was empirically lowest in the best-connected systems across three spatial assessment levels (Fig. 3c), suggesting that grazing responses were more predictable in better-connected systems (Fig. 3c).
    Conservation implications
    Given the setting of reserves in complex spatial mosaics, with multiple stressors, it is necessary to have a better understanding of how connectivity can change the way ecosystems respond to stressors. We show that these relationships are complex, even in simplified, controlled systems. Despite the microcosm scale of our experiments, our results support real-world phenomena that have been linked with the benefits of connectivity and/or protected areas. Thus, we suggest these findings contribute valuable information to support the future design of research and management strategies for natural systems. For example, Marine Protected Areas (MPAs) can be considered analogous refuges to the unaffected patches in our harvesting scenarios. MPAs provide an offsetting service in natural ecosystems where, by excluding harvesting, they provide a refuge and source of animal resupply28 that supports fisheries and acts to maintain ecosystem function e.g.22. Our systems responded similarly to these real-world examples in that the number of animals available for harvest was highest at the edge of the simulated MPA, as observed in the best-connected systems (Extended data Fig. 5). This phenomenon was strongest in the multiple-stressor scenario that applied heat-stress to the patch that was protected from harvesting pressure. Heat-stressed animals vacated the hotter protected area, exposing them to possible capture.
    Additionally, connectivity may provide a stabilising effect on ecosystem function, a phenomena that may partially contribute to previous findings that connectivity strengthens ecosystem resilience (e.g.29). Thus, when connectivity is low, ecosystems may experience greater variability in the performance of key ecosystem functions, potentially limiting capacity to resist or recover from disturbance.
    We tested the role that connectivity plays in shaping animal functional responses to single and multiple disturbance events of different types. To do so, we quantified the effect that different combinations of stressors had on the grazing performance of a widespread mesograzer, the yellow-footed hermit crab (Clibanarius virescens), in purpose-built arenas at three levels of connectivity. Connectivity can be measured in many ways, with effects being difficult to quantify between systems with different numbers of redundant or complimentary routes, motifs such as triangular or circular clusters, or ‘hubs’ that connect multiple patches to one central node30. To minimise unintended effects of altering the number or place of connections, we altered system connectivity by varying the location of important patches (containing food) within a standard 4 × 3 node grid of approx. 42 × 32 cm (Fig. 1), rather than by adding or removing connections. We selected system configurations (habitat patch placements) that were symmetrical along both the x and y axes, minimising the risk of introducing unintentional confounding effects. This created a base system with 12 nodes and 14 edges in all cases.
    Connectivity within each system was calculated using a modified measure of closeness31, as in Eq. (1):

    $$text{Connectivity }= frac{1}{T+P+D}times 100$$
    (1)

    where; T = average shortest path length from food node 1 to all other nodes; P = average shortest path length from food node 2 to all other nodes; and D = shortest path length between both food nodes. All path lengths were counted as integer steps between nodes.
    Standard experimental procedure for all treatments
    We tested ten treatments at each connectivity level, resulting in N = 236 replications; between 73 and 82 at each connectivity level.
    Each replication involved slowly warming crabs and arenas to the desired temperature (defined per treatment below) over a 4-h period, approximately mimicking daily warming cycles. One crab was then added to each patch (12 total in the system), and six 1 mg algal pellets were added to each of the two food patches (coloured patches in Fig. 1). Every 20 min, the number of pellets remaining was counted, and an additional six pellets were added to each patch. Each experimental replication lasted 1 h (3 × 20-min intervals), starting when crabs were first added to the arena. Thus, in all cases, 18 pellets were added to each patch; 36 total to the system. This was determined as the control level because an individual crab is expected to consume approximately three pellets per hour at an optimal temperature 29.5 °C25. Hence, by adding pellets equal to the mean consumption rate (one per crab per 20-min period), we simulated a stable system in which consumption was approximately equal to algal production in the absence of stressors. Any reduction in consumption (driven by stressors) below optimal rates implies that algal mass would increase over time, suggesting that the system is trending towards a phase shift. Thus, by our definition, lower consumption makes the system less resilient.
    Treatment specifics
    Control
    The control treatments were run as per the standard experimental procedure described above with no stressor applied.
    Heat-stress
    For the temperature stressor treatment, the experiment was run as per the standard experimental procedure, but with a temperature stress applied to the half of the arena incorporating an affected patch ‘Zone B’). Water was heated using a combination of sous vide precision cookers and aquarium heaters, arranged in a way that ensured the stability of target temperatures for the duration of the experiment. The stressed half of the arena was set to 33.5 °C, and the unstressed half was set to optimal temperature (29.5 °C; as per24). The 4 °C increase in temperature is expected to decrease consumption rates by approx. 15–20%24, with an additional effect on movement expected to amplify this effect. This is intended to simulate a system with connected heat-stressed and refuge areas.
    Harvesting pressure
    A harvesting stressor was applied that simulated a fishery management scenario with a fixed bag limit. We designated one food patch as a protected area and resupply point (blue in Fig. 1), and the other as a harvesting area (red in Fig. 1). Because our systems included two distinct habitat patches, separated by different amounts of featureless habitat at different connectivity levels, we equate these to reef or vegetated habitat where fauna are likely to congregate near resources. Similarly, fishers are likely to congregate in the same areas, unless excluded. Thus, by restricting harvesting in one of the patches, we have simulated the broad dynamics of an enclosed bay that contains both protected and high harvesting pressure habitat areas, and some unprotected, but featureless areas in-between that would be expected to experience low harvesting pressure, which we did not attempt to simulate.
    In this scenario, we set a bag-limit that allowed up to three crabs (or as many as were present under three) to be harvested from the affected patch at the end of each 20 min interval, and then the same number of crabs were added to the protected area, simulating a maximum sustainable yield management (MSY) scenario. Under the harvesting only stressor, all other experimental procedures were as per the standard scenario, with temperature set to optimal (29.5 °C) across the entire arena.
    Heat-stress and harvesting
    To investigate how multiple stressors interact with the connectivity-resilience relationship, we also applied both heat-stress and harvesting to the same arenas simultaneously in two ways. First, by applying both stressors to the same patch (same), and second by applying the heat-stress to the protected area and the harvesting pressure to the other (diff).
    Disease
    We applied a simulated effect of disease by recording interactions between individuals and applying a 50% and 100% (separately) consumption penalty for ‘infected’ crabs. Reduced consumption is a known effect observed in individuals infected by numerous diseases, including some that are known to affect crustacean mesograzers (e.g. white-spot disease27). We recorded all experimental treatments on video (GoPro models) and then extracted data on the movement and interactions between crabs from each video. Unique colour markers were used to track individual crabs, enabling data to be recorded for all occasions during which contact was made between crabs (including the total duration of each interaction). We also recorded the time that each crab entered and/or exited one of the designated habitat patches.
    Disease spread scenarios were then modelled from interaction data, whereby we designated an individual crab as being the infection vector (starting with a disease) and then quantified how the disease spread through the system through crab-to-crab interactions. For each treatment replication, 12 sub-replications were assessed simulating each of the 12 different crabs starting with the disease. See Extended data Fig. 1 for example of infection pathways taken for each ‘starting crab’ during one physical replicate. Interaction and movement data were extracted from videos manually. Disease spread was then simulated from interaction data in R using customised code.
    For each disease spread scenario we applied the stressor as a 50% reduction in consumption for diseased crabs as our primary test level, also testing the effect at a 100% reduction level to observe a worst-case scenario. The effect was calculated based on the total consumption within a period and time that crabs (both infected and uninfected) spent in close proximity to food using the below equations:
    1.
    Consumption after disease = 
    Disease effect (as percentage) × observed consumption rate × cumulative infection time.

    2.
    Observed consumption rate = (frac{total ; consumption}{sum_{n=1}^{12} crab ; n ; total ; time ; in ; food ; patch})

    3.
    Cumulative infection time = (sum_{n=1}^{12}crab ; n ; time ; in ; food ; patch ; while ; infected)

    See worked example in Extended data Table 1.
    Statistical analyses
    We assessed the effect of treatment (connectivity level and stressor(s)) with generalised linear models (glm). Effect was assessed at two levels: both at the whole system level, as total consumption across both habitat patches combined and, within the affected patch only (affected), tested in separate analyses. Treatments (as factors) were: Control; heat-stress, harvesting; heat-stress and harvesting (same); heat-stress and harvesting (diff). Noting that in the heat-stress and harvesting (diff) treatment there was no designated ‘unaffected’ patch because both patches were affected by at least one stressor. For consistency, we included the patch affected by harvesting in all affected patch analyses. Connectivity level was the system’s connectivity metric (9.6; 14.5; 21.6), also set as a factor.
    To identify the best model, we started with the most complex model that included all possible interaction terms, and used a leave-one-out technique, exclude the most complex interaction term until a significant interaction was identified using Analysis of Deviance (ANOVA) with chi-squared test (detailed outputs in S1; S2). The final glm model was selected as the most complex equation (i.e. largest interaction term) that returned a significant interaction in this test, resulting in a final model for both system level and affected patch level of:
    Consumption ~ Harvesting + Heat-stress + Connectivity + Disease + Harvesting:heat-stress + Harvesting:Connectivity + Heat-stress:Connectivity + Harvesting:Disease + Heat-stress:Disease + Connectivity:Disease + Harvesting:Heat-stress:Connectivity.
    Mean ± SE plots presented were derived from outputs for this glm equation. Alpha was set to 0.05.
    Treatment differences were assessed using model outputs, with significant differences defined as non-overlapping treatment values for model fit (mean) ± standard error.
    Disease effect size was calculated as:

    $$Effect;size , = , left( {diseased;consumption , {-} , replication;consumption} right)/replication;consumption$$ More

  • in

    Alligator presence influences colony site selection of long-legged wading birds through large scale facilitative nest protector relationship

    1.
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(02)00045-9 (2003).
    Article  Google Scholar 
    2.
    Bronstein, J. L. The costs of mutualism. Am. Zool. 839, 825–839 (2001).
    Google Scholar 

    3.
    Bronstein, J. L. The evolution of facilitation and mutualism. J. Ecol. 97, 1160–1170 (2009).
    Article  Google Scholar 

    4.
    Boucher, D. H., James, S. & Keeler, K. H. The ecology of mutualism. Annu. Rev. Ecol. Syst. https://doi.org/10.1146/annurev.es.13.110182.001531 (1982).
    Article  Google Scholar 

    5.
    Stachowicz, J. J. The structure of ecological communities. Bioscience 51, 235–246 (2001).
    Article  Google Scholar 

    6.
    Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: Implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. https://doi.org/10.1111/1365-2435.12528 (2016).
    Article  Google Scholar 

    7.
    Callaway, R. M. Positive interactions among plants. Bot. Rev. 61, 306–337 (1995).
    Article  Google Scholar 

    8.
    Brooker, R. W. et al. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96, 18–34 (2008).
    MathSciNet  Article  Google Scholar 

    9.
    Kotler, B. P., Blaustein, L. & Brown, J. S. Predator facilitation: the combined effect of snakes and owls on the foraging behavior of gerbils. Ann. Zool. Fennici 29, 199–206 (1992).
    Google Scholar 

    10.
    Nummi, P. & Hahtola, A. The beaver as an ecosystem engineer. Ecography (Cop.) 31, 519–524 (2008).
    Article  Google Scholar 

    11.
    Odadi, W. O., Jain, M., Van Wieren, S. E., Prins, H. H. T. & Rubenstein, D. I. Facilitation between bovids and equids on an African savanna. Evol. Ecol. Res. 13, 237–252 (2011).
    Google Scholar 

    12.
    Harvey, J. A., Ode, P. J., Malcicka, M. & Gols, R. Short-term seasonal habitat facilitation mediated by an insect herbivore. Basic Appl. Ecol. 17, 447–454 (2016).
    Article  Google Scholar 

    13.
    Tirado, R. & Pugnaire, F. I. Community structure and positive interactions in constraining environments. Oikos 111, 437–444 (2005).
    Article  Google Scholar 

    14.
    Oliveras de Ita, A. & Rojas-Soto, O. R. Ant presence in Acacias: An association that maximizes nesting success in birds? Wilson J. Ornithol. 118, 563–566 (2006).

    15.
    Quinn, J. L. & Ueta, M. Protective nesting associations in birds. Ibis (Lond. 1859). 150, 146–167 (2008).

    16.
    Haemig, P. D. Symbiotic nesting of birds with formidable animals: A review with applications to biodiversity conservation. Biodivers. Conserv. 10, 527–540 (2001).
    Article  Google Scholar 

    17.
    Burtner, B. F. & Frederick, P. C. Attraction of Nesting Wading Birds to Alligators (Alligator mississippiensis). Testing the ‘Nest Protector’ Hypothesis. Wetlands 37, 697–704 (2017).

    18.
    Hay, M. E. Associational plant defenses and the maintenance of species diversity: Turning competitors into accomplices. Am. Soc. Nat. 128, 617–641 (1986).
    Google Scholar 

    19.
    Atsatt, P. R. & O’Dowd, D. J. Plant Defense Guilds. Science (80-. ). 193, 24–29 (1976).

    20.
    Barbosa, P. et al. Associational resistance and associational susceptibility: Having right or wrong neighbors. Annu. Rev. Ecol. Evol. Syst. 40, 1–20 (2009).
    Article  Google Scholar 

    21.
    Myers, J. G. The nesting-together of birds, wasps and ants. (1929).

    22.
    Moreau, R. E. Bird-Insect nesting associations. Ibis (Lond. 1859). 460–471 (1936).

    23.
    Durango, S. The nesting associations of birds with social insects and with birds of different species. Ibis (Lond. 1859). 91, 140–143 (1949).

    24.
    Grimes, L. G. The breeding of Heuglin’s masked weaver and its nesting association with the red weaver ant. Ostrich 44, 170–175 (1973).
    Article  Google Scholar 

    25.
    Uchida, H. Passerine birds nesting close to nests of birds of prey. Japanese J. Ornithol. 35, 25–31 (1986).
    Article  Google Scholar 

    26.
    Pius, S. M. & Leberg, P. L. The protector species hypothesis: Do black skimmers find refuge from predators in gull-billed tern colonies?. Ethology 104, 273–284 (1998).
    Article  Google Scholar 

    27.
    Richardson, D. S. & Bolen, G. M. A nesting association between semi-colonial Bullock’s orioles and yellow-billed magpies: Evidence for the predator protection hypothesis. Behav. Ecol. Sociobiol. 46, 373–380 (1999).
    Article  Google Scholar 

    28.
    Nell, L. A., Frederick, P. C., Mazzotti, F. J., Vliet, K. A. & Brandt, L. A. Presence of breeding birds improves body condition for a crocodilian nest protector. PLoS ONE 11, 1–16 (2016).
    Article  CAS  Google Scholar 

    29.
    Freestone, A. L. Facilitation drives local abundance and regional distribution of a rare plant in a harsh environment. Ecology 87, 2728–2735 (2006).
    PubMed  Article  Google Scholar 

    30.
    Frederick, P. C. & Collopy, M. W. The role of predation in determining reproductive success of colonially nesting wading birds in the Florida everglades. Condor 91, 860–867 (1989).
    Article  Google Scholar 

    31.
    Rodgers, J. A. Jr. On the antipredator advantages of coloniality: A word of caution. Wilson Bull. 99, 269–271 (1987).
    Google Scholar 

    32.
    Hoogland, J. L. & Sherman, P. W. Advantages and Disadvantages of Bank Swallow (Riparia riparia) Coloniality. Source Ecol. Monogr. 46, 33–58 (1976).
    Article  Google Scholar 

    33.
    Møller, A. P. Advantages and disadvantages of coloniality in the swallow Hirundo rustica. Anim. Behav. 35, 819–832 (1987).
    Article  Google Scholar 

    34.
    White, C. L., Frederick, P. C., Main, M. B. & Rodgers Jr., J. A. Nesting island creation for water birds. Univ. Florida IFAS Ext. 7 (2005).

    35.
    Jungwirth, A., Josi, D., Walker, J. & Taborsky, M. Benefits of coloniality: Communal defence saves anti-predator effort in cooperative breeders. Funct. Ecol. 29, 1218–1224 (2015).
    Article  Google Scholar 

    36.
    Deneubourg, J. L. & Goss, S. Collective patterns and decision-making. Ethol. Ecol. Evol. 1, 295–311 (1989).
    Article  Google Scholar 

    37.
    Couzin, I. D. Collective cognition in animal groups. Trends Cogn. Sci. 13, 36–43 (2009).
    PubMed  Article  Google Scholar 

    38.
    Fasola, M. & Alieri, R. Conservation of heronry Ardeidae sites in North Italian agricultural landscapes. Biol. Conserv. 62, 219–228 (1992).
    Article  Google Scholar 

    39.
    Van Eerden, M. R., Koffijberg, K. & Platteeuw, M. Riding on the crest of the wave: Possibilities and limitations for a thiriving population of migratoy Great Cormorant (Phalacrocorax carbo). in Man-Dominated wetlands 338 (Nederlandse Ornithologische Unie (NOU), 1995).

    40.
    Burger, J. A model for the evolution of mixed-species colonies of Ciconiiformes. Q. Rev. Biol. 56, 143–167 (1981).
    Article  Google Scholar 

    41.
    Hafner, H. Heron nest site conservation. in Heron Conservation (eds. Kushlan, J. A. & Hafner, H.) 201–217 (Academic Press, 2000).

    42.
    Ogden, J. C. Nesting by wood storks in Natural. Altered, and Artificial Wetlands in Central and Northern Florida. 14, 39–45 (1991).
    Google Scholar 

    43.
    Parsons, K. C., Schmidt, S. R. & Matz, A. C. Regional patterns of wading bird productivity in Northeastern. Int. J. Waterbird Biol. 24, 323–330 (2001).
    Google Scholar 

    44.
    Parsons, K. C. Reproductive success of wading birds using phragmites marsh and upland nesting habitats. Source Estuaries Part B 26, 596–601 (2003).
    Google Scholar 

    45.
    Paton, P. W. C., Harris, R. J. & Trocki, C. L. Distribution and abundance of breeding birds in Boston Harbor. Northeast. Nat. 12, 145–168 (2005).
    Article  Google Scholar 

    46.
    Robinson, S. K. Coloniality in the yellow-rumped cacique as a defense against nest predators. Auk 102, 506–519 (1985).
    Article  Google Scholar 

    47.
    Post, W. Nest survival in a large ibis-heron colony during a three-year decline to extinction. Waterbird Soc. 13, 50–61 (1990).
    Article  Google Scholar 

    48.
    Strong, A. M., Sawicki, R. J. & Thomasbancroft ’, G. Effects of predator presence on the nesting distribution of White-Crowned Pigeons in Florida Bay. Wilson Bull 103, 415–425 (1991).

    49.
    Kelly, J. P., Pratt, H. M. & Greene, P. L. The distribution, reproductive success, and habitat characteristics of heron and egret breeding colonies in the San Francisco Bay Area. Colon. Waterbirds 16, 18–27 (1993).
    Article  Google Scholar 

    50.
    Erwin, R. M., Hatfield, J. S. & Wilmers, T. J. The value and vulnerability of small estuarine islands for conserving metapopulations of breeding waterbirds. Biol. Conserv. 71, 187–191 (1995).
    Article  Google Scholar 

    51.
    Tsai, J. S., Reichert, B. E., Frederick, P. C. & Meyer, K. D. Breeding site longevity and site characteristics have intrinsic value for predicting persistence of colonies of an Endangered Bird. Wetlands 36, 639–647 (2016).
    Article  Google Scholar 

    52.
    Frederick, P. C. & Collopy, M. W. Nesting success of five ciconiiform species in relation to water conditions in the Florida Everglades. Auk 106, 625–634 (1989).
    Google Scholar 

    53.
    Post, W. & Seals, C. A. Breeding biology of the common moorhen in an impounded Cattail Marsh. J. F. Ornithol. 71, 437–442 (1991).
    Article  Google Scholar 

    54.
    Hoover, J. P. Water depth influences nest predation for a wetland-dependent bird in fragmented bottomland forests. Biol. Conserv. 127, 37–45 (2006).
    Article  Google Scholar 

    55.
    Coulter, M. C. & Bryan, L. A. Factors affecting reproductive success of wood storks (Mycteria americana) in East- Central Georgia. Auk 112, 237–243 (1995).
    Article  Google Scholar 

    56.
    Dusi, J. L. & Dusi, R. T. Ecological factors contributing to nesting failure in a Heron Colony. Source Wilson Bull. 80, 458–466 (1968).
    Google Scholar 

    57.
    Jenni, D. A. A study of the ecology of four species of herons during the breeding season at Lake Alice, Alachua County Florida. Ecol. Monogr. 39, 245–270 (1969).
    Article  Google Scholar 

    58.
    Nell, L. A. & Frederick, P. C. Fallen nestlings and regurgitant as mechanisms of nutrient transfer from nesting wading birds to crocodilians. Wetlands 35, 723–732 (2015).
    Article  Google Scholar 

    59.
    Gabel, W., Frederick, P. & Zabala, J. Nestling carcasses from colonially breeding wading birds: Patterns of access and energetic relevance for a vertebrate scavenger community. Sci. Rep. 9, 14512 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Tiner, R. W. Wetlands of the United States: current status and recent trends (U.S. Fish and Wildlife Service, Habitat Resources, 1984).
    Google Scholar 

    61.
    Gardner, B., Garner, L. A., Cobb, D. T. & Moorman, C. E. Factors affecting occupancy and abundance of American alligators at the northern extent of their range. J. Herpetol. 50, 541–547 (2016).
    Article  Google Scholar 

    62.
    Elsey, R. M. & Woodward, A. R. Alligator mississippiensis (American Alligator). in Crocodiles: Status Survey and Conservation Action Plan. (eds. Manolis, S. C. & Stevenson, C.) 1–4 (Crocodile Specialist Group, 2010).

    63.
    Parlin, A., Dinkelacker, S. & Mccall, A. Do habitat characteristics influence American alligator occupancy of barrier islands in North Carolina?. Southeast. Nat. 14, 33–40 (2015).
    Article  Google Scholar 

    64.
    Dunham, K., Dinkelacker, S. & Miller, J. A stage-based population model for American alligators in northern latitudes. J. Wildl. Manage. 78, 440–447 (2014).
    Article  Google Scholar 

    65.
    O’Brien, T. G. & Doerr, P. D. Night count surveys for alligators in coastal counties of North Carolina. J. Herpetol. 20, 444–448 (1986).
    Article  Google Scholar 

    66.
    Bent, A. C. Life Histories of North American Marsh Birds. (Dover Publications, Inc., 1963).

    67.
    Beaver, D. L., Osborn, R. G. & Custer, T. W. Nest-site and colony characteristics of wading birds in selected Atlantic coast colonies. Wilson Bull. 92, 200–220 (1980).
    Google Scholar 

    68.
    Custer, T. W. & Osborn, R. G. Wading birds as biological indicators: 1975 colony survey. US Fish Wildl. Serv. Spec. Sci. Rep. Wildl. 206, 1–28 (1977).

    69.
    Schweitzer, S. H. et al. Status and Distribution of Colonial Waterbirds during the 2017 Nesting Season in Coastal North Carolina. (2017).

    70.
    Annual Performance Report, Inland Colonial Waterbird Survey. http://repository.upi.edu/1360/1/s_d5451_0604180_chapter1.pdf (1996).

    71.
    Soots Jr., R. F. & Parnell, J. F. Inland Heronries of North Carolina. N.C. Sea Grant Publ. UNC-SG-78–10, Raleigh NC. 10–16 (1979).

    72.
    Parnell, J. F. & McCrimmon, D. A. 1983 supplement to Atlas of Colonial Waterbirds of North Carolina estuaries. UNC Sea Grant Publication UNC-SG-84–07 (1984).

    73.
    iNaturalist.org. iNaturalist Research-Grade Observations. Cooccurence dataset https://doi.org/https://doi.org/10.15468/ab3s5x (2019).

    74.
    Lauren, D. J. Effect of salt stress on electrolyte balance, corticosterone titer, and nitrogen metabolism in the American alligator, Alligator mississippiensis (Daudin, 1802). 81, 1–141 (1982).

    75.
    Brisbin, L. I. Jr., Standora, E. A. & Vargo, M. J. Body temperatures and behavior of American Alligators during cold winter weather. Am. Midl. Nat. 107, 209–218 (1982).
    Article  Google Scholar 

    76.
    Dunson, W. & Mazzotti, F. Salinity as a limiting factor in the distribution of reptiles in Florida Bay: A theory for the estuarine origin of marine snakes and turtles. Bull. Mar. Sci. 44, 229–244 (1989).
    Google Scholar 

    77.
    Birkhead, W. S. & Bennett, C. R. Observations of a small population of estuarine-inhabiting alligators near Southport North Carolina. Brimleyana 6, 111–117 (1981).
    Google Scholar 

    78.
    Seebacher, F. A review of thermoregulation and physiological performance in reptiles: What is the role of phenotypic flexibility? J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 175, 453–461 (2005).

    79.
    Fujisaki, I. et al. Home range and movements of American alligators (Alligator mississippiensis) in an estuary habitat. Anim. Biotelemetry 2, 1–10 (2014).
    Article  Google Scholar 

    80.
    McIlhenny, E. A. Alligator’s life history (Christopher Publishing House, USA, 1935).
    Google Scholar 

    81.
    Joanen, T. & Mcnease, L. L. Ecology and physiology of nesting and early development of the American Alligator. Am. Zool. 29, 987–998 (1989).
    Article  Google Scholar 

    82.
    Rosenblatt, A. E. & Heithaus, M. R. Does variation in movement tactics and trophic interactions among American alligators create habitat linkages?. J. Anim. Ecol. 80, 786–798 (2011).
    PubMed  Article  Google Scholar 

    83.
    ESRI. ArcGIS Desktop: Release 10.6. Redlands (2018). http://www.esri.com/

    84.
    Schneider, D. G., Mech, L. D. & Tester, J. R. Movements of female raccoons and their young as determined by radio-tracking. Anim. Behav. Monogr. 4, 1–43 (1971).
    Article  Google Scholar 

    85.
    Lotze, J. & Anderson, S. American Society of Mammalogists Procyon lotor. Mamm. Species 1–8 (1979).

    86.
    Pedlar, J. H., Fahring, L. & Merriam, G. Raccoon habitat use at 2 spatial scales. J. Wildl. Manage. 61, 102–112 (1997).
    Article  Google Scholar 

    87.
    Porter, J. H., Dueser, R. D. & Moncrief, N. D. Cost-distance analysis of mesopredators as a tool for avian habitat restoration on a naturally fragmented landscape. J. Wildl. Manage. 79, 220–234 (2015).
    Article  Google Scholar 

    88.
    Page, K. L. et al. Backyard raccoon latrines and risk for Baylisascaris procyonis transmission to humans reemergence of strongyloidiasis. Emerg. Infect. Dis. 15, 60–61 (2009).
    Article  Google Scholar 

    89.
    Prange, S., Gehrt, S. D. & Wiggers, E. P. Demographic factors contributing to high raccoon densities in urban landscapes. Wildl. Manag. 67, 324–333 (2003).
    Article  Google Scholar 

    90.
    Gibbs, J. P. & Kinkel, L. K. Determinants of the size and location of great blue heron colonies. Colon. Waterbirds 20, 1–7 (1997).
    Article  Google Scholar 

    91.
    Bancroft, T. G., Strong, A. M., Sawicki, R. J., Hoffman, W. & Jewell, S. D. Relationships among wading bird foraging patters, colony locations, and hydrology in the Everglades. in Everglades: the ecosystem and its restoration (eds. Davis, S. & Ogden, J. C.) 615–657 (St. Lucie Press, 1994).

    92.
    Stolen, E. D., Collazo, J. A. & Percival, H. F. Scale-dependent habitat selection of nesting great egrets and snowy egrets. Waterbirds 30, 384–393 (2007).
    Article  Google Scholar 

    93.
    Custer, T. W. & Osborn, R. G. Feeding habitat use by colonially-breeding herons, egrets, and ibises in North Carolina. Auk 95, 733–743 (1978).
    Google Scholar 

    94.
    Thompson, D. H. Feeding areas of great blue herons and great egrets nesting within the floodplain of the Upper Mississippi River. Proc. Colon. Waterbird Gr. 2, 202–213 (1979).
    Article  Google Scholar 

    95.
    Custer, C. M. & Galli, J. Feeding habitat selection by great blue herons and great egrets nesting in East Central Minnesota. Waterbirds 25, 115–124 (2006).
    Article  Google Scholar 

    96.
    Siderelis, K. A Standard Classification System for the Mapping of Land Use and Land Cover. (1994).

    97.
    Best, L. B. & Stauffer, D. F. Factors affecting nesting success in riparian bird communities. Condor 82, 149–158 (1980).
    Article  Google Scholar 

    98.
    Nilsson, S. G. The evolution of nest-site selection among hole-nesting birds: The importance of nest predation and competition. 15, 167–175 (1984).
    Google Scholar 

    99.
    Greer, R. C., Cordes, C. & Keller, C. Analysis of colonial wading habitat in Louisiana. in Proceedings 4th Marsh and Estuary Management Symposium (eds. Bryan, C., Zwank, P. & Chabrek, R.) 143–151 (Louisiana Coop. Fish and Wildlife Research Unit, 1985).

    100.
    Eason, P., Rabea, B. & Attum, O. Island shape, size, and isolation affect nest-site selection by Little Terns. J. F. Ornithol. 83, 372–380 (2012).
    Article  Google Scholar 

    101.
    Google Earth Pro. (2018). https://www.google.com/earth/versions/

    102.
    Tukey, J. W. Exploratory data analysis. in Exploratory Data Analysis (Addison-Wesley Publishing Company, 1977). doi:https://doi.org/10.1007/978-1-4419-7976-6.

    103.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    104.
    Crawley, M. J. The R Book. The R Book https://doi.org/10.1002/9780470515075 (2007).
    Article  MATH  Google Scholar 

    105.
    Fleming, D. M., Palimisano, A. W. & Joanen, T. Food habits of coastal marsh raccoons with observation of alligator nest predation. Proc. Annu. Conf. Southeast. Assoc. Fish Wildl. Agencies 30, 348–357 (1976).

    106.
    Hunt, H. R. & Ogden, J. J. Selected aspects of nesting ecology of American Alliagtors in the Okefenokee Swamp. J. Herpetol. 25, 448–453 (1991).
    Article  Google Scholar 

    107.
    Ruckdeschel, C. & Shoop, C. R. Aspects of wood stork nesting ecology on Cumberland Island Georgia, USA. Oriole 52, 21–27 (1987).
    Google Scholar 

    108.
    Erwin, R. M., Spendelow, J. A., Geissler, P. H. & Williams, K. B. Relationships between nesting populations of wading birds and habitat features along the Atlantic Coast. in Waterfowl and Wetlands Symposium: Proceedings of a Symposium on Waterfowl and Wetlands Management in the Coastal Zone of the Atlantic Flyway (eds. Whitman, W. R. & Meredith, W. H.) 55–69 (Delaware Coastal Management Program, Delaware Department of Natural Resources and Environmental Control, 1986).

    109.
    Hartman, L. H. & Eastman, D. S. Distribution of introduced raccoons Procyon lotor on the Queen Charlotte Islands: Implications for burrow-nesting seabirds. Biol. Conserv. 88, 1–13 (1999).
    Article  Google Scholar 

    110.
    Gibbs, J. P., Woodward, S., Hunter, M. L. & Hutchinson, A. E. Determinants of great blue heron colony distribution in coastal Maine. Auk 104, 38–47 (1987).
    Article  Google Scholar 

    111.
    Cox, W. A. et al. Nest site selection by reddish egrets in Florida. J. Wildl. Manage. 83, 184–191 (2019).
    Article  Google Scholar 

    112.
    Palmer, M. L. & Mazzotti, F. J. Structure of Everglades alligator holes. Southeast. Nat. 9, 487–496 (2004).
    Google Scholar 

    113.
    Craighead, F. C. S. The role of the alligator in shaping plant communities and maintaining wildlife in the Southern Everglades. Florida Nat. 41, 2–94 (1968).
    Google Scholar 

    114.
    Loftus, W. F. & Eklund, A. M. Long-term dynamics of an Everglades small-fish assemblage. in Everglades: the ecosystem and its restoration (eds. Davis, S. M. & Ogden, J. C.) 461–83 (St. Lucie Press, 1994).

    115.
    Diez, D. C. & Jackson, D. R. Use of American alligator nests by nesting turtles. J. Herpetol. 13, 510–512 (1979).
    Article  Google Scholar 

    116.
    Kushlan, J. A. & Kushlan, M. S. Function of nest attendance in the American alligator. Herpetologica 36, 27–32 (1980).
    Google Scholar 

    117.
    Kushlan, J. An ecological study of an alligator pond in the Big Cypress swamp of Southern Florida (University of Miami, Coral Gables, FL, 1972).
    Google Scholar 

    118.
    Gawlik, D. E. & Rocque, D. A. Avian communities in bayheads, willowheads, and sawgrass marshes of the central everglades. Wilson Bull. 110, 45–55 (1998).
    Google Scholar 

    119.
    Campbell, M. R. & Mazzotti, F. J. Characterization of natural and artificial alligator holes. Southeast. Nat. 3, 583–594 (2004).
    Article  Google Scholar 

    120.
    Stachowicz, J. J. Niche expansion by positive interactions: realizing the fundamentals. A comment on Rodriguez-Cabal et al. Ideas Ecol. Evol. 5, 42–43 (2012). More

  • in

    Modeling of trees failure under windstorm in harvested Hyrcanian forests using machine learning techniques

    Site selection
    Hyrcanian temperate forests, dominated by old broadleaf trees, are located in the north of Iran adjacent to the Caspian Sea. We selected the Neka Zalemroud forest in Mazandaran province as the study area for this research (36° 26′ 09″ to 36° 30′ 47″ N latitude and 53° 20′ 34″ to 53° 31′ 51″ E longitude) as the boundaries of sampling area have been illustrated in Fig. 1 by the authors. This forest has been covered with 2533 hectares of old broadleaf trees such as Fagus orientalis, Carpinus betulus, Quercus castanafolia, Acer velutinum, Acer cappadocicum, Parrotia persica and some other species. This region is affected by permanent winds and the maximum wind speed is in the range of 10 to  > 30 m/s. The windstorms with more than 100 km/h cause damage forest trees, including uprooting or stem breakage. The windstorms cause many tree failures annually, which is in result of the tree harvesting and gap creation in forest stands. Hence, we aimed to identify the uprooted or stem broken trees using the sample plots data after the windstorm with 100 km/h (4 h) on 21 March 2018.
    Figure 1

    The location of study area and sample plots (QGIS 3.12.0, https://www.qgis.org/en/site/).

    Full size image

    Methods
    Data from field measurement of 600 sample plots in the study area were summarized before and after the windstorm in March 2018. ARC MAP 9.3 software was used to spatially locate the sample plots on the forest map. Also, the slope of plots was defined by topography map (1:50,000) in this software. The permanent sample plots were created by Department of Natural Resources of Mazandaran Province (in the structure of the forest management plan) as a part of government-sponsored “permanent sample plot” protocol to monitor the changes in the number of trees and species48. In this protocol, the centers of these sample plots are marked with a metal rod and the geographical coordinates are recorded. The attributes of all trees in the sample plots are recorded consisting of species, diameter at the breast height, tree’s height, number of trees, distance to the center of the plot, crown diameter and land, soil and climate characteristics of the plot location. On average, in each plot, there are about 10 to 20 trees with a diameter of more than 7 cm (marketable size), and using the recorded data of the trees, it is possible to identify each tree in subsequent monitoring. As the protocol dictates, preliminary data were recorded on the stage of creating plots by experts from the Provincial Department of Natural Resources in 201649. After the windstorm on 21 March 2018, these plots were investigated by the authors to find damaged and undamaged trees. The area of each sample plot was 1000 m2 and in the shape of the circle with 17.84 m radius. These plots were investigated to record harmed trees which were uprooted or stem broken. Sample plots are clustered into susceptible (with harmed trees) and unsusceptible (without harmed trees) plots. We recorded the forest stand attributes, as well as tree attributes, which influence the likelihood of trees to be damaged in windstorms. Therefore, we investigate the damaged and resistant trees in the plots within 1000 m2 area. The stand variables were recorded in the plot area such as the mean of the trees’ height in the plot. Some plots (306 plots) were determined where the damaged trees were observed and some others (294 plots) were determined where the target tree in the middle of the plot was undisturbed. In a literature review, we found that stand and tree characteristics influence wind-susceptibility of trees (such as tree diameter and height, spread crown area, rooting system, soil type, stand density, topography, etc.1,3,19,20,21). Therefore, 15 variables in 600 sample plots were recorded that are divided into two categories: 1. Forest stand variables: Plot Slope (PS) (%), Soil Depth (SD) in plot area (cm), trees Mean Diameter at the Breast Height (MDBH) at plot (cm), trees Mean Height (MH) in plot (m), trees Density (De) in plot (Number of trees), trees Diversity (Di) in plot (Number of tree species), Number of Thicker trees in diameter (than the target tree) (NTh), and Number of Taller trees (than the target tree) (NTa).
    2.Tree variables (bigger than marketable size): Tree Area (TA) (occupied area by the tree) (m2), Tree Diameter at the Breast Height (TDBH) (cm), Tree Height (TH) (m), Tree Crown Diameter (TCD) (m), Mean Distance from Neighbor trees (MeDN) (m), Minimum Distance from Neighbor trees (MiDN) (m), and Maximum Distance from Neighbor trees (MaDN) (m). Tree heights and some more data were recorded in permanent sample plots before the windstorm. Therefore, we used the recorded data at the stage of creating plots, for damaged trees. In fact, 10 to 20 trees are recorded in each plot and using the recorded data of the trees (species, diameter, distance to the center of the plot, etc.) it is possible to identify target trees (damaged or undamaged) in subsequent monitoring. There are some other factors that influence wind-susceptibility of trees such as forest edge, tree diversity, and land form. In this research, we were looking for the impact of forest plan activities on tree failure; therefore, we neutralized forest edge effects by selecting sample plots inside the forest stands which are far from the forest edges. In land form variables, land slope was considered in stand variables, but altitude and geographical aspect of the hill, as well as tree diversity, were omitted because of limited variation in the samples.
    Tree Failure Model (TFM) was developed by recording 15 variables of the trees and forest stands in 600 selected sample plots. In fact, we designed three TFMs with three modeling techniques to achieve the most accurate one based on model accuracy assessment. The damaged trees in the plots were identified by two features: (1) The tree was uprooted by wind forces along the windstorm. (2) The tree was uprooted or stem broken. Leaning trees (under windstorm force) were also counted as uprooted trees. The damaged tree was chosen as the target tree in susceptible plots (plots with a damaged tree). Also, the central tree was selected as the target tree in the wind-unsusceptible plots (plots without damaged tree). Indeed, the output of TFM will be in two classes of damaged trees (1) and stable trees (0). Hence, the response or output of the model will be a discrete class {0,1}. The accuracy of the model is assessed by confusion matrices which detect the number of accurate and false classifications of sample trees.
    The new mathematical modeling approaches and machine learning techniques are needed to cover limitation in data collection and forest inventories. Indeed, ANNs are over 50 years old, but just not often applied yet. History of ANN development represents this fact that learning algorithms and structure of neural networks are developed every year. Therefore, we developed artificial intelligence techniques in natural phenomena modeling11,17 namely MLP, RBFNN, and SVM.
    Machine learning techniques rely on a specific concept that is “a set of weak learners develop a single strong learner” (by Freund and Schapire22, Breiman23 and Breiman et al.24). As it is known, a weak learner is a classifier correlating slightly with the real (target) classification; while a strong learner is well correlated with real (target) classification. Machine learning algorithms are trying to combine weak classification rules in a one strong classification rule. Based on this approach, we used 15 variables (even if we believe that these variables are not related to tree susceptibility in the wind) and tested some algorithms and variable weights to make weak learners or rules and combining them into one strong rule in the structure of three machine learning techniques.
    Multi-layer perceptron (MLP) neural network
    ANNs use different methods, such as feed-forward, backward, recurrent and other, to teach the network for output prediction. MLP is a multi-layer form of Feed-forward neural networks without any cycle or loop. In Feed-forward neural networks, the information analysis is performed in one direction from the input layer, through the hidden layer to the output layer47. In this learning method, the errors of the network propagate from the output layer to inputs to revise the weights of input variables. MLP is a multi-layer Artificial Neural Network (ANN) model with self-learning mechanism which uses samples for classification. Indeed, MLP has been using some interconnected processing elements that are called PEs (Processing Elements). MLP learns by using samples and transfer functions which are applied between neurons and hidden layers in a computer program17. In the training process, each PE receives signals periodically from other PEs and sends the new signal to other processors. Considering inputs, MLP adjusts the weights of neurons continuously, and the learning process is completed.
    We used some activation functions (such as logarithmic sigmoid, hyperbolic tangent, and linear transfer functions) which determine the relation between inputs and outputs and these functions were tested to achieve the best performance of MLP. Back Propagation (BP) method propagates the error of outputs to the input layer where the first random weights have been assigned. The weights of the network inputs will be justified until the best performance of the network is reached; and after that, the learning process will be completed7,11. Errors between Ynet (MLP output) and Y (real class of tree failure) are decreased by BP when the weight of neurons or Processing Elements (PEs) (w) and input variables (x) come to the best performance, and the output of jth PE on the kth layer (PEkj) will be achieved by Eq. (1):

    $$net_{j}^{k} = mathop sum limits_{i = 0}^{n} w_{ji} x_{ji}$$
    (1)

    Transfer functions are used in the structure of network, and neuron output value is determined by (Eq. 2).

    $$Y_{net} = smallint net_{j}$$
    (2)

    Finally, weights of t samples will be adjusted by delta rule which has been summarized in Eq. (3).

    $$w_{ji}^{t} = w_{ji}^{t – 1} + Delta w_{ji}^{t}$$
    (3)

    By using the ANN function in MATLAB R2013b, 360 uniformly distributed random samples (60% of 600 samples) were defined as training data set. 120 evenly distributed random samples (20% of 600 samples) were defined as validation data set, and 120 samples (20% of 600 samples) were determined as test data set. All data were normalized to the interval of 0 to 1 using the Min–Max technique by mapminmax function in MATLAB R2013b (Refer to Demuth and Beale25 for MATLAB codes for MLP neural network development and related preprocessing algorithms).
    Radial basis function neural network (RBFNN)
    Radial basis function neural network is architecturally similar to the MLP with different activation function in the hidden layer. RBFNNs have been used in function approximation and classification in researches of the last decade13,26,27,28. RBFNN uses samples in two data sets of training and test. The radial function is applied in each neuron of the hidden layer; and the number of neurons depends on input matrix of variables. Considering two classes of trees failure (0 and 1) in this research, we have two output layers in the structure of RBFNN. Gaussian function is the most frequently used function in the hidden layers of RBFNN13,27. The Gaussian function can find the center of circular classifiers successfully. The Gaussian function regulates the centre of mentioned circular classifiers by Eq. (4).

    $$R_{j} left( x right) = expleft( {frac{{||x – a_{j} ||^{2} }}{{2sigma^{2} }}} right)$$
    (4)

    In Eq. (4), input variables are structured in the matrix “x”, radial basis function has been defined as Rj(x), centre of RBF function is presented as aj, and we have a positive real number as “ϭ”. The outputs of network will be calculated by an output function Eq. (5).

    $$y_{k} = mathop sum limits_{j = 1}^{m} w_{jk} R_{j} left( x right) + b_{j}$$
    (5)

    In Eq. (5), the number of calculation nodes in the structure of hidden layers (j), the number of neurons (m), the weights of neurons (wik), and a bias value (bj) have been used to calculate output (yk).
    Neuron weights (wjk) are updated continuously to decrease output errors until network training process comes to end. Network performance is calculated when the number of neurons and the weights of neuron or layers are fixed13. (Refer to Demuth and Beale25 for MATLAB codes for RBF neural network development and related preprocessing algorithms).
    Support vector machine (SVM)
    SVM is one of the machine learning techniques that requires quite a lot of data for training, but this method also provides more accurate results than other methods when the volume of training data is limited29,30. Therefore, SVM has been used for modeling in this paper to deal with this issue with the collected data along forest inventory.
    As a classifier technique, SVM aims to determine the largest margin in decision boundaries that could separate classes of decision31. SVM is looking for the largest margin in the boundaries of classification when the uncertainties in the decision are expected27. This method of prediction minimizes the probability of over-fitting in classes limits of tree failure.
    We have two datasets of training and test in the structure of SVM. The values of target are structured in a n-dimensional matrix so it is possible to find the most accurate boundaries and margins. Equation (6) is the SVM model and equation parameters define: y(x) = SVM output, α_i = a multiplier, K = kernel function, and b = threshold parameter.

    $$yleft( x right) = mathop sum limits_{i = 1}^{n} alpha_{i} Kleft( {x_{i} ,x_{j} } right) + b$$
    (6)

    Then we defined Gaussian Radial Basis Function (RBF) in Eq. (7), in the context of non-linear SVM. As we know, RBF is the most popular function in the context of SVM with remarkable ability to control generalization of SVM classifier.

    $$Kleft( {x_{i} ,x_{j} } right) = {text{exp}}left( { – gamma| x_{i} – x_{j}|^{2} } right)$$
    (7)

    The parameters of Eq. (7) are: xi and xj = samples and γ = kernel parameter.
    Finally, primal problem in Eq. (8) should be minimized to achieve the most accurate SVM for tree failure prediction.

    $$frac{1}{2}|w|^{2} + Cmathop sum limits_{i = 1}^{n} xi_{i}$$
    (8)

    In Eq. (8), the parameters are: 1/2||w||2 = the margin, Σξi = training errors and C = the tuning parameter.
    SVM uses samples in two data sets of training and test. The classes of the target will be summarized in a n-dimensional matrix to determine the nearest classification boundaries and margins. (Refer to Demuth and Beale25 for MATLAB codes for SVM neural network development and related preprocessing algorithms).
    Model selection
    MLP, RBFNN, and SVM models were run on the training dataset with 15 tree variables as inputs and tree failure classes in 600 selected trees as output. To evaluate prediction accuracy of the MLP, RBFNN, and SVM models, we used the confusion matrix to determine the percentage of accuracy in target tree classification. Also, the number of trees with accurate and failed classification will be detected11.
    Sensitivity analysis
    Sensitivity analysis was designed to prioritize the most accurate model variables with respect to the significance of variables in output. Sensitivity analysis defines the usefulness of variables in model predictions. In sensitivity analysis, we changed each variable in the range of standard deviation with 50 steps while the other variables were fixed at the value of the average. Then, the standard deviation of outputs for each variable changes was measured as model sensitivity for that variable. Variables with high value in the outputs standard deviation are the most important variables with more influence on model outputs. The trend of model output changes with changing the most significant variables, in the range of standard deviation (50 steps) was illustrated in some figures to find out the way that model outputs are changing with variable changes (negatively or positively) (Refer to Kalantary et al.27 and Jahani et al.13.
    Environmental decision support system (EDSS) tool
    Finally a user friendly GUI (Graphical User Interface) tool was designed as an EDSS for susceptible tree identification in windstorms. It is applicable for forest managers who are looking for hazardous trees to plan for tree protection and increase the forest stands resistant against windstorms. ANN models use a huge matrix of weights; so model execution should be in the mathematical software (in this research MATLAB R2013b). Users, who are not familiar with the software, need a simple tool to run the model on new samples and get the results of prediction. To design EDSS tool, we developed a GUI extension in MATLAB R2013b software. With this tool, users enter the values of trees and stands variables (based on forest inventory data in other target forests) and the susceptible trees will be identified only by pushing a button. The model will be run on the data and the model outputs for each tree will be appeared in a table (0 or 1). More