Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching
1.
Sullivan, D. Composting biosolids into high quality agricultural product. BioCycle 51, 39–40 (2010).
Google Scholar
2.
Wang, X., Chen, T., Ge, Y. & Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 160, 554–558 (2008).
CAS PubMed Article PubMed Central Google Scholar
3.
Borjesson, G. & Katterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 112, 369–385 (2018).
Article Google Scholar
4.
Kelly, J. J., Favila, E., Hundal, L. S. & Marlin, J. C. Assessment of soil microbial communities in surface applied mixtures of Illinois River sediments and biosolids. Appl. Soil Ecol. 36, 176–183 (2007).
Article Google Scholar
5.
Kelly, J. J., Polocht, K., Grancharova, T. & Hundal, L. S. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl. Environ. Microbiol. 77, 6551–6558 (2011).
CAS PubMed PubMed Central Article Google Scholar
6.
Nakatani, A. S. et al. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biol. Biochem. 43, 106–114 (2011).
CAS Article Google Scholar
7.
Wang, M. & Xue., J., Horswell, J., Kimberley, M.O. & Huang, Z. ,. Long-term biosolids application alters the composition of soil microbiakl groups and nutrient status in a pine plantation. Biol. Fert. Soils 53, 799–809 (2017).
CAS Article Google Scholar
8.
Zaleski, K. J., Josephson, K. L., Gerba, C. P. & Pepper, I. L. Potential regrowth and recolonization of Salmonellae and indicators in biosolids and biosolid-amended soil. Appl. Environ. Microbiol. 71, 3701–3708 (2005).
CAS PubMed PubMed Central Article Google Scholar
9.
Singh, R. P. & Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358 (2008).
CAS Article Google Scholar
10.
Sigua, C. Recycling biosolids and lack-dredged materials to pasture-based animal agriculture: alternative nutrient sources for forage productivity and sustainability. A review. Agron. Sustain. Dev. 29, 143–160 (2009).
CAS Article Google Scholar
11.
McBride, M. B. Toxic metal accumulation from agricultural use of sludge—are USEPA regulations protective?. J. Environ. Qual. 24, 5–18 (1995).
CAS Article Google Scholar
12.
Navarro, I. et al. Environmental risk assessment of perfluoroalkyl substances and halogenated flame retardants released from biosolids-amended soils. Chemosphere 210, 147–155 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
13.
Mantovi, P., Baldoni, G. & Toderi, G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res. 39, 289–296 (2005).
CAS PubMed Article PubMed Central Google Scholar
14.
Paramashivam, D. et al. Effect of pine waste and pine biochar on nitrogen mobility in biosolids. J. Environ. Qual. 45, 360–367 (2016).
CAS PubMed Article PubMed Central Google Scholar
15.
Willen, A., Junestedt, C., Rodhe, L., Pell, M. & Jonsson, H. Sewage sludge as fertiliser—environmental assessment of storage and land application options. Water Sci. Technol. 75, 1034–1050 (2017).
CAS PubMed Article PubMed Central Google Scholar
16.
Weaver, D. M. & Reed, A. E. G. Patterns of nutrient status and fertiliser practice on soils of the south coast of Western Australia. Agric. Ecosyst. Environ. 67, 37–53 (1998).
Article Google Scholar
17.
Knowles, O. A., Robinson, B. H., Contangelo, A. & Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 409, 3206–3210 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
18.
Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. & Murphy, D. V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324 (2012).
CAS Article Google Scholar
19.
Dempster, D. N., Jones, D. L. & Murphy, D. V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221 (2012).
CAS Article Google Scholar
20.
Shanmugam, S., Abbott, L. K. & Murphy, D. V. Clay addition to lime-amended biosolids overcomes water repellence and provides nitrogen supply in an acid sandy soil. Soil Biol. Fert. Soils 50, 1047–1059 (2014).
CAS Article Google Scholar
21.
Paramashivam, D., Dickinson, N. M., Clough, T. J., Horswell, J. & Robinson, B. H. Potential environmental benefits from blending biosolids with other organic amendments before application to land. J. Environ. Qual. 46, 481–489 (2017).
CAS PubMed Article PubMed Central Google Scholar
22.
Samara, E., Matsi, T., Zdragas, A. & Barbayiannis, N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge’s fertilization capacity. Environ. Sci. Polut. R. 26, 35387–35398 (2019).
CAS Article Google Scholar
23.
Djajadi, Abbott, L. K. & Hinz, C. Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma 183, 19–24 (2012).
ADS Article Google Scholar
24.
Ma, B., Lv, X., Cai, Y., Chang, S. X. & Dyke, M. F. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol. Biochem. 123, 45–53 (2018).
CAS Article Google Scholar
25.
Dilly, O., Blume, H.-P. & Munch, J. C. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319–339 (2003).
CAS Article Google Scholar
26.
Lehmann, J. et al. Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011).
CAS Article Google Scholar
27.
Liang, B. et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006).
ADS CAS Article Google Scholar
28.
Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. & Condron, L. M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73–84 (2012).
CAS Article Google Scholar
29.
Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012).
CAS PubMed Article PubMed Central Google Scholar
30.
Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235 (2010).
CAS PubMed Article PubMed Central Google Scholar
31.
Wang, D., Felice, M. L. & Scow, K. M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil Ecol. 152, 103570 (2020).
Article Google Scholar
32.
Wu, H. et al. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl. Microbiol. Biotechnol. 100, 8583–8591 (2016).
CAS PubMed Article PubMed Central Google Scholar
33.
Xu, H.-J. et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 48, 9391–9399 (2014).
ADS CAS PubMed Article Google Scholar
34.
Solaiman, Z. M., Abbott, L. K. & Murphy, D. V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phorphorus cycling. Sci. Rep.-U.K. 9, 5062 (2019).
ADS Article CAS Google Scholar
35.
Cao, H. et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 135, 25–32 (2019).
Article Google Scholar
36.
Zhang, K. et al. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fert. Soils 53, 77–87 (2017).
CAS Article Google Scholar
37.
Gartler, J., Robinson, B., Burton, K. & Clucas, L. Carbonaceous soil amendments to biofortify crop plants with zinc. Sci. Total Environ. 465, 308–313 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
38.
Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation. Soil Biol. Biochem. 26, 1221–1231 (1994).
Article Google Scholar
39.
Wang, H., Kimberley, M. O. & Schlegelmilch, M. Biosolids-derived nitrogen mineralisation and transformation in forest soils. J. Environ. Qual. 32, 1851–1856 (2003).
CAS PubMed Article PubMed Central Google Scholar
40.
Atkinson, C. J., Fitzgerald, J. & Hipps, N. Potential mechanisms for achieving agricultural benefits fromm biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010).
CAS Article Google Scholar
41.
Jaafar, N. M., Clode, P. L. & Abbott, L. K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 13, 483–490 (2014).
Article Google Scholar
42.
Jaafar, N. M., Clode, P. L. & Abbott, L. K. Soil microbial responses to biochar varying in particle size, surface and pore properties. Pedosphere 25, 770–780 (2015).
Article Google Scholar
43.
Jaafar, N. M., Clode, P. L. & Abbott, L. K. Biochar-soil interactions in four agricultural soils. Pedosphere 25, 729–736 (2015).
CAS Article Google Scholar
44.
Petersen, S. O. et al. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Till Res. 72, 139–152 (2003).
Article Google Scholar
45.
Warman, P. R. & Termeer, W. C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils. Bioresour. Technol. 96, 955–961 (2005).
CAS PubMed Article PubMed Central Google Scholar
46.
Campos, T., Chear, G., Leles, P. D., Silva, M. & Santos, F. Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Amniente 26, e20180399 (2019).
Article Google Scholar
47.
Peoples, M. et al. Factors affecting the potential contributions of N2 Fuxation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).
CAS Article Google Scholar
48.
Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).
CAS Article Google Scholar
49.
Mickan, B. S., Abbott, L. K., Stefanova, K. & Solaiman, Z. M. Interactions between biochar and mycorrhizal fungi in water-stressed agricultural soil. Mycorrhiza 26, 565–574 (2016).
CAS PubMed Article PubMed Central Google Scholar
50.
Hale, S. E. et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612–1619 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
51.
Zheng, J., Stewart, C. E. & Cotrufo, M. F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 41, 1361–1370 (2012).
CAS PubMed Article PubMed Central Google Scholar
52.
Dempster, D. N., Jones, D. L. & Murphy, D. V. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 48, 47–50 (2012).
CAS Article Google Scholar
53.
Verhoeven, E. & Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agric. Ecosyst. Environ. 191, 27–38 (2014).
CAS Article Google Scholar
54.
Hamza, M. A. & Anderson, W. K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54, 273–282 (2003).
Article Google Scholar
55.
Asadishad, B. et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52, 1908–1918 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
56.
Mossa, A.-W., Dickinson, M. J., West, H. M., Young, S. D. & Crout, N. M. J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 224, 16–25 (2017).
CAS PubMed Article PubMed Central Google Scholar
57.
Sullivan, T. S., Stromberger, M. E. & Paschke, M. W. Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland. Soil Biol. Biochem. 38, 449–459 (2006).
CAS Article Google Scholar
58.
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).
ADS CAS PubMed PubMed Central Article Google Scholar
59.
Jenkins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Anton Van Leeuwenhoek 95, 319–334 (2009).
Article Google Scholar
60.
Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
CAS PubMed PubMed Central Article Google Scholar
61.
Zhang, X., Liu, W., Zhang, G., Jiang, L. & Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 81, 275–281 (2015).
CAS Article Google Scholar
62.
Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
63.
O’Brien, F. J. M. et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the Avon River critical zone observatory, Western Australia. Front. Microbiol. 10, 1486. https://doi.org/10.3389/fmicb.2019.01486 (2019).
Article PubMed PubMed Central Google Scholar
64.
Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
CAS PubMed PubMed Central Article Google Scholar
65.
Zeng, Q. C., Dong, Y. H. & An, S. S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau. China. Plos One. 11, e015289 (2016).
Google Scholar
66.
Gigliucci, F., Brambilla, G., Tozzoli, R., Michelacci, V. & Morabito, S. Comparative analysis of metagenomes of Italian top soil improvers. Environ. Res. 155, 108–115 (2017).
CAS PubMed Article PubMed Central Google Scholar
67.
DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).
CAS PubMed PubMed Central Article Google Scholar
68.
Mendez, M. O., Neilson, J. W. & Maier, R. M. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 74, 3899–3907 (2008).
CAS PubMed PubMed Central Article Google Scholar
69.
Kim, J.-S., Dungan, R. S. & Crowley, D. Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol. Fert. Soils 44, 1003–1011 (2008).
CAS Article Google Scholar
70.
Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
PubMed PubMed Central Article Google Scholar
71.
Jenkins, S. N. et al. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem. 42, 1624–1631 (2010).
CAS Article Google Scholar
72.
Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
PubMed Article PubMed Central Google Scholar
73.
Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).
CAS PubMed Article PubMed Central Google Scholar
74.
Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744–744 (2016).
PubMed PubMed Central Google Scholar
75.
Barton, L., Gleeson, D. B., Maccarone, L. D., Zuniga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?. Soil Biol. Biochem. 62, 28–35 (2013).
CAS Article Google Scholar
76.
Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).
CAS Article Google Scholar
77.
Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).
CAS Article Google Scholar
78.
Fisk, L. M., Maccarone, L. D., Barton, L. & Murphy, D. V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 88, 214–223 (2015).
CAS Article Google Scholar
79.
Wu, J. & Brookes, P. C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem. 37, 507–515 (2005).
CAS Article Google Scholar
80.
Rayment, G. & Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata Press, Melbourne, 1992).
Google Scholar
81.
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19, 703–707 (1987).
CAS Article Google Scholar
82.
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol. 31, 814–821 (2013).
CAS Article Google Scholar
83.
Mori, H. et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227 (2013).
PubMed PubMed Central Article CAS Google Scholar
84.
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6, 1621–1624 (2012).
CAS Article Google Scholar
85.
Mickan, B. S., Abbott, L. K., Fan, J., Hart, M. M., Siddique, K. H. M., Solaiman, Z. M. & Jenkins, S. N. Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fert Soils. 54, 55–70 (2018).
Article Google Scholar
86.
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75, 7537–7541 (2009).
CAS PubMed PubMed Central Article Google Scholar
87.
Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
CAS PubMed PubMed Central Article Google Scholar
88.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194–2200 (2011).
CAS PubMed PubMed Central Article Google Scholar
89.
Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan. (2010). More
