More stories

  • in

    Metagenomic analysis reveals rapid development of soil biota on fresh volcanic ash

    How rapidly can the major functional components of a soil ecosystem appear in volcanic ash?
    The overall conclusion from comparing the functional composition of the developing ash-soil with natural forest soils from the same climates, is that the major biological aspects of the system have developed surprisingly quickly. Already by the 24-month and 36-month stage, the ash-soil had a similar diversity of bacterial functional genes to a forest soil (Fig. 8).
    This contrasts with the findings of Fujimura et al.3, who found that ash deposited by the Miyakejima volcano still showed a very distinct and low diversity community compared to that expected of normal forest soils. This difference could be attributable to differences in the initial chemical composition of the ash: the pH value of the Miyakejima ash studied by Fujimura et al.3 was much lower than the ash we sampled, due to the persistence of acids from the initial eruption, or acidic rainfall from later outgassing. Our Sakurajima ash samples had only a slightly acidic pH (5.2) at the time of harvesting, which was similar to the average value (5.14) of 251 ash samples from Sakarajima collected from 1955 to 200125, and they remained in the 5–6 pH range at both 24 months and 36 months. Even the ash soil mesocosm samples that were situated on the lower slopes of the Sakurajima volcano, and the nearby natural forest soils at Sakurajima, remained in the pH 5–6 range and had a similar gene composition to other sites, suggesting that the area around the Sakurajima volcano is not subject to frequent highly acidic rain events. The difference between the Sakurajima ash and the Miyakejima ash hints at the importance of details of the chemical environment of the ash for determining its development into a functioning soil ecosystem.
    Another factor which may explain the difference between the paths of biota development of the ash from the two volcanoes is the relative availability of propagules. Our ash soils were surrounded by developed ecosystems which could provide a rain of propagules of microorganisms and bryophytes in windblown dust or in rain splash. By contrast the Miyakejima ash field was an area of extensive ecosystem destruction. If bryophytes and lichens had not been able to establish due to unavailability of propagules, an important source of photosynthetically-fixed energy would have been unavailable to the Miyakejima system. This would have impeded the development of a decomposer food chain, of mineral weathering by organic acids and chelates, and of buffering of soil pH and water content and nutrient storage on organic matter and clay surfaces.
    Was there a lower taxonomic diversity than is normally found in a developed soil?
    At the broadest level, from the metagenomes, the taxonomic composition of the biota of the developing ash-soil resembled that of the developed forest soils—with archaea, fungi, protists and metazoans occurring at similar relative abundances in the ash-soils and forest soils. In this sense, the ash-soil had developed remarkably quickly in terms of the basic taxonomic framework of a functioning soil ecosystem. Bryophytes and lichens were able to establish10,26 with their propagules small enough to enter through the gauze covering, and presumably played an important role in providing carbon and extra niches to the developing ecosystem—even though they are unlikely to be as supportive of a diverse soil biota as the extensive root systems of vascular plants.
    There was however—continuing a pattern seen in the 24-month results reported by Kerfahi et al.10—a lower OTU and Shannon diversity of bacteria based on the 16S rRNA amplicon sequencing. The continuing lower OTU-level 16S taxonomic diversity of the ash soils might have had multiple causes.
    Firstly, limitations on dispersal and colonization of the ash soil systems might have kept OTU diversity lower. It is assumed that the biota present were mostly derived from the surrounding forest ecosystems—as windblown or rain splashed material. Dispersal limitation of soil biota is likely to play some role in all volcanic ash fields, although the existence of nearby areas of surviving ecosystem is also common20,27. Most volcanic explosions or ash fields result in no more than a few square kilometres of landscape being completely devastated, and isolated pockets of vegetation that survive are common27,28—in this respect the proximity of our mesocosms to natural vegetation may be fairly realistic. In natural ash deposits, upwards colonization by soil biota from buried ‘legacy soils’ is also possible20. In our experiment, upwards colonization from soil below the pots was not possible, and the plastic gauze covering may have prevented access by insects, birds or seeds that could have brought incidental soil biota. It is thus difficult to know for sure whether the overall role of dispersal limitation in our mesocosm systems is stronger or weaker than would generally be the case in natural ash fields. Since natural ash fields themselves are also very heterogenous in terms of area, depth and degree of devastation of natural vegetation, it is especially hard to generalise.
    Secondly, the relatively extreme chemical and physical conditions of the volcanic ash itself are also likely play a major role in limiting the bacterial taxonomic diversity of the ash-soil biota in the mesocosms. Although the pH of the ash in our mesocosm systems was not extreme, it may be expected to be droughty due to low organic matter content, and low in available nutrients and organic matter that could sustain soil food chains. Even by 36 months, the organic carbon of the ash-soil was still orders of magnitude lower than in the surrounding forest soils (Supplementary Fig. S1)10,26. Thus, fewer niche types may be viable in the environment of the developing ash.
    Nevertheless, although lower level taxonomic diversity of bacteria is clearly lower than in the established forest soils, the metagenome results from the ash soil mesocosms show that most higher level taxonomic groups of bacteria, archaea and eukaryotes are already present by the 24-month and 36-month stage, emphasizing that in some respects the establishment of soil biota has been rapid. While DNA of dead microorganisms blown as dust could have provided the impression of populations being present, it seems unlikely that dead material would be able to disperse in the same relative proportions as in a forest soil, to give a metagenome that resembled a developed soil in all its major groups, in roughly the same relative abundances (Please refer to Fig. 1 in Kerfahi et al.10).
    Was there a lower diversity of categories of functional genes of soil biota than are normally found in a developed soil, indicating less functional complexity in the early ash-soil system?
    Surprisingly, the richness and diversity of functional gene categories at Level 4 of the SEED Subsystem was not significantly different between the ash mesocosms and the forest soils. Around 97% of the metagenome reads in the ash mesocosms and the forest soil were bacterial, so the much lower OTU diversity of bacteria in the mesocosms would be expected to give a lower functional diversity of genes. The contrast between patterns of taxonomic and functional diversity in the ash mesocosms emphasises the redundancy of gene functions in soil organisms—such that losing a high proportion of taxonomic diversity apparently has no effect on functional diversity. If the level of functional gene diversity is high, this implies that in a general sense the ecosystem can potentially perform a wide variety of functions. Greater functional diversity is also considered to result in greater resilience of the ecosystem29.
    We had also hypothesized that the distinct chemical environment of the developing ash would result in increased relative abundance of a number of specific gene categories:
    Is there an increased relative abundance of genes (or of prokaryotic genera) associated with autotrophy (e.g. Rubisco gene, coxL gene) in the ash-soils?
    We searched for potential taxa and genes which might indicate autotrophic carbon fixation through chemosynthetic oxidation processes. We found a higher relative abundance of Ktedonobacteraceae (Chloroflexi) in the ash soils compared to forest soils, which is a pattern that was also found in previous ash studies21,30. Ktedonobacteraceae is a novel taxonomic group that has only been recently added to the phylogenetic tree of Chloroflexi30,31. Their genome has been reported to be large and they are known to have a wide potential for different metabolic mechanisms32. Ktedonobacteraceae are mostly found in extreme environments, including volcanic ash and hydrothermal vents30.
    We had hypothesized that the coxL (carbon monoxide dehydrogenase large chain) gene—which is implicated in autotrophy—would be more abundant in the ash soil samples. Likewise, the rbcL (ribulose bisphosphate carboxylase large chain) gene is involved in carbon fixation and we hypothesized its greater abundance in the ash-soil mesocosms. However, in fact both rbcL and coxL had higher relative abundances in the forest soils.
    Although coxL has been mostly linked with chemotrophic organisms living in an extreme environment, due to its potential role for assisting heterotrophic growth in the environments lacking organic matter21,33, it is also one of the more abundant genes in natural forest soils34. Noting that natural forest is one of the largest global sinks of atmospheric CO34,35, the high relative abundance of coxL gene might be due to high abundance of CO in natural forests. Also, the coxL gene might have the potential to participate in other metabolic pathways. The presence of coxL genes in many different types of organisms (e.g. plant symbionts, animal pathogens, etc.) suggests other roles of CO-oxidation by the coxL gene33.
    The higher abundance of rbcL in the forest soils in our study might be related to photosynthetic C fixation by cyanobacteria in both the forest soil and ash soils. rbcL gene also have been found in many natural forest sites. By contrast, Fujimura et al.3 found rbcL to be more abundant in developing volcanic ash soils, which might be attributable to differences in the chemical composition of ash or due to details of the mesoocosm system used in our study.
    Is there increased relative abundance of genes that are associated with acquisition of nutrients from abiotic sources rather than decomposition of organic matter (e.g. nitrogen fixation genes)?
    Contrary to expectations we found no differences in the relative abundance of nitrogen fixation gene (nifH) between the ash soils and forest soils. It is possible that this reflects nitrogen being relatively more limiting in the forest soils, where there is an abundance of organic carbon. It is also possible that in the forest soils, the abundance of labile carbon in the rhizosphere of N-limited plants encourages N fixing bacteria through root secretions36.
    Is there increased relative abundance of stress response genes and dormancy related genes?
    As hypothesized, we found that dormancy related genes were more abundant in the ash mesocosms than in the forest soils. This would seem to be adaptive in terms of survival of a well-drained ash-soil, low in organic matter, which is apt to dry out. This would depend, however, on the detailed microclimate. Field measurements suggested that in sunny conditions the microclimate in the static air in the trays in which our pots were held was generally around 0.5–1 °C higher than in the open air a meter away, although this difference disappeared in cloudy conditions and at night10. It is possible that our mesocosms (exposed in open sunlight, but covered by a gauze) would have either retained or lost moisture more easily than the soils, and that this might have affected the frequency of drying. We had also anticipated that stress response genes would be more common in the ash mesocosms. However, in this case the stress response category was less common than in the forest soil, surprisingly suggesting that at a cellular level stresses are in fact less common in the ash-soil.
    Is there decreased relative abundance of cell–cell interaction related genes?
    As anticipated, genes related to cell–cell interactions such as regulation and cell signalling genes and virulence, disease, and defense genes (Fig. 7a,b) were relatively less abundant in the ash mesocosms. This seems to emphasize that complex interactions are less common in the developing ash system than in a fully developed soil with its more abundant and diverse carbon sources. However, bacterial genes found as part of CRISPRs were relatively less abundant in the forests, implying lower intensity of defense mechanisms of bacteria against viruses in the forests compared to ash soils. The relatively low OTU diversity of the ash soils may perhaps allow greater spread and mortality of viruses through populations, necessitating greater investment in defences.
    Since Odum37, it has been noted that developing ecosystems tend to be based on tighter and more effective interactions as succession continues. For example, Morriën et al.38 found that during secondary succession of old field ecosystems, co-occurrences of taxa become more predictable and carbon cycling in the decomposer chain more efficient. Empirically our findings seem to agree with the same paradigm, as we found cell–cell interaction genes found to be more abundant in the developed forest soils. It would be very interesting to directly measure decomposer carbon cycling efficiency in ash-soil mesocosm systems as they develop.
    Although we focused on 16S rRNA amplicon sequence data for comparing OTU level diversity between samples as taxonomic assignment based on MG-RAST pipeline is very limited39,40, we had briefly compared the family level bacterial community composition assigned based on metagenome sequence data and based on 16S rRNA amplicon sequence data. It is still debatable if whole genome sequencing, which is free from primer bias, is superior in this respect to 16S rRNA amplicon sequencing40. Our data supports the idea that at the bacterial family level, metagenome sequencing covered a larger variety of taxonomic groups than 16S rRNA sequencing. More

  • in

    Under the karst: detecting hidden subterranean assemblages using eDNA metabarcoding in the caves of Christmas Island, Australia

    1.
    Guzik, M. T. et al. Is the Australian subterranean fauna uniquely diverse?. Invertebr. Syst. 24, 407–418 (2011).
    Article  Google Scholar 
    2.
    Gonzalez, B. C., Iliffe, T. M., Macalady, J. L., Schaperdoth, I. & Kakuk, B. Microbial hotspots in anchialine blue holes: initial discoveries from the Bahamas. Hydrobiologia 677, 149–156 (2011).
    CAS  Article  Google Scholar 

    3.
    Gibert, J. & Deharveng, L. Subterranean ecosystems: a truncated functional biodiversity: This article emphasizes the truncated nature of subterranean biodiversity at both the bottom (no primary producers) and the top (very few strict predators) of food webs and discusses the implic. Bioscience 52, 473–481 (2002).
    Article  Google Scholar 

    4.
    Moldovan, O. T. An overview on the aquatic cave fauna. in Cave Ecology 173–194 (Springer, 2018).

    5.
    Adams, M. & Humphreys, W. F. Patterns of genetic diversity within selected subterranean fauna of the Cape Range peninsula, Western Australia: systematic and biogeographic implications. Rec. West. Aust. Museum Suppl. 45, 145–164 (1993).
    Google Scholar 

    6.
    Page, T. J., Humphreys, W. F. & Hughes, J. M. Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS ONE 3, e1618 (2008).
    ADS  Article  Google Scholar 

    7.
    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. B. Evolution in caves: Darwin’s ‘wrecks of ancient life’in the molecular era. Mol. Ecol. 19, 3865–3880 (2010).
    Article  Google Scholar 

    8.
    Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D. & Cooper, S. J. B. DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Mol. Ecol. Resour. 10, 41–50 (2010).
    CAS  Article  Google Scholar 

    9.
    Asmyhr, M. G., Linke, S., Hose, G. & Nipperess, D. A. Systematic conservation planning for groundwater ecosystems using phylogenetic diversity. PLoS ONE 9, e115132 (2014).
    ADS  Article  Google Scholar 

    10.
    Matthews, E. F. et al. Scratching the surface of subterranean biodiversity: Molecular analysis reveals a diverse and previously unknown fauna of Parabathynellidae (Crustacea: Bathynellacea) from the Pilbara Western Australia. Mol. Phylogenet. Evol. 142, 106643 (2020).
    Article  Google Scholar 

    11.
    Thomsen, P. F. et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, 1 (2012).
    Google Scholar 

    12.
    Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2016).
    CAS  Article  Google Scholar 

    13.
    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).
    Article  Google Scholar 

    14.
    Stat, M. et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 12240 (2017).
    ADS  Article  Google Scholar 

    15.
    Humphreys, W. et al. Geochemical and microbial diversity of Bundera sinkhole, an anchialine system in the eastern Indian ocean. Nat. Croat. Period. Musei Hist. Nat. Croat. 21, 59–63 (2012).

    16.
    Korbel, K., Chariton, A., Stephenson, S., Greenfield, P. & Hose, G. C. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems. Sci. Rep. 7, 40702 (2017).
    ADS  CAS  Article  Google Scholar 

    17.
    Van Bekkum, M., Sainsbury, J. P., Daughney, C. J. & Chambers, G. K. Molecular analysis of bacterial communities in groundwaters from selected wells in the Hutt Valley and the Wairarapa, New Zealand. New Zeal. J. Mar. Freshw. Res. 40, 91–106 (2006).
    Article  Google Scholar 

    18.
    Sohlberg, E. et al. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto Finland. Front. Microbiol. 6, 573 (2015).
    Article  Google Scholar 

    19.
    Purkamo, L. et al. Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiol. Ecol. 94, fiy116 (2018).

    20.
    Miettinen, H. et al. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment Pyhäsalmi mine Finland. Front. Microbiol. 6, 1203 (2015).
    Article  Google Scholar 

    21.
    Ali, J. R. & Aitchison, J. C. Time of re-emergence of Christmas Island and its biogeographical significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109396 (2019).

    22.
    Grimes, K. G. Karst features of Christmas Island (Indian Ocean). Helictite 37, 41–58 (2001).
    Google Scholar 

    23.
    Beeton, B. et al. Final Report Christmas Island Expert Working Group to Minister for the Environment. Herit. Arts (2010).

    24.
    James, D. J., Green, P. T., Humphreys, W. F. & Woinarski, J. C. Z. Endemic species of Christmas Island, Indian Ocean. Rec. West. Aust. Museum 34, (2019).

    25.
    Humphreys, W. F. Subterranean fauna of Christmas Island: habitats and salient features (Raffles Bull, Zool, 2014).
    Google Scholar 

    26.
    Davie, P. J. F. & Ng, P. K. L. Two new species of Orcovita (Crustacea: Decapoda: Brachyura: Varunidae) from anchialine caves on Christmas Island, eastern Indian Ocean. Raffles Bull. Zool. 60, 1 (2012).

    27.
    Nester, G. M. et al. Development and evaluation of fish eDNA metabarcoding assays facilitates the detection of cryptic seahorse taxa (family: Syngnathidae) (Environ. DNA, 2020).

    28.
    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: a case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).
    Article  Google Scholar 

    29.
    Pochon, X., Bott, N. J., Smith, K. F. & Wood, S. A. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests. PLoS ONE 8, e73935 (2013).
    ADS  CAS  Article  Google Scholar 

    30.
    Boyer, F., Mercier, C., Bonin, A., Taberlet, P. & Coissac, E. OBITools: a Unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2014).
    Article  Google Scholar 

    31.
    Wilkinson, S. P., Davy, S. K., Bunce, M. & Stat, M. Taxonomic identification of environmental DNA with informatic sequence classification trees. PeerJ Prepr. (2018).

    32.
    R Core Team. RStudio: integrated development for R. RStudio, Inc., Boston, MA 42, (2015).

    33.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
    CAS  Article  Google Scholar 

    34.
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 33, D34–D38 (2005).
    CAS  Article  Google Scholar 

    35.
    Mousavi-Derazmahalleh, M. et al. eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA (eDNA) sequences exploiting Nextflow and Singularity (Manuscript submitted for publication, 2020).

    36.
    Hui, T. H., Naruse, T., Fujita, Y. & Kiat, T. S. Observations on the fauna from submarine and associated anchialine caves in Christmas Island, Indian Ocean Territory. (Australia, Raffles. Bull. Zool, 2014).

    37.
    Horton, T. et al. World Register of Marine Species (WoRMS). (2018).

    38.
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  Article  Google Scholar 

    39.
    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial. (2015).

    40.
    Anderson, M., Gorley, R. N. & Clarke, R. K. Permanova+ for Primer: Guide to Software and Statistical Methods. (Primer-E Limited, 2008).

    41.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–5. (2019).

    42.
    Wickham, H. ggplot2: elegant graphics for data analysis. (Springer, 2016).

    43.
    Mitsch, W. J. & Gosselink, J. G. Wetlands, 539 pp. (Van Nostrand Reinhold, NY, 1986).

    44.
    Humphreys, W. F. & Eberhard, S. Subterranean fauna of Christmas Island Indian Ocean. Helictite 37, 59–74 (2001).
    Google Scholar 

    45.
    Greenslade, P. Systematic composition and distribution of Australian cave collembolan faunas with notes on exotic taxa. Helictite 38, 11–15 (2002).
    Google Scholar 

    46.
    Morgan. Decapod crustacea of Christmas Island. History 10, 629–637 (2000).

    47.
    Campos, P. F. & Gilbert, T. M. P. DNA extraction from formalin-fixed material. in Ancient DNA, 81–85 (Springer, 2012).

    48.
    Humphreys, W., & Eberhard, S. Assessment of the ecological values and management options for cave use on Christmas Island: Project 97/002. (1998).

    49.
    Franklin, P. A. Dissolved oxygen criteria for freshwater fish in New Zealand: a revised approach. New Zeal. J. Mar. Freshw. Res. 48, 112–126 (2014).
    CAS  Article  Google Scholar 

    50.
    Barrett, P. J. Searching for water on Christmas Island. Helictite 37, 37–39 (2001).
    Google Scholar 

    51.
    Anon. Water Search – Christmas Island. in Unpublished report held in records of Phosphate Mining Company of Christmas Island 9 (1971).

    52.
    Gorički, Š. Environmental DNA as a conservation tool. in Encyclopedia of Caves 387–393 (Elsevier, 2019).

    53.
    Porritt, K. & Walker, K. Christmas Island GIS 2013 release. (2015).

    54.
    ESRI. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA (2011).

    55.
    Bruce, A. J. & Davie, P. J. F. A new anchialine shrimp of the genus Procaris from Christmas Island: the first occurrence of the Procarididae in the Indian Ocean (Crustacea: Decapoda: Caridea). Zootaxa 1238, 23–33 (2006).
    Article  Google Scholar 

    56.
    Namiotko, T., Wouters, K., Danielopol, D. L. & Humphreys, W. F. On the origin and evolution of a new anchialine stygobitic Microceratina species (Crustacea, Ostracoda) from Christmas Island (Indian Ocean). J. Micropalaeontol. 23, 49–59 (2004).
    Article  Google Scholar 

    57.
    Duy-Jacquemin, M. N. Two new species of Lophoturus (Diplopoda, Penicillata, Lophoproctidae) from caves in Christmas Island, Australia, including the second troglomorph in Penicillata. Zoosystema 36, 29–40 (2014).
    Article  Google Scholar 

    58.
    Huynh, C. & Veenstra, A. A. Two new Lophoturus species (Diplopoda, Polyxenida, Lophoproctidae) from Queensland, Australia. Zookeys 133 (2018).

    59.
    Karanovic, T. & Pesce, G. Copepods from ground waters of Western Australia, VII. Nitokra humphreysi sp. nov. (Crustacea: Copepoda: Harpacticoida). Hydrobiologia 470, 5–12 (2002).

    60.
    Karanovic, T. Subterranean Copepoda from arid Western Australia. Crustaceana Monographs 3, i–vi (2004).
    Google Scholar  More

  • in

    Persistence and size of seasonal populations on a consumer–resource relationship depends on the allocation strategy toward life-history functions

    The long-term population dynamics (i.e., extinction or persistence in an equilibrium value) of the system (2) is mainly dependent on the constant allocation of energy between life-history functions. In the case of population persistence, there is a unique long-term allocation strategy towards reproductive functions that maximizes the population abundance and minimizes individual consumption. In addition, this strategy is dependent on the parameters associated with both fertility ((kappa ) and ({mathscr {B}}_0)) and survival ((xi _{c}) and (e_{1/2})) costs.
    Preliminary results
    To investigate long-term dynamic patterns, we will relate the energy states of reproduction and maintenance, resource density and population abundance at the end of reproductive seasons, namely in the time sequence ({ntau ^+}_{nge 0}). In the system (4) the relationships between the state variables are the same for each (tau ) unit of time. Then, there is a transformation that relates to the vector ( (R,E_ {r}, E_ {m},P) ((n + 1)tau ^+) ) with ( (R,E_ {r}, E_ {m}, P) (n tau ^+) ) such that ( (n + 1) tau ^+ – ntau ^+ = tau ). This relationship is determined by the following discretization (or stroboscopic map) of the impulsive differential system (4):

    $$begin{aligned} left{ begin{array}{lll} E_{r}((n+1)tau ^+)&=(1-kappa gamma )[E_{r}(ntau ^+)+alpha Phi (n,P(ntau ^+))],\ &{}&{}\ E_{m}((n+1)tau ^+)&=dfrac{{mathscr {B}}_0[E_{m}(ntau ^+)+(1-alpha )xi _{c}Phi (n,P(ntau ^+))]}{{mathscr {B}}_0+gamma [E_{r}(ntau ^+)+alpha Phi (n,P(ntau ^+))]},\ P((n+1)tau ^+)&=left{ 1-mu +dfrac{gamma [E_{r}(ntau ^+)+alpha Phi (n,P(ntau ^+))]E_{m}((n+1)tau ^+)}{e_{1/2}+E_{m}((n+1)tau ^+)}right} P(ntau ^+)e^{-lambda tau } end{array} right. end{aligned}$$
    (6)

    and (R(ntau ^+)=K), where the function (Phi ) defined by (5) is evaluated at (t=(n+1)tau ) and extended to (p=0):

    $$begin{aligned} Phi (n,p)=left{ begin{array}{ll} dfrac{R_{max}(e^{lambda tau }-1)}{lambda }, &quad text {if}, p=0, \ &{}\ dfrac{K-R((n+1)tau )e^{lambda tau }}{p}+dfrac{lambda }{p}displaystyle int _{ntau }^{(n+1)tau }{R(s)e^{lambda (s-ntau )}ds}, & quad text {if}, pne 0, end{array} right. end{aligned}$$
    (7)

    for any (nge 0). Indeed, in non-reproductive seasons the consumer–resource dynamics are described by the continuous component of the system (4), which can be solved. Directly we have (P(t)=P(ntau ^+)e^{-lambda (t-ntau )}) for any (tin (ntau ,(n+1)tau ]). In addition, the per capita consumption rate (1) can be expressed in terms of ( R'(t)). Therefore, reproductive and maintenance energy rates are determined by

    $$begin{aligned} E_r'(t)=-alpha frac{R'(t)e^{lambda (t-ntau )}}{P(ntau ^+)}quad text {and}quad E_m'(t)=-(1-alpha )xi _{c}frac{R'(t)e^{lambda (t-ntau )}}{P(ntau ^+)},quad tin (ntau ,(n+1)tau ]. end{aligned}$$

    Integrating these functions in the interval ( (n tau , t] ), we obtain

    $$begin{aligned} E_r(t)&= {} E_{r}(ntau ^+)+alpha Phi (t,R(t),P(ntau ^+)) end{aligned}$$
    (8)

    $$begin{aligned} E_m(t)&= {} E_m(ntau ^+)+(1-alpha )xi _{c}Phi (t,R(t),P(ntau ^+)). end{aligned}$$
    (9)

    Evaluating Eqs. (8)–(9) at ( t = (n + 1)tau ) (end of the non-reproductive season), we have

    $$begin{aligned} E_r((n+1)tau )&= {} E_{r}(ntau ^+)+alpha Phi (n,P(ntau ^+)), end{aligned}$$
    (10)

    $$begin{aligned} E_m(n+1)tau )&= {} E_m(ntau ^+)+(1-alpha )xi _{c}Phi (n,P(ntau ^+)), end{aligned}$$
    (11)

    with (Phi (n,P(ntau ^+))= Phi ((n+1)tau ,R((n+1)tau ),P(ntau ^+))) and (P((n+1)tau )=P(ntau ^+)e^{-lambda tau }) for any (nge 0). In addition, evaluating the discrete component of system (4) at (t=(n+1)tau ), we obtain

    $$begin{aligned} E_{r}((n+1)tau ^+)&= {} (1-kappa gamma )E_{r}((n+1)tau ), end{aligned}$$
    (12)

    $$begin{aligned} E_m((n+1)tau ^+)&= {} frac{{mathscr {B}}_0E_m((n+1)tau )}{{mathscr {B}}_0+gamma E_r((n+1)tau )}, end{aligned}$$
    (13)

    $$begin{aligned} P((n+1)tau ^+)= & {} left[ 1-mu +gamma E_{r}((n+1)tau )frac{E_{m}((n+1)tau ^+)}{e_{1/2}+E_{m}((n+1)tau ^+)}right] P((n+1)tau ). end{aligned}$$
    (14)

    Finally, substituting the Eqs. (10)–(11) into the Esq. (12)–(14) we obtain the discretization given by Eq. (6).
    In order to obtain the equilibrium points of system (6), we can solve the following equations:

    $$begin{aligned} e_{r}&= {} (1-kappa gamma )[e_{r}+alpha Phi (rho )],\ e_{m}&= {} dfrac{{mathscr {B}}_{0}[e_{m}+(1-alpha )xi _{c}Phi (rho )]}{{mathscr {B}}_0+gamma [e_{r}+alpha Phi (rho )]},\ rho&= {} left{ 1-mu +gamma [e_{r}+alpha Phi (rho )]dfrac{e_{m}}{e_{1/2}+e_{m}}right} rho e^{-lambda tau }, end{aligned}$$

    where (e_{r}:=lim _{nrightarrow +infty }{E_{r}(ntau ^+)}), (e_{m}:=lim _{nrightarrow +infty }{E_{m}(ntau ^+)}), (rho :=lim _{nrightarrow +infty }{P(ntau ^+)}) and then, (Phi (rho ):=lim _{nrightarrow +infty }{Phi (n,P(ntau ^+))}). From the first equation, we have (e_{r}=(1-kappa gamma )alpha Phi (P)/kappa gamma ) and then (e_{m}=kappa {mathscr {B}}_0 (1-alpha )xi _{c}/alpha ) for (Pin {0,rho }) such that (Phi (0)=R_{max}(e^{lambda tau }-1)/lambda ) and

    $$begin{aligned} Phi (rho )={mathscr {A}},quad text {where}quad {mathscr {A}}=dfrac{e^{lambda tau }-1+mu }{{mathscr {B}}_0}cdot left{ dfrac{e_{1/2}xi _{c}^{-1}}{1-alpha } +dfrac{kappa {mathscr {B}}_0}{alpha }right} . end{aligned}$$
    (15)

    Therefore, assuming (lambda =0), we have (Gamma (rho )=K-{mathscr {A}}rho ) (from equations (7) and (15)) where (Gamma :=lim _{nrightarrow +infty }{R((n+1)tau )}), (rho ) is the solution of

    $$begin{aligned} r_0ln left( dfrac{K-{mathscr {A}}rho }{K}right) -{mathscr {A}}=-R_{max}tau , end{aligned}$$

    if, and only if,

    $$begin{aligned} rho =dfrac{K}{{mathscr {A}}}left[ 1-exp left( dfrac{{mathscr {A}}-R_{max}tau }{r_0}right) right] . end{aligned}$$
    (16)

    Long-term population dynamics
    From the discretization (6), there are two dynamic behaviors for the long-term population abundance: extinction (see Fig. 2a) and persistence (see Fig. 2b).
    Figure 2

    Long-term behavior of solutions of the model (4). Peak values correspond to the solution of the discrete model (6) in its population component. (a) Extinction behavior, considering (alpha in {0.1,,0.8}) as energy allocation strategy toward reproductive and (b) persistence behavior considering (alpha in {0.35,, 0.55}). We consider the following parameter set (eta =(2,0.5,2,0.25,500,2,1,0.5,0.5,0.86,alpha ,0.1)) where the constant of fertility costs is described by (kappa =(1+gamma )^{-1}).

    Full size image

    The differentiation of these behaviors strongly depends on the individual consumption of resources defined throughout each non-reproductive season by

    $$begin{aligned} C_{I}(t) = frac{[K-R(t)]e^{lambda (t-ntau )}}{P(ntau ^+)},, tin (ntau ,(n+1)tau ]. end{aligned}$$

    At the end of each non-reproductive season, namely at the time ( t = (n + 1) tau ), the individual consumption is given by

    $$begin{aligned} C_I((n+1)tau ) = frac{[K-R((n+1)tau )]e^{lambda tau }}{P(ntau ^+)}, end{aligned}$$
    (17)

    where (R((n+1)tau )) is the non-consumed resource density by the population, the amount that is obtained from the implicit solution of the resource density equation in the continuous component of the system (4). Thus, projecting the individual consumption of the resource into the long term, and taking (Gamma (rho )=(K-{mathscr {A}}rho +lambda {mathscr {I}})e^{-lambda tau }), the expression (17) assumes the form

    $$begin{aligned} C_{I}^{infty }(rho )=left{ begin{array}{ll} {mathscr {A}}+dfrac{K(e^{lambda tau }-1)-lambda {mathscr {I}}}{rho },&{}quad text {if}, rho ne 0,\ &{}\ dfrac{R_{max}(e^{lambda tau }-1)}{lambda },&{}quad text {if}, rho =0, end{array}right. end{aligned}$$
    (18)

    where ({mathscr {I}}:=lim _{nrightarrow +infty }{int _{ntau }^{(n+1)tau }{R(s)e^{lambda (s-ntau )}ds}}). On the one hand, the individual consumption ( C_{I}^{infty } ) is composed of a basis amount corresponding to the term ({mathscr {A}} ) and an amount resulting from the equal division of a resource not consumed by individuals dying during the non-reproductive season, ( K(e^{lambda tau } -1) – lambda {mathscr {I}}). Furthermore, when the population experiences a reduced mortality during the non-reproductive season (i.e., ( lambda approx 0) ), the individual consumption is ( C_{I}^{infty } (rho ) approx {mathscr {A}} ). On the other hand, whether the population abundance is low, the per capita resource is high, implying an individual consumption close to (R_ {max} (e^{lambda tau } -1) / lambda ) (equivalent to taking the limit of ( C_{I}((n+1)tau )) as ( P(ntau ^+)rightarrow 0 )). Certainly, this quantity does not represent the effective individual consumption, but rather establishes an upper limit for this and therefore represents a value of non-persistence. Thus, behaviors related to the equilibrium solutions of the discrete system (6) can be differentiated by the threshold value

    $$begin{aligned} {mathscr {U}}=dfrac{C_{I}^{infty }(0)}{C_{I}^{infty }(rho )}. end{aligned}$$

    In particular, when the mortality of the population is low, the long-term abundance is described by Eq. (16) and the threshold value assumes the following form ({mathscr {U}}=R_{max}tau /{mathscr {A}}). Thus, we conclude that the persistence of the population is established when ({mathscr {U}} >1) and extinction when ({mathscr {U}}le 1).
    Finally, we can see that the stabilization of population size in the long term is in response to a dense-dependent behaviour where the per capita growth rate in the long term is (r_{infty }:={alpha {mathscr {A}}/kappa }{mathscr {S}}(e_m)) equivalent to mortality fraction (mu ), where (e_{m}=kappa {mathscr {B}}_{0}(1-alpha )xi _{c}/alpha ) is the equilibrium value of energy maintenance after the reproductive season. In addition, the derivative of r with respect to P is

    $$begin{aligned} dfrac{dr}{dP} = gamma dfrac{dPhi }{d P}left{ alpha {mathscr {S}}(E_{m})+(E_{r}+alpha Phi )dfrac{d{mathscr {S}}}{dE_{m}}cdot dfrac{dE_{m}}{dPhi }right} , end{aligned}$$

    where (dPhi /d P1) then the long-term population behavior is persistence.

    Proof
    We divide the proof into two cases: (kappa gamma =1) and (0 More

  • in

    3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic

    1.
    Dullo, W. C., Flögel, S. & Rüggeberg, A. Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar. Ecol. Prog. Ser. 371, 165–176 (2008).
    ADS  Article  Google Scholar 
    2.
    Puerta, P. et al. Influence of water masses on the biodiversity and biogeography of deep-sea benthic ecosystems in the North Atlantic. Front. Mar. Sci. 7, 239. https://doi.org/10.3389/fmars.2020.00239 (2020).
    Article  Google Scholar 

    3.
    Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6(4), e18483. https://doi.org/10.1371/journal.pone.0018483 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).
    ADS  Article  Google Scholar 

    5.
    Xu, G., McGillicuddy, D. J. Jr., Mills, S. W. & Mullineaux, L. S. Dispersal of hydrothermal vent larvae at East Pacific rise 9–10° N segment. J. Geophys. Res. Oceans 123, 7877–7895 (2018).
    ADS  Article  Google Scholar 

    6.
    Bracco, A., Liu, G., Galaska, M., Quattrini, A. M. & Herrera, S. Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J. Mar. Syst. 198, 103189. https://doi.org/10.1016/j.jmarsys.2019.103189 (2019).
    Article  Google Scholar 

    7.
    Kenchington, E. et al. Connectivity modelling of areas closed to protect vulnerable marine ecosystems in the northwest Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 143, 85–103 (2019).
    ADS  Article  Google Scholar 

    8.
    Zeng, X., Adams, A., Roffer, M. & He, R. Potential connectivity among spatially distinct management zones for bonefish (Albula vulpes) via larval dispersal. Environ. Biol. Fishes 102, 233–252 (2019).
    Article  Google Scholar 

    9.
    Lange, M. & van Sebille, E. Parcels v0.9: Prototyping a lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev. 10, 4175–4186 (2017).
    ADS  Article  Google Scholar 

    10.
    Knudby, A., Kenchington, E. & Murillo, F. J. Modeling the distribution of Geodia sponges and sponge grounds in the northwest Atlantic. PLoS ONE 8(12), e82306. https://doi.org/10.1371/journal.pone.0082306 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Knudby, A., Lirette, C., Kenchington, E. & Murillo, F. J. Species distribution models of black corals, large gorgonian corals and sea pens in the NAFO Regulatory Area. Ser. No. N6276. NAFO SCR Doc. 13/78 (2013). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/sc/2013/scr13-078.pdf.

    12.
    Beazley, L., Kenchington, E., Yashayaev, I. & Murillo, F. J. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 98, 102–114 (2015).
    ADS  Article  Google Scholar 

    13.
    Murillo, F. J., Kenchington, E., Lawson, J. M., Li, G. & Piper, D. Ancient deep-sea sponge grounds on the Flemish Cap and Grand Bank, northwest Atlantic. Mar. Biol. 163, 63. https://doi.org/10.1007/s00227-016-2839-5 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Kenchington, E., Yashayaev, I., Tendal, O. S. & Jørgensbye, H. Water mass characteristics and associated fauna of a recently discovered Lophelia pertusa (Scleractinia: Anthozoa) reef in Greenlandic waters. Polar Biol. 40, 321–337 (2017).
    Article  Google Scholar 

    15.
    FAO. International Guidelines for the Management of Deep-Sea Fisheries in the High Seas p73 (FAO, Quebec, 2009).
    Google Scholar 

    16.
    NAFO. Conservation and Enforcement Measures. Ser. No. N6638. NAFO/FC Doc. 17/01 (2017). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/fc/2017/CEM-2017-web.pdf.

    17.
    Williams, J. C., Revelle, C. S. & Levin, S. A. Spatial attributes and reserve design models: A review. Environ. Model. Assess. 10, 163–181 (2005).
    Article  Google Scholar 

    18.
    Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73, 242–276 (2007).
    ADS  Article  Google Scholar 

    19.
    Yashayaev, I. & Loder, J. W. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans 121, 8095–8114 (2016).
    ADS  Article  Google Scholar 

    20.
    Wang, S., Wang, Z., Lirette, C., Davies, A. & Kenchington, E. Comparison of physical connectivity particle tracking models in the Flemish Cap region. Can. Tech. Rep. Fish. Aquat. Sci. 3353, 39 (2019).
    Article  Google Scholar 

    21.
    Morato, T. et al. Climate-induced changes in the habitat suitability of cold-water corals and commercially important deep-sea fish in the North Atlantic. Glob. Change Biol. 26, 2181–2202 (2020).
    ADS  Article  Google Scholar 

    22.
    Han, G. & Wang, Z. Monthly-mean circulation in the Flemish Cap region: A modeling study. In Estuarine and Coastal Modeling: Proceedings of the Ninth International Conference on Estuarine and Coastal Modeling (ed. Spaulding, M. L.) 138–154 (American Society of Civil Engineers, Reston, 2006).
    Google Scholar 

    23.
    Han, G. et al. Seasonal variability of the Labrador current and shelf circulation off Newfoundland. J. Geophys. Res. Oceans 113, C10013. https://doi.org/10.1029/2007JC004376 (2008).
    ADS  Article  Google Scholar 

    24.
    Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).
    Article  Google Scholar 

    25.
    Wang, Z., Hamilton, J. & Su, J. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean. Progr. Oceanogr. 155, 54–73 (2017).
    ADS  Article  Google Scholar 

    26.
    Ross, R. E., Nimmo-Smith, W. A. M. & Howell, K. L. Increasing the depth of current understanding: Sensitivity testing of deep-sea larval dispersal models for ecologists. PLoS ONE 11(8), e0161220. https://doi.org/10.1371/journal.pone.0161220 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Wang, Z., Brickman, D. & Greenan, B. J. W. Characteristic evolution of the Atlantic Meridional Overturning Circulation from 1990 to 2015: An eddy-resolving ocean model study. Deep Sea Res. I Oceanogr. Res. Pap. 149, 103056. https://doi.org/10.1016/j.dsr.2019.06.002 (2019).
    Article  Google Scholar 

    28.
    Lazier, J. R. N. & Wright, D. G. Annual velocity variations in the Labrador current. J. Phys. Oceanogr. 23, 659–678 (1993).
    ADS  Article  Google Scholar 

    29.
    Hall, M. M., Torres, D. J. & Yashayaev, I. Absolute velocity along the AR7W section in the Labrador sea. Deep Sea Res. I Oceanogr. Res. Pap. 72, 72–87 (2013).
    ADS  Article  Google Scholar 

    30.
    Schneider, L. et al. Variability of Labrador Sea water transported through Flemish Pass during 1993–2013. J. Geophys. Res. Oceans 120, 5514–5533 (2015).
    ADS  Article  Google Scholar 

    31.
    Varotsou, E., Jochumsen, K., Serra, N., Kieke, D. & Schneider, L. Interannual transport variability of Upper Labrador Sea Water at Flemish Cap. J. Geophys. Res. Oceans 120, 5074–5089 (2015).
    ADS  Article  Google Scholar 

    32.
    Layton, C., Greenan, B. J. W., Hebert, D. E. & Kelley, D. Low-frequency oceanographic variability near Flemish Cap and Sackville Spur. J. Geophys. Res. Oceans 123, 1814–1826 (2018).
    ADS  Article  Google Scholar 

    33.
    Wang, Z., Brickman, D., Greenan, B. J. W. & Yashayaev, I. An abrupt shift in the Labrador current system in relation to winter NAO events. J. Geophys. Res. Oceans 121, 5338–5349 (2016).
    ADS  Article  Google Scholar 

    34.
    Yashayaev, I. & Loder, J. Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett. 44, 1429–1438 (2016).
    ADS  Article  Google Scholar 

    35.
    Delandmeter, P. & van Sebille, E. The parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev. 12, 3571–3584 (2019).
    ADS  Article  Google Scholar 

    36.
    Brickman, D., Wang, Z. & DeTracey, B. Variability of current streams in Atlantic Canadian Waters: A model study. Atmos. Ocean 54, 1–12 (2015).
    Google Scholar 

    37.
    Brickman, D., Hebert, D. & Wang, Z. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf Res. 156, 11–22 (2018).
    ADS  Article  Google Scholar 

    38.
    Pepin, P., Han, G. & Head, E. J. Modelling the dispersal of Calanus finmarchicus on the Newfoundland Shelf: Implications for the analysis of population dynamics from a high frequency monitoring site. Fish. Oceanogr. 22, 371–387 (2013).
    Article  Google Scholar 

    39.
    Le Corre, N., Pepin, P., Han, G., Ma, Z. & Snelgrove, P. V. R. Assessing connectivity patterns among management units of the Newfoundland and Labrador shrimp population. Fish. Oceanogr. 28, 183–202 (2019).
    Article  Google Scholar 

    40.
    Han, G. & Kulka, D. Dispersion of eggs, larvae and pelagic juveniles of White Hake (Urophycis tenuis) in relation to ocean currents of the Grand Bank: A modelling approach. J. Northw. Atl. Fish. Sci. 41, 183–196 (2009).
    Article  Google Scholar 

    41.
    Lynch, D. G. D. et al. Particles in the Coastal Ocean. Theory and Applications 389–452 (Cambridge University Press, Cambridge, 2014).
    Google Scholar 

    42.
    Murillo, F. J., Serrano, A., Kenchington, E. & Mora, J. Epibenthic assemblages of the tail of the Grand Bank and Flemish Cap (northwest Atlantic) in relation to environmental parameters and trawling intensity. Deep Sea Res. I Oceanogr. Res. Pap. 109, 99–122 (2016).
    ADS  Article  Google Scholar 

    43.
    Mariani, S., Uriz, M.-J. & Turon, X. The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. J. Plankton Res. 27, 249–262 (2005).
    Article  Google Scholar 

    44.
    Mariani, S., Uriz, M.-J. & Alcoverro, T. Dispersal strategies in sponge larvae: Integrating the life history of larvae and the hydrologic component. Oecologia 149, 174–184 (2006).
    ADS  Article  PubMed  Google Scholar 

    45.
    NAFO. Northwest Atlantic Fisheries Organization. Conservation and Enforcement Measures 2020. Ser. No. N7028. NAFO/COM Doc. 20-01 (2020). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/com/2020/CEM-2020-web.pdf.

    46.
    Goldsmit, J. et al. Where else? Assessing zones of alternate ballast water exchange in the Canadian eastern Arctic. Mar. Pollut. Bull. 139, 74–90 (2019).
    CAS  Article  PubMed  Google Scholar 

    47.
    Kim, M. et al. Transit time distributions and storage selection functions in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal and external transport variability. Water Resour. Res. 52, 7105–7129 (2016).
    ADS  Article  Google Scholar 

    48.
    Gary, S.F. The Interior Pathway of the Atlantic Meridional Overturning Circulation. Doctor of Philosophy Thesis (Duke University, 2011). (Accessed 5 November 2020); https://dukespace.lib.duke.edu/dspace/handle/10161/4980.

    49.
    Good, S. A., Martin, M. J. & Rayner, N. A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).
    ADS  Article  Google Scholar 

    50.
    Boyer, T. P. et al. World Ocean Database 09. In NOAA Atlas NESDIS 66 (ed. Levitus, S.) (U.S. Government Printing Office, New York, 2009).
    Google Scholar 

    51.
    Wang, S., Wang, Z., Kenchington, E., Yashayaev, I. & Davies, A. 3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic. Mendeley Data https://doi.org/10.17632/chfcjmnvcv.1 (2020).
    Article  Google Scholar  More

  • in

    Heatwaves during low tide are critical for the physiological performance of intertidal macroalgae under global warming scenarios

    1.
    Umanzor, S., Ladah, L. & Calderon-aguilera, L. E. Testing the relative importance of intertidal seaweeds as ecosystem engineers across tidal heights. J. Exp. Mar. Bio. Ecol. 511, 100–107 (2018).
    Article  Google Scholar 
    2.
    Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. & Hawkins, S. J. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3, 4016–4038 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).
    ADS  CAS  Article  Google Scholar 

    4.
    King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography (Cop.) 41, 1469–1484 (2018).
    Article  Google Scholar 

    5.
    Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evol. Syst. 37, 373–404 (2006).
    Article  Google Scholar 

    6.
    Fernández, Á. et al. Additive effects of emersion stressors on the ecophysiological performance of two intertidal seaweeds. Mar. Ecol. Prog. Ser. 536, 135–147 (2015).
    ADS  Article  Google Scholar 

    7.
    IPCC. Summary for Policymakers. In: Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Edenhofer, O. et al.). (Cambridge University Press, Cambridge, 2014).

    8.
    Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Koffi, B. & Koffi, E. Heat waves across Europe by the end of the 21st century: multiregional climate simulations. Clim. Res. 36, 153–168 (2008).
    Article  Google Scholar 

    10.
    Lüning, K. Temperature, salinity and other abiotic factors in Seaweeds. Their Environment, Biogeography and Ecophysiology (Wiley, New York, 1990).
    Google Scholar 

    11.
    Pang, S. J., Jin, Z. H., Sun, J. Z. & Gao, S. Q. Temperature tolerance of young sporophytes from two populations of Laminaria japonica revealed by chlorophyll fluorescence measurements and short-term growth and survival performances in tank culture. Aquaculture 262, 493–503 (2007).
    Article  Google Scholar 

    12.
    Nielsen, S. L., Nielsen, H. D. & Pedersen, M. F. Juvenile life stages of the brown alga Fucus serratus L. Are more sensitive to combined stress from high copper concentration and temperature than adults. Mar. Biol. 161, 1895–1904 (2014).
    CAS  Article  Google Scholar 

    13.
    Schonbeck, M. W. & Norton, T. A. The effects on intertidal fucoid algae of exposure to air under various conditions. Bot. Mar. 23, 141–148 (1980).
    Article  Google Scholar 

    14.
    Pearson, G. A., Lago-Leston, A. & Mota, C. Frayed at the edges: Selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. J. Ecol. 97, 450–462 (2009).
    Article  Google Scholar 

    15.
    Ferreira, J. G., Arenas, F., Martínez, B., Hawkins, S. J. & Jenkins, S. R. Physiological response of fucoid algae to environmental stress: comparing range centre and southern populations. New Phytol. 202, 1157–1172 (2014).
    Article  PubMed  Google Scholar 

    16.
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B. 280, 20122829 (2013).
    Article  PubMed  Google Scholar 

    17.
    Jueterbock, A. et al. Thermal stress resistance of the brown alga Fucus serratus along the North-Atlantic coast: Acclimatization potential to climate change. Mar. Genomics 13, 27–36 (2014).
    Article  PubMed  Google Scholar 

    18.
    Hurd, K., Harrison, P.J., Bischof, K. & Lobban, C.S. Light and photosynthesis in Seaweed Ecology and Physiology (eds. Hurd, K., Harrison, P.J., Bischof, K. & Lobban, C.S.) 176–237. (Cambridge University Press, Cambridge, 2014).

    19.
    Mota, C. F. et al. Differentiation in fitness-related traits in response to elevated temperatures between leading and trailing edge populations of marine macrophytes. PLoS ONE 13, 1–17 (2018).
    Article  CAS  Google Scholar 

    20.
    Martínez, B. et al. Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit. Oecologia 170, 341–353 (2012).
    ADS  Article  PubMed  Google Scholar 

    21.
    Pereira, T. R., Engelen, A. H., Pearson, G. A., Valero, M. & Serrão, E. A. Response of kelps from different latitudes to consecutive heat shock. J. Exp. Mar. Bio. Ecol. 463, 57–62 (2015).
    Article  Google Scholar 

    22.
    Madsen, T. V. & Maberly, S. C. A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). J. phycol. 26(1), 24–30 (1990).
    Article  Google Scholar 

    23.
    Contreras-Porcia, L., López-Cristoffanini, Meynard, A., & Kumar, M. Tolerance pathways to desiccation stress in seaweeds. In Systems Biology of Marine Ecosystems (eds. Kumar, M. & Ralhp, P.) 13–29. (Springer, Berlin, 2017).

    24.
    Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    King, N. G. et al. Cumulative stress restricts niche filling potential of habitat-forming kelps in a future climate. Funct. Ecol. 32, 288–299 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Hereward, H. F. R., King, N. G. & Smale, D. A. Intra-annual variability in responses of a canopy forming kelp to cumulative low tide heat stress: implications for populations at the trailing range edge. J. Phycol. 56, 146–158 (2019).
    Article  PubMed  Google Scholar 

    27.
    Fernández, C. The retreat of large brown seaweeds on the north coast of Spain: the case of Saccorhiza polyschides. Eur. J. Phycol. 46, 352–360 (2011).
    Article  Google Scholar 

    28.
    Méndez-Sandín, M. & Fernández, C. Changes in the structure and dynamics of marine assemblages dominated by Bifurcaria bifurcata and Cystoseira species over three decades (1977–2007). Estuar. Coast. Shelf Sci. 175, 46–56 (2016).
    ADS  Article  Google Scholar 

    29.
    Wilson, K. L., Skinner, M. A. & Lotze, H. K. Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Divers. Distrib. 25, 582–602 (2019).
    Article  Google Scholar 

    30.
    Martínez, B., Viejo, R. M., Carreño, F. & Aranda, S. C. Habitat distribution models for intertidal seaweeds: Responses to climatic and non-climatic drivers. J. Biogeogr. 39, 1877–1890 (2012).
    Article  Google Scholar 

    31.
    Nyström, M. et al. Confronting feedbacks of degraded marine ecosystems. Ecosystems 15, 695–710 (2012).
    Article  Google Scholar 

    32.
    O’Brien, B. S., Mello, K., Litterer, A. & Dijkstra, J. A. Seaweed structure shapes trophic interactions: a case study using a mid-trophic level fish species. J. Exp. Mar. Biol. Ecol. 506, 1–8 (2018).
    Article  Google Scholar 

    33.
    Voerman, S. E., Llera, E. & Rico, J. M. Climate driven changes in subtidal kelp forest communities in NW Spain. Mar. Environ. Res. 90, 119–127 (2013).
    CAS  Article  PubMed  Google Scholar 

    34.
    Duarte, L. et al. Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecol. 51, 1–10 (2013).
    ADS  Article  Google Scholar 

    35.
    Viejo, R. M., Martínez, B., Arrontes, J., Astudillo, C. & Herna, L. Reproductive patterns in central and marginal populations of a large brown seaweed: drastic changes at the southern range limit. Ecography 34, 75–84 (2011).
    Article  Google Scholar 

    36.
    Duarte, L. & Viejo, R. M. Environmental and phenotypic heterogeneity of populations at the trailing range-edge of the habitat-forming macroalga Fucus serratus. Mar. Environ. Res. 136, 16–26 (2018).
    CAS  Article  PubMed  Google Scholar 

    37.
    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 1–10 (2019).
    Article  Google Scholar 

    38.
    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).
    Article  Google Scholar 

    39.
    Gómez-Gesteira, M. et al. The state of climate in NW Iberia. Clim. Res. 48, 109–144 (2011).
    Article  Google Scholar 

    40.
    Kersting, D.K. Cambio Climático en El Medio Marino Español: Impactos, Vulnerabilidad y Adaptación. Oficina Española de Cambio Climático, Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid. http://cort.as/-HXq9 (2016).

    41.
    Philippart, C. J. M. et al. Impacts of climate change on European marine ecosystems: observations, expectations and indicators. J. Exp. Mar. Biol. Ecol. 400, 52–69 (2011).
    Article  Google Scholar 

    42.
    Lima, F. P., Ribeiro, P. A., Queiroz, N., Hawkins, S. J. & Santos, A. M. Do distributional shifts of northern and southern species of algae match the warming pattern?. Glob. Chang. Biol. 13, 2592–2604 (2007).
    ADS  Article  Google Scholar 

    43.
    Díez, I., Muguerza, N., Santolaria, A., Ganzedo, U. & Gorostiaga, J. M. Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar. Coast. Shelf Sci. 99, 108–120 (2012).
    ADS  Article  Google Scholar 

    44.
    Piñeiro-Corbeira, C., Barreiro, R. & Cremades, J. Decadal changes in the distribution of common intertidal seaweeds in Galicia (NW Iberia). Mar. Environ. Res. 113, 106–115 (2016).
    Article  CAS  PubMed  Google Scholar 

    45.
    García-Fernández, A. & Bárbara, I. Studies of Cystoseira assemblages in Northern Atlantic Iberia. Ann. del Jard. Bot. Madrid 73, 1–21 (2016).
    Google Scholar 

    46.
    García, A. G., Olabarria, C., Arrontes, J., Álvarez, Ó. & Viejo, R. M. Spatio-temporal dynamics of Codium populations along the rocky shores of N and NW Spain. Mar. Environ. Res. 140, 394–402 (2018).
    Article  CAS  PubMed  Google Scholar 

    47.
    Fernández, C. Current status and multidecadal biogeographical changes in rocky intertidal algal assemblages: the northern Spanish coast. Estuar. Coast. Shelf Sci. 171, 35–40 (2016).
    ADS  Article  Google Scholar 

    48.
    Eggert, A. Seaweed responses to temperature. In Seaweed Biology. Novel Insights into Ecophysiology, Ecology and Utilization (eds. Wiencke, C. & Bischof, K) 47–66 (Springer, Berlin, 2012).

    49.
    Karsten, U. Seaweed acclimation to salinity and desiccation stress. In Seaweed biology. Novel Insights into Ecophysiology, Ecology and Utilization (eds. Wiencke, C. & Bischof, K) 87–108 (Springer, Berlin, 2012).

    50.
    Phelps, C. M., Boyce, M. C. & Huggett, M. J. Future climate change scenarios differentially affect three abundant algal species in southwestern Australia. Mar. Environ. Res. 126, 69–80 (2017).
    CAS  Article  PubMed  Google Scholar 

    51.
    Olabarria, C., Arenas, F., Fernández, Á., Troncoso, J. S. & Martínez, B. Physiological responses to variations in grazing and light conditions in native and invasive fucoids. Mar. Environ. Res. 139, 151–161 (2018).
    CAS  Article  PubMed  Google Scholar 

    52.
    Schagerl, M. & Möstl, M. Drought stress, rain and recovery of the intertidal seaweed. Fucus spiralis. Mar. Biol. 158, 2471–2479 (2011).
    Article  Google Scholar 

    53.
    Lamela-Silvarrey, C., Fernández, C., Anadón, R. & Arrontes, J. Fucoid assemblages on the north coast of Spain: Past and present (1977–2007). Bot. Mar. 55, 199–207 (2012).
    Article  Google Scholar 

    54.
    Martínez, B., Arenas, F., Trilla, A., Viejo, R. M. & Carreño, F. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Glob. Change Biol. 21, 1422–1433 (2014).
    ADS  Article  Google Scholar 

    55.
    Piñeiro-Corbeira, C., Barreiro, R., Cremades, J. & Arenas, F. Seaweed assemblages under a climate change scenario: Functional responses to temperature of eight intertidal seaweeds match recent abundance shifts. Sci. Rep. 8, 1–9 (2018).
    Article  CAS  Google Scholar 

    56.
    Figueroa, F. L. et al. Yield losses and electron transport rate as indicators of thermal stress in Fucus serratus (Ochrophyta). Algal Res. 41, 101560 (2019).
    Article  Google Scholar 

    57.
    Davison, I. R. & Pearson, G. A. Stress tolerance in intertidal seaweeds. J. Phycol. 32, 197–211 (1996).
    Article  Google Scholar 

    58.
    Schreiber, U., Bilger, W. & Neubauer, C. Chlorophyll Fluorescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis. In Ecophysiology of photosynthesis (eds. Schulze, E.D. & Caldwell, M.M.) 49–70 (Springer, Berlin, 2003).

    59.
    Hurd, K., Harrison, P.J., Bischof, K. & Lobban, C.S. Physico-chemical factors as environmental stressors in seaweed biology. In Seaweed Ecology and Physiology (eds. Hurd, K., Harrison, P.J., Bischof, K. & Lobban, C.S.) 294–348 (Cambridge University Press, Cambridge, 2014).

    60.
    Kumar, M. et al. Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ. Exp. Bot. 72, 194–201 (2011).
    CAS  Article  Google Scholar 

    61.
    Bischof, K. & Rautenberger, R. Seaweed responses to environmental stress: Reactive oxygen and antioxidative strategies. In Seaweed biology. Novel insights into Ecophysiology, Ecology and Utilization (eds. Wiencke, C., Bischof, K.) 109–134 (Springer, Berlin, 2012).

    62.
    Allakhverdiev, S. I. et al. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541–550 (2008).
    CAS  Article  PubMed  Google Scholar 

    63.
    Mota, C. F., Engelen, A. H., Serrão, E. A. & Pearson, G. A. Some don’t like it hot: Microhabitat-dependent thermal and water stresses in a trailing edge population. Funct. Ecol. 29, 640–649 (2015).
    Article  Google Scholar 

    64.
    Hunt, L. J. H. & Denny, M. W. Desiccation protection and disruption: A trade-off for an intertidal marine alga. J. Phycol. 44, 1164–1170 (2008).
    Article  PubMed  Google Scholar 

    65.
    Staehr, P. A. & Wernberg, T. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J. Phycol. 45, 91–99 (2009).
    CAS  Article  PubMed  Google Scholar 

    66.
    Davison, I. R. & Davison, J. O. The effect of growth temperature on enzyme activities in the brown alga Laminaria saccharina. Br. Phycol. J. 22, 77–87 (1987).
    Article  Google Scholar 

    67.
    Young, E. B., Dring, M. J., Savidge, G., Birkett, D. A. & Berges, J. A. Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Plant, Cell Environ. 30, 764–774 (2007).
    CAS  Article  Google Scholar 

    68.
    Monteiro, C. et al. Canopy microclimate modification in central and marginal populations of a marine macroalga. Mar. Biodivers. 49, 415–424 (2019).
    Article  Google Scholar 

    69.
    Dawes, C. J. Physiological ecology. In Marine Botany (ed. Dawes, C.J.) (Wiley, New York, 1998).

    70.
    Rohde, S., Hiebenthal, C., Wahl, M., Karez, R. & Bischof, K. Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: Effects of light deficiency and epibionts on growth and photosynthesis. Eur. J. Phycol. 43, 143–150 (2008).
    Article  Google Scholar 

    71.
    Lüning, K. Seaweed vegetation of the cold and warm temperate regions of the northern hemisphere. In Seaweeds. Their Environment, Biogeography and Ecophysiology. (ed. Lüning, K.) (Wiley, New York, 1990).

    72.
    Schiel, D. R., Lilley, S. A., South, P. M. & Coggins, J. H. J. Decadal changes in sea surface temperature, wave forces and intertidal structure in New Zealand. Mar. Ecol. Prog. Ser. 548, 77–95 (2016).
    ADS  Article  Google Scholar 

    73.
    Fernández de la Hoz, C. F. et al. OCLE: a European open access database on climate change effects on littoral and oceanic ecosystems. Prog. Oceanogr. 168, 222–231 (2018).
    ADS  Article  Google Scholar 

    74.
    Fernández de la Hoz, C., Ramos, E., Puente, A. & Juanes, J. A. Climate change induced range shifts in seaweeds distributions in Europe. Mar. Environ. Res. 148, 1–11 (2019).
    Article  CAS  Google Scholar 

    75.
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    76.
    Halekoh, U., Højsgaard, S. & Yan, J. The R package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).
    Article  Google Scholar 

    77.
    Fox, J. Applied Regression Analysis and Generalized Linear Models 3rd edn. (Sage, Thousand Oaks, 2016).
    Google Scholar  More

  • in

    Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity

    To produce our global Forest Landscape Integrity Index (FLII), we combined four sets of spatially explicit datasets representing: (i) forest extent23; (ii) observed pressure from high impact, localized human activities for which spatial datasets exist, specifically: infrastructure, agriculture, and recent deforestation27; (iii) inferred pressure associated with edge effects27, and other diffuse processes, (e.g., activities such as hunting and selective logging)27 modeled using proximity to observed pressures; and iv) anthropogenic changes in forest connectivity due to forest loss27 (see Supplementary Table 1 for data sources). These datasets were combined to produce an index score for each forest pixel (300 m), with the highest scores reflecting the highest forest integrity (Fig. 1), and applied to forest extent for the start of 2019. We use globally consistent parameters for all elements (i.e., parameters do not vary geographically). All calculations were conducted in Google Earth Engine (GEE)60.
    Forest extent
    We derived a global forest extent map for 2019 by subtracting from the Global Tree Cover product for 200023 annual Tree Cover Loss 2001–2018, except for losses categorized by Curtis and colleagues24 as those likely to be temporary in nature (i.e., those due to fire, shifting cultivation and rotational forestry). We applied a canopy threshold of 20% based on related studies e.g.31,61, and resampled to 300 m resolution and used this resolution as the basis for the rest of the analysis (see Supplementary Note 1 for further methods).
    Observed human pressures
    We quantify observed human pressures (P) within a pixel as the weighted sum of impact of infrastructure (I; representing the combined effect of 41 types of infrastructure weighted by their estimated general relative impact on forests (Supplementary Table 3), agriculture (A) weighted by crop intensity (indicated by irrigation levels), and recent deforestation over the past 18 years (H; excluding deforestation from fire, see Discussion). Specifically, for pixel i:

    $${mathrm{P}}_{mathrm{i}} = {mathrm{exp}}left( { – {upbeta}_1{mathrm{I}}_{mathrm{i}}} right) + {mathrm{exp}}left( { – {upbeta}_2{mathrm{A}}_{mathrm{i}}} right) + {mathrm{exp}}left( { – {upbeta}_3{mathrm{H}}_{mathrm{i}}} right)$$
    (1)

    whereby the values of β were selected so that the median of the non-zero values for each component was 0.75. This use of exponents is a way of scaling variables with non-commensurate units so that they can be combined numerically, while also ensuring that the measure of observed pressure is sensitive to change (increase or decrease) in the magnitude of any of the three components, even at large values of I, A, or H. This is an adaptation of the Human Footprint methodology62. See Supplementary Note 3 for further details.
    Inferred human pressures
    Inferred pressures are the diffuse effects of a set of processes for which directly observed datasets do not exist, that include microclimate and species interactions relating to the creation of forest edges63 and a variety of intermittent or transient anthropogenic pressures such as selective logging, fuelwood collection, hunting; spread of fires and invasive species, pollution, and livestock grazing64,65,66. We modeled the collective, cumulative impacts of these inferred effects through their spatial association with observed human pressure in nearby pixels, including a decline in effect intensity according to distance, and partitioning into stronger short-range and weaker long-range effects. The inferred pressure (P′) on pixel i from source pixel j is:

    $$Pprime _{i,j} = P_jleft( {w_{i,j} + v_{i,j}} right)$$
    (2)

    where wi,j is the weighting given to the modification arising from short-range pressure, as a function of distance from the source pixel, and vi,j is the weighting given to the modification arising from long-range pressures.
    Short-range effects include most of the processes listed above, which together potentially affect most biophysical features of a forest, and predominate over shorter distances. In our model, they decline exponentially, approach zero at 3 km, and are truncated to zero at 5 km (see Supplementary Note 4).

    $$begin{array}{l}{mathrm{w}}_{i,j} = alpha ,{mathrm{exp}}( – lambda {mathrm{d}}_{i,j}),,,,,,[{mathrm{for}},{mathrm{d}}_{{mathrm{i,j}}} le {mathrm{5km}}]\ {mathrm{w}}_{i,j} = {mathrm{0}},,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,[{mathrm{for}},{mathrm{d}}_{i,j} > {mathrm{5km}}]end{array}$$
    (3)

    where α is a constant set to ensure that the sum of the weights across all pixels in the range is 1.85 (see below), λ is a decay constant set to a value of 1 (see67 and other references in Supplementary Note 4) and di,j is the Euclidean distance between the centers of pixels i and j expressed in units of km.
    Long-range effects include over-exploitation of high socio-economic value animals and plants, changes to migration and ranging patterns, and scattered fire and pollution events. We modeled long-range effects at a uniform level at all distances below 6 km and they then decline linearly with distance, conservatively reaching zero at a radius of 12 km65,68 (and other references in Supplementary Note 4):

    $$begin{array}{l}{mathrm{v}}_{i,j} = gamma ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,[for,d_{i,j} le 6km]\ {mathrm{v}}_{i,j} = gamma left( {12 – d_{i,j}} right)/6,,,,[{mathrm{for}},6{mathrm{km}}, < ,{mathrm{d}}_{i,j} le 12{mathrm{km}}]\ {mathrm{v}}_{i,j} = 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,[for,{mathrm{d}}_{i,j} > 12{mathrm{km}}]end{array}$$
    (4)

    where γ is a constant set to ensure that the sum of the weights across all pixels in the range is 0.15 and di,j is the Euclidean distance between the centers of pixels i and j, expressed in kilometers.
    The form of the weighting functions for short- and long-range effects and the sum of the weights (α + γ) were specified based on a hypothetical reference scenario where a straight forest edge is adjacent to a large area with uniform human pressure, and ensuring that in this case total inferred pressure immediately inside the forest edge is equal to the pressure immediately outside, before declining with distance. γ is set to 0.15 to ensure that the long-range effects conservatively contribute no more than 5% to the final index in the same scenario, based on expert opinion and supported e.g., Berzaghi et al.69 regarding the approximate level of impact on values that would be affected by severe defaunation and other long-range effects.
    The aggregate effect from inferred pressures (Q) on pixel i from all n pixels within range (j = 1 to j = n) is then the sum of these individual, normalized, distance-weighted pressures, i.e.,

    $$Q_i = mathop {sum}_{j=1}^{n} {P{prime}_{i,j}}$$
    (5)

    Loss of forest connectivity
    Average connectivity of forest around a pixel was quantified using a method adapted from Beyer et al.70. The connectivity Ci around pixel i surrounded by n other pixels within the maximum radius (numbered j = 1, 2…n) is given by:

    $${mathrm{C}}_i = mathop {sum}_{j=1}^{n} {left( {{mathrm{F}}_j{mathrm{G}}_{i,j}} right)}$$
    (6)

    where Fj is the forest extent is a binary variable indicating if forested (1) or not (0) and Gi,j is the weight assigned to the distance between pixels i and j. Gi,j uses a normalized Gaussian curve, with σ = 20 km and distribution truncated to zero at 4σ for computational convenience (see Supplementary Note 2). The large value of σ captures landscape connectivity patterns operating at a broader scale than processes captured by other data layers. Ci ranges from 0 to 1 (Ci∈[0,1]).
    Current Configuration (CCi) of forest extent in pixel i was calculated using the final forest extent map and compared to the Potential Configuration (PC) of forest extent without extensive human modification, so that areas with naturally low connectivity, e.g., coasts and natural vegetation mosaics, are not penalized. PC was calculated from a modified version of the map of Laestadius et al38. and resampled to 300 m resolution (see Supplementary Note 2 for details). Using these two measures, we calculated Lost Forest Configuration (LFC) for every pixel as:

    $${mathrm{LFC}}_i = 1 – left( {{mathrm{CC}}_i/{mathrm{PC}}_i} right)$$
    (7)

    Values of CCi/PCi  > 1 are assigned a value of 1 to ensure that LFC is not sensitive to apparent increases in forest connectivity due to inaccuracy in estimated potential forest extent – low values represent least loss, high values greatest loss (LFCi∈[0,1]).
    Calculating the Forest Landscape Integrity Index
    The three constituent metrics, LFC, P, and Q, all represent increasingly modified conditions the larger their values become. To calculate a forest integrity index in which larger values represent less degraded conditions we, therefore, subtract the sum of those components from a fixed large value (here, 3). Three was selected as our assessment indicates that values of LFC + P + Q of 3 or more correspond to the most severely degraded areas. The metric is also rescaled to a convenient scale (0-10) by multiplying by an arbitrary constant (10/3). The FLII for forest pixel i is thus calculated as:

    $${mathrm{FLII}}_i = left[ {10/3} right] (3 – {mathrm{min}}(3,,[P_i + Q_i + {mathrm{LFC}}_i]))$$
    (8)

    where FLIIi ranges from 0 to 10, forest areas with no modification detectable using our methods scoring 10 and those with the most scoring 0.
    Illustrative forest integrity classes
    Whilst a key strength of the index is its continuous nature, the results can also be categorized for a range of purposes. In this paper three illustrative classes were defined, mapped, and summarized to give an overview of broad patterns of integrity in the world’s forests. The three categories were defined as follows.
    High Forest Integrity (scores ≥ 9.6) Interiors and natural edges of more or less unmodified naturally regenerated (i.e., non-planted) forest ecosystems, comprised entirely or almost entirely of native species, occurring over large areas either as continuous blocks or natural mosaics with non-forest vegetation; typically little human use other than low-intensity recreation or spiritual uses and/or low-intensity extraction of plant and animal products and/or very sparse presence of infrastructure; key ecosystem functions such as carbon storage, biodiversity, and watershed protection and resilience expected to be very close to natural levels (excluding any effects from climate change) although some declines possible in the most sensitive elements (e.g., some high value hunted species).
    Medium Forest Integrity (scores  > 6.0 but More

  • in

    Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves

    1.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  Article  Google Scholar 
    2.
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Sci. Rep. 6, 38402 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
    ADS  Article  Google Scholar 

    6.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Douglas, A. E. Coral bleaching—how and why? Mar. Pollut. Bull. 46, 385–392 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).
    ADS  Article  Google Scholar 

    9.
    Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871-2017. Sci. Rep. 8, 6079 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

    11.
    van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 

    12.
    Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don’t marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307–334 (2019).
    ADS  Article  Google Scholar 

    13.
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Conserv. 236, 305–314 (2019).
    Article  Google Scholar 

    14.
    Stat, M., Gates, R. D. & Clade, D. Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous Sign, or all of the above? J. Mar. Biol. 2011, e730715 (2011).
    Article  Google Scholar 

    15.
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).
    ADS  Article  Google Scholar 

    16.
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    17.
    Chakravarti, L. J., Beltran, V. H. & Oppen, M. J. Hvan Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Change Biol. 23, 4675–4688 (2017).
    ADS  Article  Google Scholar 

    18.
    Oppen, M. J. Hvan et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).
    ADS  Article  Google Scholar 

    19.
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Coral reefs: corals’ adaptive response to climate change. Nature 430, 741 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Berkelmans, R. & Van Oppen, M. J. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).
    Article  Google Scholar 

    21.
    Magel, J. M. T., Dimoff, S. A. & Baum, J. K. Direct and indirect effects of climate change-amplified pulse heat stress events on coral reef fish communities. Ecol. Appl. 30, e-2124 (2020).
    Article  Google Scholar 

    22.
    Magel, J. M. T., Burns, J. H. R., Gates, R. D. & Baum, J. K. Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance. Sci. Rep. 9, 2512 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Claar, D. C., Cobb, K. M. & Baum, J. K. In situ and remotely sensed temperature comparisons on a Central Pacific atoll. Coral Reefs 38, 1343–1349 (2019).
    ADS  Article  Google Scholar 

    24.
    Hume, B. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next‐generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Hume, B. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl Acad. Sci. USA 113, 4416–4421 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Cunning, R., Silverstein, R. N. & Baker, A. C. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc. R. Soc. B Biol. Sci. 282, 20141725 (2015).
    CAS  Article  Google Scholar 

    27.
    Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in Panama and Ecuador during the 1997-1998 El Niño-Southern Oscillation Event: spatial/temporal patterns and comparisons with the 1982-1983 event. Bull. Mar. Sci. 69, 79–109 (2001).
    Google Scholar 

    28.
    Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. & Sinclair, W. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc. R. Soc. B Biol. Sci. 275, 1359–1365 (2008).
    CAS  Article  Google Scholar 

    29.
    Hoegh-Guldberg, O. Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Change 11, 215–227 (2011).
    Article  Google Scholar 

    30.
    Putnam, H. M., Barott, K. L., Ainsworth, T. D. & Gates, R. D. The vulnerability and resilience of reef-building corals. Curr. Biol. 27, R528–R540 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Hoegh-Guldberg, O. Climate change and world’s coral reefs: implications for the Great Barrier Reef. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 

    32.
    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).
    ADS  Article  Google Scholar 

    33.
    Cunning, R., Ritson-Williams, R. & Gates, R. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).
    ADS  CAS  Article  Google Scholar 

    34.
    Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5, e13258 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Lee, M. J., Jeong, H. J., Jang, S. H., Lee, S. Y. & Kang, N. S. S. Most low-abundance ‘background’ Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microb. Ecol. 71, 771–783 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Bay, L. K., Doyle, J., Logan, M. & Berkelmans, R. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. R. Soc. Open Sci. 3, 160322 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Rowan, R. Thermal adaptation in reef coral symbionts. Nature 430, 742–742 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    van Oppen, M. J. H., Baker, A. C., Coffroth, M. A. & Willis, B. L. Bleaching resistance and the role of algal endosymbionts. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds. van Oppen, M. J. H. & Lough, J. M.) 83–102 (Springer, 2009). https://doi.org/10.1007/978-3-540-69775-6_6.

    40.
    Buddemeier, R. W. & Fautin, D. G. Coral bleaching as an adaptive mechanism. Bioscience 43, 320–326 (1993).
    Article  Google Scholar 

    41.
    Hoegh-Guldberg, O., Jones, R. J., Ward, S. & Loh, W. K. Communication arising. Is coral bleaching really adaptive? Nature 415, 601–602 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Cantin, N. E., van Oppen, M. J. H., Willis, B. L. & Mieog, J. C. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405 (2009).
    ADS  Article  Google Scholar 

    43.
    Shore-Maggio, A., Callahan, S. M. & Aeby, G. S. Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral, Montipora capitata. Coral Reefs 37, 507–517 (2018).
    ADS  Article  Google Scholar 

    44.
    Littman, R. A., Bourne, D. G. & Willis, B. L. Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol. Ecol. 19, 1978–1990 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient Availability and Metabolism Affect the Stability of Coral–Symbiodiniaceae Symbioses. Trends Microbiol. 27, 678–689 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Bamston, A. G., Chelliah, M. & Goldenberg, S. B. Documentation of a highly ENSO‐related SST region in the equatorial pacific: research note. Atmos-Ocean 35, 367–383 (1997).
    Article  Google Scholar 

    48.
    Walsh, S. M. Ecosystem-scale effects of nutrients and fishing on coral reefs. J. Mar. Biol. 2011, 1–13 (2011).
    Article  Google Scholar 

    49.
    Watson, M. S., Claar, D. C. & Baum, J. K. Subsistence in isolation: Fishing dependence and perceptions of change on Kiritimati, the world’s largest atoll. Ocean Coast. Manag. 123, 1–8 (2016).
    Article  Google Scholar 

    50.
    Morate, O. 2015 Population and Housing Census. Volume 1: Management Report and Basic Tables. (National Statistics Office, Ministry of Finance, Bairiki, Tarawa, Kiribati, 2016).

    51.
    Bosserelle, C., Reddy, S. & Lai, D. WACOP wave climate reports. (WACOP Kiribati, Kirtimati, 2015).

    52.
    Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K. & McPherson, J. M. Marine socio-environmental covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98, 1976 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191 (1990).
    ADS  Article  Google Scholar 

    54.
    Liu, G. et al. NOAA Coral Reef Watch’s 5km satellite coral bleaching heat stress monitoring product suite version 3 and four-month outlook version 4. Reef. Encount. 32, 39–45 (2017).
    Google Scholar 

    55.
    Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Stat, M., Loh, W. K. W., LaJeunesse, T. C., Hoegh-Guldberg, O. & Carter, D. A. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28, 709–713 (2009).
    ADS  Article  Google Scholar 

    57.
    Baker, A. C. & Cunning, R. Bulk gDNA extraction from coral samples. https://doi.org/10.17504/protocols.io.dyq7vv (2016)

    58.
    LaJeunesse, T. C. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a ‘species’ level marker. J. Phycol. 37, 866–880 (2001).
    CAS  Article  Google Scholar 

    59.
    Cunning, R., Gates, R. D. & Edmunds, P. J. Using high-throughput sequencing of ITS2 to describe Symbiodinium metacommunities in St. John, US Virgin Islands. PeerJ 5, e3472 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Pochon, X., Pawlowski, J., Zaninetti, L. & Rowan, R. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol. 139, 1069–1078 (2001).
    Article  Google Scholar 

    61.
    Stat, M., Pochon, X., Cowie, R. O. M. & Gates, R. D. Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar. Ecol. Prog. Ser. 386, 83–96 (2009).
    ADS  CAS  Article  Google Scholar 

    62.
    Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Sampayo, E. M., Dove, S. G. & LaJeunesse, T. C. Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus. Symbiodinium. Mol. Ecol. 18, 500–519 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. https://doi.org/10.1186/1471-2105-10-421 (2009)

    67.
    Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968–979 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Mieog, J. C., van Oppen, M. J. H., Berkelmans, R., Stam, W. T. & Olsen, J. L. Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol. Ecol. Resour. 9, 74–82 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
    ADS  Article  Google Scholar 

    70.
    van Oppen, M. J., Willis, B. L., Vugt, H. W. & Miller, D. J. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, cnidaria) using nuclear DNA sequence analyses. Mol. Ecol. 9, 1363–1373 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Smith, E. G., Hume, B. C. C., Delaney, P., Wiedenmann, J. & Burt, J. A. Genetic structure of coral-Symbiodinium symbioses on the world’s warmest reefs. PLoS ONE 12, e0180169 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Santos, S. R. & Coffroth, M. A. Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol. Bull. 204, 10–20 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352–359 (2016).
    Article  Google Scholar 

    74.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analysis in R. Bioinformatics 35, 525–528 (2019).
    Article  CAS  Google Scholar 

    75.
    Pochon, X. & Gates, R. D. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Mol. Phylogenet. Evol. 56, 6 (2010).
    Article  CAS  Google Scholar 

    76.
    Putnam, H. M., Stat, M., Pochon, X. & Gates, R. D. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc. R. Soc. B Biol. Sci. 279, 4352–4361 (2012).
    Article  Google Scholar 

    77.
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
    CAS  Article  Google Scholar 

    78.
    Oksanen, J. Vegan: an introduction to ordination. http://cran.r-project.org/web/packages/vegan/vignettes/introvegan. (2017)

    79.
    Bates, D. et al. Package ‘lme4’. Convergence 12, 2 (2015).
    Google Scholar 

    80.
    Lenth, R., Singmann, H. & Love, J. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, (2018). More

  • in

    A unifying framework for studying and managing climate-driven rates of ecological change

    1.
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    2.
    Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. A 369, 842–867 (2011).
    PubMed  Google Scholar 

    3.
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
    CAS  PubMed  Google Scholar 

    4.
    McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).
    CAS  Google Scholar 

    5.
    Herrero, C., García-Olivares, A. & Pelegrí, J. L. Impact of anthropogenic CO2 on the next glacial cycle. Clim. Change 122, 283–298 (2014).
    CAS  Google Scholar 

    6.
    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).
    Google Scholar 

    7.
    Berger, A. & Loutre, M. F. An exceptionally long interglacial ahead? Science 297, 1287–1288 (2002).
    CAS  PubMed  Google Scholar 

    8.
    Burke, K. D. et al. Pliocene and Eocene provide best analogues for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).
    CAS  PubMed  Google Scholar 

    9.
    Fisichelli, N. A., Schuurman, G. W. & Hoffman, C. H. Is ‘resilience’ maladaptive? Towards an accurate lexicon for climate change adaptation. Environ. Manag. 57, 753–758 (2016).
    Google Scholar 

    10.
    Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).
    Google Scholar 

    11.
    Scheffers, B. R. & Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 9, 581–586 (2019).
    Google Scholar 

    12.
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
    PubMed  Google Scholar 

    13.
    Hughes, F. M. R., Adams, W. M. & Stroh, P. A. When is open-endedness desirable in restoration projects? Restor. Ecol. 20, 291–295 (2012).
    Google Scholar 

    14.
    Williams, J. W. & Burke, K. in Climate Change and Biodiversity: Transforming the Biosphere (eds Lovejoy, T & Hannah, L.) 128–141 (Yale Univ. Press, 2019).

    15.
    Webb, T. III. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).
    Google Scholar 

    16.
    Blonder, B. et al. Predictability in community dynamics. Ecol. Lett. 20, 293–306 (2017).
    PubMed  Google Scholar 

    17.
    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).
    PubMed  Google Scholar 

    18.
    Huntley, B. et al. Climatic disequilibrium threatens conservation priority forests. Conserv. Lett. 11, e12349 (2018).
    Google Scholar 

    19.
    Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307 (2016).
    PubMed  Google Scholar 

    21.
    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
    PubMed  PubMed Central  Google Scholar 

    22.
    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).
    CAS  PubMed  Google Scholar 

    23.
    Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).
    PubMed  Google Scholar 

    24.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    CAS  PubMed  Google Scholar 

    25.
    Williams, J. W., Blois, J. L. & Shuman, B. N. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J. Ecol. 99, 664–677 (2011).
    Google Scholar 

    26.
    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
    CAS  PubMed  Google Scholar 

    27.
    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
    CAS  PubMed  Google Scholar 

    28.
    Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).
    CAS  PubMed  Google Scholar 

    29.
    Boettiger, C. & Hastings, A. Tipping points: from patterns to predictions. Nature 493, 157–158 (2013).
    CAS  PubMed  Google Scholar 

    30.
    Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).
    Google Scholar 

    31.
    Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 593–595 (2019).
    Google Scholar 

    32.
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008).
    PubMed  Google Scholar 

    33.
    Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil. Trans. R. Soc. B 370, 20130263 (2014).
    Google Scholar 

    34.
    IPCC in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Summary for Policymakers (Cambridge Univ. Press, 2013).

    35.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Google Scholar 

    36.
    Kudo, G. & Ida, T. Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311–2320 (2013).
    Google Scholar 

    37.
    Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
    PubMed  Google Scholar 

    38.
    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).
    CAS  PubMed  Google Scholar 

    39.
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    CAS  PubMed  Google Scholar 

    40.
    Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th Century. Science 320, 1768–1771 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Bellemare, J. & Deeg, C. Horticultural escape and naturalization of Magnolia tripetala in western Massachusetts: biogeographic context and possible relationship to recent climate change. Rhodora 117, 371–383 (2015).
    Google Scholar 

    42.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    CAS  PubMed  Google Scholar 

    43.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    CAS  PubMed  Google Scholar 

    44.
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).
    Google Scholar 

    45.
    Albright, T. P. et al. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens. Environ. 115, 245–254 (2011).
    Google Scholar 

    46.
    Cazelles, K. et al. Homogenization of freshwater lakes: recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Glob. Change Biol. 25, 4222–4233 (2019).
    Google Scholar 

    47.
    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).
    PubMed  PubMed Central  Google Scholar 

    48.
    Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).
    Google Scholar 

    50.
    Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).
    Google Scholar 

    51.
    Hof, C., Levinsky, I., Araújo, M. B. & Rahbek, C. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987–2990 (2011).
    Google Scholar 

    52.
    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).
    Google Scholar 

    53.
    Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science 345, 1177–1180 (2014).
    CAS  PubMed  Google Scholar 

    54.
    Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008).
    CAS  PubMed  Google Scholar 

    55.
    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26 (Suppl.), 194–220 (2000).
    Google Scholar 

    56.
    Prentice, I. C., Bartlein, P. J. & Webb, T. III. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).
    Google Scholar 

    57.
    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).
    Google Scholar 

    58.
    Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).
    PubMed  Google Scholar 

    59.
    Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).
    CAS  Google Scholar 

    60.
    Tinner, W. & Lotter, A. F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554 (2001).
    Google Scholar 

    61.
    Juggins, S. Quantitative reconstructions in paleolimnology: new paradigm or sick science? Quat. Sci. Rev. 64, 20–32 (2013).
    Google Scholar 

    62.
    Ammann, B. et al. Responses to rapid warming at Termination 1a at Gerzensee (Central Europe): primary succession, albedo, soils, lake development, and ecological interactions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 111–131 (2013).
    Google Scholar 

    63.
    Ammann, B., von Grafenstein, U. & van Raden, U. J. Biotic responses to rapid warming about 14,685 yr BP: introduction to a case study at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 3–12 (2013).
    Google Scholar 

    64.
    Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
    CAS  PubMed  Google Scholar 

    66.
    Hui, C., Roura-Pascual, N., Brotons, L., Robinson, R. A. & Evans, K. L. Flexible dispersal strategies in native and non-native ranges: environmental quality and the ‘good–stay, bad–disperse’ rule. Ecography 35, 1024–1032 (2012).
    Google Scholar 

    67.
    Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).
    Google Scholar 

    68.
    Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl Acad. Sci. USA 106, 19685–19692 (2009).
    CAS  PubMed  Google Scholar 

    69.
    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).
    CAS  PubMed  Google Scholar 

    70.
    Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).
    PubMed  Google Scholar 

    71.
    Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).
    PubMed  Google Scholar 

    72.
    Raffa, K. F., Powell, E. N. & Townsend, P. A. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proc. Natl Acad. Sci. USA 110, 2193–2198 (2013).
    CAS  PubMed  Google Scholar 

    73.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  PubMed  Google Scholar 

    74.
    Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).
    Google Scholar 

    75.
    Ricklefs, R. E. & Latham, R. E. Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperature perennial herbs. Am. Nat. 139, 1305–1321 (1992).
    Google Scholar 

    76.
    McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).
    Google Scholar 

    77.
    Pither, J., Pickles, B. J., Simard, S. W., Ordonez, A. & Williams, J. W. Below-ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160 (2018).
    PubMed  Google Scholar 

    78.
    Lawler, J. J. & Olden, J. D. Reframing the debate over assisted colonization. Front. Ecol. Environ. 9, 569–574 (2011).
    Google Scholar 

    79.
    Schwartz, M. W. et al. Managed relocation: integrating the scientific, regulatory, and ethical challenges. BioScience 62, 732–743 (2012).
    Google Scholar 

    80.
    Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).
    Google Scholar 

    81.
    Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).
    Google Scholar 

    82.
    Sax, D. F., Early, R. & Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 28, 517–523 (2013).
    PubMed  Google Scholar 

    83.
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
    PubMed  Google Scholar 

    84.
    Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).
    Google Scholar 

    85.
    Wheeler, H. C., Høye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions—implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).
    PubMed  Google Scholar 

    86.
    Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34, 885–888 (2019).
    PubMed  Google Scholar 

    87.
    Chamberlain, C. J., Cook, B. I., de Cortazar Atauri, I. G. & Wolkovich, E. M. Rethinking false spring risk. Glob. Change Biol. 25, 2209–2220 (2019).
    Google Scholar 

    88.
    Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).
    CAS  PubMed  Google Scholar 

    89.
    Pagel, J. et al. Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. Proc. Natl Acad. Sci. USA 117, 3663–3669 (2020).
    CAS  PubMed  Google Scholar 

    90.
    Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. USA 116, 17867–17873 (2019).
    CAS  PubMed  Google Scholar 

    91.
    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).
    CAS  PubMed  Google Scholar 

    92.
    Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 0182 (2017).
    Google Scholar 

    93.
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
    Google Scholar 

    94.
    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    95.
    Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).
    Google Scholar 

    96.
    Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 23, 1356–1365 (2014).
    Google Scholar 

    97.
    Perret, D. L., Leslie, A. B. & Sax, D. F. Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.). Glob. Ecol. Biogeogr. 28, 429–441 (2019).
    Google Scholar 

    98.
    Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).
    PubMed  Google Scholar 

    99.
    Knight, C. A. et al. Community assembly and climate mismatch in Late-Quaternary eastern North American pollen assemblages. Am. Nat. 195, 166–180 (2020).
    PubMed  Google Scholar 

    100.
    Butterfield, B. J., Anderson, R. S., Holmgren, C. A. & Betancourt, J. L. Extinction debt and delayed colonization have had comparable but unique effects on plant community–climate lags since the Last Glacial Maximum. Glob. Ecol. Biogeogr. 28, 1067–1077 (2019).
    Google Scholar 

    101.
    Graham, R. W. et al. Timing and causes of a middle Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).
    CAS  PubMed  Google Scholar 

    102.
    Woods, K. D. & Davis, M. B. Paleoecology of range limits: beech in the Upper Peninsula of Michigan. Ecology 70, 681–696 (1989).
    Google Scholar 

    103.
    Jackson, S. T. et al. Inferring local to regional changes in forest composition from Holocene macrofossils and pollen of a small lake in central Upper Michigan. Quat. Sci. Rev. 98, 60–73 (2014).
    Google Scholar 

    104.
    Seeley, M., Goring, S. & Williams, J. W. Testing hypotheses about environmental and dispersal controls on Fagus grandifolia distributions in the upper Midwest Great Lakes region. J. Biogeogr. 46, 405–419 (2019).
    Google Scholar 

    105.
    Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. Holocene 18, 19–30 (2008).
    Google Scholar 

    106.
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).
    Google Scholar 

    107.
    Svenning, J.-C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).
    PubMed  Google Scholar 

    108.
    Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).
    CAS  PubMed  Google Scholar 

    109.
    Feng, G. et al. Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly shaped by modern climate and glacial–interglacial climate change. Glob. Ecol. Biogeogr. 28, 1393–1402 (2019).
    Google Scholar 

    110.
    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
    Google Scholar 

    111.
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).
    Google Scholar 

    112.
    Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford Univ. Press, 2017).

    113.
    Kowarik, I. in Plant Invasions. General Aspects and Special Problems (eds Pysek, P. et al.) 15–39 (SPB Academic Publishing, 1995).

    114.
    Bruce, K. A., Cameron, G. N. & Harcombe, P. A. Initiation of a new woodland type on the Texas Coastal Prairie by the Chinese tallow tree (Sapium sebiferum (L.) Roxb.). Bull. Torrey Bot. Club 122, 215–225 (1995).
    Google Scholar 

    115.
    Castro, S. A., Figueroa, J. A., Muñoz-Schick, M. & Jaksic, F. M. Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers. Distrib. 11, 183–191 (2005).
    Google Scholar 

    116.
    Hoffmann, J. H. & Moran, V. C. The invasive weed Sesbania punicea in South Africa and prospects for its biological control. S. Afr. J. Sci. 84, 740–472 (1988).
    Google Scholar 

    117.
    Byers, J. E. et al. Invasion expansion: time since introduction best predicts global ranges of marine invaders. Sci. Rep. 5, 12436 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    118.
    Phillips, M. L., Murray, B. R., Leishman, M. R. & Ingram, R. The naturalization to invasion transition: are there introduction-history correlates of invasiveness in exotic plants of Australia? Austral Ecol. 35, 695–703 (2010).
    Google Scholar 

    119.
    Scott, J. K. & Panetta, F. D. Predicting the Australian weed status of southern African plants. J. Biogeogr. 20, 87–93 (1993).
    Google Scholar 

    120.
    Arroyo, M. T. K., Rozzi, R., Simonetti, J. A., Marquet, P. & Sallaberry, M. in Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecosystems (eds Mittermeier, R. A. et al.) 161–171 (Cemex, Conservation International, 1999).

    121.
    Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).
    CAS  PubMed  Google Scholar 

    122.
    Ordonez, A. & Williams, J. W. Projected climate reshuffling based on multivariate climate-availability, climate-analog, and climate-velocity analyses: implications for community disaggregation. Clim. Change 119, 659–675 (2013).
    Google Scholar 

    123.
    Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA 117, 12192–12200 (2020).
    CAS  PubMed  Google Scholar 

    124.
    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).
    Google Scholar 

    125.
    Turner, M. G. et al. Climate change, ecosystems, and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).
    PubMed  Google Scholar 

    126.
    Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
    CAS  PubMed  Google Scholar 

    127.
    Calder, W. J. & Shuman, B. N. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado. Ecology 98, 2585–2600 (2017).
    PubMed  Google Scholar 

    128.
    Shuman, B. N., Marsicek, J., Oswald, W. W. & Foster, D. R. Predictable hydrological and ecological responses to Holocene North Atlantic variability. Proc. Natl Acad. Sci. USA 116, 5985–5990 (2019).
    CAS  PubMed  Google Scholar 

    129.
    Allison, T. D., Moeller, R. E. & Davis, M. B. Pollen in laminated sediments provides evidence of mid-Holocene forest pathogen outbreak. Ecology 67, 1101–1105 (1986).
    Google Scholar 

    130.
    Ramiadantsoa, T., Stegner, M. A., Williams, J. W. & Ives, A. R. The potential role of intrinsic processes in generating abrupt and quasi-synchronous tree declines during the Holocene. Ecology 100, e02579 (2019).
    PubMed  Google Scholar 

    131.
    Seddon, A. W. R., Froyd, C. A., Witkowski, A. & Willis, K. J. A quantitative framework for analysis of regime shifts in a Galápagos coastal lagoon. Ecology 95, 3046–3055 (2014).
    Google Scholar 

    132.
    Gray, S. T., Betancourt, J. L., Jackson, S. J. & Eddy, R. G. Role of multidecadal climatic variability in a range extension of pinyon pine. Ecology 87, 1124–1130 (2006).
    PubMed  Google Scholar 

    133.
    Lyford, M. E., Jackson, S. T., Betancourt, J. L. & Gray, S. T. Influence of landscape structure and climate variability on a late Holocene plant migration. Ecol. Monogr. 73, 567–583 (2003).
    Google Scholar 

    134.
    Tinner, W. & Lotter, A. F. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat. Sci. Rev. 25, 526–549 (2006).
    Google Scholar 

    135.
    Saltré, F. A. et al. Climate or migration: what limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 22, 1217–1227 (2013).
    Google Scholar 

    136.
    Ruosch, M. et al. Past and future evolution of Abies alba forests in Europe – comparison of a dynamic vegetation model with palaeo data and observations. Glob. Change Biol. 22, 727–740 (2016).
    Google Scholar 

    137.
    Danz, N. P., Frelich, L. E., Reich, P. B. & Niemi, G. J. Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie–forest biome boundary of historic Minnesota, USA. J. Veg. Sci. 24, 1129–1140 (2013).
    Google Scholar 

    138.
    Grimm, E. C. Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecol. Monogr. 54, 291–311 (1984).
    Google Scholar 

    139.
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).
    CAS  PubMed  Google Scholar 

    140.
    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474 (2015).
    Google Scholar 

    141.
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
    PubMed  Google Scholar 

    142.
    Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).
    Google Scholar 

    143.
    Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, 129 (2011).
    Google Scholar 

    144.
    Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).
    Google Scholar 

    145.
    Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).
    PubMed  Google Scholar 

    146.
    Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).
    PubMed  PubMed Central  Google Scholar 

    147.
    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).
    PubMed  Google Scholar 

    148.
    Choi, Y. D. Restoration ecology to the future: a call for new paradigm. Restor. Ecol. 15, 351–353 (2007).
    Google Scholar 

    149.
    Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).
    PubMed  Google Scholar 

    150.
    Sprugel, D. G. Disturbance, equilibrium, and environmental variability: what is ‘Natural’ vegetation in a changing environment? Biol. Conserv. 58, 1–18 (1991).
    Google Scholar 

    151.
    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).
    CAS  PubMed  Google Scholar 

    152.
    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
    CAS  PubMed  Google Scholar 

    153.
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).
    PubMed  Google Scholar 

    154.
    Truitt, A. M. et al. What is novel about novel ecosystems: managing change in an ever-changing world. Environ. Manag. 55, 1217–1226 (2015).
    Google Scholar 

    155.
    Murcia, C. et al. A critique of the ‘novel ecosystem’ concept. Trends Ecol. Evol. 29, 548–553 (2014).
    PubMed  Google Scholar 

    156.
    Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).
    PubMed  Google Scholar 

    157.
    Svenning, J.-C. Proactive conservation and restoration of botanical diversity in the Anthropocene’s “rambunctious garden”. Am. J. Bot. 105, 963–966 (2018).
    PubMed  Google Scholar 

    158.
    Jepson, P. Recoverable Earth: a twenty-first century environmental narrative. Ambio 48, 123–130 (2019).
    PubMed  Google Scholar 

    159.
    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).
    CAS  PubMed  Google Scholar 

    160.
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
    PubMed  Google Scholar 

    161.
    Willis, K. J. & MacDonald, G. M. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annu. Rev. Ecol. Evol. Syst. 42, 267–287 (2011).
    Google Scholar 

    162.
    Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big data science: Current advances, challenges, and solutions. BioScience 68, 563–576 (2018).
    Google Scholar 

    163.
    Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).
    Google Scholar 

    164.
    Clark, J. S. et al. Ecological forecasts: an emerging imperative. Science 293, 657–660 (2001).
    CAS  PubMed  Google Scholar 

    165.
    Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).
    CAS  PubMed  Google Scholar 

    166.
    Dietze, M. C. Ecological Forecasting (Princeton Univ. Press, 2017).

    167.
    Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).
    CAS  PubMed  Google Scholar 

    168.
    Thomas, S. M., Griffiths, S. W. & Ormerod, S. J. Adapting streams for climate change using riparian broadleaf trees and its consequences for stream salmonids. Freshw. Biol. 60, 64–77 (2015).
    Google Scholar 

    169.
    Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J. & Maclean, I. M. D. Using in situ management to conserve biodiversity under climate change. J. Appl. Ecol. 53, 885–894 (2016).
    PubMed  PubMed Central  Google Scholar 

    170.
    Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).
    Google Scholar 

    171.
    Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 

    172.
    Bureau of Reclamation Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs (US Department of the Interior, Bureau of Reclamation, Technical Services Center, 2014).

    173.
    Delcourt, H. R. & Delcourt, P. A. Quaternary Ecology: A Paleoecological Perspective (Chapman & Hall, 1991).

    174.
    IPCC in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (Cambridge Univ. Press, 2014).

    175.
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
    CAS  PubMed  Google Scholar 

    176.
    McDowell, P. F., Webb, T. III & Bartlein, P. J. in The Earth as Transformed by Human Action (eds Turner, B. L. II et al.) 143–162 (Cambridge Univ. Press, 1990).

    177.
    Delcourt, P. A. & Delcourt, H. R. Long-Term Forest Dynamics of the Temperate Zone: A Case Study of Late-Quaternary Forests in Eastern North America (Springer-Verlag, 1987).

    178.
    Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).
    Google Scholar 

    179.
    Kidwell, S. M. Biology in the Anthropocene: challenges and insights from young fossil records. Proc. Natl Acad. Sci. USA 12, 4922–4929 (2015).
    Google Scholar 

    180.
    National Research Council Abrupt Climate Change: Inevitable Surprises (National Academy Press, 2002).

    181.
    Rahmstorf, S. in Encyclopedia of Ocean Sciences (eds Steele, J. et al.) 1–6 (Academic Press, 2001).

    182.
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
    CAS  PubMed  Google Scholar 

    183.
    Staver, A. C., Archibald, S. & Levin, S. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).
    PubMed  Google Scholar 

    184.
    Andersen, T., Carstensen, J., Hernández-Garcia, E. & Duarte, C. M. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24, 49–57 (2009).
    PubMed  Google Scholar 

    185.
    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
    Google Scholar 

    186.
    Claussen, M. Late Quaternary vegetation-climate feedbacks. Clim. Past 5, 203–216 (2009).
    Google Scholar 

    187.
    Liu, Z., Notaro, M. & Gallimore, R. Indirect vegetation-soil moisture feedback with application to Holocene North Africa climate. Glob. Change Biol. 16, 1733–1743 (2010).
    Google Scholar  More