More stories

  • in

    Domestication via the commensal pathway in a fish-invertebrate mutualism

    Study location and species
    Field research and sample collection was conducted on the shallow reef habitat surrounding the Smithsonian’s Carrie Bow Cay Research Station, Belize (16°48’9.8316”N, 88°4’54.8148”W) between January-April 2018. Mysid swarms, identified primarily as Mysidium integrum50, are present on these reefs year-round, and this species was used in all experiments. Six damselfish species in the genus Stegastes were present at the study site. Three of these, the longfin damselfish (Stegastes diencaeus), the phylogenetically similar dusky damselfish (Stegastes adustus)31, and threespot damselfish (Stegastes planifrons), can be characterized as ‘intensive territorial grazers’ or ‘farmers’ that tend and aggressively defend the turf-algae communities on which they feed24. The others, the bicolor damselfish (Stegastes partitus), cocoa damselfish (Stegastes variabilis) and beaugregory (Stegastes leucostictus) tend turf-algae to a lesser degree and display limited territoriality. As the most common intensive-farming species, the longfin damselfish was used in all experiments.
    Analytical software
    Analyses were conducted using R51. Generalized linear mixed models (GLMMs) were fitted with the lme4 package52 and zero-inflated GLMMs were fitted with the glmmTMB package53. The multinomial logistic regression model used for algal analysis was performed with the packages nnet54 and effects55.
    Associations between mysids and damselfish farms
    To determine whether mysid swarms were associated with Stegastes farms, we conducted a series of transects. Thirty 30-m transects were laid haphazardly across the study site. For 1 m on each side of the transect we recorded: the total number of swarms, the total number of Stegastes and whether a swarm was associated with a Stegastes farm. Each Stegastes was recorded to species. We used a (chi)2 test to investigate whether the presence of intensive-farming Stegastes was associated with swarm presence.
    Mysid swarm movement and site fidelity
    Mysidium swarms will often leave the substrate at dusk to feed in the water column, and isotope tagging indicates that swarms regroup at the same location each morning where they remain during daylight hours29. To test whether swarms at our study site followed this pattern, and whether swarms remained associated with the same Stegastes farms, we tested for site fidelity across a 20-day period. Thirty locations within longfin damselfish farms that had mysid swarms were tagged with numbered flagging tape. Thirty longfin damselfish farms where swarms were absent were also tagged. All locations were tagged between 9 and 10 a.m. Each location was visited at day 1, 10, and 20 post-tagging, 1-h post-sunrise and 1-h post-sunset, with swarm presence or absence recorded. In addition to formal rechecking, sites were frequently reassessed throughout this period, both during the day and at night, to confirm the consistency of the patterns recorded. We used a Friedman test to investigate whether swarms exhibited site fidelity to particular farms during the day over the 20-day period. The full and final model included time as a predictor and farm identification as a blocking factor.
    Mysid responses to habitat-related olfactory cues
    Choice experiments were conducted to determine whether mysids used olfactory cues to actively seek out intensive-farming damselfish33. Experiments were conducted using a two-channel choice flume (13 cm length × 4 cm width)56. Header tanks contained two separate water sources, each gravity fed into separate sides of the flume at equivalent volumes (~100 mL min−1). The flume design ensures that once laminar flow is achieved each water mass remains separated on either side of the main chamber with no areas of turbulence or eddies, presenting an individual placed in the center with a choice between the two separate water sources/olfactory cues. Regular dye tests confirmed laminar flow and that the two water sources remained separated.
    Five separate cue combinations were tested. Four cues were tested against a seawater control (seawater with no added cue): longfin damselfish (putative mutualism partner), farmed turf (putative mutualism partner’s environment), bicolor damselfish (non-intensive-farming damselfish that did not associate with mysids), and slippery dick wrasse (Halichoeres bivittatus, a diurnal predator of mysids). The fifth combination was a mysid-associated longfin damselfish versus a non-mysid-associated longfin damselfish. Cues were prepared by soaking an individual fish, or turf-covered rock from a longfin damselfish farm, in 10 L of seawater from the Carrie Bow Cay flow-through system for 1-h. All selected fishes and turf pieces had a similar biomass to minimize variation in cue concentration. For each trial set, both the cue and seawater control were produced concurrently, with both buckets sitting adjacent with constant aeration for the 1-h period. In this way, both cue and control had matching salinity, temperature, and O2 levels, minimizing any opportunity for behavioral bias due to the physical properties of the water and ensuring proper laminar flow. Each cue combination was split into three blocks: three separate fish or turf-covered rocks (one per block) were used to prepare treatments, with ten replicates obtained from each block (a total of n = 30 per combination). Individual mysids were only used in one trial.
    All trials were conducted blind, with the tester having no knowledge of the cues tested or the side on which each cue was placed. A second observer was also present at all times. For each trial, a mysid was placed at the downstream center of the flume chamber. Following a 2-min habituation period, its position on either the left or right side of chamber was recorded at 5-s intervals for 2-min. Water sources were then switched to the opposite sides, and the chamber was allowed to flush for 1-min. The 2-min habituation period and 2-min test period were then repeated to exclude the possibility that mysids were exhibiting a side preference (i.e., spending 100% of time on one side of the chamber despite the water source being switched midway through the trial). Mysids that exhibited a side preference (n = 6 of 156) were excluded from analysis. Data were analyzed using paired t-tests, except for the longfin damselfish versus seawater comparison. Here, a Wilcoxon signed-rank test was used because these data did not meet the assumption of normality.
    Effect of predation on the damselfish-mysid relationship
    To first test whether mysids receive protection by residing within the boundaries of longfin damselfish farms we conducted a predation-risk experiment. Sixty trials were conducted (n = 30 inside, and n = 30 immediately outside of farms), which each consisted of three treatments: (1) live mysids, (2) an ‘imitation’ mysid control, and (3) a seawater control. Each treatment consisted of a weighted 3.5 L polyethylene bag filled with seawater. The live mysid treatment consisted of 150 mysids. The ‘imitation’ mysid control was included to account for the presence of objects within the bag and consisted of 150 1 mm long sections of 4 mm diameter silicon tubing. These lightweight sections were slightly negatively buoyant and moved within the bag due to external water movement. Finally, the seawater control consisted of an empty seawater-filled bag. For each trial, bags were sequentially placed on the substrate in random order.
    Each trial was 1-min in duration, during which the focal bag was filmed using an HD video camera (GoPro). After 1-min, this bag was removed and a 1-min rest period was observed. A bag containing the next treatment was then placed in the same location, and the 1-min trial was repeated. This same procedure was then repeated for the third bag. Videos were analyzed to compare: the number of fishes that attacked each bag, the number of strikes taken, the species of the attacker(s), and the number and species of fishes that came within 1 m of the bag but did not attack.
    We used a zero-inflated GLMM with a Poisson distribution to test whether the number of strikes directed by predators at bags differed according to treatment (empty bag, artificial mysids, and live mysids), and location (inside versus outside of farm). The full and final model included treatment, location, and the interaction between treatment and location as fixed effects and trial as a random effect. We used a GLMM with a Poisson distribution to test whether the number of species that directed strikes at bags differed according to treatment and location. The full model included treatment, location and the interaction between treatment and location as fixed effects and trial as a random effect; however, the interaction was removed from the final model as it was found to be non-significant. We used a GLMM with a negative-binomial distribution to test whether the number of individuals that directed strikes at bags differed according to treatment and location. The full model included treatment, location and the interaction between treatment and location as fixed effects and trial as a random effect; however, the interaction was removed from the final model as it was found to be non-significant. Finally, we used a zero-inflated GLMM with a Poisson distribution to test whether the number of chases by longfin damselfish directed towards mysid predators differed according to treatment, location and the interaction between treatment and location. The full model included treatment, location and the interaction between treatment and location as fixed effects and trial as a random effect; however, the interaction was removed from the final model after being found to be non-significant.
    In addition, to test whether the persistence of naturally occurring swarms was dependent on the protection damselfish provide, we conducted a second field-based predation experiment. Thirty trials were conducted (n = 15 treatment, and n = 15 control) with replicates for both conducted in a random order. For treatment trials, a swarm within a damselfish farm was observed on SCUBA from a distance of 2 m for a 5-min period. During this time, all strikes on the swarm by predatory fishes were recorded with this number taken as the baseline predation rate. Immediately following this period, a second 5-min observation was conducted during which a second diver actively prevented damselfish from defending their territory, pressuring fish into reef structure by gesturing at them using a fiberglass pole. During this second period, all strikes on the swarm were again recorded with this number taken as the change in predation rate. Control trials accounted for the effect of the second diver’s actions on predator behavior. Control period 1 was as above; however, during the second period, the second diver made movements and noise using the pole but did not direct this at damselfish, allowing them to continue to defend their farm. All strikes on the swarm were recorded. During control trials, damselfish did not react to the second diver’s actions indicating that their territorial behavior was not affected. Differences in strikes between periods were determined using Wilcoxon signed-rank tests.
    Effect of mysids on damselfish behavior
    We conducted field observations to determine whether mysid-associated longfin damselfish behaved differently to those without mysids. Adult longfin damselfish that were (n = 30), or were not (n = 30), associated with swarms were observed for 30-min. For each observation, the focal fish was observed on SCUBA from a distance of at least 2-m. During each observation we recorded the number of bites on the farmed substrate, the number of strikes directed towards the swarms, the number of chases directed towards intruding fishes, the number of chases directed towards intruding fishes attempting to feed on farm-associated mysids and the number of non-aggressive interactions between the focal fish and the swarm. At the end of each observation, we recorded the total number of longfin damselfish associated with each farm with only one observation made per farm. An estimate of farm area was also made at this point by using a transect tape to measure the maximum length and width across the area that was actively defended and tended during the observation period.
    We used a GLM with a Gaussian distribution to determine whether the number of chases by longfin damselfish was associated with the presence or absence of mysids. The full model included farm type (mysids present or absent), longfin damselfish group size, and the interaction between farm type and group size as fixed effects; however, the interaction between farm type and group size, and group size were removed from the final model as they were found to be non-significant. A GLM with a Gaussian distribution was used to test whether the number of bites on farmed substrate by focal longfin damselfish was associated with the presence or absence of mysids. The full model included farm type (mysids present or absent) longfin damselfish group size and the interaction between farm type and group size as fixed effects; however, the interaction between farm type and group size, and group size were removed from the final model because they were found to be non-significant. Whether farm area differed between farms with and without mysids was determined using a Wilcoxon rank sum test.
    Effect of mysid swarms on longfin damselfish body condition
    To determine the effect of mysid presence on longfin damselfish body condition, we compared the hepatosomatic index (HSI) of damselfish with and without mysids in their farms. This measure can reflect the amount of stored energy in the liver, and thus it can indicate of the relationship between diet and physical condition in damselfishes57,58,59,60. Thirty adult longfin damselfish (75–100 mm TL) were sampled from farms with or without associated mysids. Damselfish were collected on snorkel using hand nets and a 1:3:7 clove oil/ethanol/seawater mixture. Prior to euthanasia, fish were maintained in a 20 L flow-through aquaria for 24-h. Fish were not fed during this period. Fish were euthanized by immersion in a clove oil/ethanol/seawater solution to induce anesthesia followed by immersion in an ice slurry. Once euthanized, fish were measured (SL and TL) and weighed. The liver of each fish was removed and weighed, and the alimentary canal checked to confirm that all digested matter was evacuated. The HSI of each fish was calculated as the proportion of total weight contributed by the liver [(liver weight (g)/total weight (g)) × 100]. We used a GLM with a Gaussian distribution to test the effect of mysid presence on hepatosomatic index (HSI). The full model included damselfish length, farm type (mysids present or absent) and the interaction between damselfish length and farm type as fixed effects; however, the interaction and damselfish length were removed from the final model as they were found to be non-significant.
    Effect of mysid swarms on algal composition within damselfish farms
    Algal composition was assessed to determine the effect of mysid swarms on algae within longfin damselfish farms. Sixty farms were analyzed: 30 with and 30 without swarms. Three 20 cm × 20 cm quadrats were placed haphazardly within each farm, and a series of four photographs were taken, including one overhead shot encompassing the entire quadrat and three macro shots of the algae within the quadrat. Within each quadrat, algal composition and coverage was determined to phylum, including Chlorophyta, Rhodophyta, and Ochrophyta. Percent cover of these groups was assigned based on a categorical classification scheme: low (30% coverage). To obtain a single assessment of algal composition for each phylum within each farm, the categorical classification was averaged across the three quadrats photographed in each farm. We used a multinomial logistic regression model to assess how the percent cover of Ochrophyta within farms was affected by swarm presence. The response within each model was multinomial: low, medium, or high percent coverage of Ochrophyta. The model included the fixed effect of mysid presence or absence.
    Estimates of mysid swarm density
    Surveys were conducted to determine the average size and density of farm-associated swarms. The size and area of 30 focal swarms were determined by measuring the length, width and height across the widest points when first observed. Each swarm was then collected using hand nets and returned to the laboratory where the total number of mysids within each swarm was counted. Finally, swarm density was estimated by calculating the maximum ellipsoid volume based on the measured axes and dividing this volume by the total number of mysids, giving an estimate of mysids mL−1.
    Mysid waste excretion and nutrient availability
    We used an aquarium experiment to determine if mysid swarms produce key nutrients at concentrations that could enhance benthic algal growth. Artificial seawater was produced at sunrise by mixing deionized fresh water with a phosphate and nitrogen-free aquarium salt (Instant Ocean® Sea Salt) to 35ppt salinity. Once mixed, the absence of phosphate and ammonia was confirmed through color comparison using laboratory-grade test kits (Hach PO-19A test kit, Hach NI-SA test kit), and the temperature and pH of the water were also measured. Seawater was then distributed into a series of 1 L plastic containers, along with one air stone per container. Containers were covered to prevent water loss through evaporation.
    Mysids were collected using hand nets and returned to the lab where they were allowed to habituate for 30-min in a bucket containing 3 L of artificial seawater. For sorting, mysids were removed from the habituation bucket using a hand net and placed into a petri dish containing artificial seawater. Mysids were individually selected using a sterile plastic pipette and moved into a second petri dish containing artificial seawater. The water in the second petri dish was then removed using the pipette, and mysids were placed into the appropriate container corresponding to one of three treatments: 0 mysids L−1 (n = 30), which served as a control, 100 mysids L−1 (n = 30) and 200 mysids L−1 (n = 30). These densities were selected as they are representative of the range found during the swarm density surveys. Each day, containers were haphazardly assigned a treatment prior to sorting, with an equal number of replicates for each treatment (n = 5) conducted each day. Trials were conducted from 08:00 to 16:00. This period was selected to represent the daylight hours when mysids are present, but was also short enough to prevent stress due to nutrient accumulation. Following this 8-h period, mysids were removed, and the concentration of phosphorous (P) and nitrogen-ammonia (NH3–N) in each container were recorded to the nearest 0.1 mgL−1 through color comparison. The temperature, salinity, and pH of each container were also recorded at this point.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Global phosphorus dynamics in terms of phosphine

    1.
    Devai, I., Felföldy, L., Wittner, I. & Plósz, S. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere. Nature 333, 343 (1988).
    Article  Google Scholar 
    2.
    Cao, J. et al. Study on effects of electron donors on phosphine production from anaerobic activated sludge. Water 9, 563 (2017).
    Article  Google Scholar 

    3.
    Zhang, C., Zhang, K., Wei, W., Rong, H. & Liu, T. Release rule of phosphine in anaerobic sequencing batch process. China Water Wastewater 26, 53–55 (2010).
    Google Scholar 

    4.
    Hong, Y. et al. Distribution of phosphine in the offshore area of the Southwest Yellow Sea, East Asia. Mar. Chem. 118, 67–74 (2010).
    Article  Google Scholar 

    5.
    Liu, Z., Jia, S., Wang, B. & Liu, S. Differences in phosphine contents of various environment samples and the effecting factors. Acta Scien. Circum. 5, 852–857 (2004).
    Google Scholar 

    6.
    Zhu, R., Liu, Y., Sun, J., Sun, L. & Geng, J. Stimulation of gaseous phosphine production from Antarctic seabird guanos and ornithogenic soils. J. Environ. Sci. 21, 150–154 (2009).
    Article  Google Scholar 

    7.
    Zhang, R., Wu, M., Wang, Q., Geng, J. & Yang, X. The determination of atmospheric phosphine in Ny-Ålesund. Sci. Bull. 55, 1662–1666 (2010).
    Article  Google Scholar 

    8.
    Zhu, R., Ding, W., Hou, L. & Wang, Q. Matrix-bound phosphine and phosphorus fractions in surface sediments of Arctic Kongsfjorden, Svalbard: effects of glacial activity and environmental variables. Chemosphere 103, 240–249 (2014).
    Article  Google Scholar 

    9.
    Wang, Q., Geng, J.-j., Jin, H.-m., Shi, H.-h. & Wang, X.-r. Temporal and spatial distributions of microbes and phosphine in Lake Taihu sediments. China Environ. Sci. 26, 350–354 (2006).
    Google Scholar 

    10.
    Ding, L. et al. Sources of matrix-bound phosphine in advanced wastewater treatment system. Sci. Bull. 50, 1274–1276 (2005).
    Article  Google Scholar 

    11.
    Li, J.-B. et al. Matrix bound phosphine in sediments of the Changjiang Estuary and its adjacent shelf areas. Estuar. Coast. Shelf Sci. 90, 206–211 (2010).
    Article  Google Scholar 

    12.
    You, L. et al. Distribution of matrix-bound phosphine in surface sediments of Jinpu Bay. Environ. Sci. 34, 3804–3809 (2013).
    Google Scholar 

    13.
    Niu, X. et al. Phosphine in paddy fields and the effects of environmental factors. Chemosphere 93, 1942–1947 (2013).
    Article  Google Scholar 

    14.
    Glindemann, D., Edwards, M., Liu, J.-A. & Kuschk, P. Phosphine in soils, sludges, biogases and atmospheric implications—a review. Ecol. Eng. 24, 457–463 (2005).
    Article  Google Scholar 

    15.
    Han, S.-H., Zhuang, Y.-H., Liu, J.-A. & Glindemann, D. Phosphorus cycling through phosphine in paddy fields. Sci. Total Environ. 258, 195–203 (2000).
    Article  Google Scholar 

    16.
    Han, C., Geng, J., Zhang, R., Wang, X. & Gao, S. Matrix-bound phosphine and phosphorus fractions in paddy soils. J. Environ. Monit. 13, 844–849 (2011).
    Article  Google Scholar 

    17.
    Han, C. et al. Production and emission of phosphine gas from wetland ecosystems. J. Environ. Sci. 22, 1309–1311 (2010).
    Article  Google Scholar 

    18.
    Glindemann, D., Stottmeister, U. & Bergmann, A. Free phosphine from the anaerobic biosphere. Environ. Sci. Pollut. Res. 3, 17–19 (1996).
    Article  Google Scholar 

    19.
    Wang, J., Niu, X., Ma, J. & Lu, M. Conversion of phosphorus to phosphine by microbial deoxidization under anaerobic conditions. Microbiol. China 1, 34–41 (2015).
    Google Scholar 

    20.
    Ding, L. et al. Effect of pH on phosphine production and the fate of phosphorus during anaerobic process with granular sludge. Chemosphere 59, 49–54 (2005).
    Article  Google Scholar 

    21.
    Zhang, R. et al. Effects of free-air CO2 enrichment on phosphine emission from rice field. Environ. Sci. 30, 2694–2700 (2009).
    Google Scholar 

    22.
    Ma, J., Chen, W., Niu, X. & Fan, Y. The relationship between phosphine, methane, and ozone over paddy field in Guangzhou, China. Glob. Ecol. Conserv. 17, 1–7 (2019).
    Google Scholar 

    23.
    Zhang, C., Zhang, K., Sun, L., Rong, H. & Liu, T. Effect of carbon sources on phoshpine production from anaerobic activated sludge. China Water Wastewater 29, 103–106 (2013).
    Google Scholar 

    24.
    Liu, J.-A. et al. Phosphine in the urban air of Beijing and its possible sources. Water Air Soil Pollut. 116, 597–604 (1999).
    Article  Google Scholar 

    25.
    Niu, X. et al. Temporal and spatial distributions of phosphine in Taihu Lake, China. Sci. Total Environ. 323, 169–178 (2004).
    Article  Google Scholar 

    26.
    Zhu, R. et al. Tropospheric phosphine and its sources in coastal Antarctica. Environ. Sci. Technol. 40, 7656–7661 (2006).
    Article  Google Scholar 

    27.
    Zhu, R., Kong, D., Sun, L., Geng, J. & Wang, X. The first determination of atmospheric phosphine in Antarctica. Sci. Bull. 52, 131–135 (2007).
    Article  Google Scholar 

    28.
    Zhu, R. et al. Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmos. Environ. 41, 1567–1573 (2007).
    Article  Google Scholar 

    29.
    An, S. et al. Mechanism of matrix-bound phosphine production in response to atmospheric elevated CO2in paddy soils. Environ. Pollut. 239, 253–260 (2018).
    Article  Google Scholar 

    30.
    Zhang, K., Zhang, C., Wei, W., Rong, H. & Liu, T. Phosphine release in aerobic sequencing reactor process and anaerobic/aerobic sequencing reactor process. Environ. Eng. 5, 127–129 (2011).
    Google Scholar 

    31.
    Ding, L. et al. Distribution of phosphine and phosphorus balance in a full scale UASB system. J. Nanjing Uni. Nat. Sci. 41, 620–626 (2005).
    Google Scholar 

    32.
    Hou, L. et al. Emission of phosphine in intertidal marshes of the Yangtze Estuary. Appl. Geochem. 26, 2260–2265 (2011).
    Article  Google Scholar 

    33.
    Glindemann, D., Bergmann, A., Stottmeister, U. & Gassmann, G. Phosphine in the lower terrestrial troposphere. Naturwissenschaften 83, 131–133 (1996).
    Article  Google Scholar 

    34.
    Feng, Y., Wang, Q., Yao, Z. & Geng, J. Research on distribution of phosphine in the natural environment and its environmental factors. Chin. High. Technol. Lett. 19, 650–655 (2009).
    Google Scholar 

    35.
    Geng, J. et al. Simultaneous monitoring of phosphine and of phosphorus species in Taihu Lake sediments and phosphine emission from lake sediments. Biogeochemistry 76, 283–298 (2005).
    Article  Google Scholar 

    36.
    Han, C. et al. Free atmospheric phosphine concentrations and fluxes in different wetland ecosystems, China. Environ. Pollut. 159, 630–635 (2011).
    Article  Google Scholar 

    37.
    Glindemann, D., Edwards, M. & Kuschk, P. Phosphine gas in the upper troposphere. Atmos. Environ. 37, 2429–2433 (2003).
    Article  Google Scholar 

    38.
    Gassmann, G., Van Beusekom, J. & Glindemann, D. Offshore atmospheric phosphine. Naturwissenschaften 83, 129–131 (1996).
    Article  Google Scholar 

    39.
    Roels, J. & Verstraete, W. Occurrence and origin of phosphine in landfill gas. Sci. Total Environ. 327, 185–196 (2004).
    Article  Google Scholar 

    40.
    Han, S.-h., Wang, Z.-j., Zhuang, Y.-h., Yu, Z.-m. & Glindemann, D. Phosphine in various matrixes. J. Environ. Sci. (China) 15, 339–341 (2003).
    Google Scholar 

    41.
    Devai, I., DeLaune, R., Devai, G., Patrick, J. W. H. & Czegeny, I. Phosphine production potential of various wastewater and sewage sludge sources. Anal. Lett. 32, 1447–1457 (1999).
    Article  Google Scholar 

    42.
    Zhu, R. et al. Matrix-bound phosphine in Antarctic biosphere. Chemosphere 64, 1429–1435 (2006).
    Article  Google Scholar 

    43.
    Niu, X. et al. Matrix-bound phosphine in the paddy soils of South China and its relationship to environmental factors and bacterial composition. J. Soils Sediment. 16, 592–604 (2016).
    Article  Google Scholar 

    44.
    Zhang, J., Geng, J., Zhang, R., Ren, H. & Wang, X. Matrix-bound phosphine in paddy fields under a simulated increase in global atmospheric CO2. Environ. Chem. 7, 287–291 (2010).
    Article  Google Scholar 

    45.
    Eismann, F., Glindemann, D., Bergmannt, A. & Kuschk, P. Soils as source and sink of phosphine. Chemosphere 35, 523–533 (1997).
    Article  Google Scholar 

    46.
    Devai, I. & Delaune, R. Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org. Geochem. 23, 277–279 (1995).
    Article  Google Scholar 

    47.
    Gassmann, G. Phosphine in the fluvial and marine hydrosphere. Mar. Chem. 45, 197–205 (1994).
    Article  Google Scholar 

    48.
    Gassmann, G. & Schorn, E. Phosphine from harbor surface sediments. Naturwissenschaften 80, 78–80 (1993).
    Article  Google Scholar 

    49.
    Song, X. et al. Matrix-bound phosphine in sediments from Lake Illawarra, New South Wales, Australia. Mar. Pollut. Bull. 62, 1744–1750 (2011).
    Article  Google Scholar 

    50.
    Feng, Z., Song, X. & Yu, Z. Seasonal and spatial distribution of matrix-bound phosphine and its relationship with the environment in the Changjiang River Estuary, China. Mar. Pollut. Bull. 56, 1630–1636 (2008).
    Article  Google Scholar 

    51.
    Feng, Z., Song, X. & Yu, Z. Distribution characteristics of matrix-bound phosphine along the coast of China and possible environmental controls. Chemosphere 73, 519–525 (2008).
    Article  Google Scholar 

    52.
    Yu, Z. & Song, X. Matrix-bound phosphine: a new form of phosphorus found in sediment of Jiaozhou Bay. Sci. Bull. 48, 31–35 (2003).
    Article  Google Scholar 

    53.
    Mu, Q., Song, X. & Yu, Z. Matrix-bound phosphine (PH3) distribution characteristics in the sediments of Jiaozhou Bay. China Environ. Sci. 26, 135–138 (2005).
    Google Scholar 

    54.
    Zhu, R. et al. Occurrence of matrix-bound phosphine in polar ornithogenic tundra ecosystems: effects of alkaline phosphatase activity and environmental variables. Sci. Total Environ. 409, 3789–3800 (2011).
    Article  Google Scholar 

    55.
    Eismann, F., Glindemann, D., Bergmann, A. & Kuschk, P. Balancing phosphine in manure fermentation. J. Environ. Sci. Health B 32, 955–968 (1997).
    Article  Google Scholar 

    56.
    Li, J.-B., Zhang, G.-L., Zhang, J., Liu, S.-M. & Ren, J.-L. Matrix bound phosphine in sediments of the yellow sea and its coastal areas. Cont. Shelf Res. 30, 743–751 (2010).
    Article  Google Scholar 

    57.
    Han, C., Geng, J., Zhang, J., Wang, X. & Gao, S. Phosphine migration at the water–air interface in Lake Taihu, China. Chemosphere 82, 935–939 (2011).
    Article  Google Scholar 

    58.
    Glindemann, D., Edwards, M. & Schrems, O. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmos. Environ. 38, 6867–6874 (2004).
    Article  Google Scholar 

    59.
    Bains, W., Petkowski, J. J., Sousa-Silva, C. & Seager, S. New environmental model for thermodynamic ecology of biological phosphine production. Sci. Total Environ. 658, 521–536 (2019).
    Article  Google Scholar 

    60.
    Cao, H., Liu, J., Zhuang, Y. & Dietmar, G. Emission sources of atmospheric phosphine and simulation of phosphine formation. Sci. China, Ser. B: Chem. 43, 162 (2000).
    Article  Google Scholar 

    61.
    Zhu, R. et al. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils. Sci. Rep. 4, 1–9 (2014).
    Google Scholar 

    62.
    Roels, J. & Verstraete, W. Biological formation of volatile phosphorus compounds. Bioresour. Technol. 79, 243–250 (2001).
    Article  Google Scholar 

    63.
    Sun, L., Zhang, C., Zhang, K., Rong, H. & Liu, T. Effects of different phosphorus sources on phosphine production from anaerobic sludge. China Water Wastewater 28, 89–91 (2012).
    Google Scholar 

    64.
    Jenkins, R., Morris, T.-A., Craig, P. J., Ritchie, A. & Ostah, N. Phosphine generation by mixed-and monoseptic-cultures of anaerobic bacteria. Sci. Total Environ. 250, 73–81 (2000).
    Article  Google Scholar 

    65.
    Glindemann, D., Edwards, M. & Morgenstern, P. Phosphine from rocks: mechanically driven phosphate reduction? Environ. Sci. Technol. 39, 8295–8299 (2005).
    Article  Google Scholar 

    66.
    Glindemann, D., Eismann, F., Bergmann, A., Kuschk, P. & Stottmeister, U. Phosphine by bio-corrosion of phosphide-rich iron. Environ. Sci. Pollut. Res. 5, 71 (1998).
    Article  Google Scholar 

    67.
    Glindemann, D., De Graaf, R. & Schwartz, A. W. Chemical reduction of phosphate on the primitive Earth. Orig. Life Evol. Biosphere 29, 555–561 (1999).
    Article  Google Scholar 

    68.
    Hammer, D. A. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural (CRC Press, 1989).

    69.
    Whitmire, S. L. & Hamilton, S. K. Rates of anaerobic microbial metabolism in wetlands of divergent hydrology on a glacial landscape. Wetlands 28, 703–714 (2008).
    Article  Google Scholar 

    70.
    Picek, T., Čížková, H. & Dušek, J. Greenhouse gas emissions from a constructed wetland—plants as important sources of carbon. Ecol. Eng. 31, 98–106 (2007).
    Article  Google Scholar 

    71.
    Roels, J., Huyghe, G. & Verstraete, W. Microbially mediated phosphine emission. Sci. Total Environ. 338, 253–265 (2005).
    Article  Google Scholar 

    72.
    Pasek, M. A role for phosphorus redox in emerging and modern biochemistry. Curr. Opin. Chem. Biol. 49, 53–58 (2019).
    Article  Google Scholar 

    73.
    Pasek, M. A., Sampson, J. M. & Atlas, Z. Redox chemistry in the phosphorus biogeochemical cycle. Proc. Nat. Acad. Sci. USA 111, 15468–15473 (2014).
    Article  Google Scholar 

    74.
    Han, C. et al. Phosphite in sedimentary interstitial water of Lake Taihu, a large eutrophic shallow lake in China. Environ. Sci. Technol. 47, 5679–5685 (2013).
    Article  Google Scholar 

    75.
    Han, C. et al. Determination of phosphite in a eutrophic freshwater lake by suppressed conductivity ion chromatography. Environ. Sci. Technol. 46, 10667–10674 (2012).
    Article  Google Scholar 

    76.
    Wang, J., Li, L., Niu, X. & Zou, D. Phosphine-induced phosphorus mobilization in the rhizosphere of rice seedlings. J. Soils Sediment. 16, 1735–1744 (2016).
    Article  Google Scholar 

    77.
    Zhang, C.-B. et al. Responses of dissimilatory nitrate reduction to ammonium and denitrification to plant presence, plant species and species richness in simulated vertical flow constructed wetlands. Wetlands 37, 109–122 (2017).
    Article  Google Scholar 

    78.
    Li, H., Chen, Z. & Chen, Z. Daily variation of the rhizosphere redox potential of six wetland plants. Acta Ecologica Sin. 34, 5766–5773 (2014).
    Google Scholar 

    79.
    Fu, R., Zhu, Y. & Yang, H. DO and ORP conditions and their correlation with plant root distribution in a continuous-flow constructed wetland treating eutrophic water. Acta Scien. Circum. 28, 2036–2038 (2008).
    Google Scholar 

    80.
    Colmer, T. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26, 17–36 (2003).
    Article  Google Scholar 

    81.
    Liu, S., Li, T., Ning, P., Wu, M. & Yu, S. Research progress of the release, distribution and transformation of phosphine in environment. Chem. Ind. Eng. Prog. 38, 1085–1096 (2019).
    Google Scholar 

    82.
    Wang, D., Leng, B., An, X. & Lu, Q. Effects of UV light wave, temperature and humidity on phosphine concentration degrading. Plant Quar. 27, 45–49 (2013).
    Google Scholar 

    83.
    Chen, L., Arimoto, R. & Duce, R. A. The sources and forms of phosphorus in marine aerosol particles and rain from northern New Zealand. Atmos. Environ. 19, 779–787 (1985).
    Article  Google Scholar 

    84.
    Chen, H. Y. & Chen, L. D. Importance of anthropogenic inputs and continental‐derived dust for the distribution and flux of water‐soluble nitrogen and phosphorus species in aerosol within the atmosphere over the East China Sea. J. Geophys. Res. Atmos. 113, D11303 (2008).
    Article  Google Scholar 

    85.
    Xu, Z. et al. Dry and wet atmospheric deposition of nitrogen and phosphorus in Taihu Lake. Environ. Monit. Forewarning 119, 37–42 (2019).
    Google Scholar 

    86.
    Ma, Z., Zhang, Q. & Qin, Y. Numerical simulation and analysis of the effect of Three Gorges reservoir project on the regional climate change. Res. Environ. Yangtze Basin 19, 1044–1052 (2010).
    Google Scholar 

    87.
    Wang, M., Zhou, Y., Ren, Y. & Fang, S. Spatial-temporal change characteristics of precipitation over the key region of Three Gorges Reservoir. Meteorol. Environ. Sci. 40, 40–46 (2017).
    Google Scholar 

    88.
    Zhang, S., Lu, Z. & Zhang, N. Analysis of influence of Three Gorges Dam storage on reservoir region precipitation. Water Resour. Power 31, 21–24 (2013).
    Google Scholar 

    89.
    Zhang, H. Potential pitfalls in “Hongqi River” water transfer proposal and drought management in Northwest China. Water Resource Prot. 2, 8–11 (2018).
    Google Scholar 

    90.
    Prinn, R. G. The interactive atmosphere: global atmospheric-biospheric chemistry. Ambio 23, 50–61 (1994).
    Google Scholar 

    91.
    Kleemann, R. et al. Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359 (2015).
    Article  Google Scholar 

    92.
    Pradel, M. & Aissani, L. Environmental impacts of phosphorus recovery from a “product” Life Cycle Assessment perspective: allocating burdens of wastewater treatment in the production of sludge-based phosphate fertilizers. Sci. Total Environ. 656, 55–69 (2019).
    Article  Google Scholar 

    93.
    Humphrey, C. P., Anderson-Evans, E., O’Driscoll, M., Manda, A. & Iverson, G. Comparison of phosphorus concentrations in coastal plain watersheds served by onsite wastewater treatment systems and a municipal sewer treatment system. Water Air Soil Pollut. 226, 2259 (2015).
    Article  Google Scholar 

    94.
    Ding, L.-L. et al. Distribution of phosphine and phosphorus balance in a full-scale UASB system. J. Nanjing Uni. Nat. Sci. 41, 620–626 (2005).
    Google Scholar 

    95.
    Yang, Z., Zhou, J., Li, J., Han, Y. & He, Q. Pre-processing of raw wastewater in a septic tank leads to phosphorus removal by phosphine production in a sequencing batch biofilm reactor (SBBR). Desalination Water Treat. 57, 810–818 (2016).
    Article  Google Scholar 

    96.
    Liu, W., Niu, X., Chen, W., An, S. & Sheng, H. Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC). Chemosphere 173, 172–179 (2017).
    Article  Google Scholar 

    97.
    Yang, S. & Yao, G. Simultaneous removal of concentrated organics, nitrogen and phosphorus nutrients by an oxygen-limited membrane bioreactor. PLoS ONE 13, e0202179 (2018).
    Article  Google Scholar 

    98.
    Zhang, P., Rong, H., Zhang, K., Liu, T. & Cao, Y. Effect of diverse mud and phosphorus sources on total phosphorus removal efficiencies. Guangdong Chem. Ind. 56, 118–119 (2011).
    Google Scholar 

    99.
    Han, S., Zhuang, Y., Zhang, H., Wang, Z. & Yang, J. Phosphine and methane generation by the addition of organic compounds containing carbon–phosphorus bonds into incubated soil. Chemosphere 49, 651–657 (2002).
    Article  Google Scholar 

    100.
    Rutishauser, B. V. & Bachofen, R. Phosphine formation from sewage sludge cultures. Anaerobe 5, 525–531 (1999).
    Article  Google Scholar 

    101.
    Wan, J., Deng, M., He, H. & Tang, A. Factors influencing release of phosphine in piggery wastewater. China Water Wastewater 23, 117–120 (2013).
    Google Scholar 

    102.
    Fan, Y., Lv, M., Niu, X., Ma, J. & Song, Q. Evidence and mechanism of biological formation of phosphine from the perspective of the tricarboxylic acid cycle. Int. Biodeterior. Biodegrad. 146, 104791 (2020).
    Article  Google Scholar 

    103.
    Fan, Y. et al. Analysis of the characteristics of phosphine production by anaerobic digestion based on microbial community dynamics, metabolic pathways, and isolation of the phosphate-reducing strain. Chemosphere 262, 128213 (2021).
    Article  Google Scholar 

    104.
    Wang, R. et al. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat. Geosci. 8, 48 (2015).
    Article  Google Scholar  More

  • in

    A new record for a massive Porites colony at Ta’u Island, American Samoa

    1.
    Fenner, D. Field guide to the coral species of the Samoan archipelago: American Samoa and independent Samoa 1–422 (American Samoa Dept. Marine & Wildlife Resources, 2016).
    2.
    NOAA. US Coral Reef Monitoring Data Summary 2018. NOAA Coral Reef Conservation Program. NOAA Technical Memorandum CRCP 31, https://doi.org/10.25923/g0v0-nm61 (2018).

    3.
    Fenner, D., et al. (2008) The State of Coral Reef Ecosystems of American Samoa in The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States (ed. Waddell, J) 307–351 (NOAA Technical Memorandum NOS NCCOS 11. NOAA/NCCOS Center for Coastal Monitoring and Assessment’s Biogeography Team, 2008).

    4.
    Birkeland, C. et al. Geologic setting and ecological functioning of coral reefs in American Samoa. In Coral reefs of the USA, pp 741–765 (eds Riegl, B. & Dodge, R.) (Springer, Berlin, 2008).
    Google Scholar 

    5.
    Ennis, R. S., Brandt, M. E., Grimes, K. R. W. & Smith, T. B. Coral reef health response to chronic and acute changes in water quality in St. Thomas, United States Virgin Islands. Mar. Poll. Bull. 111, 418–427 (2016).
    CAS  Article  Google Scholar 

    6.
    Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).
    ADS  CAS  Article  Google Scholar 

    7.
    Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).
    ADS  CAS  Article  Google Scholar 

    8.
    Hughes, T. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    ADS  CAS  Article  Google Scholar 

    9.
    NOAA Coral Reef Watch. NOAA Coral Reef Watch Version 3.1 Daily Global 5-km Satellite Virtual Station Time Series Data for Samoas, Jan 01, 2013-April 07, 2020. Data set accessed 08 Apr 2020. College Park, Maryland, https://coralreefwatch.noaa.gov/product/5km/index.php, (2018, updated daily).

    10.
    Fenner, D. The Samoan Archipelago. In World Seas: An Environmental Evaluation: Volume II: The Indian Ocean to the Pacific (ed. Sheppard, C.) 619–643 (Academic Press, Cambridge, 2018).
    Google Scholar 

    11.
    NOAA Physical Science Laboratory. Oceanic Niño Index for SST 5N-5S, 170W-120W from 1950 to 2020. Data set accessed 29 May 2020. Boulder, Colorado. https://psl.noaa.gov/data/correlation/oni.data (2015, updated monthly).

    12.
    Koppers, A. A. et al. Samoa reinstated as a primary hotspot trail. Geology 36, 435–438 (2008).
    ADS  CAS  Article  Google Scholar 

    13.
    Brown, D. P. et al. American Samoa’s island of giants: massive Porites colonies at Ta’u island. Coral Reefs 28, 735 (2009).
    ADS  Article  Google Scholar 

    14.
    Forsman, Z. H., Barshis, D. J., Hunter, C. L. & Toonen, R. J. Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol. Biol. 9, 45 (2009).
    Article  Google Scholar 

    15.
    Tangri, N., Dunbar, R. B., Linsley, B. K. & Mucciarone, D. M. ENSO’s shrinking twentieth-century footprint revealed in a half-millennium coral core from the South Pacific Convergence Zone. Paleoceanogr. Paleoclimatol. 33, 1136–1150 (2018).
    ADS  Article  Google Scholar 

    16.
    Done, T. J. & Potts, D. C. Influences of habitat and natural disturbances on contributions of massive Porites corals to reef communities. Mar. Biol. 114, 479–493 (1992).
    Article  Google Scholar 

    17.
    Potts, D. C., Done, T. J., Isdale, P. J. & Fisk, D. A. Dominance of a coral community by the genus Porites (Scleractinia). Mar. Ecol. Prog. Ser. 23, 79–84 (1985).
    ADS  Article  Google Scholar 

    18.
    Soong, K., Chen, C. A. & Chang, J. C. A very large poritid colony at Green Island, Taiwan. Coral Reefs 18, 42 (1999).
    Article  Google Scholar 

    19.
    Takeuchi, I. & Yamashiro, H. Large Porites microatoll found by aerial survey at Sesoko Island, Okinawa, Japan. Coral Reefs 36, 1317 (2017).
    ADS  Article  Google Scholar 

    20.
    Pacific Islands Fisheries Science Center (PIFSC). Coral reef ecosystems of American Samoa: a 2002–2010 overview. (NOAA Fisheries Pacific Islands Fisheries Center, PIFSC Special Publication, 2011).

    21.
    Barstow, S.F. & Haug, O. The wave climate of Western Samoa. SOPAC Technical Report 204. 34 pp. (1994).

    22.
    Pirhalla, D., Ransi, V., Kendall, M., & Fenner, D. Oceanography of the Samoan Archipelago in A biogeographic assessment of the Samoan Archipelago. 3–26. (eds. Kendall, M & Poti, M) 3–26 (NOAA Tech. Memo NOS NCCOS 132, Silver Springs, Maryland, 2011).

    23.
    U.S. Army Corps of Engineers Wave Information Studies WISWAVE Hindcast model. Average Wave Height, Maximum Wave Height, Wave Direction at 14.5°S, 170°W from 1980–2011. Data set accessed 10 Jan 2012. http://frf.usace.army.mil/wis/.

    24.
    Lough, J. M. & Barnes, D. J. Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. J. Exp. Mar. Biol. Ecol. 211, 29–67 (1997).
    Article  Google Scholar 

    25.
    Lough, J. M. Coral calcification from skeletal records revisited. Mar. Ecol. Prog. Ser. 373, 257–264 (2008).
    ADS  Article  Google Scholar 

    26.
    Environmental Research Division’s Data Access Program. HadISST Average Sea Surface Temperature, 1°, Global, Monthly, 1870-present. Data set accessed 04 Apr 2020. https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdHadISST.html (2020).

    27.
    Qiu, B. & Chen, S. Seasonal modulations in the eddy field of the South Pacific Ocean. J. Phys. Oceanogr. 34, 1515–1527 (2004).
    ADS  Article  Google Scholar 

    28.
    Kendall, M.S., Poti, M., T. Wynne, B. Kinlan, L. Bauer. Ocean Currents and Larval Transport Among Islands and Shallow Seamounts of the Samoan Archipelago and Adjacent Island Nations. In A Biogeographic Assessment of the Samoan Archipelago (eds. Kendall, M & Poti, M) 3–26 (NOAA Tech. Memo NOS NCCOS 132, Silver Springs, Maryland, 2011).

    29.
    Wall, M. et al. Large-amplitude internal waves benefit corals during thermal stress. Proc. Biol. Sci 282, 20140650 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Kavousi, J. & Keppel, G. Clarifying the concept of climate change refugia for coral reefs. ICES J. Mar. Sci. 75, 43–49 (2018).
    Article  Google Scholar 

    31.
    Langlais, C. E. et al. Coral bleaching pathways under the control of regional temperature variability. Nat. Clim. Change 7, 839–844 (2017).
    ADS  Article  Google Scholar 

    32.
    Hendy, E. J., Lough, J. M. & Gagan, M. K. Historical mortality in massive Porites from the central Great Barrier Reef, Australia: evidence for past environmental stress?. Coral Reefs 22, 207–215 (2003).
    Article  Google Scholar 

    33.
    Roff, G. et al. Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar Biol. 161, 1385–1393 (2014).
    Article  Google Scholar 

    34.
    Barkley, H. C. et al. Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016). Commun. Biol. 1, 1–10 (2018).
    Article  Google Scholar 

    35.
    Loya, Y., Sakai, K., Nakano, Y., Sambali, H. & van Woesik, R. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).
    Article  Google Scholar 

    36.
    Edmunds, P. J., Putnam, H. M. & Gates, R. D. Photophysiological consequences of vertical stratification of Symbiodinium in tissue of the coral Porites lutea. Biol. Bull. 223, 226–235 (2012).
    CAS  Article  Google Scholar  More

  • in

    Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River

    1.
    Gang, H. X. et al. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development. J. Exp. Bot. 70, 3125–3138 (2019).
    CAS  PubMed  Article  Google Scholar 
    2.
    Yuan, Y. X. et al. Environmental variables influencing phytoplankton communities in hydrologically connected aquatic habitats in the Lake Xingkai basin. Ecol. Ind. 91, 1–12 (2018).
    CAS  Article  Google Scholar 

    3.
    Mousing, E. A., Richardson, K., Bendtsen, J., Cetinic, I. & Perry, M. J. Evidence of small-scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean. J. Ecol. 104, 1682–1695 (2016).
    Article  Google Scholar 

    4.
    de Souza, D. G. et al. Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia 779, 47–57 (2016).
    Article  CAS  Google Scholar 

    5.
    Bergstrom, A. K., Jonsson, A., Isles, P. D. F., Creed, I. F. & Lau, D. C. P. Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes. Aquat. Sci. 82, 31 (2020).
    Article  CAS  Google Scholar 

    6.
    Taipale, S. J., Vuorio, K., Aalto, S. L., Peltomaa, E. & Tiirola, M. Eutrophication reduces the nutritional value of phytoplankton in boreal lakes. Environ. Res. 179, 108836 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Sarkar, D., Lahiri, S., Ghosh, D. & Jana, B. B. Ecological processes-driven distribution of net-algal diversity and carbon sequestration potential across the sewage effluent gradient of stabilization pond system. Ecohydrol. Hydrobiol. 19, 464–472 (2019).
    Article  Google Scholar 

    8.
    Tian, W., Zhang, H. Y., Zhao, L., Zhang, F. F. & Huang, H. Phytoplankton diversity effects on community biomass and stability along nutrient gradients in a eutrophic lake. Int. J. Environ. Res. Public Health 14, 15 (2017).
    Google Scholar 

    9.
    Oliveira, C. Y. B., Oliveira, C. D. L., Almeida, A. J. G., Galvez, A. O. & Dantas, D. M. Phytoplankton responses to an extreme drought season: A case study at two reservoirs from a semiarid region, Northeastern Brazil. J. Limnol. 78, 176–184 (2019).
    Article  Google Scholar 

    10.
    Zorzal-Almeida, S., Soininen, J., Bini, L. M. & Bicudo, D. C. Local environment and connectivity are the main drivers of diatom species composition and trait variation in a set of tropical reservoirs. Freshw. Biol. 62, 1551–1563 (2017).
    Article  Google Scholar 

    11.
    Kelly, L. A. & Hassall, C. The spatial ecology of phytoplankton blooms in UK canals. Inland Waters 8, 422–433 (2018).
    Article  Google Scholar 

    12.
    Katsiapi, M. et al. Ecological connectivity in two ancient lakes: impact upon planktonic cyanobacteria and water quality. Water 12, 18 (2020).
    CAS  Article  Google Scholar 

    13.
    Sun, L., Wang, H., Kan, Y. Q. & Wang, S. L. Distribution of phytoplankton community and its influence factors in an urban river network, East China. Frontiers Environ. Sci. Eng. 12, 1–12 (2018).
    Google Scholar 

    14.
    Sabater-Liesa, L., Ginebreda, A. & Barcelo, D. Shifts of environmental and phytoplankton variables in a regulated river: a spatial-driven analysis. Sci. Total Environ. 642, 968–978 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Binyu, L., Yujie, F., Peng, G. & Zhaohan, Z. Occurrence and distribution of polycyclic musks in surface water from the Songhua River. Adv. Mater. Res. (Switzerland) 726–731, 1508–1511 (2013).
    Google Scholar 

    16.
    Li, X. Y., Yu, H. X. & Ma, C. X. Zooplankton community structure in relation to environmental factors and ecological assessment of water quality in the Harbin Section of the Songhua River. Chin. J. Oceanol. Limnol. 32, 1344–1351 (2014).
    ADS  CAS  Article  Google Scholar 

    17.
    Wei, H., Zhang, J. & Wang, F. C Dynamic change characteristics of ecosystem fluxes in cold zone wetlands in northeast china. Appl. Ecol. Environ. Res. 17, 10475–10490 (2019).
    Google Scholar 

    18.
    NEPAC. Standard Methods for the Examination of Water and Wastewater (Chinese Environmental Science Press, Beijing, 2002) (in Chinese).
    Google Scholar 

    19.
    Hu, H. & Wei, Y. The freshwater algae of China: systematics, taxonomy and ecology (Science Press, Beijing, 2006).
    Google Scholar 

    20.
    Wang, M. Evaluate method and classification standard on lake eutrophication. Environ. Monit, China 18, 47–49 (2002).
    ADS  Google Scholar 

    21.
    Yang, B. et al. The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake. Ecol. Ind. 66, 153–162 (2016).
    Article  Google Scholar 

    22.
    Gu, Y. G. & Gao, Y. P. An unconstrained ordination- and GIS-based approach for identifying anthropogenic sources of heavy metal pollution in marine sediments. Mar. Pollut. Bull. 146, 100–105 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Fu, X., Shen, Y., Dong, R. C., Deng, H. B. & Wu, G. Analysis of urbanization based on center-of-gravity movement and characteristics in Songhua River basin of China and its southern source sub-basin between 1990 and 2010. Chin. Geogra. Sci. 26, 117–128 (2016).
    Article  Google Scholar 

    24.
    Knowlton, M. F. & Jones, J. R. Connectivity influences temporal variation of limnological conditions in Missouri River scour lakes. Lake Reserv. Manag. 19, 160–170 (2003).
    CAS  Article  Google Scholar 

    25.
    Raffoul, M. H., Enanga, E. M., Senar, O. E., Creed, I. F. & Trick, C. G. Assessing the potential health risk of cyanobacteria and cyanotoxins in Lake Naivasha, Kenya. Hydrobiologia 847, 1041–1056 (2020).
    CAS  Article  Google Scholar 

    26.
    Ochs, C. A. & Shields, F. D. Fluxes of nutrients and primary production between the main channel and floodplain backwaters of the Lower Mississippi River-Development of a simulation model. River Res. Appl. 35, 979–988 (2019).
    Article  Google Scholar 

    27.
    Jiang, Z. B. et al. Spatial heterogeneity of phytoplankton community shaped by a combination of anthropogenic and natural forcings in a long narrow bay in the East China Sea. Estuar. Coast. Shelf Sci. 217, 250–261 (2019).
    ADS  Article  Google Scholar 

    28.
    Zhang, J., Shu, X., Zhang, Y. Y., Tan, X. & Zhang, Q. F. The responses of epilithic algal community structure and function to light and nutrients and their linkages in subtropical rivers. Hydrobiologia 847, 841–855 (2020).
    CAS  Article  Google Scholar 

    29.
    Zuecco, G., Rinderer, M., Penna, D., Borga, M. & van Meerveld, H. J. Quantification of subsurface hydrologic connectivity in four headwater catchments using graph theory. Sci. Total Environ. 646, 1265–1280 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Yang, J. & Chu, X. F. Quantification of the spatio-temporal variations in hydrologic connectivity of small-scale topographic surfaces under various rainfall conditions. J. Hydrol. 505, 65–77 (2013).
    ADS  Article  Google Scholar 

    31.
    Hu, J., Chi, S. Y. & Hu, J. X. An attempt to measure longitudinal connectivity based on the community structure of phytoplankton. Environ. Monit. Assess. 191, 382 (2019).
    PubMed  Article  CAS  Google Scholar 

    32.
    Dijkstra, Y. M., Chant, R. J. & Reinfelder, J. R. Factors controlling seasonal phytoplankton dynamics in the Delaware River Estuary: an idealized model study. Estuaries Coasts 42, 1839–1857 (2019).
    CAS  Article  Google Scholar 

    33.
    Riato, L. & Leira, M. Heterogeneity of epiphytic diatoms in shallow lakes: Implications for lake monitoring. Ecol. Indic. 111, 105988 (2020).
    CAS  Article  Google Scholar 

    34.
    Rigual-Hernandez, A. S., Pilskaln, C. H., Cortina, A., Abrantes, F. & Armand, L. K. Diatom species fluxes in the seasonally ice-covered Antarctic Zone: new data from offshore Prydz Bay and comparison with other regions from the eastern Antarctic and western Pacific sectors of the Southern Ocean. Deep-Sea Res. Part II Top. Stud. Oceanogr. 161, 92–104 (2019).
    ADS  Article  Google Scholar 

    35.
    Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).
    Article  Google Scholar 

    36.
    Waite, I. R., Pan, Y. D. & Edwards, P. M. Assessment of multi-stressors on compositional turnover of diatom, invertebrate and fish assemblages along an urban gradient in Pacific Northwest streams (USA). Ecol. Indic. 112, 106047 (2020).
    CAS  Article  Google Scholar 

    37.
    Padisak, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621, 1–19 (2009).
    Article  Google Scholar 

    38.
    Knowlton, M. F. & Jones, J. R. Trophic status of Missouri River floodplain lakes in relation to basin type and connectivity. Wetlands 17, 468–475 (1997).
    Article  Google Scholar 

    39.
    Marquardt, G. C., Padial, A. A. & Bicudo, C. E. D. Variance partitioning of deconstructed tropical diatom communities in reservoirs cascade. Aquat. Sci. 80, 17 (2018).
    Article  Google Scholar 

    40.
    Moresco, G. A. et al. Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales. Hydrobiologia 799, 203–215 (2017).
    Article  Google Scholar 

    41.
    Stefanidou, N. et al. Patterns in alpha and beta phytoplankton diversity along a conductivity gradient in Coastal Mediterranean Lagoons. Diversity Basel 12, 38 (2020).
    Article  Google Scholar 

    42.
    Arab, S., Hamil, S., Rezzaz, M. A., Chaffai, A. & Arab, A. Seasonal variation of water quality and phytoplankton dynamics and diversity in the surface water of Boukourdane Lake, Algeria. Arab. J. Geosci. 12, 11 (2019).
    Article  CAS  Google Scholar 

    43.
    Naselli-Flores, L., Termine, R. & Barone, R. Phytoplankton colonization patterns. Is species richness depending on distance among freshwaters and on their connectivity?. Hydrobiologia 764, 103–113 (2016).
    CAS  Article  Google Scholar 

    44.
    Townsend, S. A. & Douglas, M. M. Discharge-driven flood and seasonal patterns of phytoplankton biomass and composition of an Australian tropical savannah river. Hydrobiologia 794, 203–221 (2017).
    Article  CAS  Google Scholar 

    45.
    Chen, X. et al. Variations in diatom communities at genus and species levels in peatlands (central China) linked to microhabitats and environmental factors. Sci. Total Environ. 568, 137–146 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Primpas, I., Tsirtsis, G., Karydis, M. & Kokkoris, G. D. Principal component analysis: development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecol. Ind. 10, 178–183 (2010).
    CAS  Article  Google Scholar 

    47.
    Nabout, J. C., Nogueira, I. D. S., de Oliveira, L. G. & Morais, R. R. Phytoplankton diversity (alpha, beta, and gamma) from the Araguaia River tropical floodplain lakes (central Brazil). Hydrobiologia 575, 455–461 (2007).
    Article  Google Scholar 

    48.
    Zhang, N. N. & Zang, S. Y. Characteristics of phytoplankton distribution for assessment of water quality in the Zhalong Wetland, China. Int. J. Environ. Sci. Technol. 12, 3657–3664 (2015).
    CAS  Article  Google Scholar  More

  • in

    Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes (Ca. Poseidoniales) in the North Western Mediterranean Sea

    1.
    Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992;356:148–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Santoro AE, Richter RA, Dupont CL. Planktonic marine archaea. Annu Rev Mar Sci. 2019;11:131–58.
    Article  Google Scholar 

    4.
    Martin-Cuadrado A-B, Garcia-Heredia I, Molto AG, Lopez-Ubeda R, Kimes N, López-García P, et al. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. ISME J. 2015;9:1619–34.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martinez E, Henn MR, et al. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J. 2008;2:865–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 2019;13:663–75.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Tully BJ. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nat Commun. 2019;10:1–12.
    CAS  Article  Google Scholar 

    8.
    Li M, Baker BJ, Anantharaman K, Jain S, Breier JA, Dick GJ. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun. 2015;6:8933.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Orsi WD, Smith JM, Wilcox HM, Swalwell JE, Carini P, Worden AZ, et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 2015;9:1747–63.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. MicrobiologyOpen. 2019;8:e00852.
    PubMed  PubMed Central  Google Scholar 

    11.
    Frigaard NU, Martinez A, Mincer TJ, DeLong EF. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature. 2006;439:847–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine euryarchaeota. Science. 2012;335:587–90.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Zhang CL, Xie W, Martin-Cuadrado A-B, Rodriguez-Valera F. Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Front Microbiol. 2015;6:1108.
    PubMed  PubMed Central  Google Scholar 

    15.
    Deschamps P, Zivanovic Y, Moreira D, Rodriguez-Valera F, López-García P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biol Evol. 2014;6:1549–63.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 2009;3:860–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Massana R, DeLong EF, Pedros-Alio C. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol. 2000;66:1777–87.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Parada AE, Fuhrman JA. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. ISME J. 2017;11:2510–25.
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I, Bronner G, et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci USA. 2013;110:6004–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Galand PE, Gutiérrez-Provecho C, Massana R, Gasol JM, Casamayor EO. Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory). Limnol Oceanogr. 2010;55:2171–2125.
    Article  Google Scholar 

    21.
    Orellana LH, Francis TB, Krüger K, Teeling H, Müller M-C, Fuchs BM, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. ISME J. 2019;13:3024–36.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, et al. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environ Microbiol. 2018;20:734–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Peng Y, Leung HC, Yiu S-M, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 2008;15:387–96.

    26.
    Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713–4.

    28.
    Maillet N, Collet G, Vannier T, Lavenier D, Peterlongo P. COMMET: comparing and combining multiple metagenomic datasets. IEEE Int Conf Bioinform Biomed. 2014:94–8.

    29.
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.
    Google Scholar 

    34.
    Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 1998;26:320–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
    Article  CAS  Google Scholar 

    37.
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004;5:113.
    Article  CAS  Google Scholar 

    39.
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PloS one. 2010;5:e9490.

    40.
    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Olson DK, Yoshizawa S, Boeuf D, Iwasaki W, DeLong EF. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 2018;12:1047–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Boeuf D, Audic S, Brillet-Guéguen L, Caron C, Jeanthon C. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. Database. 2015;2015:bav080.

    43.
    Boeuf D, Lami R, Cunnington E, Jeanthon C. Summer abundance and distribution of proteorhodopsin genes in the Western Arctic Ocean. Front Microbiol. 2016;7:1584.
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.2002;30:3059–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Lambert S, Lozano J-C, Bouget F-Y, Galand PE. Seasonal marine microorganisms change neighbors under remarkable weather conditions. Environ Microbiol. 2021; in press.

    49.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Lambert S, Tragin M, Lozano J-C, Ghiglione J-F, Vaulot D, Bouget F-Y, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13:388–401.
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community Ecol Package, Version 2019;2:5–6.
    Google Scholar 

    53.
    Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, et al. Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol. 2010;76:3187–97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–6.

    55.
    Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM. Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC genomics. 2008;9:547.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Zhu W, Lan Y, Lou X, Han N, Ran T, Xu L, et al. Isolation of proteorhodopsin-bearing bacterium JL-3 from fresh water and characterization of the proteorhodopsin. FEMS Microbiol Lett. 2013;344:10–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Petrovskaya L, Balashov S, Lukashev E, Imasheva E, Gushchin IY, Dioumaev A, et al. ESR—A retinal protein with unusual properties from Exiguobacterium sibiricum. Biochemistry. 2015;80:688–700.
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Gushchin I, Chervakov P, Kuzmichev P, Popov AN, Round E, Borshchevskiy V, et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc Natl Acad Sci USA. 2013;110:12631–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Béja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. Proteorhodopsin phototrophy in the ocean. Nature. 2001;411:786–9.
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S. The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 2007;5:e77.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Sabehi G, Kirkup BC, Rozenberg M, Stambler N, Polz MF, Béja O. Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern Mediterranean and the Sargasso Seas. ISME J. 2007;1:48–55.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol. 1998;64:2585–95.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine Bacteria and Archaea. Appl Environ Microbiol. 2002;68:661–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Herfort L, Schouten S, Abbas B, Veldhuis MJ, Coolen MJ, Wuchter C, et al. Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiol Ecol. 2007;62:242–57.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Murray AE, Blakis A, Massana R, Strawzewski S, Passow U, Alldredge A. A time series assessment of plaktonic archaeal variability in the Santa Barbara Channel. Aquat Micro Ecol. 1999;20:129–45.
    Article  Google Scholar  More

  • in

    The environmental impacts of palm oil in context

    1.
    Byerlee, D., Falcon, W. P. & Naylor, R. L. The Tropical Oil Crop Revolution: Food, Feed, Fuel, and Forests (Oxford Univ. Press, 2017).
    2.
    FAOSTAT. Food and agriculture data. Food and Agriculture Organization of the United Nations http://www.fao.org/faostat/en/#home (2019).

    3.
    Ramankutty, N. et al. Trends in global agricultural land use: implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018).
    CAS  PubMed  Article  Google Scholar 

    4.
    Hickman, M. The guilty secrets of palm oil: Are you unwittingly contributing to the devastation of the rain forests? Independent https://www.independent.co.uk/environment/the-guilty-secrets-of-palm-oil-are-you-unwittingly-contributing-to-the-devastation-of-the-rain-1676218.html (2009).

    5.
    Meijaard, E. et al. Oil Palm and Biodiversity – A Situation Analysis (IUCN Oil Palm Task Force, 2018).

    6.
    Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).
    Article  Google Scholar 

    7.
    Feintrenie, L., Gazull, L., Goulaouic, R. & Miaro III, L. Spatialized production models for sustainable palm oil in Central Africa: choices and potentials. In Scaling Up Responsible Land Governance. Annual World Bank Conference on Land and Poverty 14–18 (World Bank Group, 2016).

    8.
    Sheil, D. et al. The Impacts and Opportunities of Oil Palm in Southeast Asia. What Do We Know and What Do We Need to Know? (Center for International Forestry Research (CIFOR), 2009).

    9.
    Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. 92, 1539–1569 (2017).
    PubMed  Article  Google Scholar 

    10.
    Li, T. M. Evidence-Based Options For Advancing Social Equity In Indonesian Palm Oil: Implications For Research, Policy And Advocacy (Center for International Forestry Research (CIFOR), 2018).

    11.
    Santika, T. et al. Does oil palm agriculture help alleviate poverty? A multidimensional counterfactual assessment of oil palm development in Indonesia. World Dev. 120, 105–117 (2019).
    Article  Google Scholar 

    12.
    Meijaard, E. & Sheil, D. The moral minefield of ethical oil palm and sustainable development. Front. For. Glob. Change 2, 22 (2019).
    Article  Google Scholar 

    13.
    Krishna, V., Euler, M., Siregar, H. & Qaim, M. Differential livelihood impacts of oil palm expansion in Indonesia. Agric. Econ. 48, 639–653 (2017).
    Article  Google Scholar 

    14.
    Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Preprint at https://essd.copernicus.org/preprints/essd-2020-159/ (2020).

    15.
    RSPO Smallholders Task Force. RSPO Smallholders. RSPO https://rspo.org/smallholders#definition (2012).

    16.
    Gaveau, D. L. A. et al. Four decades of forest persistence, loss and logging on Borneo. PLoS ONE 9, e101654 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Furumo, P. R. & Aide, T. M. Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environ. Res. Lett. 12, 024008 (2017).
    Article  Google Scholar 

    21.
    Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).
    Article  Google Scholar 

    22.
    Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).
    Article  Google Scholar 

    23.
    Gutiérrez-Vélez, V. H. et al. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 6, 044029 (2011).
    Article  Google Scholar 

    24.
    Lee, J. S. H. et al. Environmental impacts of large-scale oil palm enterprises exceed that of smallholdings in Indonesia. Conserv. Lett. 7, 25–33 (2014).
    Article  Google Scholar 

    25.
    Schoneveld, G. C., Ekowati, D., Andrianto, A. & van der Haar, S. Modeling peat- and forestland conversion by oil palm smallholders in Indonesian Borneo. Environ. Res. Lett. 14, 014006 (2019).
    Article  Google Scholar 

    26.
    The IUCN Red List of Threatened Species Version 2019-2 (IUCN, 2019); https://www.iucnredlist.org

    27.
    Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).
    CAS  PubMed  Article  Google Scholar 

    28.
    Foster, W. A. et al. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Phil. Trans. R. Soc. B 366, 3277–3291 (2011).
    PubMed  Article  Google Scholar 

    29.
    Savilaakso, S. et al. Systematic review of effects on biodiversity from oil palm production. Environ. E. 3, 4 (2014).
    Article  Google Scholar 

    30.
    Germer, J. U. Spatial undergrowth species composition in oil palm (Elaeis guineensis Jacq.) in West Sumatra, Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim (2003).

    31.
    Sato, T., Itoh, H., Kudo, G., Kheong, Y. S. & Furukawa, A. Species composition and structure of epiphytic fern community on oil palm trunks in Malay Archipelago. Tropics 6, 139–148 (1996).
    Article  Google Scholar 

    32.
    Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).
    PubMed  Article  Google Scholar 

    33.
    Wearn, O. R., Carbone, C., Rowcliffe, J. M., Bernard, H. & Ewers, R. M. Grain-dependent responses of mammalian diversity to land use and the implications for conservation set-aside. Ecol. Appl. 26, 1409–1420 (2016).
    PubMed  Article  Google Scholar 

    34.
    Pardo, L. E. et al. Land management strategies can increase oil palm plantation use by some terrestrial mammals in Colombia. Sci. Rep. 9, 7812 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).
    CAS  PubMed  Article  Google Scholar 

    36.
    Almeida, S. M. et al. The effects of oil palm plantations on the functional diversity of Amazonian birds. J. Trop. Ecol. 32, 510–525 (2016).
    Article  Google Scholar 

    37.
    Edwards, D. P. et al. Selective-logging and oil palm: multitaxon impacts, biodiversity indicators, and trade-offs for conservation planning. Ecol. Applic. 24, 2029–2049 (2014).
    Article  Google Scholar 

    38.
    Nájera, A. & Simonetti, J. A. Can oil palm plantations become bird friendly? Agrofor. Syst. 80, 203–209 (2010).
    Article  Google Scholar 

    39.
    Akani, G. C., Ebere, N., Luiselli, L. & Eniang, E. A. Community structure and ecology of snakes in fields of oil palm trees (Elaeis guineensis) in the Niger Delta, southern Nigeria. Afr. J. Ecol. 46, 500–506 (2008).
    Article  Google Scholar 

    40.
    Humle, T. & Matsuzawa, T. Oil palm use by adjacent communities of chimpanzees at Bossou and Nimba Mountains, West Africa. Int. J. Primatol. 25, 551–581 (2004).
    Article  Google Scholar 

    41.
    Ancrenaz, M. et al. Of pongo, palms, and perceptions – A multidisciplinary assessment of orangutans in an oil palm context. Oryx 49, 465–472 (2015).
    Article  Google Scholar 

    42.
    Mitchell, S. L. et al. Riparian reserves help protect forest bird communities in oil palm dominated landscapes. J. Appl. Ecol. 55, 2744–2755 (2018).
    Article  Google Scholar 

    43.
    Deere, N. J. et al. Implications of zero-deforestation commitments: forest quality and hunting pressure limit mammal persistence in fragmented tropical landscapes. Conserv. Lett. 13, e12701 (2020).
    Article  Google Scholar 

    44.
    Knowlton, J. L. et al. Oil palm plantations affect movement behavior of a key member of mixed-species flocks of forest birds in Amazonia, Brazil. Trop. Conserv. Sci. 10, 1940082917692800 (2017).
    Article  Google Scholar 

    45.
    Tohiran, K. A. et al. Targeted cattle grazing as an alternative to herbicides for controlling weeds in bird-friendly oil palm plantations. Agron. Sust. Dev. 37, 62 (2017).
    Article  Google Scholar 

    46.
    Slade, E. M. et al. Can cattle grazing in mature oil palm increase biodiversity and ecosystem service provision? Planter 90, 655–665 (2014).
    Google Scholar 

    47.
    Global Invasive Species Database (GISD). Species Profile Elaeis guineensis (IUCN, accessed 27 February 2018); http://www.iucngisd.org/gisd/species

    48.
    Wan, H. The introduction of barn owl (Tyto alba) to Sabah for rat control in oil palm plantations. Planter 76, 215–222 (2000).
    Google Scholar 

    49.
    Bessou, C. et al. Sustainable Palm Oil Production Project Synthesis: Understanding And Anticipating Global Challenges (Center for International Forestry Research (CIFOR), 2017).

    50.
    Puan, C. L., Goldizen, A. W., Zakaria, M., Hafidzi, M. N. & Baxter, G. S. Relationships among rat numbers, abundance of oil palm fruit and damage levels to fruit in an oil palm plantation. Intergr. Zool. 6, 130–139 (2011).
    Article  Google Scholar 

    51.
    Holzner, A. et al. Macaques can contribute to greener practices in oil palm plantations when used as biological pest control. Curr. Biol. 29, R1066–R1067 (2019).
    CAS  PubMed  Article  Google Scholar 

    52.
    Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. 8, 2231 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Mayfield, M. M. The importance of nearby forest to known and potential pollinators of oil palm (Elaeis guineensis Jacq.; Areceaceae) in southern Costa Rica. Econ. Bot. 59, 190 (2005).
    Article  Google Scholar 

    54.
    Woodham, C. R. et al. Effects of replanting and retention of mature oil palm riparian buffers on ecosystem functioning in oil palm plantations. Front. For. Glob. Change 2, 29 (2019).
    Article  Google Scholar 

    55.
    Azhar, B. et al. The influence of agricultural system, stand structural complexity and landscape context on foraging birds in oil palm landscapes. Ibis 155, 297–312 (2013).
    Article  Google Scholar 

    56.
    Wijedasa, L. S. et al. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob. Change Biol. 23, 977–982 (2016).
    Article  Google Scholar 

    57.
    Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).
    CAS  PubMed  Article  Google Scholar 

    59.
    Reijnders, L. & Huijbregts, M. A. J. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 16, 477–482 (2006).
    Article  Google Scholar 

    60.
    Murdiyarso, D., Van Noordwijk, M., Wasrin, U. R., Tomich, T. P. & Gillison, A. N. Environmental benefits and sustainable land-use options in the Jambi transect, Sumatra. J. Veg. Sci. 13, 429–438 (2002).
    Article  Google Scholar 

    61.
    Harsono, S. S., Grundmann, P. & Soebronto, S. Anaerobic treatment of palm oil mill effluents: potential contribution to net energy yield and reduction of greenhouse gas emissions from biodiesel production. J. Clean. Prod. 64, 619–627 (2014).
    CAS  Article  Google Scholar 

    62.
    Hewitt, C. N. et al. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc. Natl Acad. Sci. USA 106, 18447 (2009).
    CAS  PubMed  Article  Google Scholar 

    63.
    Misztal, P. K. et al. Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmos. Chem. Phys. 11, 8995–9017 (2011).
    CAS  Article  Google Scholar 

    64.
    Guenther, A. et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).
    CAS  Article  Google Scholar 

    65.
    Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Global Environ. Chang. 43, 51–61 (2017).
    Article  Google Scholar 

    66.
    McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).
    Article  Google Scholar 

    67.
    Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency in the community land model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. J. Adv. Model. Earth Sy. 11, 732–751 (2019).
    Article  Google Scholar 

    68.
    Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 37074 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Nichol, J. Bioclimatic impacts of the 1994 smoke haze event in Southeast Asia. Atmos. Environ. 31, 1209–1219 (1997).
    CAS  Article  Google Scholar 

    70.
    Carlson, K. M. et al. Consistent results in stream hydrology across multiple watersheds: a reply to Chew and Goh. J. Geophys. Res. Biogeosci. 120, 812–817 (2015).
    Article  Google Scholar 

    71.
    Luke, S. H. et al. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrol. 10, e1827 (2017).
    Article  Google Scholar 

    72.
    Mayer, P. M., Reynolds, S. K., McCutchen, M. D. & Canfield, T. J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 36, 1172–1180 (2007).
    CAS  PubMed  Article  Google Scholar 

    73.
    Chellaiah, D. & Yule, C. M. Effect of riparian management on stream morphometry and water quality in oil palm plantations in Borneo. Limnologica 69, 72–80 (2018).
    CAS  Article  Google Scholar 

    74.
    Sulai, P. et al. Effects of water quality in oil palm production landscapes on tropical waterbirds in Peninsular Malaysia. Ecol. Res. 30, 941–949 (2015).
    Article  Google Scholar 

    75.
    Anda, M., Siswanto, A. B. & Subandiono, R. E. Properties of organic and acid sulfate soils and water of a ‘reclaimed’ tidal backswamp in Central Kalimantan, Indonesia. Geoderma 149, 54–65 (2009).
    CAS  Article  Google Scholar 

    76.
    Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).
    Article  Google Scholar 

    77.
    Wich, SergeA. et al. Will oil palm’s homecoming spell doom for Africa’s great apes? Curr. Biol. 24, 1659–1663 (2014).
    CAS  PubMed  Article  Google Scholar 

    78.
    Sayer, J., Ghazoul, J., Nelson, P. & Boedhihartono, A. K. Oil palm expansion transforms tropical landscapes and livelihoods. Glob. Food Secur. 1, 114–119 (2012).
    Article  Google Scholar 

    79.
    RSPO and HCSA collaborate to implement no deforestation in high forest cover landscapes. RSPO https://rspo.org/news-and-events/news/rspo-and-hcsa-collaborate-to-implement-no-deforestation-in-high-forest-cover-landscapes (2018).

    80.
    Law, E. A. et al. Mixed policies give more options in multifunctional tropical forest landscapes. J. Appl. Ecol. 54, 51–60 (2017).
    Article  Google Scholar 

    81.
    Budiadi et al. Oil palm agroforestry: an alternative to enhance farmers’ livelihood resilience. In The 1st International Conference on Natural Resources and Environmental Conservation (ICNREC) (IOP Publishing Ltd., 2019).

    82.
    Valin, H. et al. The Land Use Change Impact Of Biofuels Consumed In The EU. Quantification Of Area And Greenhouse Gas Impacts (ECOFYS Netherlands B. V., 2015).

    83.
    Thamsiriroj, T. & Murphy, J. D. Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? Appl. Energ. 86, 595–604 (2009).
    CAS  Article  Google Scholar 

    84.
    Rosoman, G., Sheun, S. S., Opal, C., Anderson, P. & Trapshah, R. The HCS Approach Toolkit (HCS Approach Steering Group, 2017).

    85.
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).
    CAS  PubMed  Article  Google Scholar 

    86.
    Furumo, P. R., Rueda, X., Rodríguez, J. S. & Parés Ramos, I. K. Field evidence for positive certification outcomes on oil palm smallholder management practices in Colombia. J. Clean. Prod. 245, 118891 (2020).
    Article  Google Scholar 

    87.
    Donofrio, S., Rothrock, P. & Leonard, J. Tracking Corporate Commitments to Deforestation-free Supply Chains, 2017 (Forest Trends, 2017).

    88.
    Palm oil: ESG policy transparency assessments. SPOTT https://www.spott.org/palm-oil/ (2018).

    89.
    Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Global Environ. Chang. 62, 102055 (2020).
    Article  Google Scholar 

    90.
    Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377 (2015).
    CAS  PubMed  Article  Google Scholar 

    91.
    OECD‑FAO Agricultural Outlook 2018‑2027 (OECD and FAO, 2017).

    92.
    Johnston, M., Foley, J. A., Holloway, T., Kucharik, C. & Monfreda, C. Resetting global expectations from agricultural biofuels. Environ. Res. Lett. 4, 014004 (2009).
    Article  CAS  Google Scholar 

    93.
    Parsons, S., Raikova, S. & Chuck, C. J. The viability and desirability of replacing palm oil. Nat. Sustain. 3, 412–418 (2020).
    Article  Google Scholar 

    94.
    Qaim, M., Sibhatu, K. T., Siregar, H. & Grass, I. Environmental, economic, and social consequences of the oil palm boom. Ann. Rev. Res. Econ. 12, 321–344 (2020).
    Article  Google Scholar 

    95.
    VanBeek, K. R., Brawn, J. D. & Ward, M. P. Does no-till soybean farming provide any benefits for birds? Agricult. Ecosyst. Env. 185, 59–64 (2014).
    Article  Google Scholar 

    96.
    Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202 (2019).
    CAS  PubMed  Article  Google Scholar 

    97.
    Strona, G. et al. Small room for compromise between oil palm cultivation and primate conservation in Africa. Proc. Natl Acad. Sci. USA 115, 8811 (2018).
    CAS  PubMed  Article  Google Scholar 

    98.
    Ajjawi, I. et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35, 647 (2017).
    CAS  PubMed  Article  Google Scholar 

    99.
    De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Env. 175, 1–7 (2013).
    Article  Google Scholar 

    100.
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
    CAS  PubMed  Article  Google Scholar 

    101.
    Payán, E. & Boron, V. The future of wild mammals in oil palm landscapes in the Neotropics. Front. For. Glob. Change 2, 61 (2019).
    Article  Google Scholar 

    102.
    Maddox, T., Priatna, D., Gemita, E. & Salampessy, A. The Conservation Of Tigers And Other Wildlife In Oil Palm Plantations Jambi Province, Sumatra, Indonesia ZSL Conservation Report No. 7 (The Zoological Society of London, 2007).

    103.
    Ancrenaz, M. et al. Pongo pygmaeus; erratum The IUCN Red List of Threatened Species 2016: e.T17975A123809220 (IUCN, 2016); https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T17975A17966347.en

    104.
    Pangau-Adam, M., Mühlenberg, M. & Waltert, M. Rainforest disturbance affects population density of the northern cassowary Casuarius unappendiculatus in Papua, Indonesia. Oryx 49, 735–742 (2014).
    Article  Google Scholar 

    105.
    Alamgir, M. et al. Infrastructure expansion challenges sustainable development in Papua New Guinea. PLoS ONE 14, e0219408 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    106.
    Katiyar, R. et al. Microalgae: an emerging source of energy based bio-products and a solution for environmental issues. Renew. Sustain. Energy Rev. 72, 1083–1093 (2017).
    CAS  Article  Google Scholar 

    107.
    Nomanbhay, S., Salman, B., Hussain, R. & Ong, M. Y. Microwave pyrolysis of lignocellulosic biomass––a contribution to power Africa. Energy Sustain. Soc. 7, 23 (2017).
    Article  Google Scholar  More

  • in

    Social value shift in favour of biodiversity conservation in the United States

    1.
    Bell, D. The coming of the post-industrial society. Educ. Forum 40, 574–579 (1976).
    Google Scholar 
    2.
    Veenhoven, R. Life is getting better: societal evolution and fit with human nature. Soc. Indic. Res. 97, 105–122 (2010).
    Google Scholar 

    3.
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    Google Scholar 

    4.
    Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. BioScience 67, 1026–1028 (2017).
    Google Scholar 

    5.
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
    CAS  Google Scholar 

    6.
    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
    Google Scholar 

    7.
    Ehrlich, P. R. & Kennedy, D. Millennium assessment of human behavior. Science 309, 562–563 (2005).
    CAS  Google Scholar 

    8.
    Crompton, T. Common Cause: The Case for Working with Our Cultural Values (World Wildlife Fund, 2010).

    9.
    What is the Great Transition? Great Transition Initiative https://greattransition.org/about/what-is-the-great-transition (2020).

    10.
    Wilson, D. S. Intentional cultural change. Curr. Opin. Psychol. 8, 190–193 (2016).
    Google Scholar 

    11.
    Gelfand, M. J. et al. Differences between tight and loose cultures: a 33-nation study. Science 332, 1100–1104 (2011).
    CAS  Google Scholar 

    12.
    Oishi, S. & Graham, J. Social ecology: lost and found in psychological science. Perspect. Psychol. Sci. 5, 356–377 (2010).
    Google Scholar 

    13.
    Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).
    CAS  Google Scholar 

    14.
    Teel, T. L. & Manfredo, M. J. Understanding the diversity of public interests in wildlife conservation. Conserv. Biol. 24, 128–139 (2009).
    Google Scholar 

    15.
    Manfredo, M. J., Teel, T. L. & Dietsch, A. M. Implications of human value shift and persistence for biodiversity conservation. Conserv. Biol. 30, 287–296 (2016).
    Google Scholar 

    16.
    Manfredo, M. J., Berl, R. E. W., Teel, T. L., & Brusktotter, J. T. Bringing social values to wildlife conservation decisions. Front. Ecol. Environ. (in the press).

    17.
    Simberloff, D. Flagships, umbrellas, and keystones: is single-species management passé in the landscape era? Biol. Conserv. 83, 247–257 (1998).
    Google Scholar 

    18.
    Meine, C., Soulé, M. & Noss, R. F. “A mission‐driven discipline”: the growth of conservation biology. Conserv. Biol. 20, 631–651 (2006).
    Google Scholar 

    19.
    Ives, C. D. & Kendal, D. The role of social values in the management of ecological systems. J. Environ. Manag. 144, 67–72 (2014).
    Google Scholar 

    20.
    Manfredo, M. J. et al. Why social values cannot be changed for the sake of conservation. Conserv. Biol. 31, 772–780 (2017).
    Google Scholar 

    21.
    Schwartz, S. H. A theory of cultural value orientations: explication and applications. Int. J. Comp. Sociol. 5, 136–182 (2006).
    Google Scholar 

    22.
    Bruskotter, J. T. et al. Conservationists’ moral obligations toward wildlife: values and identity promote conservation conflict. Biol. Conserv. 240, 108296 (2019).
    Google Scholar 

    23.
    Smolicz, J. Core values and cultural identity. Ethn. Racial Stud. 4, 75–90 (1981).
    Google Scholar 

    24.
    Geels, F. W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res. Policy 31, 1257–1274 (2002).
    Google Scholar 

    25.
    Kitayama, S., Conway, L. G. III, Pietromonaco, P. R., Park, H. & Plaut, V. C. Ethos of independence across regions in the United States: the production-adoption model of cultural change. Am. Psychol. 65, 559–574 (2010).
    Google Scholar 

    26.
    Inglehart, R. Culture Shift in Advanced Industrial Society (Princeton Univ. Press, 2018).

    27.
    Tormos, R. The Rhythm of Modernization: How Values Change Over Time (Brill, 2019).

    28.
    Bardi, A., Lee, J. A., Hofmann-Towfigh, N. & Soutar, G. The structure of intraindividual value change. J. Pers. Soc. Psychol. 97, 913–929 (2009).
    Google Scholar 

    29.
    Gouveia, V. V., Vione, K. C., Milfont, T. L. & Fischer, R. Patterns of value change during the life span: some evidence from a functional approach to values. Pers. Soc. Psychol. Bull. 41, 1276–1290 (2015).
    Google Scholar 

    30.
    Bardi, A. & Goodwin, R. The dual route to value change: individual processes and cultural moderators. J. Cross Cult. Psychol. 42, 271–287 (2011).
    Google Scholar 

    31.
    Hitlin, S. & Piliavin, J. A. Values: reviving a dormant concept. Annu. Rev. Sociol. 30, 359–393 (2004).
    Google Scholar 

    32.
    Inglehart, R. Aggregate stability and individual-level flux in mass belief systems: the level of analysis paradox. Am. Political Sci. Rev. 79, 97–116 (1985).
    Google Scholar 

    33.
    Molloy, R., Smith, C. L. & Wozniak, A. Internal migration in the United States. J. Econ. Perspect. 25, 173–196 (2011).
    Google Scholar 

    34.
    Motyl, M., Iyer, R., Oishi, S., Trawalter, S. & Nosek, B. A. How ideological migration geographically segregates groups. J. Exp. Soc. Psychol. 51, 1–14 (2014).
    Google Scholar 

    35.
    Kluckholn, C. in Toward a General Theory of Action (eds T. Parsons. T. & Shils, E. A.) 388–433 (Harvard Univ. Press, 1951).

    36.
    Manfredo, M. J., Teel, T. L. & Henry, K. L. Linking society and environment: a multilevel model of shifting wildlife value orientations in the western United States. Soc. Sci. Quart. 90, 407–427 (2009).
    Google Scholar 

    37.
    Bruskotter, J. T. et al. Modernization, risk, and conservation of the world’s largest carnivores. BioScience 67, 646–655 (2017).
    Google Scholar 

    38.
    Manfredo, M. J., Urquiza-Haas, E. G., Carlos, A. W. D., Bruskotter, J. T. & Dietsch, A. M. How anthropomorphism is changing the social context of modern wildlife conservation. Biol. Conserv. 241, 108297 (2019).
    Google Scholar 

    39.
    Inglehart, R. & Welzel, C. Modernization, Cultural Change, and Democracy: The Human Development Sequence (Cambridge Univ. Press, 2005).

    40.
    Jacobson, C. A. & Decker, D. J. Governance of state wildlife management: reform and revive or resist and retrench? Soc. Nat. Resour. 21, 441–448 (2008).
    Google Scholar 

    41.
    Cohen, J. Statistical Power Analysis for the Behavioural Sciences 2nd edn (Routledge, 1988).

    42.
    Fisher, P. A political outlier: the distinct politics of the millennial generation. Society 55, 35–40 (2018).
    Google Scholar 

    43.
    Tormos, R., Vauclair, C. M. & Dobewall, H. Does contextual change affect basic human values? A dynamic comparative multilevel analysis across 32 European countries. J. Cross Cult. Psychol. 48, 490–510 (2017).
    Google Scholar 

    44.
    Schuster, C., Pinkowski, L. & Fischer, D. Intra-individual value change in adulthood: a systematic literature review of longitudinal studies assessing Schwartz’s value orientations. Z. Psychol. 227, 42–52 (2019).
    Google Scholar 

    45.
    Bruskotter, J. T., Vucetich, J. A. & Nelson, M. P. Animal rights and wildlife conservation: conflicting or compatible. Wildl. Prof. 11, 40–43 (2017).
    Google Scholar 

    46.
    Wildes, F. T. Recent themes in conservation philosophy and policy in the United States. Environ. Conserv. 22, 143–150 (1995).
    Google Scholar 

    47.
    Manfredo, M. J. et al. America’s Wildlife Values: The Social Context of Wildlife Management in the U.S. (Colorado State Univ., 2018).

    48.
    Duffin, E. Forecast on Urbanization in the U.S., 2000-2050 (Statistica, 2019).

    49.
    Oishi, S. et al. Does a major earthquake change job preferences and human values? Eur. J. Pers. 31, 258–265 (2017).
    Google Scholar 

    50.
    Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Penguin, 2011).

    51.
    Kenter, J. O. et al. Loving the mess: navigating diversity and conflict in social values for sustainability. Sustain. Sci. 14, 1439–1461 (2019).
    Google Scholar 

    52.
    Dillman, D. A., Smyth, J. D. & Christian L. M. Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method (John Wiley & Sons, 2014).

    53.
    Scheaffer, R. L., Mendenhall, W. & Ott, L. Elementary Survey Sampling 5th edn (Duxbury, 1996).

    54.
    Keeter, S. et al. What Low Response Rates Mean for Telephone Surveys (Pew Research Center, 2017).

    55.
    Stedman, R. C. et al. The end of the (research) world as we know it? Understanding and coping with declining response rates to mail surveys. Soc. Nat. Resour. 32, 1139–1154 (2019).
    Google Scholar 

    56.
    American Community Survey 2016 5-Year Estimates (US Census Bureau, 2017).

    57.
    National Survey of Fishing, Hunting, and Wildlife-Associated Recreation (US Census Bureau, 2011).

    58.
    Urban and Rural (US Census Bureau, 2018); https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html

    59.
    SAGDP2S: Annual Gross Domestic Product by State (US Bureau of Economic Analysis, 2010); https://apps.bea.gov/iTable/index_regional.cfm

    60.
    Kerlinger, F. N. & Lee, H. B. Foundations of Behavioral Research 4th edn (Wadsworth, 2000).

    61.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    A unifying framework for studying and managing climate-driven rates of ecological change

    1.
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    2.
    Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. A 369, 842–867 (2011).
    PubMed  Google Scholar 

    3.
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
    CAS  PubMed  Google Scholar 

    4.
    McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).
    CAS  Google Scholar 

    5.
    Herrero, C., García-Olivares, A. & Pelegrí, J. L. Impact of anthropogenic CO2 on the next glacial cycle. Clim. Change 122, 283–298 (2014).
    CAS  Google Scholar 

    6.
    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).
    Google Scholar 

    7.
    Berger, A. & Loutre, M. F. An exceptionally long interglacial ahead? Science 297, 1287–1288 (2002).
    CAS  PubMed  Google Scholar 

    8.
    Burke, K. D. et al. Pliocene and Eocene provide best analogues for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).
    CAS  PubMed  Google Scholar 

    9.
    Fisichelli, N. A., Schuurman, G. W. & Hoffman, C. H. Is ‘resilience’ maladaptive? Towards an accurate lexicon for climate change adaptation. Environ. Manag. 57, 753–758 (2016).
    Google Scholar 

    10.
    Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).
    Google Scholar 

    11.
    Scheffers, B. R. & Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 9, 581–586 (2019).
    Google Scholar 

    12.
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
    PubMed  Google Scholar 

    13.
    Hughes, F. M. R., Adams, W. M. & Stroh, P. A. When is open-endedness desirable in restoration projects? Restor. Ecol. 20, 291–295 (2012).
    Google Scholar 

    14.
    Williams, J. W. & Burke, K. in Climate Change and Biodiversity: Transforming the Biosphere (eds Lovejoy, T & Hannah, L.) 128–141 (Yale Univ. Press, 2019).

    15.
    Webb, T. III. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).
    Google Scholar 

    16.
    Blonder, B. et al. Predictability in community dynamics. Ecol. Lett. 20, 293–306 (2017).
    PubMed  Google Scholar 

    17.
    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).
    PubMed  Google Scholar 

    18.
    Huntley, B. et al. Climatic disequilibrium threatens conservation priority forests. Conserv. Lett. 11, e12349 (2018).
    Google Scholar 

    19.
    Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307 (2016).
    PubMed  Google Scholar 

    21.
    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
    PubMed  PubMed Central  Google Scholar 

    22.
    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).
    CAS  PubMed  Google Scholar 

    23.
    Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).
    PubMed  Google Scholar 

    24.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    CAS  PubMed  Google Scholar 

    25.
    Williams, J. W., Blois, J. L. & Shuman, B. N. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J. Ecol. 99, 664–677 (2011).
    Google Scholar 

    26.
    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
    CAS  PubMed  Google Scholar 

    27.
    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
    CAS  PubMed  Google Scholar 

    28.
    Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).
    CAS  PubMed  Google Scholar 

    29.
    Boettiger, C. & Hastings, A. Tipping points: from patterns to predictions. Nature 493, 157–158 (2013).
    CAS  PubMed  Google Scholar 

    30.
    Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).
    Google Scholar 

    31.
    Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 593–595 (2019).
    Google Scholar 

    32.
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008).
    PubMed  Google Scholar 

    33.
    Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil. Trans. R. Soc. B 370, 20130263 (2014).
    Google Scholar 

    34.
    IPCC in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Summary for Policymakers (Cambridge Univ. Press, 2013).

    35.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Google Scholar 

    36.
    Kudo, G. & Ida, T. Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311–2320 (2013).
    Google Scholar 

    37.
    Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
    PubMed  Google Scholar 

    38.
    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).
    CAS  PubMed  Google Scholar 

    39.
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    CAS  PubMed  Google Scholar 

    40.
    Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th Century. Science 320, 1768–1771 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Bellemare, J. & Deeg, C. Horticultural escape and naturalization of Magnolia tripetala in western Massachusetts: biogeographic context and possible relationship to recent climate change. Rhodora 117, 371–383 (2015).
    Google Scholar 

    42.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    CAS  PubMed  Google Scholar 

    43.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    CAS  PubMed  Google Scholar 

    44.
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).
    Google Scholar 

    45.
    Albright, T. P. et al. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens. Environ. 115, 245–254 (2011).
    Google Scholar 

    46.
    Cazelles, K. et al. Homogenization of freshwater lakes: recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Glob. Change Biol. 25, 4222–4233 (2019).
    Google Scholar 

    47.
    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).
    PubMed  PubMed Central  Google Scholar 

    48.
    Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).
    Google Scholar 

    50.
    Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).
    Google Scholar 

    51.
    Hof, C., Levinsky, I., Araújo, M. B. & Rahbek, C. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987–2990 (2011).
    Google Scholar 

    52.
    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).
    Google Scholar 

    53.
    Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science 345, 1177–1180 (2014).
    CAS  PubMed  Google Scholar 

    54.
    Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008).
    CAS  PubMed  Google Scholar 

    55.
    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26 (Suppl.), 194–220 (2000).
    Google Scholar 

    56.
    Prentice, I. C., Bartlein, P. J. & Webb, T. III. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).
    Google Scholar 

    57.
    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).
    Google Scholar 

    58.
    Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).
    PubMed  Google Scholar 

    59.
    Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).
    CAS  Google Scholar 

    60.
    Tinner, W. & Lotter, A. F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554 (2001).
    Google Scholar 

    61.
    Juggins, S. Quantitative reconstructions in paleolimnology: new paradigm or sick science? Quat. Sci. Rev. 64, 20–32 (2013).
    Google Scholar 

    62.
    Ammann, B. et al. Responses to rapid warming at Termination 1a at Gerzensee (Central Europe): primary succession, albedo, soils, lake development, and ecological interactions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 111–131 (2013).
    Google Scholar 

    63.
    Ammann, B., von Grafenstein, U. & van Raden, U. J. Biotic responses to rapid warming about 14,685 yr BP: introduction to a case study at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 3–12 (2013).
    Google Scholar 

    64.
    Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
    CAS  PubMed  Google Scholar 

    66.
    Hui, C., Roura-Pascual, N., Brotons, L., Robinson, R. A. & Evans, K. L. Flexible dispersal strategies in native and non-native ranges: environmental quality and the ‘good–stay, bad–disperse’ rule. Ecography 35, 1024–1032 (2012).
    Google Scholar 

    67.
    Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).
    Google Scholar 

    68.
    Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl Acad. Sci. USA 106, 19685–19692 (2009).
    CAS  PubMed  Google Scholar 

    69.
    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).
    CAS  PubMed  Google Scholar 

    70.
    Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).
    PubMed  Google Scholar 

    71.
    Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).
    PubMed  Google Scholar 

    72.
    Raffa, K. F., Powell, E. N. & Townsend, P. A. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proc. Natl Acad. Sci. USA 110, 2193–2198 (2013).
    CAS  PubMed  Google Scholar 

    73.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  PubMed  Google Scholar 

    74.
    Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).
    Google Scholar 

    75.
    Ricklefs, R. E. & Latham, R. E. Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperature perennial herbs. Am. Nat. 139, 1305–1321 (1992).
    Google Scholar 

    76.
    McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).
    Google Scholar 

    77.
    Pither, J., Pickles, B. J., Simard, S. W., Ordonez, A. & Williams, J. W. Below-ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160 (2018).
    PubMed  Google Scholar 

    78.
    Lawler, J. J. & Olden, J. D. Reframing the debate over assisted colonization. Front. Ecol. Environ. 9, 569–574 (2011).
    Google Scholar 

    79.
    Schwartz, M. W. et al. Managed relocation: integrating the scientific, regulatory, and ethical challenges. BioScience 62, 732–743 (2012).
    Google Scholar 

    80.
    Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).
    Google Scholar 

    81.
    Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).
    Google Scholar 

    82.
    Sax, D. F., Early, R. & Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 28, 517–523 (2013).
    PubMed  Google Scholar 

    83.
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
    PubMed  Google Scholar 

    84.
    Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).
    Google Scholar 

    85.
    Wheeler, H. C., Høye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions—implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).
    PubMed  Google Scholar 

    86.
    Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34, 885–888 (2019).
    PubMed  Google Scholar 

    87.
    Chamberlain, C. J., Cook, B. I., de Cortazar Atauri, I. G. & Wolkovich, E. M. Rethinking false spring risk. Glob. Change Biol. 25, 2209–2220 (2019).
    Google Scholar 

    88.
    Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).
    CAS  PubMed  Google Scholar 

    89.
    Pagel, J. et al. Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. Proc. Natl Acad. Sci. USA 117, 3663–3669 (2020).
    CAS  PubMed  Google Scholar 

    90.
    Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. USA 116, 17867–17873 (2019).
    CAS  PubMed  Google Scholar 

    91.
    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).
    CAS  PubMed  Google Scholar 

    92.
    Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 0182 (2017).
    Google Scholar 

    93.
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
    Google Scholar 

    94.
    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    95.
    Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).
    Google Scholar 

    96.
    Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 23, 1356–1365 (2014).
    Google Scholar 

    97.
    Perret, D. L., Leslie, A. B. & Sax, D. F. Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.). Glob. Ecol. Biogeogr. 28, 429–441 (2019).
    Google Scholar 

    98.
    Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).
    PubMed  Google Scholar 

    99.
    Knight, C. A. et al. Community assembly and climate mismatch in Late-Quaternary eastern North American pollen assemblages. Am. Nat. 195, 166–180 (2020).
    PubMed  Google Scholar 

    100.
    Butterfield, B. J., Anderson, R. S., Holmgren, C. A. & Betancourt, J. L. Extinction debt and delayed colonization have had comparable but unique effects on plant community–climate lags since the Last Glacial Maximum. Glob. Ecol. Biogeogr. 28, 1067–1077 (2019).
    Google Scholar 

    101.
    Graham, R. W. et al. Timing and causes of a middle Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).
    CAS  PubMed  Google Scholar 

    102.
    Woods, K. D. & Davis, M. B. Paleoecology of range limits: beech in the Upper Peninsula of Michigan. Ecology 70, 681–696 (1989).
    Google Scholar 

    103.
    Jackson, S. T. et al. Inferring local to regional changes in forest composition from Holocene macrofossils and pollen of a small lake in central Upper Michigan. Quat. Sci. Rev. 98, 60–73 (2014).
    Google Scholar 

    104.
    Seeley, M., Goring, S. & Williams, J. W. Testing hypotheses about environmental and dispersal controls on Fagus grandifolia distributions in the upper Midwest Great Lakes region. J. Biogeogr. 46, 405–419 (2019).
    Google Scholar 

    105.
    Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. Holocene 18, 19–30 (2008).
    Google Scholar 

    106.
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).
    Google Scholar 

    107.
    Svenning, J.-C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).
    PubMed  Google Scholar 

    108.
    Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).
    CAS  PubMed  Google Scholar 

    109.
    Feng, G. et al. Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly shaped by modern climate and glacial–interglacial climate change. Glob. Ecol. Biogeogr. 28, 1393–1402 (2019).
    Google Scholar 

    110.
    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
    Google Scholar 

    111.
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).
    Google Scholar 

    112.
    Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford Univ. Press, 2017).

    113.
    Kowarik, I. in Plant Invasions. General Aspects and Special Problems (eds Pysek, P. et al.) 15–39 (SPB Academic Publishing, 1995).

    114.
    Bruce, K. A., Cameron, G. N. & Harcombe, P. A. Initiation of a new woodland type on the Texas Coastal Prairie by the Chinese tallow tree (Sapium sebiferum (L.) Roxb.). Bull. Torrey Bot. Club 122, 215–225 (1995).
    Google Scholar 

    115.
    Castro, S. A., Figueroa, J. A., Muñoz-Schick, M. & Jaksic, F. M. Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers. Distrib. 11, 183–191 (2005).
    Google Scholar 

    116.
    Hoffmann, J. H. & Moran, V. C. The invasive weed Sesbania punicea in South Africa and prospects for its biological control. S. Afr. J. Sci. 84, 740–472 (1988).
    Google Scholar 

    117.
    Byers, J. E. et al. Invasion expansion: time since introduction best predicts global ranges of marine invaders. Sci. Rep. 5, 12436 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    118.
    Phillips, M. L., Murray, B. R., Leishman, M. R. & Ingram, R. The naturalization to invasion transition: are there introduction-history correlates of invasiveness in exotic plants of Australia? Austral Ecol. 35, 695–703 (2010).
    Google Scholar 

    119.
    Scott, J. K. & Panetta, F. D. Predicting the Australian weed status of southern African plants. J. Biogeogr. 20, 87–93 (1993).
    Google Scholar 

    120.
    Arroyo, M. T. K., Rozzi, R., Simonetti, J. A., Marquet, P. & Sallaberry, M. in Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecosystems (eds Mittermeier, R. A. et al.) 161–171 (Cemex, Conservation International, 1999).

    121.
    Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).
    CAS  PubMed  Google Scholar 

    122.
    Ordonez, A. & Williams, J. W. Projected climate reshuffling based on multivariate climate-availability, climate-analog, and climate-velocity analyses: implications for community disaggregation. Clim. Change 119, 659–675 (2013).
    Google Scholar 

    123.
    Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA 117, 12192–12200 (2020).
    CAS  PubMed  Google Scholar 

    124.
    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).
    Google Scholar 

    125.
    Turner, M. G. et al. Climate change, ecosystems, and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).
    PubMed  Google Scholar 

    126.
    Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
    CAS  PubMed  Google Scholar 

    127.
    Calder, W. J. & Shuman, B. N. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado. Ecology 98, 2585–2600 (2017).
    PubMed  Google Scholar 

    128.
    Shuman, B. N., Marsicek, J., Oswald, W. W. & Foster, D. R. Predictable hydrological and ecological responses to Holocene North Atlantic variability. Proc. Natl Acad. Sci. USA 116, 5985–5990 (2019).
    CAS  PubMed  Google Scholar 

    129.
    Allison, T. D., Moeller, R. E. & Davis, M. B. Pollen in laminated sediments provides evidence of mid-Holocene forest pathogen outbreak. Ecology 67, 1101–1105 (1986).
    Google Scholar 

    130.
    Ramiadantsoa, T., Stegner, M. A., Williams, J. W. & Ives, A. R. The potential role of intrinsic processes in generating abrupt and quasi-synchronous tree declines during the Holocene. Ecology 100, e02579 (2019).
    PubMed  Google Scholar 

    131.
    Seddon, A. W. R., Froyd, C. A., Witkowski, A. & Willis, K. J. A quantitative framework for analysis of regime shifts in a Galápagos coastal lagoon. Ecology 95, 3046–3055 (2014).
    Google Scholar 

    132.
    Gray, S. T., Betancourt, J. L., Jackson, S. J. & Eddy, R. G. Role of multidecadal climatic variability in a range extension of pinyon pine. Ecology 87, 1124–1130 (2006).
    PubMed  Google Scholar 

    133.
    Lyford, M. E., Jackson, S. T., Betancourt, J. L. & Gray, S. T. Influence of landscape structure and climate variability on a late Holocene plant migration. Ecol. Monogr. 73, 567–583 (2003).
    Google Scholar 

    134.
    Tinner, W. & Lotter, A. F. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat. Sci. Rev. 25, 526–549 (2006).
    Google Scholar 

    135.
    Saltré, F. A. et al. Climate or migration: what limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 22, 1217–1227 (2013).
    Google Scholar 

    136.
    Ruosch, M. et al. Past and future evolution of Abies alba forests in Europe – comparison of a dynamic vegetation model with palaeo data and observations. Glob. Change Biol. 22, 727–740 (2016).
    Google Scholar 

    137.
    Danz, N. P., Frelich, L. E., Reich, P. B. & Niemi, G. J. Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie–forest biome boundary of historic Minnesota, USA. J. Veg. Sci. 24, 1129–1140 (2013).
    Google Scholar 

    138.
    Grimm, E. C. Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecol. Monogr. 54, 291–311 (1984).
    Google Scholar 

    139.
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).
    CAS  PubMed  Google Scholar 

    140.
    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474 (2015).
    Google Scholar 

    141.
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
    PubMed  Google Scholar 

    142.
    Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).
    Google Scholar 

    143.
    Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, 129 (2011).
    Google Scholar 

    144.
    Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).
    Google Scholar 

    145.
    Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).
    PubMed  Google Scholar 

    146.
    Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).
    PubMed  PubMed Central  Google Scholar 

    147.
    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).
    PubMed  Google Scholar 

    148.
    Choi, Y. D. Restoration ecology to the future: a call for new paradigm. Restor. Ecol. 15, 351–353 (2007).
    Google Scholar 

    149.
    Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).
    PubMed  Google Scholar 

    150.
    Sprugel, D. G. Disturbance, equilibrium, and environmental variability: what is ‘Natural’ vegetation in a changing environment? Biol. Conserv. 58, 1–18 (1991).
    Google Scholar 

    151.
    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).
    CAS  PubMed  Google Scholar 

    152.
    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
    CAS  PubMed  Google Scholar 

    153.
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).
    PubMed  Google Scholar 

    154.
    Truitt, A. M. et al. What is novel about novel ecosystems: managing change in an ever-changing world. Environ. Manag. 55, 1217–1226 (2015).
    Google Scholar 

    155.
    Murcia, C. et al. A critique of the ‘novel ecosystem’ concept. Trends Ecol. Evol. 29, 548–553 (2014).
    PubMed  Google Scholar 

    156.
    Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).
    PubMed  Google Scholar 

    157.
    Svenning, J.-C. Proactive conservation and restoration of botanical diversity in the Anthropocene’s “rambunctious garden”. Am. J. Bot. 105, 963–966 (2018).
    PubMed  Google Scholar 

    158.
    Jepson, P. Recoverable Earth: a twenty-first century environmental narrative. Ambio 48, 123–130 (2019).
    PubMed  Google Scholar 

    159.
    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).
    CAS  PubMed  Google Scholar 

    160.
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
    PubMed  Google Scholar 

    161.
    Willis, K. J. & MacDonald, G. M. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annu. Rev. Ecol. Evol. Syst. 42, 267–287 (2011).
    Google Scholar 

    162.
    Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big data science: Current advances, challenges, and solutions. BioScience 68, 563–576 (2018).
    Google Scholar 

    163.
    Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).
    Google Scholar 

    164.
    Clark, J. S. et al. Ecological forecasts: an emerging imperative. Science 293, 657–660 (2001).
    CAS  PubMed  Google Scholar 

    165.
    Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).
    CAS  PubMed  Google Scholar 

    166.
    Dietze, M. C. Ecological Forecasting (Princeton Univ. Press, 2017).

    167.
    Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).
    CAS  PubMed  Google Scholar 

    168.
    Thomas, S. M., Griffiths, S. W. & Ormerod, S. J. Adapting streams for climate change using riparian broadleaf trees and its consequences for stream salmonids. Freshw. Biol. 60, 64–77 (2015).
    Google Scholar 

    169.
    Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J. & Maclean, I. M. D. Using in situ management to conserve biodiversity under climate change. J. Appl. Ecol. 53, 885–894 (2016).
    PubMed  PubMed Central  Google Scholar 

    170.
    Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).
    Google Scholar 

    171.
    Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 

    172.
    Bureau of Reclamation Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs (US Department of the Interior, Bureau of Reclamation, Technical Services Center, 2014).

    173.
    Delcourt, H. R. & Delcourt, P. A. Quaternary Ecology: A Paleoecological Perspective (Chapman & Hall, 1991).

    174.
    IPCC in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (Cambridge Univ. Press, 2014).

    175.
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
    CAS  PubMed  Google Scholar 

    176.
    McDowell, P. F., Webb, T. III & Bartlein, P. J. in The Earth as Transformed by Human Action (eds Turner, B. L. II et al.) 143–162 (Cambridge Univ. Press, 1990).

    177.
    Delcourt, P. A. & Delcourt, H. R. Long-Term Forest Dynamics of the Temperate Zone: A Case Study of Late-Quaternary Forests in Eastern North America (Springer-Verlag, 1987).

    178.
    Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).
    Google Scholar 

    179.
    Kidwell, S. M. Biology in the Anthropocene: challenges and insights from young fossil records. Proc. Natl Acad. Sci. USA 12, 4922–4929 (2015).
    Google Scholar 

    180.
    National Research Council Abrupt Climate Change: Inevitable Surprises (National Academy Press, 2002).

    181.
    Rahmstorf, S. in Encyclopedia of Ocean Sciences (eds Steele, J. et al.) 1–6 (Academic Press, 2001).

    182.
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
    CAS  PubMed  Google Scholar 

    183.
    Staver, A. C., Archibald, S. & Levin, S. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).
    PubMed  Google Scholar 

    184.
    Andersen, T., Carstensen, J., Hernández-Garcia, E. & Duarte, C. M. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24, 49–57 (2009).
    PubMed  Google Scholar 

    185.
    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
    Google Scholar 

    186.
    Claussen, M. Late Quaternary vegetation-climate feedbacks. Clim. Past 5, 203–216 (2009).
    Google Scholar 

    187.
    Liu, Z., Notaro, M. & Gallimore, R. Indirect vegetation-soil moisture feedback with application to Holocene North Africa climate. Glob. Change Biol. 16, 1733–1743 (2010).
    Google Scholar  More