Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity
1.
Tisdale, H. The process of urbanization. Soc. Forces 20, 311–316 (1942).
Article Google Scholar
2.
McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).
Article Google Scholar
3.
Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
PubMed Article CAS PubMed Central Google Scholar
5.
Turrini, T., Sanders, D. & Knop, E. Effects of urbanization on direct and indirect interactions in a tri-trophic system. Ecol. Appl. 26, 664–675 (2016).
Article Google Scholar
6.
Theodorou, P. et al. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc. R. Soc. B Biol. Sci. 285, 20172806 (2018).
Article Google Scholar
7.
Thompson, K. A., Renaudin, M. & Johnson, M. T. J. Urbanization drives the evolution of parallel clines in plant populations. Proc. R. Soc. B Biol. Sci. 283, 20162180 (2016).
Article Google Scholar
8.
Theodorou, P., Baltz, L. M., Paxton, R. J. & Soro, A. Urbanisation is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 10, 1–16 (2020).
Google Scholar
9.
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).
Article Google Scholar
10.
Potts, S. G., Vulliamy, B., Dafni, A., Nee’man, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities?. Ecology 84, 2628–2642 (2003).
Article Google Scholar
11.
Steffan-Dewenter, I. & Tscharntke, T. Succession of bee communities on fallows. Ecography 24, 83–93 (2001).
Article Google Scholar
12.
Fründ, J., Linsenmair, K. E. & Blüthgen, N. Pollinator diversity and specialization in relation to flower diversity. Oikos 119, 1581–1590 (2010).
Article Google Scholar
13.
Ebeling, A., Klein, A. M., Schumacher, J., Weisser, W. W. & Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos 117, 1808–1815 (2008).
Article Google Scholar
14.
Theodorou, P. et al. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol. 31, 838–847 (2017).
Article Google Scholar
15.
Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
16.
Ghazoul, J. Floral diversity and the facilitation of pollination. J. Ecol. 94, 295–304 (2006).
Article Google Scholar
17.
Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).
PubMed Article PubMed Central Google Scholar
18.
Lundgren, R., Totland, Ø. & Lázaro, A. Experimental simulation of pollinator decline causes community-wide reductions in seedling diversity and abundance. Ecology 97, 1420–1430 (2016).
PubMed Article PubMed Central Google Scholar
19.
Papanikolaou, A. D. et al. Wild bee and floral diversity co-vary in response to the direct and indirect impacts of land use. Ecosphere 8, e02008 (2017).
Article Google Scholar
20.
Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl. Acad. Sci. U. S. A. 110, 13044–13048 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
21.
Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).
PubMed PubMed Central Article Google Scholar
22.
Albrecht, J. et al. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nat. Commun. 9, 3177 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
23.
Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).
PubMed Article Google Scholar
24.
Harrison, T. & Winfree, R. Urban drivers of plant-pollinator interactions. Funct. Ecol. 29, 879–888 (2015).
Article Google Scholar
25.
Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci. 282, 20142849 (2015).
Article Google Scholar
26.
Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban–rural gradient. PLoS ONE 6, e23459 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
27.
Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
28.
Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
29.
Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731 (2020).
Article Google Scholar
30.
Hung, K. J., Ascher, J. S., Davids, J. A. & Holway, D. A. Ecological filtering in scrub fragments restructures the taxonomic and functional composition of native bee assemblages. Ecology 100, e02654 (2019).
PubMed Article PubMed Central Google Scholar
31.
Buchholz, S. & Egerer, M. H. Functional ecology of wild bees in cities: towards a better understanding of trait-urbanization relationships. Biodivers. Conserv. 29, 2779–2801 (2020).
Article Google Scholar
32.
Cane, J. H., Minckley, R. L., Kervin, L. J., Roulston, T. H. & Williams, N. M. Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol. Appl. 16, 632–644 (2006).
PubMed Article PubMed Central Google Scholar
33.
Banaszak-Cibicka, W. & Żmihorski, M. Wild bees along an urban gradient: winners and losers. J. Insect Conserv. 16, 331–343 (2011).
Article Google Scholar
34.
Neame, L. A., Griswold, T. & Elle, E. Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv. Divers. 6, 57–66 (2013).
Article Google Scholar
35.
Fitch, G. et al. Does urbanization favour exotic bee species? Implications for the conservation of native bees in cities. Biol. Lett. 15, 20190574 (2019).
PubMed PubMed Central Article Google Scholar
36.
Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol. Lett. 11, 1054–1064 (2008).
PubMed Article PubMed Central Google Scholar
37.
Kühn, I., Brandl, R. & Klotz, S. The flora of German cities is naturally species rich. Evol. Ecol. Res. 6, 749–764 (2004).
Google Scholar
38.
Knapp, S., Winter, M. & Klotz, S. Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization. J. Appl. Ecol. 54, 1152–1160 (2016).
Article Google Scholar
39.
Lososová, Z. et al. Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect. Plant Ecol. Evol. Syst. 8, 69–81 (2006).
Article Google Scholar
40.
Pysek, P. Alien and native species in Central European urban floras: a quantitative comparison. J. Biogeogr. 25, 155–163 (1998).
Article Google Scholar
41.
Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
42.
Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
Article Google Scholar
43.
Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38, 380–392 (2014).
Article Google Scholar
44.
Mallinger, R. E., Gaines-Day, H. R. & Gratton, C. Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS ONE 12, e0189268 (2017).
PubMed PubMed Central Article CAS Google Scholar
45.
Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85 (2005).
Article Google Scholar
46.
Pardee, G. L. & Philpott, S. M. Native plants are the bee’s knees: local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 17, 641–659 (2014).
Article Google Scholar
47.
Ballare, K. M., Neff, J. L., Ruppel, R. & Jha, S. Multi-scalar drivers of biodiversity: local management mediates wild bee community response to regional urbanization. Ecol. Appl. 29, e01869 (2019).
PubMed Article PubMed Central Google Scholar
48.
Torné-Noguera, A. et al. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9, e97255 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
49.
Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
PubMed PubMed Central Article Google Scholar
50.
Fetridge, E. D., Ascher, J. S. & Langellotto, G. A. The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea). Ann. Entomol. Soc. Am. 101, 1067–1077 (2008).
Article Google Scholar
51.
Stang, M., Klinkhamer, P. G. L. & van der Meijden, E. Size constraints and flower abundance determine the number of interactions in a plant–flower visitor web. Oikos 112, 111–121 (2006).
Article Google Scholar
52.
Scolozzi, R. & Geneletti, D. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environ. Impact Assess. Rev. 36, 9–22 (2012).
Article Google Scholar
53.
Cheptou, P.-O., Hargreaves, A. L., Bonte, D. & Jacquemyn, H. Adaptation to fragmentation: evolutionary dynamics driven by human influences. Philos. Trans. R. Soc. B Biol. Sci. 372, 2 (2017).
Google Scholar
54.
Hennig, E. I. & Ghazoul, J. Plant–pollinator interactions within the urban environment. Perspect. Plant Ecol. Evol. Syst. 13, 137–150 (2011).
Article Google Scholar
55.
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
PubMed Article PubMed Central Google Scholar
56.
Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org. (2014).
57.
Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).
ADS PubMed Article PubMed Central Google Scholar
58.
Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).
Article Google Scholar
59.
Amiet, F. & Gesellschaft, S. E. Insecta Helvetica. A, Fauna: 12. Hymenoptera. Apidae.-T. 1. Allgemeiner Teil, Gattungsschlüssel, Gattungen Apis, Bombus und Psithyrus. (Musée d’Histoire naturelle, 1996).
60.
Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Fauna Helvetica 6. Apidae 3: Halictus, Lasioglossum. Fauna Helv. 6. Apidae 3 Halictus, Lasioglossum (2001).
61.
Amiet, F., Müller, A. & Neumeyer, R. Apidae 2: Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha. 4 (Schweizerische Entomologische Gesellschaft, 1999).
62.
Hebert, P. D. N., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).
CAS Article Google Scholar
63.
Bäßler, M., Jäger, J. E. & Werner, K. Rothmaler, W. (Begr.): Exkursionsflora von Deutschland. Bd.2: Gefäßpflanzen. 17.Aufl (Berlin: Spektrum, 1999).
64.
Jäger, J. E., Wesche, K., Ritz, C., Müller, F. & Welk, E. Rothmaler – Exkursionsflora von Deutschland, Gefäßpflanzen: Atlasband (Springer-Verlag, 2013).
65.
Westrich, P. Die Wildbienen Deutschlands (Verlag Eugen Ulmer, 2018).
66.
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
ADS Article Google Scholar
67.
Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).
Article Google Scholar
68.
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
PubMed Article Google Scholar
69.
Rader, R., Bartomeus, I., Tylianakis, J. M. & Lalibert, E. The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).
Article Google Scholar
70.
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
Article Google Scholar
71.
Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.15.1 (2013).
72.
Burnham, K. P. & Anderson, D. R. Multimodel inference. Sociol. Methods Res. 33, 261–304 (2004).
MathSciNet Article Google Scholar
73.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
74.
Legendre, P., Galzin, R. & Harmelin-Vivien, M. L. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78, 547–562 (1997).
Google Scholar
75.
Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. R package version 4.1.3 (2020).
76.
Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Article Google Scholar
77.
Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).
PubMed Article PubMed Central Google Scholar
78.
Sobel, M. E. Sociological methodology. In: Sociological Methodology (ed. Leinhart, S.) 290–312 (1982).
79.
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).
Google Scholar
80.
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
CAS PubMed Article PubMed Central Google Scholar
81.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org (2016). More
