1.
Ohmann, B. & Babiuk, L. A. Viral infections in domestic animals as models for studies of viral immunology and pathogenesis. J. Gen. Virol. 66, 1–25 (1986).
Article Google Scholar
2.
Woolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. Human viruses: discovery and emergence. Phil. Trans. R. Soc. B. 367, 2864–2871 (2012).
PubMed Article PubMed Central Google Scholar
3.
Johnson, C. K. et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 5, 14830 (2015).
ADS Article CAS Google Scholar
4.
Glennon, E. E. et al. Domesticated animals as hosts of henipaviruses and filoviruses: a systematic review. Veterinary J. 233, 25–34 (2018).
Article Google Scholar
5.
Letarov, A. & Kulikov, E. The bacteriophages in human- and animal body-associated microbial communities. J. Appl. Microbiol. 107, 1–13 (2009).
CAS PubMed Article PubMed Central Google Scholar
6.
Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 95–209 (2019).
Article CAS Google Scholar
7.
Kwok, K. T. T., Nieuwenhuijse, D. F., Phan, M. V. T. & Koopmans, M. P. G. Virus metagenomics in farm animals: a systematic review. Viruses 12, E107 (2020).
PubMed Article CAS PubMed Central Google Scholar
8.
Grasis, J. A. et al. Species-specific viromes in the ancestral holobiont Hydra. PLoS ONE 9, e109952 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
9.
Bosch, T. C., Grasis, J. A. & Lachnit, T. Microbial ecology in Hydra: Why viruses matter. J. Microbiol. 53, 193–200 (2015).
PubMed Article PubMed Central Google Scholar
10.
Weynberg, K. D. et al. Coral-associated viral communities show high levels of diversity and host auxiliary functions. PeerJ 5, e4054 (2017).
PubMed PubMed Central Article CAS Google Scholar
11.
Mahmoud, H. & Jose, L. Phage and nucleocytoplasmic large viral sequences dominate coral viromes from the Arabian Gulf. Front. Microbiol. 8, 2063 (2017).
PubMed PubMed Central Article Google Scholar
12.
López-Madrigal, S. & Duarte, E. H. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol. Lett. 366, fnz232 (2019).
PubMed Article CAS Google Scholar
13.
Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog. 2, e43 (2006).
PubMed PubMed Central Article Google Scholar
14.
Perlmutter, J. I. et al. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog. 15, e1007936 (2019).
CAS PubMed PubMed Central Article Google Scholar
15.
Johnson, P. T. Viral diseases of marine invertebrates. Helgolander Meeresunters 37, 65–98 (1984).
Article Google Scholar
16.
Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).
CAS PubMed Article Google Scholar
17.
Munn, C. B. Viruses as pathogens of marine organisms—from bacteria to whales. J. Mar. Biol. Ass. 86, 453–467 (2006).
Article Google Scholar
18.
Lang, A. S., Rise, M. L., Culley, A. I. & Steward, G. F. RNA viruses in the sea. FEMS Microbiol. Rev. 33, 295–323 (2009).
CAS PubMed Article Google Scholar
19.
Rosario, K., Schenck, R. O., Harbeitner, R. C., Lawler, S. N. & Breitbart, M. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins. Front. Microbiol. 6, 696 (2015).
PubMed PubMed Central Article Google Scholar
20.
Reuter, M. Viruslike particles in Gyratrix hermaphroditus (Turbellaria: Rhabdocoela). J. Invertebr. Pathol. 25, 79–95 (1975).
CAS PubMed Article PubMed Central Google Scholar
21.
Vijayan, K. K. et al. Polychaete worms—a vector for white spot syndrome virus (WSSV). Dis. Aquat. Org. 63, 107–111 (2005).
CAS Article Google Scholar
22.
Nobiron, I. et al. Genome and polypeptides characterization of Tellina virus 1 reveals a fifth genetic cluster in the Birnaviridae family. Virology 371, 350–361 (2008).
CAS PubMed Article PubMed Central Google Scholar
23.
Crespo-González, C. et al. Virus-like particles in Urastoma cyprinae, a turbellarian parasite of Mytilus galloprovincialis. Dis. Aquat. Organ. 79, 83–86 (2008).
PubMed Article PubMed Central Google Scholar
24.
Marhaver, K. L., Edwards, R. A. & Rohwer, F. Viral communities associated with healthy and bleaching corals. Environ. Microbiol. 10, 2277–2286 (2008).
CAS PubMed PubMed Central Article Google Scholar
25.
Claverie, J.-M. et al. Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. J. Invertebr. Pathol. 101, 172–180 (2009).
CAS PubMed Article PubMed Central Google Scholar
26.
Jackson, E. W., Bistolas, K. S. I., Button, J. B. & Hewson, I. Novel circular single-stranded DNA viruses among an asteroid, echinoid and holothurian (Phylum: Echinodermata). PLoS ONE 11, e0166093 (2016).
PubMed PubMed Central Article CAS Google Scholar
27.
Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
28.
Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. The ISME J 7, 1738–1751 (2013).
CAS PubMed Article PubMed Central Google Scholar
29.
Middelboe, M. & Brussaard, C. Marine viruses: key players in marine ecosystems. Viruses 9, E302 (2017).
PubMed Article PubMed Central Google Scholar
30.
Vacelet, J. & Gallissian, M.-F. Virus-like particles in the cells of the sponge Verongia cavernicola (Demospongiae, Dictyoceratida) and accompanying tissues changes. J. Invertebr. Pathol. 31, 246–254 (1978).
Article Google Scholar
31.
Luter, H. M., Whalan, S. & Webster, N. S. Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Lanthella basta. Appl. Environ. Microbiol. 76, 5736–5744 (2010).
CAS PubMed PubMed Central Article Google Scholar
32.
Pascelli, C., Laffy, P. W., Kupresanin, M., Ravasi, T. & Webster, N. S. Morphological characterization of virus-like particles in coral reef sponges. PeerJ 6, e5625 (2018).
PubMed PubMed Central Article CAS Google Scholar
33.
Lohr, J. E., Chen, F. & Hill, R. T. Genomic analysis of bacteriophage JL001: insights into its interaction with a sponge-associated alpha-Proteobacterium. Appl. Environ. Microbiol. 71, 1598–1609 (2005).
CAS PubMed PubMed Central Article Google Scholar
34.
Lohr, J., Munn, C. B. & Wilson, W. H. Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl. Environ. Microbiol. 73, 2976–2981 (2007).
CAS PubMed PubMed Central Article Google Scholar
35.
Patten, N. L., Harrison, P. L. & Mitchell, J. G. Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs 27, 569–580 (2008).
ADS Article Google Scholar
36.
van Oppen, M. H., Leong, J.-A. & Gates, R. D. Coral-virus interactions: A double-edged sword?. Symbiosis 47, 1–8 (2009).
Article Google Scholar
37.
Vega Thurber, R. L. & Correa, A. M. S. Viruses of reef-building scleractinian corals. J. Exp. Mar. Biol. Ecol. 408, 102–113 (2011).
Article Google Scholar
38.
Leruste, A., Bouvier, T. & Bettarel, Y. Enumerating viruses in coral mucus. Appl. Environ. Microbiol. 78, 6377–6379 (2012).
CAS PubMed PubMed Central Article Google Scholar
39.
Pollock, F. J. et al. Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar. Ecol. Prog. Ser. 510, 39–43 (2014).
ADS Article Google Scholar
40.
Correa, A. M. S. et al. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front. Microbiol. 7, 127 (2016).
PubMed PubMed Central Article Google Scholar
41.
Farley, C. A. Viruses and viruslike lesions in marine mollusks. Mar. Fish. Rev. 40, 18–20 (1978).
Google Scholar
42.
Elston, R. A. Bivalve mollusc viruses. World J. Microbiol. Biotechnol. 13, 393–403 (1997).
Article Google Scholar
43.
Renault, T. & Novoa, B. Viruses infecting bivalve molluscs. Aquat. Living Resour. 17, 397–409 (2004).
Article Google Scholar
44.
Richards, G. P. et al. Bacteriophages against pathogenic vibrios in Delaware Bay oysters (Crassostrea virginica) during a period of high levels of pathogenic Vibrio parahaemolyticus. Food Environ. Virol. 11, 101–112 (2019).
PubMed Article PubMed Central Google Scholar
45.
Leigh, B., Karrer, C., Cannon, J. P., Breitbart, M. & Dishaw, L. J. Isolation and characterization of a Shewanella phage–host system from the gut of the tunicate Ciona intestinalis. Viruses 9, E60 (2017).
PubMed Article CAS PubMed Central Google Scholar
46.
Winston, J. E. Feeding in marine bryozoans. In Biology of Bryozoans (eds Woollacott, R. M. & Zimmer, R. L.) 233–271 (Academic Press, London, 1977).
Google Scholar
47.
Winston, J. E. Polypide morphology and feeding behaviour in marine ectoprocts. Bull. Mar. Sci. 28, 1–31 (1978).
Google Scholar
48.
Shunatova, N. N. & Ostrovsky, A. N. Individual autozooidal behaviour and feeding in marine bryozoans. Sarsia 86, 113–142 (2001).
Article Google Scholar
49.
Shunatova, N. & Ostrovsky, A. Group autozooidal behaviour and chimneys in marine bryozoans. Mar. Biol. 140, 503–518 (2002).
Article Google Scholar
50.
Schwaha, T. F., Ostrovsky, A. N. & Wanninger, A. Key novelties in the evolution of Bryozoa: evidence from the soft-body morphology. Biol. Rev. 95, 696–729 (2020).
PubMed Article PubMed Central Google Scholar
51.
Ryland, J. S. Bryozoans (Hutchinson University Library, London, 1970).
Google Scholar
52.
Ryland, J. S. Bryozoa: an introductory overview. In Moostiere (Bryozoa). Denisia Vol. 16 (ed. Woess, E.) 9–22 (Springer, Linz, 2005).
Google Scholar
53.
McKinney, F. K. & Jackson, J. D. C. Bryozoan Evolution (Unwin Hyman, Boston, MA, 1989).
Google Scholar
54.
Nielsen, C. Bryozoa (Ectoprocta: ‘Moss’ animals). eLS 1, 1–6. https://doi.org/10.1002/9780470015902.a0001613.pub2 (2013).
Article Google Scholar
55.
Lutaud, G. Sur la présence de microorganismes spécifiques dans les glandes vestibulaires et dans l’aviculaire de Palmicellaria skenei (Ellis et Solander) Bryozoaire Chilostome. Cah. Biol. Mar. 6, 181–190 (1965).
Google Scholar
56.
Lutaud, G. La nature des corps funiculaires des cellularines Bryozoaires Chilostomes. Arch. Zool. Exp. Gen. 110, 2–30 (1969).
Google Scholar
57.
Lutaud, G. L’infestation du myoépithélium de l’oesophage par des microorganismes pigmentés et la structure des organes à bactéries du vestibule chez le Bryozoaire Chilostome Palmicellaria skenei (E. et S.) Can. J. Zool. 64, 1842–1851 (1986).
Google Scholar
58.
Woollacott, R. M. & Zimmer, R. L. A simplified placenta-like system for the transport of extraembryonic nutrients during embryogenesis of Bugula neritina (Bryozoa). J. Morphol. 147, 355–377 (1975).
PubMed Article Google Scholar
59.
Dyrynda, P. E. J. & King, P. E. Sexual reproduction in Epistomia bursaria (Bryozoa: Cheilostomata), an endozooidal brooder without polypide recycling. J. Zool. 198, 337–352 (1982).
Article Google Scholar
60.
Moosbrugger, M., Schwaha, T., Walzl, M. G., Obst, M. & Ostrovsky, A. N. The placental analogue and the pattern of sexual reproduction in the cheilostome bryozoan Bicellariella ciliata (Gymnolaemata). Front. Zool. 9, 29 (2012).
PubMed PubMed Central Article Google Scholar
61.
Mathew, M., Schwaha, T., Ostrovsky, A. N. & Lopanik, N. B. Symbiont-dependent sexual reproduction in marine colonial invertebrate: Morphological and molecular evidence. Mar. Biol. 165, 14 (2018).
Article CAS Google Scholar
62.
Karagodina, N. P., Vishnyakov, A. E., Kotenko, O. N., Maltseva, A. L. & Ostrovsky, A. N. Ultrastructural evidence for nutritional relationships between a marine colonial invertebrate (Bryozoa) and its bacterial symbionts. Symbiosis 75, 155–164 (2018).
CAS PubMed Article PubMed Central Google Scholar
63.
Woollacott, R. M. Association of bacteria with bryozoan larvae. Mar. Biol. 65, 155–158 (1981).
Article Google Scholar
64.
Zimmer, R. L. & Woollacott, R. M. Mycoplasma-like organisms: occurrence with the larvae and adults of a marine bryozoan. Science 220, 208–210 (1983).
ADS CAS PubMed Article PubMed Central Google Scholar
65.
Zimmer, R. L. & Woollacott, R. M. Larval morphology of the bryozoan Watersipora arcuata (Cheilostomata: Ascophora). J. Morphol. 199, 125–150 (1989).
PubMed Article PubMed Central Google Scholar
66.
Boyle, P. J., Maki, J. S. & Mitchell, R. Mollicute identified in novel association with aquatic invertebrate. Curr. Microbiol. 15, 85–89 (1987).
CAS Article Google Scholar
67.
Lim, G. E. & Haygood, M. G. “Candidatus Endobugula glebosa”, a specific bacterial symbiont of the marine bryozoan Bugula simplex. Appl. Environ. Microbiol. 70, 4921–4929 (2004).
CAS PubMed PubMed Central Article Google Scholar
68.
Sharp, K. H., Davidson, S. K. & Haygood, M. G. Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J. 1, 693–702 (2007).
PubMed Article PubMed Central Google Scholar
69.
Lim-Fong, G. E., Regali, L. A. & Haygood, M. G. Evolutionary relationships of “Candidatus Endobugula” bacterial symbionts and their Bugula bryozoan hosts. Appl. Environ. Microbiol. 74, 3605–3609 (2008).
CAS PubMed PubMed Central Article Google Scholar
70.
Richardson, K. C., Jarrett, L. & Finke, E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain. Technol. 35, 313–323 (1960).
CAS PubMed Article Google Scholar
71.
Mäntynen, S., Sundberg, L.-R., Oksanen, H. M. & Poranen, M. M. Half a century of research on membrane-containing bacteriophages: bringing new concepts to modern virology. Viruses 11, E76 (2019).
PubMed Article CAS Google Scholar
72.
Cuozzo, S. A., Castellano, P., Sesma, F. J., Vignolo, G. M. & Raya, R. R. Differential roles of the two-component peptides of lactocin 705 in antimicrobial activity. Curr. Microbiol. 46, 180–183 (2003).
CAS PubMed Article Google Scholar
73.
Chibani-Chennoufi, S., Bruttin, A., Dillmann, M. L. & Brüssow, H. Phage-host interaction: An ecological perspective. J. Bacteriol. 186, 3677–3686 (2004).
CAS PubMed PubMed Central Article Google Scholar
74.
Haygood, M. G. & Davidson, S. K. Small-subunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of “Candidatus Endobugula sertula”. Appl. Environ. Microbiol. 63, 4612–4616 (1997).
CAS PubMed PubMed Central Article Google Scholar
75.
Ostrovsky, A. N., Gordon, D. P. & Lidgard, S. Independent evolution of matrotrophy in the major classes of Bryozoa: Transitions among reproductive patterns and their ecological background. Mar. Ecol. Prog. Ser. 378, 113–124 (2009).
ADS Article Google Scholar
76.
Ostrovsky, A. N. Evolution of Sexual Reproduction in Marine Invertebrates: Example of Gymnolaemate Bryozoans (Springer, Dordrecht, Heidelberg, NewYork, London, 2013).
Google Scholar
77.
Ostrovsky, A. N. From incipient to substantial: evolution of placentotrophy in a phylum of aquatic colonial invertebrates. Evolution 67, 1368–1382 (2013).
PubMed PubMed Central Article Google Scholar
78.
Miller, I. J., Vanee, N., Fong, S. S., Lim-Fong, G. E. & Kwan, J. C. Lack of overt genome reduction in the bryostatin-producing bryozoan symbiont “Candidatus Endobugula sertula”. Appl. Environ. Microbiol. 82, 6573–6583 (2016).
CAS PubMed PubMed Central Article Google Scholar
79.
Miller, I. J., Weyna, T. R., Fong, S. S., Lim-Fong, G. E. & Kwan, J. C. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome. Sci. Rep. 6, 34362 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
80.
Ostrovsky, A. N. & Porter, J. S. Pattern of occurrence of supraneural coelomopores and intertentacular organs in Gymnolaemata (Bryozoa) and its evolutionary implications. Zoomorphology 130, 1–15 (2011).
Article Google Scholar
81.
Shikuma, N. J., Pilhofer, M., Weiss, G. L., Hadfield, M. G. & Jensen, G. J. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail–like structures. Science 343, 529–533 (2014).
ADS CAS PubMed PubMed Central Article Google Scholar
82.
Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Nat. Acad. Sci. 106, 4154–4159 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
83.
Taylor, N. M. I., van Raaij, M. J. & Leiman, P. G. Contractile injection systems of bacteriophages and related systems. Mol. Microbiol. 108, 6–15 (2018).
CAS PubMed Article PubMed Central Google Scholar
84.
Lawrence, S. A., Wilson, W. H., Davy, J. E. & Davy, S. K. Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). J. Phycol. 50, 984–997 (2014).
PubMed Article PubMed Central Google Scholar
85.
Ericson, C. F. et al. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector. eLife 8, e46845 (2019).
PubMed PubMed Central Article Google Scholar
86.
Ackermann, H. W. Basic phage electron microscopy. Methods Mol. Biol. 501, 113–126 (2009).
CAS PubMed Article PubMed Central Google Scholar
87.
Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. & Ochman, H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl. Acad. Sci. USA 102, 16919–16926 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
88.
Weldon, S. R. & Oliver, K. M. Diverse bacteriophage roles in an aphid-bacterial defensive mutualism. In Advances in Environmental Microbiology Vol. 2 (ed. Hurst, C. J.) 173–206 (Springer, Berlin, 2016).
Google Scholar
89.
Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
90.
Roossinck, M. J. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9, 99–108 (2011).
CAS PubMed Article PubMed Central Google Scholar
91.
Sharp, J. H., Winson, M. K. & Porter, J. S. Bryozoan metabolites: an ecological perspective. Nat. Prod. Rep. 24, 659–673 (2007).
CAS PubMed Article PubMed Central Google Scholar
92.
Maltseva, A. L. et al. Novel brominated metabolites from Bryozoa: a functional analysis. Nat. Prod. Res. 31, 1840–1848 (2016).
PubMed Article CAS PubMed Central Google Scholar More