More stories

  • in

    Nudibranch predation boosts sponge silicon cycling

    Tréguer, P. J. et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18, 1269–1289 (2021).Article 
    ADS 

    Google Scholar 
    Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).Article 
    ADS 

    Google Scholar 
    Benoiston, A.-S. et al. The evolution of diatoms and their biogeochemical functions. Phil. Trans. R. Soc. B 372, 20160397 (2017).Article 

    Google Scholar 
    de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).Article 
    ADS 

    Google Scholar 
    Folkers, M. & Rombouts, T. Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems. In YOUMARES 9—The Oceans: Our Research, Our Future (eds. Jungblut, S. et al.) 181–193 (Springer International Publishing, 2020).Kristiansen, S. & Hoell, E. E. The importance of silicon for marine production. Hydrobiologia 484, 21–31 (2002).Article 
    CAS 

    Google Scholar 
    Henderson, M. J., Huff, D. D. & Yoklavich, M. M. Deep-sea coral and sponge taxa increase demersal fish diversity and the probability of fish presence. Front. Mar. Sci. 7, 593844 (2020).Article 

    Google Scholar 
    McGrath, E. C., Woods, L., Jompa, J., Haris, A. & Bell, J. J. Growth and longevity in giant barrel sponges: Redwoods of the reef or pines in the Indo-Pacific?. Sci. Rep. 8, 15317 (2018).Article 
    ADS 

    Google Scholar 
    Jochum, K. P., Wang, X. H., Vennemann, T. W., Sinha, B. & Muller, W. E. G. Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals. Chem. Geol. 300, 143–151 (2012).Article 
    ADS 

    Google Scholar 
    Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles, and conservation concerns. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S. et al.) vol. 1 145–184 (Springer International Publishing, 2017).Maldonado, M. et al. Sponge skeletons as an important sink of silicon in the global oceans. Nat. Geosci. 12, 815–822 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Maldonado, M. et al. Siliceous sponges as a silicon sink: An overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnol. Oceanogr. 50, 799–809 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    López-Acosta, M. et al. Sponge contribution to the silicon cycle of a diatom-rich shallow bay. Limnol. Oceanogr. 67, 2431–2447 (2022).Article 
    ADS 

    Google Scholar 
    Maldonado, M. et al. Massive silicon utilization facilitated by a benthic-pelagic coupled feedback sustains deep-sea sponge aggregations. Limnol. Oceanogr. 66, 366–391 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Wulff, J. L. Ecological interactions of marine sponges. Can. J. Zool. 84, 146–166 (2006).Article 

    Google Scholar 
    Pawlik, J. R., Loh, T.-L. & McMurray, S. E. A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: What’s old, what’s new, and future directions. PeerJ 6, 4343 (2018).Article 

    Google Scholar 
    Dayton, P. K., Robilliard, G. A., Paine, R. T. & Dayton, L. B. Biological Accommodation in the Benthic Community at McMurdo Sound, Antartica. Ecol. Monogr. 44, 105–128 (1974).Article 

    Google Scholar 
    Meylan, A. Spongivory in hawksbill turtles: A diet of glass. Science 239, 393–395 (1988).Article 
    ADS 
    CAS 

    Google Scholar 
    Wulff, J. Sponge-feeding by Caribbean angelfishes, trunk-fishes, and filefishes. In Sponges in time and space 265–271 (A. A. Balkema, 1994).Santos, C. P., Coutinho, A. B. & Hajdu, E. Spongivory by Eucidaris tribuloides from Salvador, Bahia (Echinodermata: Echinoidea). J. Mar. Biol. Ass. 82, 295–297 (2002).Article 

    Google Scholar 
    Chu, J. W. F. & Leys, S. P. The dorid nudibranchs Peltodoris lentiginosa and Archidoris odhneri as predators of glass sponges. Invertebr. Biol. 131, 75–81 (2012).Article 

    Google Scholar 
    Maschette, D. et al. Characteristics and implications of spongivory in the Knifejaw Oplegnathus woodwardi (Waite) in temperate mesophotic waters. J. Sea Res. 157, 101847 (2020).Article 

    Google Scholar 
    Knowlton, A. L. & Highsmith, R. C. Nudibranch-sponge feeding dynamics: Benefits of symbiont-containing sponge to Archidoris montereyensis (Cooper, 1862) and recovery of nudibranch feeding scars by Halichondria panicea (Pallas, 1766). J. Exp. Mar. Biol. Ecol. 327, 36–46 (2005).Article 

    Google Scholar 
    Bloom, S. A. Morphological correlations between dorid nudibranch predators and sponge prey. Veliger 18, 289–301 (1976).
    Google Scholar 
    Faulkner, D. & Ghiselin, M. Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. Prog. Ser. 13, 295–301 (1983).Article 
    ADS 

    Google Scholar 
    Bloom, S. A. Specialization and noncompetitive resource partitioning among sponge-eating dorid nudibranchs. Oecologia 49, 305–315 (1981).Article 
    ADS 

    Google Scholar 
    Clark, K. B. Nudibranch life cycles in the Northwest Atlantic and their relationship to the ecology of fouling communities. Helgolander Wiss. Meeresunters 27, 28–69 (1975).Article 
    ADS 

    Google Scholar 
    Wulff, J. Regeneration of sponges in ecological context: Is regeneration an integral part of life history and morphological strategies?. Integr. Comp. Biol. 50, 494–505 (2010).Article 

    Google Scholar 
    Wu, Y.-C., Franzenburg, S., Ribes, M. & Pita, L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci. Rep. 12, 1307 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Turner, T. The marine sponge Hymeniacidon perlevis is a globally-distributed exotic species. Aquat. Invasions 15, 542–561 (2020).Article 

    Google Scholar 
    Ackers, R. G., Moss, D. & Picton, B. E. In Sponges of the British Isles (‘Sponge V’). vol. A Colour Guide and Working Document (Marine Conservation Society, 1992).Lima, P. O. V. & Simone, L. R. L. Anatomical review of Doris verrucosa and redescription of Doris januarii (Gastropoda, Nudibranchia) based on comparative morphology. J. Mar. Biol. Ass. 95, 1203–1220 (2015).Article 

    Google Scholar 
    Avila, C. et al. Biosynthetic origin and anatomical distribution of the main secondary metabolites in the nudibranch mollusc Doris verrucosa. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 97, 363–368 (1990).Article 

    Google Scholar 
    Urgorri, V. & Besteiro, C. The feeding habits of the nudibranchs of Galicia. Iberus 4, 51–58 (1984).
    Google Scholar 
    Aminot, A. & Kerouel, R. In Dosage automatique des nutriments dans les eaux marines: Méthodes en flux continu. Méthodes d’analyse en milieu marin, Ed. Ifremer 188 (2007).Hydes, D. J. & Liss, P. S. Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters. Analyst 101, 922 (1976).Article 
    ADS 
    CAS 

    Google Scholar 
    López-Acosta, M., Leynaert, A., Coquille, V. & Maldonado, M. Silicon utilization by sponges: An assessment of seasonal changes. Mar. Ecol. Prog. Ser. 605, 111–123 (2018).Article 
    ADS 

    Google Scholar 
    Grall, J., Le-Loch, F., Guyonnet, B. & Riera, P. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338, 1–15 (2006).Article 
    CAS 

    Google Scholar 
    Cebrian, E., Uriz, M. J., Garrabou, J. & Ballesteros, E. Sponge Mass Mortalities in a warming Mediterranean sea: Are cyanobacteria-harboring species worse off?. PLoS ONE 6, e20211 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    McClintock, J. B. Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges at McMurdo Sound, Antartica. Mar. Biol. 94, 479–487 (1987).Article 
    CAS 

    Google Scholar 
    Cockburn, T. C. & Reid, R. G. B. Digestive tract enzymes in two Aeolid nudibranchs (opisthobranchia: Gastropoda). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 65, 275–281 (1980).Article 

    Google Scholar 
    De Caralt, S., Uriz, M. & Wijffels, R. Grazing, differential size-class dynamics and survival of the Mediterranean sponge Corticium candelabrum. Mar. Ecol. Prog. Ser. 360, 97–106 (2008).Article 
    ADS 

    Google Scholar 
    Ragueneau, O., De-Blas-Varela, E., Tréguer, P., Quéguiner, B. & Del Amo, Y. Phytoplankton dynamics in relation to the biogeochemical cycle of silicon in a coastal ecosystem of western Europe. Mar. Ecol. Prog. Ser. 106, 157–172 (1994).Article 
    ADS 

    Google Scholar 
    Turon, X., Tarjuelo, I. & Uriz, M. J. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: Correlation with population structure and investment in defence: Growth and mortality of encrusting sponges. Funct. Ecol. 12, 631–639 (1998).Article 

    Google Scholar 
    Hoppe, W. F. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50, 117–125 (1988).Article 
    ADS 

    Google Scholar 
    Ayling, A. L. Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biol. Bull. 165, 343–352 (1983).Article 

    Google Scholar 
    Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).Article 
    CAS 

    Google Scholar 
    Dayton, P. K. et al. Benthic responses to an Antarctic regime shift: Food particle size and recruitment biology. Ecol. Appl. 29, 1 (2019).Article 

    Google Scholar 
    Guy, G. & Metaxas, A. Recruitment of deep-water corals and sponges in the Northwest Atlantic Ocean: Implications for habitat distribution and population connectivity. Mar. Biol. 169, 107 (2022).Article 

    Google Scholar 
    Beucher, C., Treguer, P., Corvaisier, R., Hapette, A. M. & Elskens, M. Production and dissolution of biosilica, and changing microphytoplankton dominance in the Bay of Brest (France). Mar. Ecol. Prog. Ser. 267, 57–69 (2004).Article 
    ADS 

    Google Scholar 
    López-Acosta, M., Leynaert, A. & Maldonado, M. Silicon consumption in two shallow-water sponges with contrasting biological features. Limnol. Oceanogr. 61, 2139–2150 (2016).Article 
    ADS 

    Google Scholar 
    Ellwood, M. J., Wille, M. & Maher, W. Glacial silicic acid concentrations in the Southern Ocean. Science 330, 1088–1091 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Maldonado, M. et al. Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges. Sci. Adv. 6, eaba9322 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Palumbi, S. R. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225, 1478–1480 (1984).Article 
    ADS 
    CAS 

    Google Scholar 
    Broadribb, M., Bell, J. J. & Rovellini, A. Rapid acclimation in sponges: Seasonal variation in the organic content of two intertidal sponge species. J. Mar. Biol. Ass. 101, 983–989 (2021).Article 
    CAS 

    Google Scholar 
    Schönberg, C. H. L. & Barthel, D. Inorganic skeleton of the demosponge Halichondria panacea. Seasonality in spicule production in the Baltic Sea. Mar. Biol. 130, 133–140 (1997).Article 

    Google Scholar 
    Sheild, C. J. & Witman, J. D. The impact of Henricia sanguinolenta (O. F. Müller) (Echinodermata: Asteroidea) predation on the finger sponges, Isodictya spp.. J. Exp. Mar. Biol. Ecol. 166, 107–133 (1993).Article 

    Google Scholar 
    Lewis, J. R., Bowman, R. S., Kendall, M. A. & Williamson, P. Some geographical components in population dynamics: Possibilities and realities in some littoral species. Neth. J. Sea Res. 16, 18–28 (1982).Article 

    Google Scholar 
    Ashton, G. V. et al. Predator control of marine communities increases with temperature across 115 degrees of latitude. Science 376, 1215–1219 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Knowlton, A. & Highsmith, R. Convergence in the time-space continuum: A predator-prey interaction. Mar. Ecol. Prog. Ser. 197, 285–291 (2000).Article 
    ADS 

    Google Scholar  More

  • in

    Significant changes in soil microbial community structure and metabolic function after Mikania micrantha invasion

    Runyon, J. B., Butler, J. L., Friggens, M. M., Meyer, S. E. & Sing, S. E. Invasive species and climate change. USDA For. Serv. 285, 97–115 (2012).
    Google Scholar 
    Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).Article 

    Google Scholar 
    Mollot, G., Pantel, J. H. & Romanuk, T. N. The effects of invasive species on the decline in species richness: a global meta-analysis. Adv. Ecol. Res. 56, 61–83 (2017).Article 

    Google Scholar 
    Gaertner, M., Den Breeyen, A., Hui, C. & Richardson, D. M. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: A meta-analysis. Prog. Phys. Geog. 33, 319–338 (2009).Article 

    Google Scholar 
    Vilà, M. et al. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J. Biogeogr. 33, 853–861 (2010).Article 

    Google Scholar 
    Hejda, M., Pysek, P. & Jarosik, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article 

    Google Scholar 
    Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548 (2011).Article 

    Google Scholar 
    Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6, 503–523 (2003).Article 
    CAS 

    Google Scholar 
    Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol. 177, 706–714 (2008).Article 
    CAS 

    Google Scholar 
    Chabrerie, O., Laval, K., Puget, P., Desaire, S. & Alard, D. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Appl. Soil Ecol. 24, 43–56 (2003).Article 

    Google Scholar 
    Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers?. Science 325, 573–574 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Dawson, W. & Schrama, M. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).Article 

    Google Scholar 
    Lankau, R. Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species. Biol. Invasions 12, 2059–2068 (2010).Article 

    Google Scholar 
    Siefert, A., Zillig, K. W., Friesen, M. L. & Strauss, S. Y. Soil microbial communities alter conspecific and congeneric competition consistent with patterns of field coexistence in three Trifolium congeners. J. Ecol. 106, 1876–1891 (2018).Article 
    CAS 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).Article 

    Google Scholar 
    Li, W. H., Zhang, C. B., Jiang, H. B., Xin, G. R. & Yang, Z. Y. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281, 309–324 (2006).Article 
    CAS 

    Google Scholar 
    Li, W. H., Zhang, C., Gao, G., Zan, Q. & Yang, Z. Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant Soil 296, 197–207 (2007).Article 
    CAS 

    Google Scholar 
    Chen, X. P. et al. Exotic plant Alnus trabeculosa alters the composition and diversity of native rhizosphere bacterial communities of Phragmites australis. Pedosphere 26, 108–119 (2016).Article 

    Google Scholar 
    Yin, L., Liu, B., Wang, H., Zhang, Y. & Fan, W. The rhizosphere microbiome of Mikania micrantha provides insight into adaptation and invasion. Front. Microbiol. 11, 1462 (2020).Article 

    Google Scholar 
    Griffiths, B. S., Ritz, K. & Wheatley, R. E. Relationship between functional diversity and genetic diversity in complex microbial communities. In Microbial Communities (eds Insam, H. & Rangger, A.) 1–9 (Springer, 1997). https://doi.org/10.1007/978-3-642-60694-6_1.Chapter 

    Google Scholar 
    Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C. & Steinberg, C. Response of soil microbial communities to compost amendments. Soil Biol. Biochem. 38, 460–470 (2006).Article 

    Google Scholar 
    Grime, J. P. Plant strategies and vegetation processes. Biol. Plant 23, 254–254 (1979).
    Google Scholar 
    Goldberg, D. & Novoplansky, A. On the relative importance of competition in unproductive environments. J. Ecol. 85, 409–418 (1997).Article 

    Google Scholar 
    Goldberg, D. E., Martina, J. P., Elgersma, K. J. & Currie, W. S. Plant size and competitive dynamics along nutrient gradients. Am. Nat. 190, 229–243 (2017).Article 

    Google Scholar 
    Castro-Díez, P., Godoy, O., Alonso, A., Gallardo, A. & Saldaña, A. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 17, 1–12 (2014).Article 

    Google Scholar 
    Chapuis-Lardy, L., Vanderhoeven, S., Dassonville, N., Koutika, L. S. & Meerts, P. Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol. Fertil. Soils 42, 481–489 (2006).Article 

    Google Scholar 
    Thorpe, A. S., Archer, V. & DeLuca, T. H. The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl. Soil Ecol. 32, 118–122 (2006).Article 

    Google Scholar 
    Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8, 976–985 (2005).Article 

    Google Scholar 
    Zhang, A. M., Chen, Z. H., Zhang, G. N., Chen, L. J. & Wu, Z. J. Soil phosphorus composition determined by 31P NMR spectroscopy and relative phosphatase activities influenced by land use. Eur. J. Soil Biol. 52, 73–77 (2012).Article 

    Google Scholar 
    Souza-Alonso, P., Novoa, A. & Gonzalez, L. Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biol. Biochem. 79, 100–108 (2014).Article 
    CAS 

    Google Scholar 
    Callaway, M. et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J. Ecol. 104, 994–1002 (2016).Article 

    Google Scholar 
    Zhao, M. et al. Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Sci. Total Environ. 677, 47–56 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Litton, C. M., Sandquist, D. R. & Cordell, S. Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii. For. Ecol. Manag. 231, 105–113 (2006).Article 

    Google Scholar 
    Wolkovich, E. M., Lipson, D. A., Virginia, R. A., Cottingham, K. L. & Bolger, D. T. Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob. Chang. Biol. 16, 1351–1365 (2010).Article 
    ADS 

    Google Scholar 
    Sardans, J. et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob. Chang. Biol. 23, 1282–1291 (2017).Article 
    ADS 

    Google Scholar 
    Yu, H. et al. Soil nitrogen dynamics and competition during plant invasion: insights from Mikania micrantha invasions in China. New Phytol. 229, 3440–3452 (2021).Article 
    CAS 

    Google Scholar 
    Day, M. D. et al. Biology and impacts of pacific islands invasive species. 13. Mikania micrantha Kunth (Asteraceae). Pac. Sci. 70, 257–285 (2016).Article 

    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (eds) 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. CID: 20.500.12592/drpzmz. (Auckland: Invasive Species Specialist Group, 2000).Zhang, L. Y., Ye, W. H., Cao, H. L. & Feng, H. L. Mikania micrantha H.B.K. in China: An overview. Weed Res. 44, 42–49 (2004).Article 

    Google Scholar 
    Manrique, V., Diaz, R., Cuda, J. P. & Overholt, W. A. Suitability of a new plant invader as a target for biological control in Florida. Invas. Plant Sci. Manag. 4, 1–10 (2011).Article 

    Google Scholar 
    Macanawai, A., Day, M., Tumaneng-Diete, T., Adkins, S. & Nausori, F. Impact of Mikania micrantha on crop production systems in Viti Levu, Fiji. Pak. J. Weed Sci. Res. 18, 357–365 (2012).
    Google Scholar 
    Carter, M. R. & Gregorich, E. G. (eds) Soil Sampling and Methods of Analysis 2nd edn. (CRC Press, 2007). https://doi.org/10.1201/9781420005271.Book 

    Google Scholar 
    Liu, X. et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?. Agric. For. Meteorol. 246, 78–85 (2017).Article 
    ADS 

    Google Scholar 
    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).Article 
    CAS 

    Google Scholar 
    Sun, S. & Badgley, B. D. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biol. Biochem. 135, 163–172 (2019).Article 
    CAS 

    Google Scholar 
    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).Article 
    CAS 

    Google Scholar 
    Dawkins, K. & Esiobu, N. The invasive brazilian pepper tree (Schinus terebinthifolius) is colonized by a root microbiome enriched with Alphaproteobacteria and unclassified Spartobacteria. Front. Microbiol. 9, 876 (2018).Article 

    Google Scholar 
    Carey, C. J., Beman, J. M., Eviner, V. T., Malmstrom, C. M. & Hart, S. C. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front. Microbiol. 6, 466 (2015).Article 

    Google Scholar 
    Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).Article 

    Google Scholar 
    Kanokratana, P. et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 61, 518–528 (2011).Article 

    Google Scholar 
    Margesin, R., Jud, M., Tscherko, D. & Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 67, 208–218 (2009).Article 
    CAS 

    Google Scholar 
    Xu, Z. W. et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biol. Biochem. 104, 152–163 (2017).Article 
    CAS 

    Google Scholar 
    Zhou, X. et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Sci. Total Environ. 444, 552–558 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Mao, T. & Minoru, K. Using the KEGG database resource. Curr. Protoc. Bioinform. 38, 1121–11243. https://doi.org/10.1002/0471250953.bi0112s38 (2012).Article 

    Google Scholar 
    Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D. & Bardgett, R. D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33, 533–551 (2001).Article 
    CAS 

    Google Scholar 
    Chen, W. B. & Chen, B. M. Considering the preferences for nitrogen forms by invasive plants: a case study from a hydroponic culture experiment. Weed Res. 59, 49–57 (2019).CAS 

    Google Scholar 
    Christian, J. M. & Wilson, S. D. Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology 80, 2397–2407 (1999).Article 

    Google Scholar 
    Strickland, M. S., Devore, J. L., Maerz, J. C. & Bradford, M. A. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob. Chang. Biol. 16, 1338–1350 (2010).Article 
    ADS 

    Google Scholar 
    Bradley, B. A., Houghtonw, R. A., Mustard, J. F. & Hamburg, S. P. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Biol. 12, 1815–1822 (2006).Article 
    ADS 

    Google Scholar 
    Ogle, S. M., Ojima, D. & Reiners, W. A. Modeling the impact of exotic annual brome grasses on soil organic carbon storage in a northern mixed-grass prairie. Biol. Invasions 6, 365–377 (2004).Article 

    Google Scholar 
    Ni, G. Y. et al. Mikania micrantha invasion enhances the carbon (C) transfer from plant to soil and mediates the soil C utilization through altering microbial community. Sci. Total Environ. 711, 135020. https://doi.org/10.1016/j.scitotenv.2019.135020 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 35, 895–905 (2003).Article 
    CAS 

    Google Scholar 
    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).Article 
    CAS 

    Google Scholar 
    Ehrenfeld, J. G., Kourtev, P. & Huang, W. Z. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol. Appl. 11, 1287–1300 (2001).Article 

    Google Scholar 
    Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141, 612–619 (2004).Article 
    ADS 

    Google Scholar 
    Harner, M. J. et al. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecol. Appl. 19, 1135–1146 (2009).Article 

    Google Scholar 
    Wolkovich, E. M. Nonnative grass litter enhances grazing arthropod assemblages by increasing native shrub growth. Ecology 91, 756–766 (2010).Article 

    Google Scholar 
    Yan, J. et al. Conversion of organic carbon from decayed native and invasive plant litter in Jiuduansha wetland and its implications for SOC formation and sequestration. J. Soils Sediments 20, 675–689 (2020).Article 
    CAS 

    Google Scholar 
    Aerts, R. & de Caluwe, H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils. Oikos 84, 44–54 (1999).Article 

    Google Scholar 
    Shen, C. C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).Article 
    CAS 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).Article 
    CAS 

    Google Scholar 
    Mothé, G. P. B., Quintanilha-Peixoto, G., Souza, G. R. D., Ramos, A. C. & Intorne, A. C. Overview of the role of nitrogen in copper pollution and bioremediation mediated by plant–microbe interactions. In Soil Nitrogen Ecology (eds Cruz, C. et al.) 249–264. https://doi.org/10.1007/978-3-030-71206-8_12 (Springer, 2021).Chapter 

    Google Scholar 
    Chen, B. M., Peng, S. L. & Ni, G. Y. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biol. Invasions 11, 1291–1299 (2009).Article 

    Google Scholar 
    Fan, Y. X. et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biol. Fertil. Soils 54, 149–161 (2018).Article 
    CAS 

    Google Scholar 
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).Article 
    ADS 
    CAS 

    Google Scholar 
    Khan, M. S., Zaidi, A., Ahemad, M. & Oves, M. Plant growth promotion by phosphate solubilizing fungi: Current perspective. Arch. Agron. Soil Sci. 56, 73–98 (2010).Article 
    CAS 

    Google Scholar 
    Kouas, S., Labidi, N., Debez, A. & Abdelly, C. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 25, 389–393 (2005).Article 
    CAS 

    Google Scholar 
    Bolan, N. S. et al. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv. Agron. 110, 1–75 (2011).Article 
    CAS 

    Google Scholar 
    Dail, D. B., Davidson, E. A. & Chorover, J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry 54, 131–146 (2001).Article 
    CAS 

    Google Scholar 
    Fitzhugh, R. D., Lovett, G. M. & Venterea, R. T. Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Glob. Chang. Biol. 9, 1591–1601 (2003).Article 
    ADS 

    Google Scholar  More

  • in

    Unspoilt forests fall to feed the global supply chain

    .readcube-buybox { display: none !important;}
    Agricultural expansion can plunder forests, but it is not the only human activity to do so. Researchers have found that more than one-third of the loss of Earth’s large, intact forests is driven by production for export — especially of wood, minerals and energy1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-023-00119-9

    References

    Subjects

    Conservation biology More

  • in

    Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification

    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.Article 
    CAS 

    Google Scholar 
    Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, et al. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu Rev Pub Health. 2017;38:259–77.Article 

    Google Scholar 
    Brown AR, Lilley M, Shutler J, Lowe C, Artioli Y, Torres R, et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev Aquac. 2020;12:1663–88.
    Google Scholar 
    Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae. 2018;79:3–43.Article 

    Google Scholar 
    Silver MW, Bargu S, Coale SL. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic pacific. Proc Natl Acad Sci. 2010;107:20762–67.Article 
    CAS 

    Google Scholar 
    Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proc Natl Acad Sci. 2010;107:5887–92.Article 
    CAS 

    Google Scholar 
    Hallegraeff G, Enevoldsen H, Zingone A. Global harmful algal bloom status reporting. Harmful Algae. 2021;102:101992.Article 

    Google Scholar 
    McKibben SM, Peterson W, Wood AM, Trainer VL, Hunter M, White AE. Climatic regulation of the neurotoxin domoic acid. Proc Natl Acad Sci. 2017;114:239–44.Article 
    CAS 

    Google Scholar 
    Clark S, Hubbard KA, Ralston DK, McGillicuddy DJ, Stocke C, Alexander MA, et al. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. J Mar Syst. 2022;230:103737.Article 

    Google Scholar 
    Trainer VL, Kudela RM, Hunter MV, Adams NG, McCabe RM. Climate extreme seeds a new domoic ccid hotspot on the US West Coast. Front Clim. 2020;2:1–11.Article 

    Google Scholar 
    Hinder SL, Hays GC, Edwards M, Roberts EC, Walne AW, Gravenor MB. Changes in marine dinoflagellate and diatom abundance under climate change. Nat Clim Change. 2012;2:271–75.Article 

    Google Scholar 
    Sun J, Hutchins DA, Feng Y, Seubert EL, Caron DA, Fu FX. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr. 2011;56:829–40.Article 
    CAS 

    Google Scholar 
    Zhu Z, Qu P, Fu F, Tennenbaum N, Tatters AO, Hutchins DA. Understanding the blob bloom: warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae. 2017;67:36–43.Article 
    CAS 

    Google Scholar 
    Radan RL, Cochlan WP. Differential toxin response of Pseudo-nitzschia multiseries as a function of nitrogen speciation in batch and continuous cultures, and during a natural assemblage experiment. Harmful Algae. 2018;73:12–29.Article 
    CAS 

    Google Scholar 
    Wingert CJ, Cochlan WP. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae. 2021;107:102030.Article 
    CAS 

    Google Scholar 
    Auro ME, Cochlan WP. Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidate and P. fryxelliana. J Phycol. 2013;49:156–69.Article 
    CAS 

    Google Scholar 
    Lundholm N, Clarke A, Ellegaard M. A 100-year record of changing Pseudo-nitzschia species in a sill-fjord in Denmark related to nitrogen loading and temperature. Harmful Algae. 2010;9:449–57.Article 

    Google Scholar 
    Ryan JP, Kudela RM, Birch JM, Blum M, Bower HA, Chavez FP, et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys Res Lett. 2017;44:5571–79.Article 

    Google Scholar 
    McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG, Bill BD, et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett. 2016;43:10,366–76.Article 

    Google Scholar 
    Tatters AO, Fu FX, Hutchins DA. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One. 2012;7:e32116.Article 
    CAS 

    Google Scholar 
    Lundholm N, Hansen PJ, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser. 2004;273:1–15.Article 
    CAS 

    Google Scholar 
    Trimborn S, Lundholm N, Thoms S, Richter KW, Krock B, Hansen P, et al. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiol Plant. 2008;133:92–105.Article 
    CAS 

    Google Scholar 
    Brunson JK, McKinnie SMK, Chekan JR, McCrow JP, Miles ZD, Bertrand EM, et al. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science. 2018;361:1356–58.Article 
    CAS 

    Google Scholar 
    Boissonneault KR, Henningsen BM, Bates SS, Robertson DL, Milton S, Pelletier J, et al. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mole Biol. 2013;14:1–19.
    Google Scholar 
    Pierrot DE, Lewis E, Wallace DWR MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of. Energy, Oak Ridge, TN. 2006; Retrieved from https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a.Brzezinski MA, Nelson DM. The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Res Pt I Oceanogr Res Papers. 1995;42:1215–37.Article 
    CAS 

    Google Scholar 
    Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30.Article 

    Google Scholar 
    Schaum CE, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:0094.Article 

    Google Scholar 
    Wang Z, Maucher-Fuquay J, Fire SE, Mikulski CM, Haynes B, Doucette GJ, et al. Optimization of solid-phase extraction and liquid chromatography–tandem mass spectrometry for the determination of domoic acid in seawater, phytoplankton, and mammalian fluids and tissues. Anal Chim Acta. 2012;715:71–9.Article 
    CAS 

    Google Scholar 
    Brandenburg KM, Velthuis M, Van de Waal DB. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels. Glob Change Biol. 2019;25:2607–18.Article 

    Google Scholar 
    Wohlrab S, John U, Klemm K, Rberlein T, Grivogiannis AMF, Krock B, et al. Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton. Harmful Algae. 2020;92:101697.Article 
    CAS 

    Google Scholar 
    Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167.Article 
    CAS 

    Google Scholar 
    Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, et al. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae. 2012;14:271–300.Article 

    Google Scholar 
    Zhu Z, Qu P, Gale J, Fu F, Hutchins DA. Individual and interactive effects of warming and CO2 on Pseudo-nitzschia subcurvata and Phaeocystis antarctica, two dominant phytoplankton from the Ross Sea, Antarctica. Biogeosciences. 2017;14:5281–95.Article 
    CAS 

    Google Scholar 
    Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, McIlvin MR, et al. Irreversibly increased N2 fixation in Trichodesmium experimentally adapted to high CO2. Nat Commun. 2015;6:8155.Article 

    Google Scholar 
    Walworth NG, Lee MD, Fu FX, Hutchins DA, Webb EA. Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. P Natl Acad Sci. 2016;113:E7367–74.Article 
    CAS 

    Google Scholar 
    Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719.Article 

    Google Scholar 
    Hutchins DA, Capone DG. The ocean nitrogen cycle: New developments and global change. Nat Rev Microbiol. 2022;20:401–14.Article 
    CAS 

    Google Scholar 
    Xu D, Tong S, Wang B, Zhang X, Wang W, Zhang X, et al. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature. Mar Pollut Bull. 2022;177:113510.Article 
    CAS 

    Google Scholar 
    Hennon GMM, Sefbom J, Schaum E, Dyhrman ST, Godhe A Studying the acclimation and adaptation of HAB species to changing environmental conditions. In: Wells ML, et al. (eds.). GlobalHAB. 2021. Guidelines for the Study of Climate Change Effects on HABs. Paris: UNESCO-IOC/SCOR, 2021. pp 64–78.Collins S, Bell G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature. 2004;431:566–9.Article 
    CAS 

    Google Scholar 
    Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol. 2012;2:1195–207.Article 

    Google Scholar 
    Tatters AO, Schnetzer A, Fu F, Lie AY, Caron DA, Hutchins DA. Short‐versus long‐term responses to changing CO2 in a coastal dinoflagellate bloom: Implications for interspecific competitive interactions and community structure. Evolution. 2013;67:1879–91.Article 

    Google Scholar 
    Schaum CE, Collins S. Plasticity predicts evolution in a marine alga. P Roy Soc B-Biol Sci. 2014;281:20141486.
    Google Scholar 
    Moran XAG, Lopez-Urrutia Á, Calvo-Díaz A, Li WKW. Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol. 2010;16:1137–44.Article 

    Google Scholar 
    Thomas MK, Kremer CT, Klausmeier CA, Litchman EA. Global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–88.Article 
    CAS 

    Google Scholar 
    Toseland ADSJ, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84.Article 
    CAS 

    Google Scholar 
    Collins S. Many Possible Worlds: Expanding the Ecological Scenarios in Experimental Evolution. Evol Biol. 2011;38:3–14.Article 

    Google Scholar 
    Qu PP, Fu F, Wang XW, Kling JD, Elghazzawy M, Huh M, et al. Two co‐dominant nitrogen‐fixing cyanobacteria demonstrate distinct acclimation and adaptation responses to cope with ocean warming. Env Microbiol Rep. 2022;14:203–17.Article 
    CAS 

    Google Scholar 
    Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol. 2009;22:1435–46.Article 

    Google Scholar 
    Draghi J, Whitlock MC. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 2012;66:2891–902.Article 

    Google Scholar 
    Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl. 2014;7:140–55.Article 
    CAS 

    Google Scholar 
    Kim H, Spivack AJ, Menden-Deuer S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae. 2013;26:1–11.Article 
    CAS 

    Google Scholar 
    Hennon GMM, Quay P, Morales RL, Swanson LM, Armbrust EV. Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat. J Phycol. 2014;50:243–53.Article 
    CAS 

    Google Scholar 
    Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci. 2009;106:12788–93.Article 
    CAS 

    Google Scholar 
    Atkinson D, Ciotti BJ, Montagnes DJS. Protists decrease in size linearly with temperature: ca. 2.5% °C-1. Proc R Soc Lond B 2003;270:2605–11.Article 

    Google Scholar 
    Tong S, Gao K, Hutchins DA. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2. Glob Chang Biol 2018;24:3055–64.Article 

    Google Scholar 
    Kelly KJ, Fu FX, Jiang X, Li H, Xu D, Yang N, et al. Interactions between ultraviolet B radiation, warming, and changing nitrogen source may reduce the accumulation of toxic Pseudo-nitzschia multiseries biomass in future coastal oceans. Front Mar Sci. 2021;8:433.Article 

    Google Scholar 
    Sterner R, Elser, J Ecological stoichiometry. In: Levin SA, et al. (eds) The Princeton Guide to Ecology. Princeton Univ. Press, 2009. pp 376–85.Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Change 2019;9:781–86.Article 
    CAS 

    Google Scholar  More

  • in

    Food insecurity and health outcomes among community-dwelling middle-aged and older adults in India

    Food, Agricultural Organisation. The State of Food Security and Nutrition in the World 2019: Transforming Food Systems for Affordable Healthy Diets. Safeguarding against Economic Slowdowns and Downturns (2020). http://www.fao.org/documents/card/en/c/ca9692en (Accessed 12 June 2021).Rautela, G. et al. Prevalence and correlates of household food insecurity in Delhi and Chennai India. Food Secur. 12(2), 391–404. https://doi.org/10.1007/s12571-020-01015-0 (2020).Article 

    Google Scholar 
    Nagappa, B. et al. Prevalence of food insecurity at household level and its associated factors in rural Puducherry: A cross-sectional study. Indian J. Community Med. 45(3), 303–306. https://doi.org/10.4103/ijcm.IJCM_233_19 (2020).Article 

    Google Scholar 
    Schrock, J. M. et al. Food insecurity partially mediates associations between social disadvantage and body composition among older adults in india: Results from the study on global AGEing and adult health (SAGE). Am. J. Hum. Biol. https://doi.org/10.1002/ajhb.23033 (2017).Article 

    Google Scholar 
    Narayanan, S. Food security in India: The imperative and its challenges. Asia Pac. Policy Stud. 2, 197–209. https://doi.org/10.1002/app5.62 (2015).Article 

    Google Scholar 
    George, N. A. & McKay, F. H. The public distribution system and food security in India. Int. J. Environ. Res. Public Health 16(17), 3221. https://doi.org/10.3390/ijerph16173221 (2019).Article 

    Google Scholar 
    Global Food Security Index. India. https://impact.economist.com/sustainability/project/food-security-index/explore-countries/india (Accessed 12 November 2022).United Nations Population Fund 2017. Caring for Our Elders: Early Responses – India Ageing Report—2017. UNFPA, New Delhi, India.Arenas, D. J., Thomas, A., Wang, J. & DeLisser, H. M. A systematic review and meta-analysis of depression, anxiety, and sleep disorders in US adults with food insecurity. J. Gen. Intern. Med. 34(12), 2874–2882. https://doi.org/10.1007/s11606-019-05202-4 (2019).Article 

    Google Scholar 
    Pourmotabbed, A. et al. Food insecurity and mental health: A systematic review and meta-analysis. Public Health Nutr. 23(10), 1778–1790. https://doi.org/10.1017/S136898001900435X (2020).Article 

    Google Scholar 
    McMichael, A. J. et al. Food insecurity and brain health in adults: A systematic review. Crit. Rev. Food Sci. Nutr. 62, 1–16. https://doi.org/10.1080/10408398.2021.1932721 (2021).Article 

    Google Scholar 
    Smith, L. et al. Association between food insecurity and depression among older adults from low- and middle-income countries. Depress Anxiety 38(4), 439–446. https://doi.org/10.1002/da.23147 (2021).Article 

    Google Scholar 
    Muhammad, T., Sulaiman, K. M., Drishti, D. & Srivastava, S. Food insecurity and associated depression among older adults in India: Evidence from a population-based study. BMJ Open 12(4), e052718. https://doi.org/10.1136/bmjopen-2021-052718 (2022).Article 

    Google Scholar 
    Saha, S. K. et al. Magnitude of mental morbidity and its correlates with special reference to household food insecurity among adult slum dwellers of Bankura, India: A cross-sectional survey. Indian J. Psychol. Med. 41(1), 54–60. https://doi.org/10.4103/IJPSYM.IJPSYM_129_18 (2019).Article 

    Google Scholar 
    Frongillo, E. A., Nguyen, H. T., Smith, M. D. & Coleman-Jensen, A. Food insecurity is associated with subjective well-being among individuals from 138 countries in the 2014 Gallup World Poll. J. Nutr. 147(4), 680–687. https://doi.org/10.3945/jn.116.243642 (2017).Article 
    CAS 

    Google Scholar 
    Na, M. et al. Food insecurity and cognitive function in middle to older adulthood: A systematic review. Adv. Nutr. 11(3), 667–676. https://doi.org/10.1093/advances/nmz122 (2020).Article 

    Google Scholar 
    Srivastava, S. & Muhammad, T. Rural-urban differences in food insecurity and associated cognitive impairment among older adults: Findings from a nationally representative survey. BMC Geriatr. 22(1), 287. https://doi.org/10.1186/s12877-022-02984-x (2022).Article 

    Google Scholar 
    Miguel, E. D. S. et al. Association between food insecurity and cardiometabolic risk in adults and the elderly: A systematic review. J. Glob. Health 10(2), 020402. https://doi.org/10.7189/jogh.10.020402 (2020).Article 

    Google Scholar 
    Liu, Y. & Eicher-Miller, H. A. Food insecurity and cardiovascular disease risk. Curr. Atheroscler. Rep. 23(6), 24. https://doi.org/10.1007/s11883-021-00923-6 (2021).Article 
    CAS 

    Google Scholar 
    Beltrán, S. et al. Food insecurity and hypertension: A systematic review and meta-analysis. PLoS One 15(11), e0241628. https://doi.org/10.1371/journal.pone.0241628 (2020).Article 
    CAS 

    Google Scholar 
    Vaccaro, J. A. & Huffman, F. G. Sex and race/ethnic disparities in food security and chronic diseases in U.S. older adults. Gerontol. Geriatr. Med. 3, 2333721417718344. https://doi.org/10.1177/2333721417718344 (2017).Article 

    Google Scholar 
    Abdurahman, A. A., Chaka, E. E., Nedjat, S., Dorosty, A. R. & Majdzadeh, R. The association of household food insecurity with the risk of type 2 diabetes mellitus in adults: A systematic review and meta-analysis. Eur. J. Nutr. 58(4), 1341–1350. https://doi.org/10.1007/s00394-018-1705-2 (2019).Article 

    Google Scholar 
    Muhammad, T., Saravanakumar, P., Sharma, A., Srivastava, S. & Irshad, C. V. Association of food insecurity with physical frailty among older adults: Study based on LASI, 2017–18. Arch. Gerontol. Geriatr. 103, 104762. https://doi.org/10.1016/j.archger.2022.104762 (2022).Article 
    CAS 

    Google Scholar 
    Venci, B. J. & Lee, S. Y. Functional limitation and chronic diseases are associated with food insecurity among U.S. adults. Ann. Epidemiol. 28(3), 182–188. https://doi.org/10.1016/j.annepidem.2018.01.005 (2018).Article 

    Google Scholar 
    Kim-Mozeleski, J. E. & Pandey, R. The intersection of food insecurity and tobacco use: A scoping review. Health Promot. Pract. 21(1_suppl), 124S-138S. https://doi.org/10.1177/1524839919874054 (2020).Article 

    Google Scholar 
    Mendy, V. L. et al. Food insecurity and cardiovascular disease risk factors among mississippi adults. Int. J. Environ. Res. Public Health 15(9), 2016. https://doi.org/10.3390/ijerph15092016 (2018).Article 

    Google Scholar 
    Bergmans, R. S., Coughlin, L., Wilson, T. & Malecki, K. Cross-sectional associations of food insecurity with smoking cigarettes and heavy alcohol use in a population-based sample of adults. Drug Alcohol Depend. 205, 107646. https://doi.org/10.1016/j.drugalcdep.2019.107646 (2019).Article 

    Google Scholar 
    International Institute for Population Sciences (IIPS), NPHCE, MoHFW, Harvard T. H. Chan School of Public Health (HSPH) and the University of Southern California (USC). Longitudinal Ageing Study in India (LASI) Wave 1, 2017–18, India Report, International Institute for Population Sciences, Mumbai, 2020.Srivastava, S., Muhammad, T., Paul, R. & Thomas, A. R. Multivariate decomposition analysis of sex differences in functional difficulty among older adults based on Longitudinal Ageing Study in India, 2017–2018. BMJ Open 12(4), e054661. https://doi.org/10.1136/bmjopen-2021-054661 (2022).Article 

    Google Scholar 
    Schnittker, J. & Bacak, V. The increasing predictive validity of self-rated health. PLoS One 9(1), e84933. https://doi.org/10.1371/journal.pone.0084933 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Cheung, F. & Lucas, R. E. Assessing the validity of single-item life satisfaction measures: Results from three large samples. Qual. Life Res. 23(10), 2809–2818. https://doi.org/10.1007/s11136-014-0726-4 (2014).Article 

    Google Scholar 
    Diener, E., Lucas, R. E. & Oishi, S. Advances and open questions in the science of subjective well-being. Collabra Psychol. 4(1), 15. https://doi.org/10.1525/collabra.115 (2018).Article 

    Google Scholar 
    Lee, J. & Smith, J. P. Regional disparities in adult height, educational attainment and gender difference in late- life cognition: Findings from the Longitudinal Aging Study in India (LASI). J. Econ. Ageing 4, 26–34. https://doi.org/10.1016/j.jeoa.2014.02.002 (2014).Article 

    Google Scholar 
    Lee, J., Shih, R. A., Feeney, K. C. & Langa, K. M. Cognitive Health of Older Indians: Individual and Geographic Determinants of Female Disadvantage, WR-889 (RAND Corporation, 2011).Book 

    Google Scholar 
    Ganguli, M. et al. A Hindi version of the MMSE: The development of a cognitive screening instrument for a largely illiterate rural population in India. Int. Psychogeriatr. 10, 367–377 (1995).
    Google Scholar 
    Tiwari, S. C., Tripathi, R. K. & Kumar, A. Applicability of the Mini-mental State Examination (MMSE) and the Hindi Mental State Examination (HMSE) to the urban elderly in India: A pilot study. Int. Psychogeriatr. 21(1), 123–128. https://doi.org/10.1017/S1041610208007916 (2009).Article 
    CAS 

    Google Scholar 
    Mathuranath, P. S. et al. Mini mental state examination and the Addenbrooke’s cognitive examination: Effect of education and norms for a multicultural population. Neurol. India 55(2), 106–110. https://doi.org/10.4103/0028-3886.32779 (2007).Article 
    CAS 

    Google Scholar 
    Jenkins, C. D., Stanton, B. A., Niemcryk, S. J. & Rose, R. M. A scale for the estimation of sleep problems in clinical research. J. Clin. Epidemiol. 41(4), 313–321. https://doi.org/10.1016/0895-4356(88)90138-2 (1988).Article 
    CAS 

    Google Scholar 
    Cho, E. & Chen, T. Y. The bidirectional relationships between effort-reward imbalance and sleep problems among older workers. Sleep Health 6(3), 299–305. https://doi.org/10.1016/j.sleh.2020.01.008 (2020).Article 

    Google Scholar 
    Fabbri, M. et al. Measuring subjective sleep quality: A review. Int. J. Environ. Res. Public Health 18(3), 1082. https://doi.org/10.3390/ijerph18031082 (2021).Article 

    Google Scholar 
    Andresen, E. M., Malmgren, J. A., Carter, W. B. & Patrick, D. L. Screening for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am. J. Prev. Med. 10(2), 77–84 (1994).Article 
    CAS 

    Google Scholar 
    Kumar, S., Nakulan, A., Thoppil, S. P., Parassery, R. P. & Kunnukattil, S. S. Screening for depression among community-dwelling elders: Usefulness of the center for epidemiologic studies depression scale. Indian J. Psychol. Med. 38(5), 483–485. https://doi.org/10.4103/0253-7176.191380 (2016).Article 

    Google Scholar 
    Chokkanathan, S. & Mohanty, J. Factor structure of the CES-D scale among older adults in Chennai India. Aging Ment. Health 17, 517–525 (2013).Article 

    Google Scholar 
    Kessler, R. C., Andrews, A., Mroczek, D., Ustun, B. & Wittchen, H. U. The World Health Organization composite international diagnostic interview short-form (CIDI-SF). Int. J. Methods Psychiatr. Res. 7, 171–185 (1998).Article 

    Google Scholar 
    Steffick D. Documentation of affective functioning measures in the health and retirement study, 2000. http://hrsonline.isr.umich.edu/sitedocs/userg/dr-005.pdf (Accessed 2 January 2021).Trainor, K., Mallett, J. & Rushe, T. Age related differences in mental health scale scores and depression diagnosis: Adult responses to the CIDI-SF and MHI-5. J. Affect. Disord. 151(2), 639–645 (2013).Article 

    Google Scholar 
    Wen, C. P. et al. Are Asians at greater mortality risks for being overweight than Caucasians? Redefining obesity for Asians. Public Health Nutr. 12(4), 497–506. https://doi.org/10.1017/S1368980008002802 (2009).Article 

    Google Scholar 
    Dhawan, D. & Sharma, S. Abdominal Obesity, adipokines and non-communicable diseases. J. Steroid Biochem. Mol. Biol. 203, 105737. https://doi.org/10.1016/j.jsbmb.2020.105737 (2020).Article 
    CAS 

    Google Scholar 
    Rose, G. A. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull. World Health Organ. 27, 645–658 (1962).CAS 

    Google Scholar 
    Achterberg, S. et al. Prognostic value of the Rose questionnaire: A validation with future coronary events in the SMART study. Eur. J. Prev. Cardiol. 19(1), 5–14. https://doi.org/10.1177/1741826710391117 (2012).Article 
    CAS 

    Google Scholar 
    Rahman, M. A. et al. Rose Angina questionnaire: Validation with cardiologists’ diagnoses to detect coronary heart disease in Bangladesh. Indian Heart J. 65(1), 30–39. https://doi.org/10.1016/j.ihj.2012.09.008 (2013).Article 

    Google Scholar 
    Chobanian, A. V. et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42(6), 1206–52. https://doi.org/10.1161/01.HYP.0000107251.49515.c2 (2003).Article 
    CAS 

    Google Scholar 
    Katz, S., Ford, A. B., Moskowitz, R. W., Jackson, B. A. & Jaffe, M. W. Studies of illness in the aged. The index of adl: A standardized measure of biological and psychosocial function. JAMA 185, 914–9. https://doi.org/10.1001/jama.1963.03060120024016 (1963).Article 
    CAS 

    Google Scholar 
    Lawton, M. P. & Brody, E. M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 9(3), 179–186 (1969).Article 
    CAS 

    Google Scholar 
    Singh, S., Multani, S. & Verma, N. Development and validation of geriatric assessment tools: A preliminary report from Indian population. JESP 3(2), 103–110 (2007).
    Google Scholar 
    Blumberg, S. J., Bialostosky, K., Hamilton, W. L. & Briefel, R. R. The effectiveness of a short form of the household food security scale. Am. J. Public Health 89(8), 1231–1234. https://doi.org/10.2105/ajph.89.8.1231 (1999).Article 
    CAS 

    Google Scholar 
    Lee, J., Shih, R.A., Feeney, K., Langa, K.M. Cognitive health of older indians individual and geographic determinants of female disadvantage. https://www.rand.org/content/dam/rand/pubs/working_papers/2011/RAND_WR889.pdf (Accessed 5 June 2021) (2011).Coates, J. et al. Commonalities in the experience of household food insecurity across cultures: What are measures missing?. J. Nutr. 136(5), 1438S-1448S. https://doi.org/10.1093/jn/136.5.1438S (2006).Article 
    CAS 

    Google Scholar 
    Sethi, V., Maitra, C., Avula, R. & Bhalla, S. Internal validity and reliability of experience-based household food insecurity scales in Indian settings. Agric. Food Secur. 6, 21. https://doi.org/10.1186/s40066-017-0099-3 (2017).Article 

    Google Scholar 
    Berkman, L. F., Sekher, T. V., Capistrant, B. & Zheng, Y. Social networks, family, and care giving among older adults in India. In Aging in Asia: Findings From New and Emerging Data Initiatives (eds Smith, J. P. & Majmundar, M.) 261–278 (The National Academic Press, 2012).
    Google Scholar 
    Marsland, A. L., Gianaros, P. J., Abramowitch, S. M., Manuck, S. B. & Hariri, A. R. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol. Psychiatry 64(6), 484–490. https://doi.org/10.1016/j.biopsych.2008.04.016 (2008).Article 
    CAS 

    Google Scholar 
    Bruening, M., Dinour, L. M. & Chavez, J. B. R. Food insecurity and emotional health in the USA: A systematic narrative review of longitudinal research. Public Health Nutr. 20(17), 3200–3208. https://doi.org/10.1017/S1368980017002221 (2017).Article 

    Google Scholar 
    Huddleston-Casas, C., Charnigo, R. & Simmons, L. A. Food insecurity and maternal depression in rural, low-income families: A longitudinal investigation. Public Health Nutr. 12(8), 1133–1140. https://doi.org/10.1017/S1368980008003650 (2009).Article 

    Google Scholar 
    Leung, C. W., Epel, E. S., Willett, W. C., Rimm, E. B. & Laraia, B. A. Household food insecurity is positively associated with depression among low-income supplemental nutrition assistance program participants and income-eligible nonparticipants. J. Nutr. 145(3), 622–627. https://doi.org/10.3945/jn.114.199414 (2015).Article 
    CAS 

    Google Scholar 
    Laraia, B. A. Food insecurity and chronic disease. Adv. Nutr. 4(2), 203–212. https://doi.org/10.3945/an.112.003277 (2013).Article 

    Google Scholar 
    Vercammen, K. A. et al. Food security and 10-year cardiovascular disease risk among U.S. adults. Am. J. Prev. Med. 56(5), 689–697. https://doi.org/10.1016/j.amepre.2018.11.016 (2019).Article 

    Google Scholar 
    Chakraborty R, Kundu J, Jana A. Factors associated with food insecurity among older adults in India: Impacts of functional impairments and chronic diseases. Ageing International, 1–24 (2022).
    Jackson, J. A., Branscum, A., Tang, A. & Smit, E. Food insecurity and physical functioning limitations among older U.S. adults. Prev. Med. Rep. 14, 100829. https://doi.org/10.1016/j.pmedr.2019.100829 (2019).Article 

    Google Scholar 
    Sreeramareddy, C. T. & Ramakrishnareddy, N. Association of adult tobacco use with household food access insecurity: Results from Nepal demographic and health survey, 2011. BMC Public Health 18(1), 48. https://doi.org/10.1186/s12889-017-4579-y (2017).Article 

    Google Scholar 
    Mayer, M., Gueorguieva, R., Ma, X. & White, M. A. Tobacco use increases risk of food insecurity: An analysis of continuous NHANES data from 1999 to 2014. Prev. Med. 126, 105765. https://doi.org/10.1016/j.ypmed.2019.105765 (2019).Article 

    Google Scholar 
    Kim-Mozeleski, J. E., Poudel, K. C. & Tsoh, J. Y. Examining reciprocal effects of cigarette smoking, food insecurity and psychological distress in the U.S.. J. Psychoact. Drugs 53(2), 177–184. https://doi.org/10.1080/02791072.2020.1845419 (2021).Article 

    Google Scholar 
    Dewing, S., Tomlinson, M., le Roux, I. M., Chopra, M. & Tsai, A. C. Food insecurity and its association with co-occurring postnatal depression, hazardous drinking, and suicidality among women in peri-urban South Africa. J. Affect. Disord. 150(2), 460–465. https://doi.org/10.1016/j.jad.2013.04.040 (2013).Article 

    Google Scholar  More

  • in

    Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems

    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).Article 
    CAS 

    Google Scholar 
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).Article 
    CAS 

    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).Article 

    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Change Biol. 24, 504–516 (2018).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).Article 
    CAS 

    Google Scholar 
    Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2019).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).Article 
    CAS 

    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).Article 
    CAS 

    Google Scholar 
    Lian, X. et al. Seasonal biological carryover dominates northern vegetation growth. Nat. Commun. 12, 983 (2021).Myneni, R. B. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).Article 
    CAS 

    Google Scholar 
    Jeong, S. J. et al. Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sens. Environ. 190, 178–187 (2017).Article 

    Google Scholar 
    Zeng, Z. et al. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agric. Meteorol. 310, 108630 (2021).Article 

    Google Scholar 
    Kelsey, K. C. et al. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Change Biol. 27, 1572–1586 (2021).Article 

    Google Scholar 
    Wang, X. et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Change Biol. 24, 1651–1662 (2018).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).Article 
    CAS 

    Google Scholar 
    Liu, Y. Y. et al. Global long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 38, L18402 (2011).Article 

    Google Scholar 
    Beguería, S. et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).Article 
    CAS 

    Google Scholar 
    D’Andrea, E. et al. Unravelling resilience mechanisms in forests: role of non-structural carbohydrates in responding to extreme weather events. Tree Physiol. 41, 1808–1818 (2021).Article 

    Google Scholar 
    Yun, J. et al. Influence of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 24, 5176–5187 (2018).Article 

    Google Scholar 
    Xie, J. et al. Spring temperature and snow cover climatology drive the advanced springtime phenology (1991–2014) in the European Alps. J. Geophys. Res. Biogeosci. 126, e2020JG006150 (2021).Xie, J. et al. Altitude-dependent influence of snow cover on alpine land surface phenology. J. Geophys. Res. Biogeosci. 122, 1107–1122 (2017).Article 

    Google Scholar 
    Peng, S. et al. Change in winter snow depth and its impacts on vegetation in China. Glob. Change Biol. 16, 3004–3013 (2010).
    Google Scholar 
    Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2019).Article 

    Google Scholar 
    Angert, A. et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl Acad. Sci. USA 102, 10823–10827 (2005).Article 
    CAS 

    Google Scholar 
    Musselman, K. N. et al. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 11, 418–424 (2021).Article 

    Google Scholar 
    Kreyling, J. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91, 1939–1948 (2010).Article 

    Google Scholar 
    Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).Article 

    Google Scholar 
    Martinez-Vilalta, J. et al. Hydraulic adjustment of Scots pine across Europe. New Phytol. 184, 353–364 (2009).Article 
    CAS 

    Google Scholar 
    Klein, T. et al. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiol. 34, 981–992 (2014).Article 
    CAS 

    Google Scholar 
    Kannenberg, S. A. & Phillips, R. P. Non-structural carbohydrate pools not linked to hydraulic strategies or carbon supply in tree saplings during severe drought and subsequent recovery. Tree Physiol. 40, 259–271 (2020).Article 
    CAS 

    Google Scholar 
    Karst, J. et al. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 

    Google Scholar 
    Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol. 231, 1798–1813 (2021).Article 

    Google Scholar 
    Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).Wu, X. et al. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophys. Res. Lett. 44, 6173–6181 (2017).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).Article 

    Google Scholar 
    Martin-Benito, D. & Pederson, N. Convergence in drought stress, but a divergence of climatic drivers across a latitudinal gradient in a temperate broadleaf forest. J. Biogeogr. 42, 925–937 (2015).Article 

    Google Scholar 
    Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).Article 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).Article 
    CAS 

    Google Scholar 
    Zhang, W. et al. Divergent response of vegetation growth to soil water availability in dry and wet periods over Central Asia. J. Geophys. Res. Biogeosci. 126, e2020JG005912 (2021).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).Article 

    Google Scholar 
    Zhang, Y. et al. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).Article 
    CAS 

    Google Scholar 
    Jones, M. O. et al. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).Article 

    Google Scholar 
    Konings, A. G. et al. Interannual variations of vegetation optical depth are due to both water stress and biomass changes. Geophys. Res. Lett. 48, e2021GL095267 (2021).Article 

    Google Scholar 
    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 9, 791–808 (2017).Article 

    Google Scholar 
    Harris, I. et al. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Barichivich, J. et al. Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens. 6, 1390–1431 (2014).Article 

    Google Scholar 
    Vicente-Serrano, S. M., Begueria, S. & Lopez-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 

    Google Scholar 
    Wieder, W. R. et al. Regridded Harmonized World Soil Database v1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247Kottek, M. et al. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).Article 

    Google Scholar 
    Jakubauskas, M. E., Legates, D. R. & Kastens, J. H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote Sens. 67, 461–470 (2001).
    Google Scholar 
    Liu, Q. et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).Article 
    CAS 

    Google Scholar 
    Fu, Y. H. et al. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).Article 

    Google Scholar 
    Jiang, P. et al. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195 (2019).Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).Pham, L. T. H. & Brabyn, L. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J. Photogramm. Remote Sens. 128, 86–97 (2017).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Li, Y. Code for ‘Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems’. GitHub https://github.com/leeyang1991/phenology-effects-on-drought-recovery (2022). More

  • in

    The vulnerability of global forests to human and climate impacts

    Duke, N. C. et al. Mar. Freshw. Res. 68, 1816–1829 (2017).Article 

    Google Scholar 
    Li, W. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-01020-5 (2023).Article 

    Google Scholar 
    Potapov, P. et al. Ecol. Soc. 13, 51 (2008).Article 

    Google Scholar 
    Hancock, S. et al. Earth Space Sci. 6, 294–310 (2019).Article 

    Google Scholar 
    Wade, C. M. et al. Forests 11, 539 (2020).Article 

    Google Scholar 
    Abhilash, P. C. Land 10, 201 (2021).Article 

    Google Scholar 
    Biermann, F., Kanie, N. & Kim, R. E. Curr. Opin. Environ. Sustain. 26–27, 26–31 (2017).Article 

    Google Scholar 
    den Elzen, M. et al. Energy Policy 126, 238–250 (2019).Article 

    Google Scholar 
    Betts, M. G. et al. Nature 547, 441–444 (2017).Article 
    CAS 

    Google Scholar 
    Watson, J. E. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0490-x (2018).Article 

    Google Scholar  More

  • in

    Human-mediated dispersal drives the spread of the spotted lanternfly (Lycorma delicatula)

    Simberloff, D. et al. (eds) Invasive Species in a Globalized World (University of Chicago Press, 2015).
    Google Scholar 
    Gippet, J. M., Liebhold, A. M., Fenn-Moltu, G. & Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102 (2019).Article 

    Google Scholar 
    Hall, C. M. Biological invasion, biosecurity, tourism, and globalisation. In Handbook of Globalisation and Tourism (Edward Elgar Publishing, 2019).
    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2021.01.006 (2021).Article 

    Google Scholar 
    Simberloff, D. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13, 1255–1268 (2011).Article 

    Google Scholar 
    Hayes, K. R. & Barry, S. C. Are there any consistent predictors of invasion success?. Biol. Invasions 10, 483–506 (2008).Article 

    Google Scholar 
    Catford, J. A., Vesk, P. A., Richardson, D. M. & Pyšek, P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Change Biol. 18, 44–62 (2012).Article 
    ADS 

    Google Scholar 
    Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl. Acad. Sci. USA 103, 374–378 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kamenova, S. et al. Invasions toolkit: Current methods for tracking the spread and impact of invasive species. Adv. Ecol. Res. 56, 85–182 (2017).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).Article 

    Google Scholar 
    Crooks, J. A. & Rilov, G. The establishment of invasive species. In Biological Invasions in Marine Ecosystems 173–175 (Springer, 2009).Chapter 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).Article 

    Google Scholar 
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    O’Reilly-Nugent, A. et al. Landscape effects on the spread of invasive species. Curr. Landsc. Ecol. Rep. 1, 107–114 (2016).Article 

    Google Scholar 
    Simberloff, D. We can eliminate invasions or live with them. Successful management projects. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems 149–157 (Springer, 2008).
    Google Scholar 
    Gutierrez, A. P. & Ponti, L. Eradication of invasive species: Why the biology matters. Environ. Entomol. 42, 395–411 (2013).Article 

    Google Scholar 
    McLaughlin, G. M. & Dearden, P. K. Invasive insects: Management methods explored. J. Insect Sci. 19, 17 (2019).Article 

    Google Scholar 
    Han, J. M. et al. Lycorma delicatula (hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae) finally, but suddenly arrived in Korea. Entomol. Res. 38, 281–286 (2008).Article 

    Google Scholar 
    Park, J.-D. et al. Biological characteristics of lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48, 53–57 (2009).Article 

    Google Scholar 
    Shin, Y.-H., Moon, S.-R., Yoon, C.-M., Ahn, K.-S. & Kim, G.-H. Insecticidal activity of 26 insectcides against eggs and nymphs of Lycorma delicatula (hemiptera: Fulgoridae). Korean J. Pestic. Sci. 14, 157–163 (2010).
    Google Scholar 
    Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest Manag. 6, 20 (2015).Article 

    Google Scholar 
    Urban, J. M. Perspective: Shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).Article 
    CAS 

    Google Scholar 
    Liu, G. Some extracts from the history of entomology in china. Psyche 46, 23–28 (1939).Article 

    Google Scholar 
    Barringer, L. E., Donovall, L. R., Spichiger, S.-E., Lynch, D. & Henry, D. The first new world record of Lycorma delicatula (insecta: Hemiptera: Fulgoridae). Entomol. News 125, 20–23 (2015).Article 

    Google Scholar 
    Parra, G., Moylett, H. & Bulluck, R. Technical Working Group Summary Report: Spotted Lanternfly, Lycorma Delicatula (White, 1845). (2018).Harper, J. K., Stone, W., Kelsey, T. W. & Kime, L. F. Potential Economic Impact of the Spotted Lanternfly on Agriculture and Forestry in Pennsylvania 1–84 (The Center for Rural Pennsylvania, 2019).
    Google Scholar 
    Kim, J. G., Lee, E.-H., Seo, Y.-M. & Kim, N.-Y. Cyclic behavior of Lycorma delicatula (insecta: Hemiptera: Fulgoridae) on host plants. J. Insect Behav. 24, 423–435 (2011).Article 

    Google Scholar 
    Albright, T. A. et al. Pennsylvania forests 2014. Resour. Bull. 111, 1–140 (2017).
    Google Scholar 
    Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).
    Google Scholar 
    Barringer, L. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).Article 

    Google Scholar 
    Murman, K. et al. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 49, 1270–1281 (2020).Article 

    Google Scholar 
    Huron, N. A., Behm, J. E. & Helmus, M. R. Paninvasion severity assessment of a us grape pest to disrupt the global wine market. bioRxiv (2021).Dara, S. K. Update on the Spotted Lanternfly.Jung, J.-M., Jung, S., Byeon, D.-H. & Lee, W.-H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (hemiptera: Fulgoridae), by using climex. J. Asia-Pac. Biodivers. 10, 532–538 (2017).Article 

    Google Scholar 
    Namgung, H., Kim, M.-J., Baek, S., Lee, J.-H. & Kim, H. Predicting potential current distribution of Lycorma delicatula (hemiptera: Fulgoridae) using maxent model in south korea. J. Asia-Pac. Entomol. 23, 291–297 (2020).Article 

    Google Scholar 
    Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2020).
    Google Scholar 
    Grimm, V. et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198, 115–126 (2006).Article 

    Google Scholar 
    DeAngelis, D. L. Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems (CRC Press, 2018).Book 

    Google Scholar 
    Łomnicki, A. Individual-based models and the individual-based approach to population ecology. Ecol. Model. 115, 191–198 (1999).Article 

    Google Scholar 
    Grimm, V. & Railsback, S. F. A conceptual framework for designing individual-based models. In Individual-Based Modeling and Ecology 71–121 (Princeton University Press, 2005).Chapter 
    MATH 

    Google Scholar 
    Smith, N. R. et al. Agent-based models of malaria transmission: A systematic review. Malar. J. 17, 1–16 (2018).Article 
    CAS 

    Google Scholar 
    Venkatramanan, S. et al. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 22, 43–49 (2018).Article 

    Google Scholar 
    Harris, C. M., Park, K. J., Atkinson, R., Edwards, C. & Travis, J. Invasive species control: Incorporating demographic data and seed dispersal into a management model for rhododendron ponticum. Ecol. Inform. 4, 226–233 (2009).Article 

    Google Scholar 
    Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16, 331–342 (2010).Article 

    Google Scholar 
    Rebaudo, F., Crespo-Pérez, V., Silvain, J.-F. & Dangles, O. Agent-based modeling of human-induced spread of invasive species in agricultural landscapes: Insights from the potato moth in ecuador. J. Artif. Soc. Soc. Simul. 14, 7 (2011).Article 

    Google Scholar 
    Day, C. C., Landguth, E. L., Bearlin, A., Holden, Z. A. & Whiteley, A. R. Using simulation modeling to inform management of invasive species: A case study of eastern brook trout suppression and eradication. Biol. Conserv. 221, 10–22 (2018).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudı’k, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-first International Conference on Machine Learning 83 (2004).Phillips, S. J. et al. A brief tutorial on maxent. AT&T Res. 190, 231–259 (2005).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Urbanek, S. RJava: Low-Level R to Java Interface. (2020).Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).
    Google Scholar 
    Elith, J. et al. A statistical explanation of maxent for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Lane, M. A. & Edwards, J. L. The global biodiversity information facility (gbif). Syst. Assoc. Spec. 73, 1 (2007).
    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous united states. US Geol. Surv. Data Ser. 691, 4–9 (2012).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).Venter, O. et al. Last of the wild project, version 3 (lwp-3): 2009 human footprint, 2018 release. NASA Socioeconomic Data and Applications Center (SEDAC) 10, H46T40JQ44 (2018).Park, M. Overwintering ecology and population genetics of Lycorma delicatula (hemiptera: Fulgoridae) in Korea. Seoul National University, Seoul, Korea Doctoral Thesis (2015).Pearson, K. I. Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philos. Trans. R. Soc. Lond. Ser. A 195, 1–47 (1900).ADS 
    MATH 

    Google Scholar 
    Warmerdam, F. The geospatial data abstraction library. In Open Source Approaches in Spatial Data Handling 87–104 (Springer, 2008).Chapter 

    Google Scholar 
    Greenberg, J. A., Mattiuzzi, M. & SystemRequirements, G. Package ‘gdalUtils’. (2020).Domingue, M. J. & Baker, T. C. Orientation of flight for physically disturbed spotted lanternflies, Lycorma delicatula, (Hemiptera, fulgoridae). J. Asia-Pac. Entomol. 22, 117–120 (2019).Article 

    Google Scholar 
    Myrick, A. J. & Baker, T. C. Analysis of anemotactic flight tendencies of the spotted lanternfly (Lycorma delicatula) during the 2017 mass dispersal flights in pennsylvania. J. Insect Behav. 32, 11–23 (2019).Article 

    Google Scholar 
    Wolfin, M. S., Myrick, A. J. & Baker, T. C. Flight duration capabilities of dispersing adult spotted lanternflies, Lycorma delicatula. J. Insect Behav. 33, 125–137 (2020).Article 

    Google Scholar 
    Strömbom, D. & Pandey, S. Modeling the life cycle of the spotted lanternfly (Lycorma delicatula) with management implications. Math. Biosci. 340, 108670 (2021).Article 
    MATH 

    Google Scholar 
    Wellington, W. G. Conditions governing the distribution of insects in the free atmosphere. Can. Entomol. 77, 7–15 (1945).Article 

    Google Scholar 
    DeLong, D. M. The bionomics of leafhoppers. Annu. Rev. Entomol. 16, 179–210 (1971).Article 

    Google Scholar 
    Baker, T. et al. Progression of seasonal activities of adults of the spotted lanternfly, Lycorma delicatula, during the 2017 season of mass flight dispersal behavior in eastern Pennsylvania. J. Asia-Pac. Entomol. 22, 705–713 (2019).Article 

    Google Scholar 
    Leach, H. & Leach, A. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in eastern us vineyards. J. Pest Sci. 93, 1215–1224 (2020).Article 

    Google Scholar 
    Goutte, C. & Gaussier, E. A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In European Conference on Information Retrieval 345–359 (Springer, 2005).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Tukey, J. Multiple comparisons. J. Am. Stat. Assoc. 48, 624–625 (1953).
    Google Scholar 
    Mendiburu, F. de & Mendiburu, M. F. de. Package ‘agricolae’. R Package, Version 1-2 (2019).McAvoy, T. J., Snyder, A. L., Johnson, N., Salom, S. M. & Kok, L. T. Road survey of the invasive tree-of-heaven (Ailanthus altissima) in Virginia. Invasive Plant Sci. Manag. 5, 506–512 (2012).Article 

    Google Scholar 
    Casella, F. & Vurro, M. Ailanthus altissima (tree of heaven): Spread and harmfulness in a case-study urban area. Arboricult. J. 35, 172–181 (2013).Article 

    Google Scholar 
    Takahashi, D. & Park, Y.-S. Spatial heterogeneities of human-mediated dispersal vectors accelerate the range expansion of invaders with source–destination-mediated dispersal. Sci. Rep. 10, 1–9 (2020).Article 

    Google Scholar 
    Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).Article 
    ADS 

    Google Scholar 
    Turner, R. M. et al. Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol. Appl. 31, e02412 (2021).Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).Article 

    Google Scholar 
    Wilson, J. R., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 

    Google Scholar 
    Auffret, A. G., Berg, J. & Cousins, S. A. The geography of human-mediated dispersal. Divers. Distrib. 20, 1450–1456 (2014).Article 

    Google Scholar 
    Koch, F. H., Yemshanov, D., Magarey, R. D. & Smith, W. D. Dispersal of invasive forest insects via recreational firewood: A quantitative analysis. J. Econ. Entomol. 105, 438–450 (2012).Article 

    Google Scholar 
    Eyer, P.-A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2020).Article 

    Google Scholar 
    Petrice, T. R. & Haack, R. A. Effects of cutting date, outdoor storage conditions, and splitting on survival of Agrilus planipennis (coleoptera: Buprestidae) in firewood logs. J. Econ. Entomol. 99, 790–796 (2006).Article 

    Google Scholar 
    Petrice, T. R. & Haack, R. A. Can emerald ash borer, Agrilus planipennis (coleoptera: Buprestidae), emerge from logs two summers after infested trees are cut?. Great Lakes Entomol. 40, 92–95 (2007).
    Google Scholar 
    Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (coleoptera) in North America. Divers. Distrib. 12, 71–79 (2006).Article 

    Google Scholar 
    Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 15, 044015 (2020).Article 
    ADS 

    Google Scholar 
    Hulme, P. E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).Article 
    ADS 

    Google Scholar  More