Phylogenetic comparison of egg transparency in ascidians by hyperspectral imaging
1.
Herring, P. J. The Biology of the Deep Ocean (Oxford University Press, Oxford, 2007).
Google Scholar
2.
Chapman, G. Transparency in organisms. Experientia 32, 123–125 (1976).
Article Google Scholar
3.
Bagge, L. E. Not as clear as it may appear: Challenges associated with transparent camouflage in the ocean. Integr. Comp. Biol. 59, 1653–1663 (2019).
Article Google Scholar
4.
Johnsen, S. Hide and seek in the open sea: Pelagic camouflage and visual countermeasures. Ann. Rev. Mar. Sci. 6, 369–392 (2014).
Article Google Scholar
5.
Kakiuchida, H., Sakai, D., Nishikawa, J. & Hirose, E. Measurement of refractive indices of tunicates’ tunics: Light reflection of the transparent integuments in an ascidian Rhopalaea sp. and a salp Thetys vagina. Zool. Lett. 3, 7 (2017).
Article Google Scholar
6.
Sakai, D., Kakiuchida, H., Nishikawa, J. & Hirose, E. Physical properties of the tunic in the pinkish-brown salp Pegea confoederata (Tunicata: Thaliacea). Zool. Lett. 4, 1–9 (2018).
Article Google Scholar
7.
Giguère, L. A. & Northcote, T. G. Ingested prey increase risks of visual predation in transparent Chaoborus larvae. Oecologia 73, 48–52 (1987).
ADS Article Google Scholar
8.
Cronin, T. W. Camouflage: Being invisible in the open ocean. Curr. Biol. 26, R1179–R1181 (2016).
CAS Article Google Scholar
9.
Hansson, L. A. Induced pigmentation in zooplankton: A trade-off between threats from predation and ultraviolet radiation. Proc. R. Soc. B Biol. Sci. 267, 2327–2331 (2000).
CAS Article Google Scholar
10.
Johnsen, S. Hidden in plain sight: The ecology and physiology of organismal transparency. Biol. Bull. 201, 301–318 (2001).
CAS Article Google Scholar
11.
Yasuo, H. & McDougall, A. Practical guide for ascidian microinjection: Phallusia mammillata. Adv. Exp. Med. Biol. 1029, 15–24 (2018).
CAS Article Google Scholar
12.
Piliszek, A., Kwon, G. S. & Hadjantonakis, A.-K. Embryological methods in ascidians: The Villefranche-sur-Mer protocols. In Methods in Molecular Biology (Clifton, N.J.) Vol. 770 (ed. Pelegri, F. J.) 243–257 (Humana Press, Totowa, 2011).
Google Scholar
13.
Burighel, P. & Cloney, R. A. Urochordata: Ascidiacea. Microscopic Anatomy of Invertebrates 221–347 (1997).
14.
Conklin, E. G. Mosaic development in ascidian eggs. J. Exp. Zool. 2, 145–223 (1905).
Article Google Scholar
15.
Jeffery, W. R. Identification of proteins and mRNAs in isolated yellow crescents of ascidian eggs. J. Embryol. Exp. Morphol. 89, 275–287 (1985).
CAS PubMed Google Scholar
16.
Arai, M. N. Biological interactions. in A Functional Biology of Scyphozoa 203–223 (Springer Netherlands, 1997). https://doi.org/10.1007/978-94-009-1497-1_9
17.
Nishikawa, T. et al. Molecular and morphological discrimination between an invasive ascidian, Ascidiella aspersa, and its congener A. scabra (Urochordata: Ascidiacea). Zool. Sci. 31, 180–185 (2014).
CAS Article Google Scholar
18.
Passamaneck, Y. J. & Di Gregorio, A. Ciona intestinalis: Chordate development made simple. Dev. Dyn. https://doi.org/10.1002/dvdy.20300 (2005).
Article PubMed Google Scholar
19.
Dehal, P. et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).
ADS CAS Article Google Scholar
20.
Tassy, O. et al. The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program. Genome Res. 20, 1459–1468 (2010).
CAS Article Google Scholar
21.
Brozovic, M. et al. ANISEED 2017: Extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1108 (2017).
Article PubMed Central Google Scholar
22.
Delsuc, F. F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 1–14 (2018).
Article Google Scholar
23.
Epel, D., Hemela, K., Shick, M. & Patton, C. Development in the floating world: Defenses of eggs and embryos against damage from UV radiation. Am. Zool. 39, 271–278 (1999).
Article Google Scholar
24.
Eaton, T. H. & Cott, H. B. Adaptive coloration in animals. Am. Midl. Nat. https://doi.org/10.2307/2420875 (1940).
Article Google Scholar
25.
Lindquist, N., Hay, M. E. & Fenical, W. Defense of ascidians and their conspicuous larvae: Adult vs larval chemical defenses. Ecol. Monogr. 62, 547–568 (1992).
Article Google Scholar
26.
Hirose, E., Ohtake, S.-I. & Azumi, K. Morphological characterization of the tunic in the edible ascidian, Halocynthia roretzi (Drasche), with remarks on ‘soft tunic syndrome’ in aquaculture. J. Fish Dis. 32, 433–445 (2009).
CAS Article Google Scholar
27.
Jacobs, G. H. Ultraviolet vision in vertebrates. Am. Zool. 32, 544–554 (1992).
Article Google Scholar
28.
Karentz, D., Bosch, I. & Mitchell, D. M. Limited effects of Antarctic ozone depletion on sea urchin development. Mar. Biol. 145, 277–292 (2004).
CAS Article Google Scholar
29.
Winckler, K. & Fidhiany, L. Combined effects of constant sublethal UVA irradiation and elevated temperature on the survival and general metabolism of the convict-cichlid fish, Cichlasoma nigrofasciatum. Photochem. Photobiol. 63, 487–491 (1996).
CAS Article Google Scholar
30.
Bingham, B. L. & Reitzel, A. M. Solar damage to the solitary ascidian, Corella inflata. J. Mar. Biol. Assoc. UK 80, 515–521 (2000).
Article Google Scholar
31.
Hirose, E. Pigmentation and acid storage in the tunic: Protective functions of the tunic cells in the tropical ascidian Phallusia nigra. Invertebr. Biol. 118, 414 (1999).
Article Google Scholar
32.
Hirose, E., Hirabayashi, S., Hori, K., Kasai, F. & Watanabe, M. M. UV protection in the photosymbiotic ascidian Didemnum molle inhabiting different depths. Zool. Sci. 23, 57–63 (2006).
CAS Article Google Scholar
33.
Olson, R. R. Ascidian-prochloron symbiosis: The role of larval photoadaptations in midday larval release and settlement. Biol. Bull. 165, 221–240 (1983).
Article Google Scholar
34.
Sensui, N. & Hirose, E. Cytoplasmic UV-R absorption in an integumentary matrix (Tunic) of photosymbiotic ascidian colonies. Zool. Stud. 57, 1–11 (2018).
Google Scholar
35.
Hirose, E., Ohtsuka, K., Ishikura, M. & Maruyama, T. Ultraviolet absorption in ascidian tunic and ascidian-Prochloron symbiosis. J. Mar. Biol. Assoc. UK 84, 789–794 (2004).
CAS Article Google Scholar
36.
Hansson, L. A. & Hylander, S. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochem. Photobiol. Sci. 8, 1266–1275 (2009).
CAS Article Google Scholar
37.
Hansson, L. A., Hylander, S. & Sommaruga, R. Escape from UV threats in zooplankton: A cocktail of behavior and protective pigmentation. Ecology 88, 1932–1939 (2007).
Article Google Scholar
38.
Pineda, M. C., Lorente, B., López-Legentil, S., Palacín, C. & Turon, X. Stochasticity in space, persistence in time: Genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata. PeerJ 4, e2158 (2016).
Article Google Scholar
39.
Zaniolo, G., Burighel, P. & Martinucci, G. Ovulation and placentation in Botryllus schlosseri (Ascidiacea): An ultrastructural study. Can. J. Zool. 65, 1181–1190 (1987).
Article Google Scholar
40.
Mukai, H., Saito, Y. & Watanabe, H. Viviparous development in Botrylloides (compound ascidians). J. Morphol. 193, 263–276 (1987).
Article Google Scholar
41.
Burighel, P., Cloney, R. A. & Cloney, B. Microscopic anatomy of invertebrates. Microsc. Anat. Invertebr. 15, 221–347 (1997).
Google Scholar
42.
Sardet, C. et al. Chapter 14 Embryological methods in ascidians: The Villefranche-sur-Mer protocols. Vertebr. Embryog. Methods Mol. Biol. 770, (2011).
43.
Chatterjee, A. et al. Cephalopod-inspired optical engineering of human cells. Nat. Commun. 11, 2708 (2020).
ADS CAS Article Google Scholar
44.
Tsagkogeorga, G. et al. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol. Biol. 9, 187 (2009).
Article Google Scholar
45.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. https://doi.org/10.1071/ZO9660275 (1994).
Article PubMed Google Scholar
46.
Hasegawa, N. & Kajihara, H. A redescription of syncarpa composita (Ascidiacea, stolidobranchia) with an inference of its phylogenetic position within styelidae. Zookeys 2019, 1–15 (2019).
CAS Article Google Scholar
47.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).
Article PubMed PubMed Central Google Scholar
48.
Castresana, J. Estimation of genetic distances from human and mouse introns. Genome Biol. https://doi.org/10.1186/gb-2002-3-6-research0028 (2002).
Article PubMed PubMed Central Google Scholar
49.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw054 (2016).
Article PubMed PubMed Central Google Scholar
50.
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu033 (2014).
Article PubMed PubMed Central Google Scholar
51.
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
Article PubMed Google Scholar
52.
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics https://doi.org/10.1093/bioinformatics/btg180 (2003).
Article PubMed Google Scholar
53.
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw260 (2017).
Article PubMed Google Scholar
54.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
CAS Article Google Scholar More
