Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
1.
Hambright, K. D., Gophen, M. & Serruya, S. Influence of long-term climatic changes on the stratification of a subtropical, warm monomictic lake. Limnol. Oceanogr. 39, 1233–1242 (1994).
ADS Article Google Scholar
2.
Pilla, R. M. et al. Browning-related decreases in water transparency lead to long-term increases in surface water temperature and thermal stratification in two small lakes. J. Geophys. Res. Biogeo. https://doi.org/10.1029/2017JG004321 (2018).
Article Google Scholar
3.
Foley, B., Jones, I. D., Maberly, S. C. & Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: Effects of climate change and eutrophication. Freshwater Biol. 57, 278–289 (2012).
CAS Article Google Scholar
4.
Knoll, L. B. et al. Browning-related oxygen depletion in an oligotrophic lake. Inland Waters https://doi.org/10.1080/20442041.2018.1452355 (2018).
Article Google Scholar
5.
O’Reilly, C. M., Alin, S. R., Plisnier, P.-D., Cohen, A. S. & McKee, B. A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika Africa. Nature 424, 766–768 (2003).
ADS CAS PubMed Article Google Scholar
6.
Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507 (2003).
ADS CAS PubMed Article Google Scholar
7.
Saulnier-Talbot, É. et al. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes. PLoS ONE https://doi.org/10.1371/journal.pone.0086561 (2014).
Article PubMed PubMed Central Google Scholar
8.
Cohen, A. S. et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. P. Natl. Acad. Sci. 113, 9563–9568 (2016).
ADS CAS Article Google Scholar
9.
Hansen, G. J. A., Read, J. S., Hansen, J. F. & Winslow, L. A. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Glob. Change Biol. 23, 1463–1476 (2017).
ADS Article Google Scholar
10.
De Stasio, B. T., Hill, D. K., Kleinhans, J. M., Nibbelink, N. P. & Magnuson, J. J. Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnol. Oceanogr. 41, 1136–1149 (1996).
ADS Article Google Scholar
11.
Craig, N., Jones, S. E., Weidel, B. C. & Solomon, C. T. Habitat, not resource availability, limits consumer production in lake ecosystems. Limnol. Oceanogr. 60, 2079–2089 (2015).
ADS Article Google Scholar
12.
Brothers, S. et al. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol. Oceanogr. 59, 1388–1398 (2014).
ADS CAS Article Google Scholar
13.
Marotta, H. et al. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Change https://doi.org/10.1038/NCLIMATE2222 (2014).
Article Google Scholar
14.
Schneider, P. & Hook, S. J. Space observations of inland water bodies show rapid surface warming since. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045059 (2010).
Article Google Scholar
15.
O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. https://doi.org/10.1002/2015GL066235 (2015).
Article Google Scholar
16.
Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. https://doi.org/10.1038/s41561-019-0322-x (2019).
Article Google Scholar
17.
Kraemer, B. M. et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. https://doi.org/10.1002/2015GL064097 (2015).
Article Google Scholar
18.
Keller, W., Heneberry, J. & Leduc, J. Linkages between weather, dissolved, organic carbon, and cold-water habitat in a Boreal Shield lake recovering from acidification. Can. J. Fish. Aquat. Sci. 62, 341–347 (2005).
CAS Article Google Scholar
19.
Wagner, A., Volkmann, S. & Dettinger-Klemm, P. M. A. Benthic-pelagic coupling in lake ecosystems: The key role of chironomid pupae as prey of pelagic fish. Ecosphere https://doi.org/10.1890/ES11-00181.1 (2012).
Article Google Scholar
20.
Straile, D., Kerimoglu, O. & Peeters, F. Trophic mismatch requires seasonal heterogeneity of warming. Ecology 96, 2794–2805 (2015).
PubMed Article PubMed Central Google Scholar
21.
Schmid, M. & Köster, O. Excess warming of a Central European lake driven by solar brightening. Water Resour. Res. https://doi.org/10.1002/2016WR018651 (2016).
Article Google Scholar
22.
Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D. & Laas, A. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Clim. Change 141, 759–773 (2017).
Article Google Scholar
23.
Read, J. S. & Rose, K. C. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol. Oceanogr. 58, 921–931 (2013).
ADS CAS Article Google Scholar
24.
Winslow, L. A., Read, J. S., Hansen, G. J. A. & Hanson, P. C. Small lakes show muted climate change signal in deepwater temperatures. Geophys. Res. Lett. https://doi.org/10.1002/2014GL062325 (2015).
Article Google Scholar
25.
Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).
ADS CAS Article Google Scholar
26.
Fee, E. J., Hecky, R. E., Kasian, S. E. M. & Cruikshank, D. R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 41, 912–920 (1996).
ADS CAS Article Google Scholar
27.
Snucins, E. & Gunn, J. Interannual variation in the thermal structure of clear and colored lakes. Limnol. Oceanogr. 45, 1639–1646 (2000).
ADS Article Google Scholar
28.
Jankowski, T., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006).
ADS Article Google Scholar
29.
Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).
ADS Article Google Scholar
30.
Maberly, S. C. et al. Global lake thermal regions shift under climate change. Nat. Commun. 11, 1232. https://doi.org/10.1038/s41467-020-15108-z (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
31.
IPCC In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013).
Google Scholar
32.
Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change https://doi.org/10.1038/NCLIMATE2563 (2015).
Article Google Scholar
33.
Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10027 (2016).
Article Google Scholar
34.
Benson, B. J. et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Change 112, 299–323 (2012).
ADS Article Google Scholar
35.
Sharma, S. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change https://doi.org/10.1038/s41558-018-0393-5 (2019).
Article Google Scholar
36.
Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth. Environ. 1, 388–403 (2020).
ADS Article Google Scholar
37.
Zhang, G. et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2020.103269 (2020).
Article Google Scholar
38.
Dokulil, M. T. et al. Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol. Oceanogr. 51, 2787–2793 (2006).
ADS Article Google Scholar
39.
Ficker, H., Luger, M. & Gassner, H. From dimictic to monomictic: Empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw. Biol. https://doi.org/10.1111/fwb.12946 (2017).
Article Google Scholar
40.
Markfort, C. D. et al. Wind sheltering of a lake by a tree canopy or bluff topography. Water Resour. Res. https://doi.org/10.1029/2009WR007759 (2010).
Article Google Scholar
41.
Read, J. S. et al. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051886 (2012).
Article Google Scholar
42.
Beniston, M., Diaz, H. F. & Bradley, R. S. Climatic change at high elevation sites: An overview. Clim. Change 36, 233–251 (1997).
Article Google Scholar
43.
Sommaruga-Wögrath, S. et al. Temperature effects on the acidity of remote alpine lakes. Nature 387, 64–67 (1997).
ADS Article Google Scholar
44.
Václavík, T., Lautenback, S., Kuemmerle, T. & Seppelt, R. Mapping global land system archetypes. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2013.09.004 (2013).
Article Google Scholar
45.
Bartosiewicz, M. et al. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10117 (2019).
Article Google Scholar
46.
Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. https://doi.org/10.1038/srep18666 (2015).
Article PubMed PubMed Central Google Scholar
47.
Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T. & Cresser, M. S. Alternative explanations for rising dissolved organic carbon export from organic soils. Glob. Change Biol. 12, 2044–2053 (2006).
ADS Article Google Scholar
48.
Monteith, D. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature https://doi.org/10.1038/nature06316 (2007).
Article PubMed Google Scholar
49.
Couture, S., Houle, D. & Gagnon, C. Increases of dissolved organic carbon in temperate and boreal lakes in Quebec Canada. Environ. Sci. Pollut. Res. 19, 361–371 (2012).
CAS Article Google Scholar
50.
Read, J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 26, 1325–1336 (2011).
Article Google Scholar
51.
Gray, E., Mackay, E. B., Elliot, J. A., Folkard, A. M. & Jones, I. D. Wide-spread inconsistency in estimation of lake mixed depth impacts interpretation of limnological processes. Water Res. https://doi.org/10.1016/j.watres.2019.115136 (2020).
Article PubMed Google Scholar
52.
Prokopkin, I. G. & Zadereev, E. S. A model study of the effect of weather forcing on the ecology of a meromictic Siberian Lake. J. Oceanol. Limnol. 36, 2018–2032 (2018).
ADS CAS Article Google Scholar
53.
Austin, J. A. & Colman, S. M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. https://doi.org/10.1029/2006GL029021 (2007).
Article Google Scholar
54.
Preston, D. L. et al. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophys. Res. Lett. https://doi.org/10.1002/2016GL069036 (2016).
Article Google Scholar
55.
Sadro, S., Melack, J. M., Sickman, J. O. & Skeen, K. Climate warming response of mountain lakes affected by variations in snow. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10099 (2018).
Article Google Scholar
56.
Zhang, G. et al. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. Atmos. 119, 8552–8567 (2014).
ADS Article Google Scholar
57.
Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375, 601–612 (2009).
ADS CAS Article Google Scholar
58.
Zhang, X. Conjunctive surface water and groundwater management under climate change. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2015.00059 (2015).
Article Google Scholar
59.
Gaiser, E. E., Deyrup, N. D., Bachmann, R. W., Battoe, L. E. & Swain, H. M. Effects of climate variability on transparency and thermal structure in subtropical, monomictic Lake Annie Florida. Fund. Appl. Limnol. 175, 217–230 (2009).
Article Google Scholar
60.
Zhang, J. et al. Long-term patterns of dissolved organic carbon in lakes across eastern Canada: Evidence of a pronounced climate effect. Limnol. Oceanogr. 55, 30–42 (2010).
ADS CAS Article Google Scholar
61.
Williamson, C. E. et al. Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 14, 102–109 (2016).
Article Google Scholar
62.
Thiery, W. et al. Understanding the performance of the Flake model over two African Great Lakes. Geosci. Model Dev. 7, 317–337 (2014).
ADS Article Google Scholar
63.
Shatwell, T., Thiery, W. & Kirillin, G. Future projections of temperature and mixing regime of European temperate lakes. Hydrol. Earth Syst. Sci. 23, 1533–1551 (2019).
ADS Article Google Scholar
64.
Winslow, L. A., Read, J. S., Hansen, G. J. A., Rose, K. C. & Robertson, D. M. Seasonality of change: summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol. Oceanogr. 62, 2168–2178 (2017).
ADS Article Google Scholar
65.
Fang, X. & Stefan, H. G. Simulations of climate effects on water temperatures, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol. Oceanogr. 54, 2359–2370 (2009).
ADS CAS Article Google Scholar
66.
Rösner, R., Müller-Navarra, D. C. & Zorita, E. Trend analysis of weekly temperatures and oxygen concentrations during summer stratification in Lake Plußsee: a long-term study. Limnol. Oceanogr. 57, 1479–1491 (2012).
ADS Article CAS Google Scholar
67.
Rogora, M. et al. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia 824, 33–50 (2018).
CAS Article Google Scholar
68.
Wilhelm, S. & Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 53, 226–237 (2008).
CAS Article Google Scholar
69.
North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. https://doi.org/10.1111/gcb.12371 (2014).
Article Google Scholar
70.
Zadereev, E. S., Tolomeev, A. P., Drobotov, A. V. & Kolmakova, A. A. Impact of weather variability on spatial and seasonal dynamics of dissolved and suspended nutrients in water column of meromictic Lake Shira. Contemp. Probl. Ecol. 21, 515–530 (2014).
Google Scholar
71.
Couture, R.-M., deWit, H. A., Tominaga, K., Kiuru, P. & Markelov, I. Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs. J. Geophys. Res. Biogeo. https://doi.org/10.1002/2015JG003065 (2015).
Article Google Scholar
72.
Richardson, D. C. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across Northeastern North America (1975–2004). Water https://doi.org/10.3390/w9060442 (2017).
Article Google Scholar
73.
Kalff, J. Limnology: Inland Water Ecosystems (Prentice Hall, Upper Saddle River, 2002).
Google Scholar
74.
Wetzel, R. G. Limnology: Lake and River Ecosystems (Academic Press, New York, 2001).
Google Scholar
75.
Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE https://doi.org/10.1371/journal.pone.0152466 (2016).
Article PubMed PubMed Central Google Scholar
76.
Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridge, J. K. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011).
ADS Article Google Scholar
77.
Winslow, L. et al. rLakeAnalyzer: Lake physics tools. R package version 1.11.4.1. https://CRAN.R-project.org/package=rLakeAnalyzer (2019).
78.
Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
MathSciNet MATH Article Google Scholar
79.
Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18, 107–121 (1982).
ADS Article Google Scholar
80.
Jassby, A. D. & Cloern, J. E. wq: Some tools for exploring water quality monitoring data. R package version 0.4.8. https://cran.r-project.org/package=wq (2016).
81.
Leach, T. H. et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: the relative importance of light and thermal stratification. Limnol. Oceanogr. 63, 628–646 (2018).
ADS CAS Article Google Scholar
82.
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
MATH Article Google Scholar
83.
James, G., Witten, D., Hastie, T. & Tibshirani, R. Tree-based methods. In An Introduction to Statistical Learning: With Applications in R (Springer, Berlin, 2015).
Google Scholar
84.
Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recogn. Lett. 31, 2225–2236 (2010).
Article Google Scholar
85.
Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 027–046 (2013).
Article Google Scholar
86.
Auret, L. & Alrich, C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner. Eng. 35, 27–42 (2012).
CAS Article Google Scholar
87.
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
88.
R Core Team. R: a language and environment for statistical computing, R Foundation for Statistical Computing. https://www.R-project.org/ (2019).
89.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
Google Scholar More
