1.
Karl DM, Wirsen CO, Jannasch HW. Deep-sea primary production at the Galapagos hydrothermal vents. Science (80-). 1980;207:1345–7.
CAS Article Google Scholar
2.
Yamamoto M, Takai K. Sulfur metabolisms in epsilon-and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol. 2011;2:192.
CAS PubMed PubMed Central Article Google Scholar
3.
Kato S, Nakamura K, Toki T, Ishibashi J-I, Tsunogai U, Hirota A, et al. Iron-based microbial ecosystem on and below the seafloor: a case study of hydrothermal fields of the southern mariana trough. Front Microbiol. 2012;3:89.
PubMed PubMed Central Google Scholar
4.
Winkel M, de Beer D, Lavik G, Peplies J, Mußmann M. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments. Environ Microbiol. 2014;16:1612–26.
CAS PubMed Article Google Scholar
5.
Fortunato CS, Larson B, Butterfield DA, Huber JA. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Environ Microbiol. 2018;20:769–84.
CAS PubMed Article Google Scholar
6.
Kendall B, Anbar AD, Kappler A, Konhauser KO. The global iron cycle. In: Knoll AH, Canfield DE, Konhauser KO (eds). Fundamentals of Geobiology, 1st ed. Blackwell Publishing Ltd.; 2012. pp. 65–92.
7.
McAllister SM, Moore RM, Gartman A, Luther GW, Emerson D, Chan CS. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological, and genomic perspectives. FEMS Microbiol Ecol. 2019;95:fiz015.
CAS PubMed PubMed Central Article Google Scholar
8.
Kato S, Kobayashi C, Kakegawa T, Yamagishi A. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough. Environ Microbiol. 2009;11:2094–111.
CAS PubMed Article Google Scholar
9.
Hassenrück C, Fink A, Lichtschlag A, Tegetmeyer HE, de Beer D, Ramette A. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: The importance of ecosystem approaches. FEMS Microbiol Ecol. 2016;92:fiw02.
Article CAS Google Scholar
10.
Kato S, Yanagawa K, Sunamura M, Takano Y, Ishibashi J, Kakegawa T, et al. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough. Environ Microbiol. 2009;11:3210–22.
CAS PubMed Article PubMed Central Google Scholar
11.
McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL. Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria. Appl Environ Microbiol. 2011;77:5445–57.
CAS PubMed PubMed Central Article Google Scholar
12.
Makita H, Kikuchi S, Mitsunobu S, Takaki Y, Yamanaka T, Toki T, et al. Comparative analysis of microbial communities in iron-dominated flocculent mats in deep-sea hydrothermal environments. Appl Environ Microbiol. 2016;82:5741–55.
CAS PubMed PubMed Central Article Google Scholar
13.
Scott JJ, Breier JA, Luther GW III, Emerson D. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems. PLoS ONE. 2015;10:e0119284.
PubMed PubMed Central Article CAS Google Scholar
14.
Scott JJ, Glazer BT, Emerson D. Bringing microbial diversity into focus: high-resolution analysis of iron mats from the Lō’ihi Seamount. Environ Microbiol. 2017;19:301–16.
CAS PubMed Article PubMed Central Google Scholar
15.
Hager KW, Fullerton H, Butterfield DA, Moyer CL. Community structure of lithotrophically-driven hydrothermal microbial mats from the Mariana Arc and Back-Arc. Front Microbiol. 2017;8:1578.
PubMed PubMed Central Article Google Scholar
16.
Forget NL, Murdock SA, Juniper SK. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. Geobiology. 2010;8:417–32.
CAS PubMed Article PubMed Central Google Scholar
17.
Vander Roost J, Thorseth IH, Dahle H. Microbial analysis of Zetaproteobacteria and co-colonizers of iron mats in the Troll Wall Vent Field, Arctic Mid-Ocean Ridge. PLoS ONE. 2017;12:e0185008.
Article CAS Google Scholar
18.
Rassa AC, McAllister SM, Safran SA, Moyer CL. Zeta-Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii. Geomicrobiol J. 2009;26:623–38.
CAS Article Google Scholar
19.
Fullerton H, Hager KW, McAllister SM, Moyer CL. Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lo’ihi Seamount, Hawai’i. ISME J. 2017;11:1900–14.
CAS PubMed PubMed Central Article Google Scholar
20.
Field EK, Sczyrba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R, et al. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. ISME J. 2015;9:857–70.
CAS PubMed Article PubMed Central Google Scholar
21.
Chan CS, McAllister SM, Leavitt AH, Glazer BT, Krepski ST, Emerson D. The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments. Front Microbiol. 2016;7:796.
PubMed PubMed Central Google Scholar
22.
Fleming EJ, Davis RE, McAllister SM, Chan CS, Moyer CL, Tebo BM, et al. Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA. FEMS Microbiol Ecol. 2013;85:116–27.
PubMed Article PubMed Central Google Scholar
23.
Barco RA, Emerson D, Sylvan JB, Orcutt BN, Jacobson Meyers ME, Ramírez GA, et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl Environ Microbiol. 2015;81:5927–37.
CAS PubMed PubMed Central Article Google Scholar
24.
McAllister SM, Polson SW, Butterfield DA, Glazer BT, Sylvan JB, Chan CS. Validating the Cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents. mSystems. 2020;5:e00553–19.
PubMed PubMed Central Article Google Scholar
25.
Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, et al. Mariprofundus ferrooxydans, PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE. 2011;6:e25386.
CAS PubMed PubMed Central Article Google Scholar
26.
Mori JF, Scott JJ, Hager KW, Moyer CL, Küsel K, Emerson D. Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. ISME J. 2017;11:2624–36.
PubMed PubMed Central Article Google Scholar
27.
Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.
CAS PubMed Article PubMed Central Google Scholar
28.
Bennett SA, Hansman RL, Sessions AL, Nakamura K, Edwards KJ. Tracing iron-fueled microbial carbon production within the hydrothermal plume at the Loihi seamount. Geochim Cosmochim Acta. 2011;75:5526–39.
CAS Article Google Scholar
29.
Jesser KJ, Fullerton H, Hager KW, Moyer CL. Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō’ihi Seamount, Hawai’i). Appl Environ Microbiol. 2015;81:2976–84.
CAS PubMed PubMed Central Article Google Scholar
30.
Singer E, Heidelberg JF, Dhillon A, Edwards KJ. Metagenomic insights into the dominant Fe(II) oxidizing Zetaproteobacteria from an iron mat at Lō’ihi, Hawai’i. Front Microbiol. 2013;4:52.
PubMed PubMed Central Article Google Scholar
31.
Chiu BK, Kato S, McAllister SM, Field EK, Chan CS. Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone. Front Microbiol. 2017;8:1280.
PubMed PubMed Central Article Google Scholar
32.
Makita H, Tanaka E, Mitsunobu S, Miyazaki M, Nunoura T, Uematsu K, et al. Mariprofundus micogutta sp. nov., a novel iron-oxidizing zetaproteobacterium isolated from a deep-sea hydrothermal field at the Bayonnaise knoll of the Izu-Ogasawara arc, and a description of Mariprofundales ord. nov. and Zetaproteobacteria classis. Arch Microbiol. 2017;199:335–46.
CAS PubMed Article Google Scholar
33.
Laufer K, Nordhoff M, Halama M, Martinez RE, Obst M, Nowak M, et al. Microaerophilic Fe(II)-oxidizing Zetaproteobacteria isolated from low-Fe marine coastal sediments: Physiology and characterization of their twisted stalks. Appl Environ Microbiol. 2017;83:e03118–16.
CAS PubMed PubMed Central Article Google Scholar
34.
Glazer BT, Rouxel OJ. Redox speciation and distribution within diverse iron-dominated microbial habitats at Loihi Seamount. Geomicrobiol J. 2009;26:606–22.
CAS Article Google Scholar
35.
Sylvan JB, Wankel SD, LaRowe DE, Charoenpong CN, Huber JA, Moyer CL, et al. Evidence for microbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii. Geochim Cosmochim Acta. 2017;198:131–50.
CAS Article Google Scholar
36.
Sedwick PN, McMurtry GM, Macdougall JD. Chemistry of hydrothermal solutions from Pele’s Vents, Loihi Seamount, Hawaii. Geochim Cosmochim Acta. 1992;56:3643–67.
CAS Article Google Scholar
37.
Karl DM, Brittain AM, Tilbrook BD. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep Sea Res Part A, Oceanogr Res Pap. 1989;36:1655–73.
CAS Article Google Scholar
38.
Bryce C, Blackwell N, Schmidt C, Otte J, Huang YM, Kleindienst S, et al. Microbial anaerobic Fe(II) oxidation—ecology, mechanisms and environmental implications. Environ Microbiol. 2018;20:3462–83.
CAS PubMed Article Google Scholar
39.
Laufer K, Byrne JM, Glombitza C, Schmidt C, Jørgensen BB, Kappler A. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content. Environ Microbiol. 2016;18:3159–74.
CAS PubMed Article PubMed Central Google Scholar
40.
Robertson EK, Roberts KL, Burdorf LDW, Cook P, Thamdrup B. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary. Limnol Oceanogr. 2016;61:365–81.
CAS Article Google Scholar
41.
Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.
PubMed Article CAS Google Scholar
42.
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
CAS PubMed PubMed Central Article Google Scholar
43.
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
CAS PubMed PubMed Central Article Google Scholar
44.
Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.
CAS PubMed PubMed Central Article Google Scholar
45.
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
PubMed PubMed Central Article CAS Google Scholar
46.
Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.
CAS PubMed Article Google Scholar
47.
Graham ED, Heidelberg JF, Tully BJ. BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ. 2017;5:e3035.
PubMed PubMed Central Article CAS Google Scholar
48.
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
PubMed PubMed Central Article Google Scholar
49.
Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
CAS PubMed PubMed Central Article Google Scholar
50.
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.
CAS PubMed Article Google Scholar
51.
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
CAS PubMed PubMed Central Article Google Scholar
52.
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42:D206–14.
CAS PubMed Article Google Scholar
53.
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.
CAS PubMed Article Google Scholar
54.
Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219.
CAS PubMed PubMed Central Article Google Scholar
55.
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.
PubMed PubMed Central Article Google Scholar
56.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.
Article CAS Google Scholar
57.
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
CAS PubMed Article Google Scholar
58.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
CAS PubMed Article Google Scholar
59.
Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
CAS PubMed PubMed Central Article Google Scholar
60.
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57:758–71.
PubMed Article Google Scholar
61.
Moore RM, Harrison AO, McAllister SM, Polson SW, Wommack KE. Iroki: automatic customization and visualization of phylogenetic trees. PeerJ. 2020;8:e8584.
PubMed PubMed Central Article Google Scholar
62.
Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.
PubMed PubMed Central Article Google Scholar
63.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from. Genome Res. 2015;25:1043–55.
CAS PubMed PubMed Central Article Google Scholar
64.
Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.
PubMed PubMed Central Article CAS Google Scholar
65.
Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, et al. VIROME: a standard operating procedure for analysis of viral metagenome sequences. Stand Genom Sci. 2012;6:421–33.
CAS Google Scholar
66.
Bolduc B, Jang HBin, Doulcier G, You Z-Q, Roux S, Sullivan MB. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ. 2017;5:e3243.
PubMed PubMed Central Article Google Scholar
67.
Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23.
CAS PubMed PubMed Central Article Google Scholar
68.
Nasko DJ, Ferrell BD, Moore RM, Bhavsar JD, Polson SW, Wommack KE. CRISPR spacers indicate preferential matching of specific virioplankton genes. MBio. 2019;10:e02651–18.
CAS PubMed PubMed Central Article Google Scholar
69.
Lau MCY, Aitchison JC, Pointing SB. Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles. 2009;13:139–49.
PubMed Article Google Scholar
70.
Qiu Y, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y. Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol. 2008;74:2051–8.
CAS PubMed PubMed Central Article Google Scholar
71.
Nobu MK, Narihiro T, Tamaki H, Qiu Y, Sekiguchi Y, Woyke T, et al. The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environ Microbiol. 2015;17:4861–72.
CAS PubMed Article Google Scholar
72.
Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H, et al. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile deep sea fan, eastern Mediterranean). Appl Environ Microbiol. 2008;74:3198–215.
CAS PubMed PubMed Central Article Google Scholar
73.
Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
PubMed PubMed Central Article Google Scholar
74.
Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR, Winget D, et al. Lysogenic virus–host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J. 2008;2:1112–21.
CAS PubMed Article Google Scholar
75.
Sharma A, Schmidt M, Kiesel B, Mahato NK, Cralle L, Singh Y, et al. Bacterial and Archaeal viruses of Himalayan hot springs at Manikaran modulate host genomes. Front Microbiol. 2018;9:3095.
PubMed PubMed Central Article Google Scholar
76.
Anderson RE, Sogin ML, Baross JA. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS ONE. 2014;9:e109696.
PubMed PubMed Central Article CAS Google Scholar
77.
Emerson D, Moyer CL. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol. 2002;68:3085–93.
CAS PubMed PubMed Central Article Google Scholar
78.
Emerson D, Fleming EJ, McBeth JM. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol. 2010;64:561–83.
CAS PubMed Article Google Scholar
79.
Hernsdorf AW, Amano Y, Miyakawa K, Ise K, Suzuki Y, Anantharaman K, et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 2017;11:1915–29.
CAS PubMed PubMed Central Article Google Scholar
80.
Quaiser A, Bodi X, Dufresne A, Naquin D, Francez A-J, Dheilly A, et al. Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics. PLoS ONE. 2014;9:e102561.
PubMed PubMed Central Article CAS Google Scholar
81.
Kato S, Chan C, Itoh T, Ohkuma M. Functional gene analysis of freshwater iron-rich flocs at circumneutral ph and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium. Appl Environ Microbiol. 2013;79:5283–90.
CAS PubMed PubMed Central Article Google Scholar
82.
Hemp J, Gennis RB. Diversity of the heme-copper superfamily in Archaea: Insights from genomics and structural modeling. Results Probl Cell Differ. 2008;45:1–31.
CAS PubMed Article Google Scholar
83.
Ferris FG. Biogeochemical properties of bacteriogenic iron oxides. Geomicrobiol J. 2005;22:79–85.
CAS Article Google Scholar
84.
Sowers TD, Harrington JM, Polizzotto ML, Duckworth OW. Sorption of arsenic to biogenic iron (oxyhydr)oxides produced in circumneutral environments. Geochim Cosmochim Acta. 2017;198:194–207.
CAS Article Google Scholar
85.
Bennett SA, Toner BM, Barco R, Edwards KJ. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria. Geobiology. 2014;12:146–56.
CAS PubMed Article Google Scholar
86.
Rentz JA, Turner IP, Ullman JL. Removal of phosphorus from solution using biogenic iron oxides. Water Res. 2009;43:2029–35.
CAS PubMed Article Google Scholar
87.
Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 2011;5:717–27.
CAS PubMed Article Google Scholar
88.
Bennett SA, Toner BM, Barco R, Edwards KJ. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria. Geobiology. 2014;12:146–56.
CAS PubMed Article Google Scholar
89.
Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea: Viruses play critical roles in the structure and function of aquatic food webs. Bioscience. 1999;49:781–8.
Article Google Scholar
90.
Chen J, Strous M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim Biophys Acta. 2013;1827:136–44.
CAS PubMed Article PubMed Central Google Scholar
91.
Choi PS, Naal Z, Moore C, Casado-Rivera E, Abruña HD, Helmann JD, et al. Assessing the impact of denitrifier-produced nitric oxide on other bacteria. Appl Environ Microbiol. 2006;72:2200–5.
CAS PubMed PubMed Central Article Google Scholar
92.
Klueglein N, Kappler A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 – questioning the existence of enzymatic Fe(II) oxidation. Geobiology. 2013;11:180–90.
CAS PubMed Article PubMed Central Google Scholar
93.
Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S, et al. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol. 1996;166:308–14.
CAS PubMed Article PubMed Central Google Scholar
94.
He S, Tominski C, Kappler A, Behrens S, Roden EE. Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS. Appl Environ Microbiol. 2016;82:2656–68.
CAS PubMed PubMed Central Article Google Scholar
95.
Straub KL, Benz M, Schink B, Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol. 1996;62:1458–60.
CAS PubMed PubMed Central Article Google Scholar
96.
Blöthe M, Roden EE. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl Environ Microbiol. 2009;75:6937–40.
PubMed PubMed Central Article CAS Google Scholar
97.
Emerson D, Scott JJ, Leavitt A, Fleming E, Moyer C. In situ estimates of iron-oxidation and accretion rates for iron-oxidizing bacterial mats at Lō’ihi Seamount. Deep Res Part I Oceanogr Res Pap. 2017;126:31–9.
CAS Article Google Scholar
98.
Jenkins WJ, Hatta M, Fitzsimmons JN, Schlitzer R, Lanning NT, Shiller A, et al. An intermediate-depth source of hydrothermal 3He and dissolved iron in the North Pacific. Earth Planet Sci Lett. 2020;539:116223.
CAS Article Google Scholar More