Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae
1.
Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
CAS PubMed PubMed Central Article Google Scholar
2.
Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, Amsterdam, 2008).
Google Scholar
3.
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
PubMed Article CAS PubMed Central Google Scholar
4.
Lekberg, Y., Hammer, E. C. & Olsson, P. A. Plants as resource islands and storage units—adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74, 336–345 (2010).
CAS PubMed Article PubMed Central Google Scholar
5.
Allen, M. F. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 6, 291–297 (2007).
Article Google Scholar
6.
Newsham, K. K., Fitter, A. H. & Watkinson, A. R. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83, 991–1000 (1995).
Article Google Scholar
7.
Vigo, C., Norman, J. R. & Hooker, J. E. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49, 509–514 (2000).
Article Google Scholar
8.
Aroca, R., Porcel, R. & Ruiz-Lozano, J. M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?. New Phytol. 173(4), 808–816 (2007).
CAS PubMed Article PubMed Central Google Scholar
9.
Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front Plant Sci. 5, ARTN 562. https://doi.org/10.3389/fpls.2014.00562 (2014).
10.
Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25(1), 13–24 (2015).
PubMed Article PubMed Central Google Scholar
11.
Pfeffer, P. E., Douds, D. D., Becard, G. & Shachar-Hill, Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 120(2), 587–598 (1999).
CAS PubMed PubMed Central Article Google Scholar
12.
Bago, B., Pfeffer, P. E. & Shachar-Hill, Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124(3), 949–958 (2000).
CAS PubMed PubMed Central Article Google Scholar
13.
Horton, T. R. Mycorrhizal networks (Springer, Dordrecht, 2015).
Google Scholar
14.
Walder, F. & van der Heijden, M. G. A. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1(11), 7 (2015).
Article CAS Google Scholar
15.
van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706), 69–72 (1998).
ADS Article CAS Google Scholar
16.
Wilson, G. W. T., Hartnett, D. C. & Rice, C. W. Mycorrhizal-mediated phosphorus transfer between the tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct. Ecol. 20, 427–435 (2006).
Article Google Scholar
17.
Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25(8), 468–478 (2010).
PubMed PubMed Central Article Google Scholar
18.
Walder, F. et al. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159, 789–797 (2012).
CAS PubMed PubMed Central Article Google Scholar
19.
Weremijewicz, J., Sternberg, L. & Janos, D. P. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytol. 212(2), 461–471 (2016).
CAS PubMed Article PubMed Central Google Scholar
20.
Řezáčová, V. et al. Little cross-feeding of the mycorrhizal networks shared between C3-Panicum bisulcatum and C4-Panicum maximum under different temperature regimes. Front. Plant Sci. 9, 16. https://doi.org/10.3389/fpls.2018.00449 (2018).
Article Google Scholar
21.
Deslippe, J. R. & Simard, S. W. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra. New Phytol. 192, 689–698 (2011).
CAS PubMed Article PubMed Central Google Scholar
22.
Bever, J. D., Richardson, S. C., Lawrence, B. M., Holmes, J. & Watson, M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 12(1), 13–21 (2009).
PubMed Article PubMed Central Google Scholar
23.
Lendenmann, M. et al. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21(8), 689–702 (2011).
CAS PubMed Article PubMed Central Google Scholar
24.
Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044), 880–882 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
25.
Rillig, M. C. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 7, 740–754 (2004).
Article Google Scholar
26.
Verbruggen, E. & Kiers, E. T. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl. 3(5–6), 547–560 (2010).
PubMed PubMed Central Article Google Scholar
27.
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525(7567), 100–103 (2015).
ADS PubMed Article CAS PubMed Central Google Scholar
28.
Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24(9), 497–504 (2009).
PubMed Article PubMed Central Google Scholar
29.
Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18(5), 1725–1737 (2012).
ADS Article Google Scholar
30.
Blackburn, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12(5), ARTN e1001850. https://doi.org/10.1371/journal.pbio.1001850 (2014).
31.
Mitchell, C. E. et al. Biotic interactions and plant invasions. Ecol. Lett. 9(6), 726–740 (2006).
PubMed Article PubMed Central Google Scholar
32.
Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15(1), 22–40 (2009).
Article Google Scholar
33.
van der Putten, W. H. Impacts of soil microbial communities on exotic plant invasions. Trends Ecol. Evol. 25(9), 512–519 (2010).
PubMed Article Google Scholar
34.
Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17(4), 164–170 (2002).
Article Google Scholar
35.
Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96(3), 762–774 (2015).
PubMed Article Google Scholar
36.
Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a generaltheory of invasibility. J. Ecol. 88, 528–534 (2000).
Article Google Scholar
37.
Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427(6976), 731–733 (2004).
ADS CAS PubMed Article Google Scholar
38.
Rudgers, J. A. & Orr, S. Non-native grass alters growth of native tree species via leaf and soil microbes. J. Ecol 97(2), 247–255 (2009).
Article Google Scholar
39.
Sun, Z. K. & He, W. M. Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE 5(11), 5. https://doi.org/10.1371/journal.pone.0015418 (2010).
CAS Article Google Scholar
40.
Dickie, I. A. et al. The emerging science of linked plant-fungal invasions. New Phytol. 215(4), 1314–1332 (2017).
CAS PubMed Article PubMed Central Google Scholar
41.
Cronk, Q. C. B. & Fuller, J. R. Plant Invaders: The Threat to Natural Ecosystems (Earthscan Publications, London, 2001).
Google Scholar
42.
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—the role of mutualisms. Biol. Rev. 75(1), 65–93 (2000).
CAS PubMed Article PubMed Central Google Scholar
43.
Pringle, A. et al. Mycorrhizal symbioses and plant invasions. Ann Rev. Ecol. Evol. Syst. 40, 699–715 (2009).
Article Google Scholar
44.
Wilson, G. W. T., Hickman, K. R. & Williamson, M. M. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza 22, 327–336 (2012).
PubMed Article PubMed Central Google Scholar
45.
Nunez, M. A. & Dickie, I. A. Invasive belowground mutualists of woody plants. Biol. Invasions 16, 645–661 (2014).
Article Google Scholar
46.
Bunn, R. A., Ramsey, P. W. & Lekberg, Y. Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? A meta-analysis. J. Ecol. 103, 1547–1556 (2015).
CAS Article Google Scholar
47.
Gucwa-Przepiora, E., Chmura, D. & Sokolowska, K. AM and DSE colonization of invasive plants in urban habitat: a study of Upper Silesia (southern Poland). J. Plant Res. 129, 603–614 (2016).
PubMed PubMed Central Article Google Scholar
48.
Waller, L. P., Callaway, R. M., Klironomos, J. N., Ortega, Y. K. & Maron, J. L. Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant. J. Ecol. 104, 1599–1607 (2016).
Article Google Scholar
49.
Menzel, A. et al. Mycorrhizal status helps explain invasion success of alien plant species. Ecology 98, 92–102 (2017).
PubMed Article PubMed Central Google Scholar
50.
Broadbent, A. A. D., Stevens, C. J., Ostle, N. J. & Orwin, K. H. Biogeographic differences in soil biota promote invasive grass response to nutrient addition relative to co-occurring species despite lack of belowground enemy release. Oecologia 186, 611–620 (2018).
ADS PubMed Article PubMed Central Google Scholar
51.
Vogelsang, K. M. & Bever, J. D. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90, 399–407 (2009).
PubMed Article PubMed Central Google Scholar
52.
Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).
PubMed Article PubMed Central Google Scholar
53.
Pakpour, S. & Klironomos, J. The invasive plant, Brassica nigra, degrades local mycorrhizas across a wide geographical landscape. R. Soc. Open Sci. 2, 4 (2015).
Article Google Scholar
54.
Shah, M. A., Reshi, Z. A. & Khasa, D. P. Arbuscular mycorrhizas: Drivers or passengers of alien plant invasion. Bot. Rev. 75, 397–417 (2009).
Article Google Scholar
55.
De Souza, T. A. F., Rodriguez-Echeverria, S., de Andrade, L. A. & Freitas, H. Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil?. Acta Bot. Bras. 30, 93–101 (2016).
Article Google Scholar
56.
Awaydul, A. et al. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza 29, 29–38 (2019).
CAS PubMed Article PubMed Central Google Scholar
57.
Štajerová, K., Šmilauerová, M. & Šmilauer, P. Arbuscular mycorrhizal symbiosis of herbaceous invasive neophytes in the Czech Republic. Preslia 81, 341–355 (2009).
Google Scholar
58.
Hempel, S. et al. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology 94, 1389–1399 (2013).
PubMed Article PubMed Central Google Scholar
59.
Callaway, R. M., Newingham, B., Zabinski, C. A. & Mahall, B. E. Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours. Ecol. Lett. 4, 429–433 (2001).
Article Google Scholar
60.
Workman, R. E. & Cruzan, M. B. Common mycelial networks impact competition in an invasive grass. Am. J. Bot. 103, 1041–1049 (2016).
CAS PubMed Article PubMed Central Google Scholar
61.
Zhang, Q. et al. Potential allelopathic effects of an invasive species Solidago canadensis on the mycorrhizae of native plant species. Allelopathy J. 20, 71–77 (2007).
ADS CAS Google Scholar
62.
Callaway, R. M. et al. Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89, 1043–1055 (2008).
PubMed Article PubMed Central Google Scholar
63.
Sarma, K. K. V. Allelopathic potential of Echinops echinatus and Solanum surratense on seed germination of Argemone mexicana. Trop. Ecol. 15, 156–157 (1974).
Google Scholar
64.
Smith, M. D., Hartnett, D. C. & Wilson, G. W. T. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia 121, 574–582 (1999).
ADS CAS PubMed Article PubMed Central Google Scholar
65.
Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
66.
Liao, H. X. et al. Soil microbes regulate forest succession in a subtropical ecosystem in China: evidence from a mesocosm experiment. Plant Soil 430, 277–289 (2018).
CAS Article Google Scholar
67.
Řezáčová, V. et al. Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4Panicum grasses. Plant Soil 425, 441–456 (2018).
Article CAS Google Scholar
68.
Newman, E. I. A method of estimating total length of root in a sample. J. Appl. Ecol. 3, 139–145 (1966).
Article Google Scholar
69.
Bukovská, P., Gryndler, M., Gryndlerová, H., Püschel, D. & Jansa, J. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front. Microbiol. 7, 711 (2016).
PubMed PubMed Central Article Google Scholar
70.
Hewitt, E. J. Sand and water culture methods used in the study of plant nutrition. CAB Tech. Commun. 22, 431–432 (1966).
Google Scholar
71.
Řezáčová, V. et al. Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses—a case of dysfunctional symbiosis. Pedobiologia 62, 48–55 (2017).
Article Google Scholar
72.
Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).
ADS CAS Article Google Scholar
73.
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
Article Google Scholar
74.
Koske, R. E. & Gemma, J. N. A modified procedure for staining roots to detect VA-mycorrhizas. Mycol. Res. 92, 486–505 (1989).
Article Google Scholar
75.
Gryndler, M. et al. Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza 23, 341–348 (2013).
PubMed Article PubMed Central Google Scholar
76.
Thonar, C., Erb, A. & Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities-marker design, verification, calibration and field validation. Mol. Ecol. Res. 12, 219–232 (2012).
CAS Article Google Scholar
77.
von Felten, A., Défago, G. & Maurhofer, M. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. J. Microbiol. Methods 81, 108–115 (2010).
Article CAS Google Scholar
78.
Janoušková, M., Püschel, D., Hujslová, M., Slavíková, R. & Jansa, J. Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?. Mycorrhiza 25, 205–214 (2015).
PubMed Article CAS Google Scholar More