Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change
1.
Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2, 111–115 (2012).
ADS Article Google Scholar
2.
Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang. 7, 577–580 (2017).
ADS Article Google Scholar
3.
Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M. & Pauli, H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. N. Phytol. 220, 447–459 (2018).
Article Google Scholar
5.
Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
6.
Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).
Article Google Scholar
7.
Rumpf, S. B. et al. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10, 4293 (2019).
8.
Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim. Change 123, 201–214 (2014).
ADS Article Google Scholar
9.
Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Glob. Chang. Biol. 13, 147–156 (2007).
ADS Article Google Scholar
10.
Pounds, J. A., Fogden, M. P. L., Savage, J. M. & Gorman, G. C. Tests of null models for amphibian declines on a tropical mountain. Conserv. Biol. 11, 1307–1322 (1997).
Article Google Scholar
11.
Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar
12.
Lehikoinen, A. et al. Declining population trends of European mountain birds. Glob. Chang. Biol. 25, 577–588 (2019).
ADS PubMed Article PubMed Central Google Scholar
13.
Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).
CAS PubMed Article PubMed Central Google Scholar
14.
Lenoir, J. & Svenning, J. C. In Encyclopedia of Biodiversity 599–611 (Academic, 2013).
15.
Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).
ADS PubMed Article CAS PubMed Central Google Scholar
16.
Carboni, M. et al. Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Glob. Chang. Biol. 24, e289–e302 (2018).
PubMed Article PubMed Central Google Scholar
17.
Tattoni, C., Ianni, E., Geneletti, D., Zatelli, P. & Ciolli, M. Landscape changes, traditional ecological knowledge and future scenarios in the Alps: a holistic ecological approach. Sci. Total Environ. 579, 27–36 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
18.
Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Chang. 4, 127–131 (2014).
ADS Article Google Scholar
19.
Opdam, P. & Wascher, D. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 117, 285–297 (2004).
Article Google Scholar
20.
Troia, M. J., Kaz, A. L., Niemeyer, J. C. & Giam, X. Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nat. Ecol. Evol. 3, 1321–1330 (2019).
PubMed Article PubMed Central Google Scholar
21.
Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
22.
Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).
Article Google Scholar
23.
Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
Article Google Scholar
24.
Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).
25.
Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
26.
Dullinger, I. et al. A socio-ecological model for predicting impacts of land-use and climate change on regional plant diversity in the Austrian Alps. Glob. Chang. Biol. 26, 2336–2352 (2020).
ADS PubMed Central Article Google Scholar
27.
Kull, T. & Hutchings, M. J. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 129, 31–39 (2006).
Article Google Scholar
28.
Wraith, J. & Pickering, C. A continental scale analysis of threats to orchids. Biol. Conserv. 234, 7–17 (2019).
Article Google Scholar
29.
Wraith, J., Norman, P. & Pickering, C. Orchid conservation and research: an analysis of gaps and priorities for globally red listed species. Ambio 49, 1601–1611 (2020).
PubMed Article PubMed Central Google Scholar
30.
Phillips, R. D., Reiter, N. & Peakall, R. Orchid conservation: from theory to practice. Ann. Bot. 126, 345–362 (2020).
PubMed Article PubMed Central Google Scholar
31.
van der Meer, S., Jacquemyn, H., Carey, P. D. & Jongejans, E. Recent range expansion of a terrestrial orchid corresponds with climate-driven variation in its population dynamics. Oecologia 181, 435–448 (2016).
ADS PubMed Article PubMed Central Google Scholar
32.
Vogt-Schilb, H. et al. Responses of orchids to habitat change in Corsica over 27 years. Ann. Bot. 118, 115–123 (2016).
PubMed PubMed Central Article Google Scholar
33.
Vogt-Schilb, H., Munoz, F., Richard, F. & Schatz, B. Recent declines and range changes of orchids in Western Europe (France, Belgium and Luxembourg). Biol. Conserv. 190, 133–141 (2015).
Article Google Scholar
34.
Perazza, G., & & Lorenz, R. Le Orchidee dell’Italia Nordorientale. Atlante Corologico e Guida al Riconoscimento (Osiride, 2013).
35.
Sletvold, N., Dahlgren, J. P., Øien, D.-I., Moen, A. & Ehrlén, J. Climate warming alters effects of management on population viability of threatened species: results from a 30-year experimental study on a rare orchid. Glob. Chang. Biol. 19, 2729–2738 (2013).
ADS PubMed Article PubMed Central Google Scholar
36.
Auffret, A. G., Kimberley, A., Plue, J. & Waldén, E. Super-regional land-use change and effects on the grassland specialist flora. Nat. Commun. 9, 3464 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
37.
Vilà‐Cabrera, A., Premoli, A. C. & Jump, A. S. Refining predictions of population decline at species’ rear edges. Glob. Chang. Biol. 25, 1549–1560 (2019).
ADS PubMed Article PubMed Central Google Scholar
38.
Matthies, D., Bräuer, I., Maibom, W. & Tscharntke, T. Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105, 481–488 (2004).
Article Google Scholar
39.
Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
40.
Wilcox, R. R. Introduction to Robust Estimation and Hypothesis Testing 4th edn (Academic, 2016).
41.
Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
42.
De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).
ADS PubMed Article CAS PubMed Central Google Scholar
43.
De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).
PubMed Article PubMed Central Google Scholar
44.
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
ADS CAS PubMed Article PubMed Central Google Scholar
45.
Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
46.
Lenoir, J. et al. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).
Google Scholar
47.
Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).
CAS PubMed Article PubMed Central Google Scholar
48.
Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).
Article Google Scholar
49.
Gibson-Reinemer, D. K. & Rahel, F. J. Inconsistent range shifts within species highlight idiosyncratic responses to climate warming. PLoS ONE 10, e0132103 (2015).
PubMed PubMed Central Article CAS Google Scholar
50.
Vittoz, P., Randin, C., Dutoit, A., Bonnet, F. & Hegg, O. Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob. Chang. Biol. 15, 209–220 (2009).
ADS Article Google Scholar
51.
Vogt-Schilb, H., Geniez, P., Pradel, R., Richard, F. & Schatz, B. Inter-annual variability in flowering of orchids: lessons learned from 8 years of monitoring in a Mediterranean region of France. Eur. J. Environ. Sci. 3, 129–137 (2013).
Google Scholar
52.
Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
53.
Tye, M., Dahlgren, J. P., Øien, D.-I., Moen, A. & Sletvold, N. Demographic responses to climate variation depend on spatial- and life history-differentiation at multiple scales. Biol. Conserv. 228, 62–69 (2018).
Article Google Scholar
54.
Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina: Atlas des 4500 Plantes Vasculaires des Alpes (Aeschimann/Lauber, Belin, 2004).
55.
Di Piazza, A., & Eccel, E. Analisi di Serie di Temperatura e Precipitazione in Trentino nel Periodo 1958–2010 (Provincia Autonoma di Trento, 2012).
56.
Provincia Autonoma di Trento. Urbanistica – Banche Dati – Repertorio Cartografico (Provincia Autonoma di Trento, 2009).
57.
Monteiro, A. T., Fava, F., Hiltbrunner, E., Della Marianna, G. & Bocchi, S. Assessment of land cover changes and spatial drivers behind loss of permanent meadows in the lowlands of Italian Alps. Landsc. Urban Plan. 100, 287–294 (2011).
Article Google Scholar
58.
Eccel, E., Zollo, A. L., Mercogliano, P. & Zorer, R. Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package. Comput. Electron. Agric. 127, 92–100 (2016).
Article Google Scholar
59.
Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83 (2017).
Article Google Scholar
60.
Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).
61.
Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).
Article Google Scholar
62.
Kéry, M., Gardner, B. & Monnerat, C. Predicting species distributions from checklist data using site-occupancy models. J. Biogeogr. 37, 1851–1862 (2010).
63.
Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).
PubMed PubMed Central Article Google Scholar
64.
Hothorn, T., Bretz, F., Westfall, P. & Heiberger, R. M. multcomp: simultaneous inference for general linear hypotheses. R package version 0.992-4. http://132.180.15.2/math/statlib/R/CRAN/doc/packages/multcomp.pdf (2007).
65.
Mair, P. & Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 52, 464–488 (2020).
PubMed Article PubMed Central Google Scholar
66.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
MathSciNet MATH Google Scholar
67.
Aikio, S., Duncan, R. P. & Hulme, P. E. Herbarium records identify the role of long-distance spread in the spatial distribution of alien plants in New Zealand. J. Biogeogr. 37, 1740–1751 (2010).
Article Google Scholar
68.
Ripley, B., Venables, B., Bates, D., Hornik, K. & Firth, D. Package ‘MASS’. http://www.stats.ox.ac.uk/pub/MASS4/ (2010).
69.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
70.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017). More