More stories

  • in

    Influence of individual biological traits on GPS fix-loss errors in wild bird tracking

    1.
    Moen, R., Pastor, J., Cohen, Y. & Schwartz, C. C. Effects of moose movement and habitat use on GPS collar performance. J. Wildl. Manag. 60, 659–668 (1996).
    Article  Google Scholar 
    2.
    Cain, J. W. III., Krausman, P. R., Jansen, B. D. & Morgart, J. R. Influence of topography and GPS fix interval on GPS collar performance. Wildl. Soc. Bull. 33, 926–934 (2005).
    Article  Google Scholar 

    3.
    Graves, T. A. & Waller, J. S. Understanding the causes of missed global positioning system telemetry fixes. J. Wildl. Manag. 70, 844–851 (2006).
    Article  Google Scholar 

    4.
    Moen, R., John, P. & Cohen, Y. Effects of animal activity on GPS telemetry location attempts. Alces 37, 207–216 (2001).
    Google Scholar 

    5.
    D’Eon, R. G. Effects of a stationary GPS fix-rate bias on habitat-selection analyses. J. Wildl. Manag. 67, 858–863 (2003).
    Article  Google Scholar 

    6.
    Dussault, C., Courtois, R., Ouellet, J. P. & Huot, J. Evaluation of GPS telemetry collar performance for habitat studies in the boreal forest. Wildl. Soc. Bull. 27, 965–972 (1999).
    Google Scholar 

    7.
    Nielson, R. M., Manly, B. F. J., Mcdonald, L. L., Sawyer, H. & Mcdonald, T. L. Estimating habitat selection when GPS fix success is less than 100 %. Ecology 90, 2956–2962 (2009).
    Article  PubMed  Google Scholar 

    8.
    Rempel, R. S., Rodgers, A. R. & Abraham, K. F. Performance of a GPS animal location system under boreal forest canopy. J. Wildl. Manag. 59, 543–551 (1995).
    Article  Google Scholar 

    9.
    Bowman, J. L., Kochanny, C. O., Demarais, S. & Leopold, B. D. Evaluation of a GPS collar for white-tailed deer. Wildl. Soc. Bull. 28, 141–145 (2000).
    Google Scholar 

    10.
    Jung, T. S. & Kuba, K. Performance of GPS collars on free-ranging bison (Bison bison) in north-western Canada. Wildl. Res. 42, 315–323 (2015).
    Article  Google Scholar 

    11.
    Recio, M. R., Mathieu, R., Denys, P., Sirguey, P. & Seddon, P. J. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach. PLoS One 6, e28225 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Mattisson, J., Andrén, H., Persson, J. & Segerström, P. Effects of species behavior on global positioning system collar fix rates. J. Wildl. Manag. 74, 557–563 (2010).
    Article  Google Scholar 

    13.
    Kaczensky, P., Ito, T. Y. & Walzer, C. Satellite telemetry of large mammals in Mongolia: What expectations should we have for collar function?. Wildl. Biol. Pract. 6, 108–126 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Harris, R. B. et al. Tracking Wildlife by Satellite: Current systems and Performance. Fish and Wildlife Technical Report https://pubs.er.usgs.gov/publication/70185512 (1990).

    15.
    Schwartz, C. C. & Arthur, S. M. Radiotracking large wilderness mammals: Integration of GPS and argostechnology. Ursus 11, 261–274 (1999).
    Google Scholar 

    16.
    Tomkiewicz, S. M., Fuller, M. R., Kie, J. G. & Bates, K. K. Global positioning system and associated technologies in animal behaviour and ecological research. Philos. Trans. R. Soc. B Biol. Sci. 365, 2163–2176 (2010).
    Article  Google Scholar 

    17.
    Rodgers, A. R. Recent telemetry technology. In Radio Tracking and Animal Populations (eds Marzluff, J. M. & Millspaugh, J. J.) 79–121 (Elsevier, New York, 2001). https://doi.org/10.1016/B978-012497781-5/50005-0.
    Google Scholar 

    18.
    Thomas, B., Holland, J. D. & Minot, E. O. Wildlife tracking technology options and cost considerations. Wildl. Res. 38, 653–663 (2011).
    Article  Google Scholar 

    19.
    Margalida, A., Pérez-García, J. M., Afonso, I. & Moreno-Opo, R. Spatial and temporal movements in Pyrenean bearded vultures (Gypaetus barbatus): Integrating movement ecology into conservation practice. Sci. Rep. 6, 35746 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    García-Jiménez, R., Pérez-García, J. M. & Margalida, A. Drivers of daily movement patterns affecting an endangered vulture flight activity. BMC Ecol. 18, 39 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    BirdLife International. (2017). Gypaetus barbatus (Amended Version of 2017 Assessment). The IUCN Red List of Threatened Species 2017: e.T22695174A118590506. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22695174A118590506.en. Accessed: 12th Mar 2020.

    22.
    Houston D. C. Reintroduction programmes for vulture species. In Proceedings of the International Conference on Conservation and Management of Vulture populations 1, (eds Houston D. C. & Piper, S. E., 2006). Natural History Museum, University of Crete, Thessaloniki.

    23.
    Britten, M. W., Kennedy, P. L. & Ambrose, S. Performance and accuracy evaluation of small satellite transmitters. J. Wildl. Manag. 63, 1349–1358 (1999).
    Article  Google Scholar 

    24.
    Soutullo, A., Cadahía, L., Urios, V., Ferrer, M. & Negro, J. J. Accuracy of lightweight satellite telemetry: A case study in the Iberian Peninsula. J. Wildl. Manag. 71, 1010–1015 (2007).
    Article  Google Scholar 

    25.
    Silva, R., Afán, I., Gil, J. A. & Bustamante, J. Seasonal and circadian biases in bird tracking with solar GPS-tags. PLoS One 12, e0185344 (2017).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Byrne, M. E., Holland, A. E., Bryan, A. L. & Beasley, J. C. Environmental conditions and animal behavior influence performance of solar-powered GPS-GSM transmitters. Condor 119, 389–404 (2017).
    Article  Google Scholar 

    27.
    Hofman, M. P. G. et al. Right on track? Performance of satellite telemetry in terrestrial wildlife research. PLoS One 14, 1–26 (2019).
    Google Scholar 

    28.
    Aubrecht, C. et al. Vertical roughness mapping – ALS based classification of the vertical vegetation structure in forested areas. In Symposium A Quarterly Journal In Modern Foreign Literatures (eds. Wagner, W. & Székely, B.) XXXVIII, 35–40 (2010).

    29.
    Frair, J. L. et al. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos. Trans. R. Soc. B Biol. Sci. 365, 2187–2200 (2010).
    Article  Google Scholar 

    30.
    Péron, G. et al. The challenges of estimating the distribution of flight heights from telemetry or altimetry data. Anim. Biotelemetry 8, 1–13 (2020).
    Article  Google Scholar 

    31.
    Cargnelutti, B. et al. Testing global positioning system performance for wildlife monitoring using mobile collars and known reference points. J. Wildl. Manag. 71, 1380–1387 (2007).
    Article  Google Scholar 

    32.
    Edenius, L. Field test of a GPS location system for moose Alces alces under Scandinavian boreal conditions. Wildl. Biol. 3, 39–43 (1997).
    Article  Google Scholar 

    33.
    Jurdak, R., Corke, P., Dharman, D. & Salagnac, G. Adaptive GPS duty cycling and radio ranging for energy-efficient localization. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems-SenSys ’10 57–70 (ACM Press, 2010). https://doi.org/10.1145/1869983.1869990.

    34.
    Gau, R. J. et al. Uncontrolled field performance of Televilt GPS-SimplexTM collars on grizzly bears in western and northern Canada. Wildl. Soc. Bull. 32, 693–701 (2004).
    Article  Google Scholar 

    35.
    Girard, I. et al. Feasibility of GPS use to locate wild ungulates in high mountain environment. Pirineos 157, 7–14 (2002).
    Article  Google Scholar 

    36.
    Krüger, S., Reid, T. & Amar, A. Differential range use between age classes of Southern African bearded vultures Gypaetus barbatus. PLoS One 9, e114920 (2014).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Augustine, B. C., Crowley, P. H. & Cox, J. J. A mechanistic model of GPS collar location data: Implications for analysis and bias mitigation. Ecol. Modell. 222, 3616–3625 (2011).
    Article  Google Scholar 

    38.
    Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).
    Article  Google Scholar 

    39.
    Cuadrat, J. M. et al. El clima de los Pirineos. Base de datos y primeros resultados. Tiempo Clima 45, 38–41 (2010).
    Google Scholar 

    40.
    Margalida, A., Bertran, J. & Heredia, R. Diet and food preferences of the endangered Bearded Vulture Gypaetus barbatus: A basis for their conservation. Ibis (Lond. 1859) 151, 235–243 (2009).
    Google Scholar 

    41.
    del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. Handbook of the Birds of the World,2 (Lynx Edicions, Barcelona, 1994).
    Google Scholar 

    42.
    Antor, R. J. et al. First breeding age in captive and wild bearded vultures Gypaetus barbatus. Acta Ornithol. 42, 114–118 (2007).
    Article  Google Scholar 

    43.
    Gil, J. A. et al. Home ranges and movements of non-breeding bearded vultures tracked by satellite telemetry in the Pyrenees. Ardeola 61, 379–387 (2014).
    Article  Google Scholar 

    44.
    Sunyer, C. El periodo de emancipación en el Quebrantahuesos (Gypaetus barbatus): Consideraciones sobre su conservación. In El quebrantahuesos (Gypaetus barbatus) en los Pirineos. Características Ecológicas y Biología (eds Heredia, R. & Heredia, B.) 47–65 (ICONA, Turin, 1991).
    Google Scholar 

    45.
    Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult Bearded Vultures: Conservation implications. PLoS One 8, e65857 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Ellergren, H. First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc. R Soc. Lond. Ser. B Biol. Sci. 263, 1635–1641 (1996).
    ADS  Article  Google Scholar 

    47.
    Cruz, S., Proaño, C. B., Anderson, D., Huyvaert, K. & Wikelski, M. Data from: The Environmental-Data Automated Track Annotation (Env-DATA) System: Linking animal tracks with environmental data. (2013). https://doi.org/10.5441/001/1.3hp3s250.

    48.
    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 3 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Cuscó, F., Cardador, L., Bota, G., Morales, M. B. & Mañosa, S. Inter-individual consistency in habitat selection patterns and spatial range constraints of female little bustards during the non-breeding season. BMC Ecol. 18, 1–12 (2018).
    Article  Google Scholar 

    50.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Article  Google Scholar 

    51.
    Anadón, J. D. et al. Factors determining the distribution of the spur-thighed tortoise Testudo graeca in south-east Spain: A hierarchical approach. Ecography (Cop.) 29, 339–346 (2006).
    Article  Google Scholar 

    52.
    R Foundation for Statistical Computing. R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2019).

    53.
    Bates, D., Maechler, M. & Dai, B. lme4: Linear mixed-effects models using S4 classes. 2009. R package version 0.999375-31. https://CRAN.R-project.org/package=lme4 (2009).

    54.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach Vol 2 (Springer, Berlin, 2002).
    Google Scholar 

    55.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, Berlin, 2009).
    Google Scholar 

    56.
    Barton, K. Package ‘MuMIn’. R package version 1.43. 15. https://CRAN.R-project.org/package=MuMIn (2019).

    57.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, Thousand Oaks, 2018).
    Google Scholar 

    58.
    Mitchell, L. J., White, P. C. & Arnold, K. E. The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates. PLoS One 14, e0219357 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Seasonal patterns in stable isotope and fatty acid profiles of southern stingrays (Hypanus americana) at Stingray City Sandbar, Grand Cayman

    1.
    O’Malley, M. P., Lee-Brooks, K. & Medd, H. B. The global economic impact of manta ray watching tourism. PLoS ONE 8(5), e65051. https://doi.org/10.1371/journal.pone.0065051 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, e1002074. https://doi.org/10.1371/journal.pbio.1002074 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Zimmerhackel, J. S. et al. How shark conservation in the Maldives affects demand for dive tourism. Tourism Manage. 69, 263–271 (2018).
    Article  Google Scholar 

    4.
    Burgin, S. & Hardiman, N. Effects of non-consumptive wildlife-orientated tourism on marine species and prospects for their sustainable management. J. Environ. Manage. 151, 210–220 (2015).
    Article  PubMed  Google Scholar 

    5.
    Bruce, B. D. & Bradford, R. W. The effects of shark cage-diving operations on the behaviour and movements of white sharks, Carcharodon carcharias, at the Neptune Islands South Australia. Mar. Biol. 160, 889–907 (2013).
    Article  Google Scholar 

    6.
    Corcoran, M. J. et al. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the Southern stingrays Dasyatis americana. PLoS ONE 8(3), e59235. https://doi.org/10.1371/journal.pone.0059235 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Arlettaz, R., Christe, P. & Schaub, M. Food availability as a major driver in the evolution of life-history strategies of sibling species. Ecol. Evol. 7, 4163–4172. https://doi.org/10.1002/ece3.2909 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Huveneers, C. et al. The effects of cage-diving activities on the fine-scale swimming behavior and space use of white sharks. Mar. Biol. 160, 2863–2875 (2013).
    Article  Google Scholar 

    9.
    Semeniuk, C. A. D., Bourgeon, S., Smith, S. L. & Rothley, K. D. Hematological differences between stingrays at tourist and non-visited sites suggest physiological costs of wildlife tourism. Biol. Cons. 142, 1818–1829. https://doi.org/10.1016/j.biocon.2009.03.022 (2009).
    Article  Google Scholar 

    10.
    Maljkovic, A. & Côté, I. M. Effects of tourism-related provisioning on the trophic signatures and movement patterns of an apex predator, the Caribbean reef shark. Biol. Conserv. 144, 859–865. https://doi.org/10.1016/j.biocon.2010.11.019 (2011).
    Article  Google Scholar 

    11.
    Brena, P. F., Mourier, J., Planes, S. & Clua, E. Shark and ray provisioning: functional insights into behavioral, ecological and physiological responses across multiple scales. Mar. Ecol. Prog. Ser. 538, 273–283 (2015).
    ADS  CAS  Article  Google Scholar 

    12.
    Kelly, J. F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool. 78, 1–27. https://doi.org/10.1139/z99-165 (2000).
    Article  Google Scholar 

    13.
    Jeanniard-du-Dot, T., Thomas, A. C., Cherel, Y., Trites, A. W. & Guinet, C. Combining hard-part and DNA analyses of scats with biologging and stable isotopes can reveal different diet compositions and feeding strategies within a fur seal population. Mar. Ecol. Prog. Ser. 584, 1–16 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    Wetherbee, B.M., Cortés, E. Food consumption and feeding habits In Sharks and Their Relatives I (eds Musick, J.A., Heithaus, M., & Carrier, J.C.) 225–246 (CRC Press, 2004).

    15.
    Dehn, L.-A. et al. Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biol. 30(2), 167–181 (2006).
    Article  Google Scholar 

    16.
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).
    ADS  CAS  Article  Google Scholar 

    17.
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45, 341–351 (1981).
    ADS  CAS  Article  Google Scholar 

    18.
    Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).
    Article  Google Scholar 

    19.
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).
    CAS  Google Scholar 

    20.
    Polito, M. J. et al. Integrating stomach content and stable isotope analyses to quantify the diets of Pygoscelid penguins. PLoS ONE 6, e26642. https://doi.org/10.1371/journal.pone.0026642 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Couturier, L. I. E. et al. Stable isotope and signature fatty acid analyses suggest reef manta rays feed on demersal zooplankton. PLoS ONE 8(10), e77152. https://doi.org/10.1371/journal.pone.0077152 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Käkelä, A. et al. Fatty acid signatures and stable isotopes as dietary indicators in North Sea seabirds. Mar. Ecol. Prog. Ser. 342, 291–301 (2007).
    ADS  Article  Google Scholar 

    23.
    Carlisle, A. B. et al. Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS ONE 7, e30492. https://doi.org/10.1371/journal.pone.0030492 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Watt, C. A. & Ferguson, S. H. Fatty acid and stable isotopes (δ13C and δ15N) reveal temporal changes in narwhal (Monodon monoceros) diet linked to migration patterns. Mar. Mammal Sci. 31, 21–44 (2015).
    CAS  Article  Google Scholar 

    25.
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).
    ADS  CAS  Article  Google Scholar 

    26.
    Vander Zanden, M.J. & Rasmussen, J.B. Variation in delta N-15 and delta C-13 trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061-2066 (2001).

    27.
    Fry, B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33, 1182–1190 (1988).
    ADS  CAS  Article  Google Scholar 

    28.
    Mackenzie, K. M. et al. Locations of marine animals revealed by carbon isotopes. Sci. Rep. 1, 1–6. https://doi.org/10.1038/srep00021 (2011).
    CAS  Article  Google Scholar 

    29.
    DeNiro, M.J. & Epstein, S. You are what you eat (plus a few ‰): the carbon isotope cycle in food chains. Geol. Soc. Amer., Abstr. Programs 8, 834–835 (1976).

    30.
    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mammal Sci. 22(4), 759–801 (2006).
    Article  Google Scholar 

    31.
    Ackman, R.G. Fish lipids in Advances in Fish Science And Technology (ed. Connell, J.J.) 86–103 (Fishing News Books Ltd., 1980).

    32.
    Tocher, D. R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11, 107–184. https://doi.org/10.1080/713610925 (2003).
    CAS  Article  Google Scholar 

    33.
    McMeans, B. C., Arts, M. T. & Fisk, A. T. Similarity between predator and prey fatty acid profiles is tissue dependent in Greenland sharks (Somniosus microcephalus): implications for diet reconstruction. J. Exp. Mar. Biol. Ecol. 429, 55–63. https://doi.org/10.1016/j.jembe.2012.06.017 (2012).
    CAS  Article  Google Scholar 

    34.
    Bigelow, H., & Schroeder, W. Fishes of the Western North Atlantic, Part 2. Sawfishes, Guitarfishes, Skates, Rays and Chimaeroids. 1–588 (Yale University Press, 1953).

    35.
    Aguiar, A., Valentin, J. & Rosa, R. S. Habitat use by Dasyatis americana in a south-western Atlantic oceanic island. J. Mar. Biol. Assoc. 89, 1147–1152 (2009).
    Article  Google Scholar 

    36.
    Snelson, F. F. Jr. & Williams, S. E. Notes on the occurrence, distribution, and biology of elasmobranch fishes in the Indian River Lagoon system Florida. Estuaries 4, 110–120 (1981).
    Article  Google Scholar 

    37.
    Gilliam, D. S. & Sullivan, K. M. Diet and feeding habits of the Southern stingray Dasyatis americana in the Central Bahamas. Bull. Mar. Sci. 52(3), 1007–1013 (1993).
    Google Scholar 

    38.
    Bowman, R., Stillwell, C., Michaels, W. & Grosslein, M. Food of Northwest Atlantic fishes and two common species of squid. NOAA Technical Memorandum NMFS-NE 155, 1–137 Reprint at https://pdfs.semanticscholar.org/c013/400022949952cc0f261fa71c76195c173e04.pdf (2000).

    39.
    Vaudo, J. J. et al. Characterization and monitoring of one of the world’s most valuable ecotourism animals, the southern stingray at Stingray City Grand Cayman. Mar. Freshwater Res. 69, 144–154 (2018).
    Article  Google Scholar 

    40.
    Nelson, M. Swim with the rays: a guide to Stingray City, Grand Cayman 37 (Blueline Press, Colorado, 1995).
    Google Scholar 

    41.
    Shackley, M. ‘Stingray city’-managing the impact of underwater tourism in the Cayman Islands. J. Sustain. Tour. 6, 328–338 (1998).
    Article  Google Scholar 

    42.
    Semeniuk, C. A. D., Speers-Roesch, B. & Rothley, K. D. Using fatty-acid profile analysis as an ecologic indicator in the management of tourist impacts on marine wildlife: a case of stingray-feeding in the Caribbean. Environ. Manag. 40, 665–677 (2007).
    ADS  Article  Google Scholar 

    43.
    Semeniuk, C. A. D. & Rothley, K. D. Costs of group-living for a normally solitary forager: effects of provisioning tourism on southern stingrays Dasyatis americana. Mar. Ecol. Prog. Ser. 357, 271–282 (2008).
    ADS  Article  Google Scholar 

    44.
    Abdi, H. The bonferonni and Šidák corrections for multiple comparisons in Encyclopedia of Measurements and Statistics (ed Salkind, N.L.) 1–9 (Sage Publishing, 2007).

    45.
    Dale, J. J., Wallsgrove, N. J., Popp, B. N. & Holland, K. N. Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes. Mar. Ecol. Prog. Ser. 433, 221–236 (2011).
    ADS  Article  Google Scholar 

    46.
    Tilley, A., López-Angarita, J. & Turner, J. R. Diet reconstruction and resource partitioning of a Caribbean marine mesopredator using stable isotope Bayesian modeling. PLoS ONE 8(11), e79560. https://doi.org/10.1371/journal.pone.0079560 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Hobson, K. A. & Welch, H. E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84, 9–18 (1992).
    ADS  CAS  Article  Google Scholar 

    48.
    Galván, D. E., Jañez, J. & Irigoyen, A. J. Estimating tissue-specific discrimination factors and turnover rates of stable isotopes of nitrogen and carbon in the smallnose fanskate Sympterygia bonapartii (Rajidae). J. Fish. Biol. 89, 1258–1270. https://doi.org/10.1111/jfb.13024 (2016).
    CAS  Article  PubMed  Google Scholar 

    49.
    Ohkouchi, N. et al. Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Org. Geochem. 113, 150–174. https://doi.org/10.1016/j.orggeochem.2017.07.009 (2017).
    CAS  Article  Google Scholar 

    50.
    Smith, K. & Herrnkind, W. Predation on early juvenile spiny lobsters Panulirus argus (Latreille): influence of size and shelter. J. Exp. Mar. Biol. Ecol. 157, 3–18 (1992).
    Article  Google Scholar 

    51.
    Randall, J. Food Habits of Reef Fishes of the West Indies. University of Hawaii (1967).

    52.
    Newsome, D., Lewis, A. & Moncrieff, D. Impacts and risks associated with developing, but unsupervised stingray tourism at Hameline Bay Western Australia. Int. J. Tour. Res. 6, 305–323. https://doi.org/10.1002/jtr.491 (2004).
    Article  Google Scholar 

    53.
    Hobson, K. A., Alisauskas, R. T. & Clark, R. G. Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. Condor 95, 388–394 (1993).
    Article  Google Scholar 

    54.
    Oelbermann, K. & Sheu, S. Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia 130, 337–344 (2002).
    ADS  Article  PubMed  Google Scholar 

    55.
    Hertz, E., Trudel, M., Cox, M. K. & Mazumder, A. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. Ecol. Evol. 5(21), 4829–4839. https://doi.org/10.1002/ece3.1738 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Doi, H. F., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: an insight from meta-analysis of fasting experiments. R. Soc. open sci. 4, 170633. https://doi.org/10.1098/rsos.170633 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Doucett, R. R., Booth, R. K., Power, G. & McKinley, R. S. Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable-isotope analysis. Can. J. Fish. Aquat. Sci. 56, 2172–2180 (1999).
    Article  Google Scholar 

    58.
    Cherel, Y., Hobson, K. A., Bailleul, F. & Groscolas, R. Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86, 2881–2888 (2005).
    Article  Google Scholar 

    59.
    Kempster, B. et al. Do stable isotopes reflect nutritional stress? Results from a laboratory experiment on song sparrows. Oecologia 151, 365–371 (2007).
    ADS  Article  PubMed  Google Scholar 

    60.
    Logan, J. M. & Lutcavage, M. E. Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644, 231–244 (2010).
    CAS  Article  Google Scholar 

    61.
    Wyatt, A. S. J. et al. Enhancing insights into foraging specialization in the world’s largest fish using a multi-tissue, multi-isotope approach. Ecol. Monogr. 89, e01339. https://doi.org/10.1002/ecm.1339 (2019).
    Article  Google Scholar 

    62.
    Williams, C.T., Buck, C.L., Sears, J. & Kitaysky, A.S. 2007. Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds. Oecologia 153, 11–18 (2007).

    63.
    McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & McCarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087 (2015).
    ADS  CAS  Article  Google Scholar 

    64.
    Rajapakse, N., Mendis, E., Byun, H.-G. & Kim, S.-K. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16, 562–569 (2005).
    CAS  Article  PubMed  Google Scholar 

    65.
    Hussey, N. E. et al. Expanded trophic complexity among large sharks. Food Webs 4, 1–7 (2015).
    Article  Google Scholar 

    66.
    Bosley, K. L., Witting, D. A., Chambers, R. C. & Wainright, S. C. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Mar. Ecol. Prog. Ser. 236, 233–240 (2002).
    ADS  Article  Google Scholar 

    67.
    Fry, B. & Arnold, C. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54, 200–204 (1982).
    ADS  Article  PubMed  Google Scholar 

    68.
    Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440 (2011).
    Article  Google Scholar 

    69.
    Kim, S. L., del Rio, C. M., Casper, D. & Koch, P. L. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J. Exp. Biol. 215, 2495–2500 (2012).
    Article  PubMed  Google Scholar 

    70.
    Thomas, S. M. & Crowther, T. W. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J. Anim. Ecol. 84, 861–870. https://doi.org/10.1111/1365-2656.12326 (2015).
    Article  PubMed  Google Scholar 

    71.
    Hussey, N. E. et al. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions. J. Fish Biol. 80(5), 1449–1484. https://doi.org/10.1111/j.1095-8649.2012.03251.x (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    MacNeil, M. A., Drouillard, K. G. & Fisk, A. T. Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can. J. Fish Aquat. Sci. 63, 345–353. https://doi.org/10.1139/f05-219 (2006).
    CAS  Article  Google Scholar 

    73.
    Caut, S., Jowers, M., Michel, L., Lepoint, G. & Fisk, A. Diet- and tissue-specific incorporation of isotopes in the shark Scyliorhinus stellaris, a North Sea mesopredator. Mar. Ecol. Prog. Ser. 492, 185–198 (2013).
    ADS  CAS  Article  Google Scholar 

    74.
    Miller, T. W., Brodeur, R. D. & Rau, G. H. Carbon stable isotopes reveal relative contribution of shelf-slope production to the northern California Current pelagic community. Limnol. Oceanogr. 53, 1493–1503 (2008).
    ADS  CAS  Article  Google Scholar 

    75.
    Lytle, J. S. & Lytle, T. F. Fatty acid and cholesterol content of sharks and rays. J. Food Compos. Anal. 7, 110–118 (1994).
    CAS  Article  Google Scholar 

    76.
    Jangaard, P. M. & Ackman, R. G. Lipids and component fatty acids of the Newfoundland squid, Illex illecebrosus (Le Sueur). J. Fish. Res. Board Can. 22(1), 131–137. https://doi.org/10.1139/f65-012 (1965).
    CAS  Article  Google Scholar 

    77.
    Kirsch, P. E., Iverson, S. J., Bowen, W. D., Kerr, S. R. & Ackman, R. G. Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Can. J. Fish Aquat. Sci. 55, 1378–1386. https://doi.org/10.1139/f98-019 (1998).
    CAS  Article  Google Scholar 

    78.
    Phillips, K. L., Jackson, G. D. & Nichols, P. D. Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Islands: stomach contents and fatty acid analyses. Mar. Ecol. Prog. Ser. 215, 179–189 (2001).
    ADS  CAS  Article  Google Scholar 

    79.
    Premarathna, A. D. et al. Nutritional analysis of some selected fish and crab meats and fatty acid analysis of oil extracted from Portunus pelagicus. IJSRST 4, 197–201 (2015).
    Google Scholar 

    80.
    Javaheri Baboli, J., Velayatzahed, M., Roomiani, L. & Khoramadadi, A. Effects of sex and tissue fatty acid composition in the meat of blue swimming crab (Portunus pelagicus) from the Persian Gulf, Iran. Iran J. Fish. Sci. 15, 818–826 (2016).

    81.
    Arai, T., Amalina, R. & Bachok, Z. Similarity in the feeding ecology of parrotfish (Scaridae) in coral reef habitats of the Malaysian South China Sea, as revealed by fatty acid signatures. Biochem. Syst. Ecol. 59, 85–90. https://doi.org/10.1016/j.bse.2015.01.011 (2015).
    CAS  Article  Google Scholar 

    82.
    Ayas, D. & Ozogul, Y. The effects of seasonal changes on fat and fatty acid contents of mantis shrimp (Eurogosquilla massavensis). Adv. Food Sci. 34, 164–167 (2012).
    CAS  Google Scholar 

    83.
    Balzano, M., Pacetti, D., Lucci, P., Fiorini, D. & Frega, N. G. Bioactive fatty acids in mantis shrimp, crab and caramote prawn: their content and distribution among the main lipid classes. J. Food Compos. Anal. 59, 88–94 (2017).
    CAS  Article  Google Scholar 

    84.
    Lytle, J. S., Lytle, T. F. & Ogle, J. T. Polyunsaturated fatty acid profiles as a comparative tool in assessing maturation diets of Penaeus vannamei. Aquaculture 89, 287–299 (1990).
    CAS  Article  Google Scholar 

    85.
    Pethybridge, H., Daley, R., Virtue, P. & Nicols, P. Lipid composition and partitioning of deepwater chondrichthyans: inferences of feeding ecology and distribution. Mar. Biol. 157, 1367–1384 (2010).
    CAS  Article  Google Scholar 

    86.
    Pethybridge, P., Daley, R. K. & Nichols, P. D. Diet of demersal sharks and chimeras inferred by fatty acid profiles and stomach content analysis. J. Exp. Mar. Biol. Ecol. 409, 290–299. https://doi.org/10.1016/j.jembe.2011.09.009 (2011).
    Article  Google Scholar 

    87.
    Beckmann, C. L., Mitchell, J. G., Stone, D. A. J. & Huveneers, C. A controlled feeding experiment investigating the effects of a dietary switch on muscle and liver fatty acid profiles in Port Jackson sharks Heterodontus portusjacksoni. J. Exp. Mar. Biol. Ecol. 448, 10–18. https://doi.org/10.1016/j.jembe.2013.06.009 (2013).
    CAS  Article  Google Scholar 

    88.
    Beckmann, C. L., Mitchell, J. G., Stone, D. A. & Huveneers, C. Inter-tissue differences in fatty acid incorporation as a result of dietary oil manipulation in Port Jackson sharks (Heterodontus portusjacksoni). Lipids 49, 577–590 (2014).
    CAS  Article  PubMed  Google Scholar 

    89.
    Gibson, R. A. Australian fish – an excellent source of both arachidonic acid and ω-3 polyunsaturated fatty acids. Lipids 18, 743–752 (1983).
    CAS  Article  PubMed  Google Scholar 

    90.
    Dunstan, G. A., Sinclair, A. J., O’Dea, K. & Naughton, J. M. The lipid content and fatty acid composition of various marine species from southern Australian coastal waters. Comp. Biochem. Physiol. B 91, 165–169. https://doi.org/10.1016/0305-0491(88)90130-7 (1988).
    Article  Google Scholar 

    91.
    Ballantyne, J.S. Jaws: the inside story. The metabolism of elasmobranch fishes. Comp. Biochem. Physiol. B 118, 703–742 (1997).

    92.
    Wood, C. M., Walsh, P. J., Kajimura, M., McClelland, G. B. & Chew, S. F. The influence of feeding and fasting on plasma metabolites in the dogfish shark (Squalus acanthias). Comp. Biochem. Physiol. A. 155, 435–444 (2010).
    Article  CAS  Google Scholar 

    93.
    Meyer, L., Pethybridge, H., Nichols, P. D., Beckmann, C. & Huveneers, C. Abiotic and biotic drivers of fatty acid tracers in ecology: a global analysis of chondrichthyan profiles. Funct. Ecol. 33, 1–13. https://doi.org/10.1111/1365-2435.13328 (2019).
    Article  Google Scholar 

    94.
    Preston, T. & Owens, N. J. P. Interfacing an automatic elemental analyser with an isotope ratio mass spectrometer: the potential for fully automated total nitrogen and nitrogen-15 analysis. Analyst 108, 971–977 (1983).
    ADS  CAS  Article  Google Scholar 

    95.
    Kim, S. L. & Koch, P. L. Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. Environ. Biol. Fish. 95, 53–63 (2012).
    Article  Google Scholar 

    96.
    Folch, J., Lees, M. & Sloane-Stanly, G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).
    CAS  PubMed  Google Scholar  More

  • in

    Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels

    1.
    Beyer, J. et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Mar. Env. Res. 130, 338–365 (2017).
    ADS  Article  CAS  Google Scholar 
    2.
    Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161, 255–263 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Metzger, M. J. et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534, 705–709 (2016).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Rozen, Y. & Belkin, S. Survival of enteric bacteria in seawater. FEMS Microbiol. Rev. 25, 513–529 (2001).
    Article  CAS  PubMed  Google Scholar 

    5.
    Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microbiol. Ecol. 28, 237–243 (1994).
    Article  CAS  Google Scholar 

    6.
    Allam, B. & Raftos, D. Immune responses to infectious diseases in bivalves. J. Invertebr. Pathol. 131, 121–136 (2015).
    Article  CAS  PubMed  Google Scholar 

    7.
    Allam, B. & Espinosa, E. P. Mucosal immunity in mollusks. In Mucosal Health in Aquaculture (eds Beck, B. H. & Peatman, E.) 325–370 (Academic Press, Cambridge, 2015).
    Google Scholar 

    8.
    Lau, Y. T., Sussman, L., Espinosa, E. P., Katalay, S. & Allam, B. Characterization of hemocytes from different body fluids of the eastern oyster Crassostrea virginica. Fish Shellfish Immunol. 71, 372–379 (2017).
    Article  CAS  PubMed  Google Scholar 

    9.
    Lau, Y. T., Gambino, L., Santos, B., Espinosa, E. P. & Allam, B. Transepithelial migration of mucosal hemocytes in Crassostrea virginica and potential role in Perkinsus marinus pathogenesis. J. Invertebr. Pathol. 153, 122–129 (2018).
    Article  PubMed  Google Scholar 

    10.
    Allam, B. & Espinosa, E. P. Bivalve immunity and response to infections: are we looking at the right place?. Fish Shellfish Immunol. 53, 4–12 (2016).
    Article  CAS  PubMed  Google Scholar 

    11.
    Lau, Y. T., Gambino, L., Santos, B., Espinosa, E. P. & Allam, B. Regulation of oyster (Crassostrea virginica) hemocyte motility by the intracellular parasite Perkinsus marinus: a possible mechanism for host infection. Fish Shellfish Immunol. 78, 18–25 (2018).
    Article  PubMed  Google Scholar 

    12.
    Bodkin, J. L. et al. Variation in abundance of Pacific blue mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015. Deep Sea Res. Part II(147), 87–97 (2018).
    Article  Google Scholar 

    13.
    Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: an overview. J. Evol. Biol. 18, 744–749 (2005).
    Article  CAS  PubMed  Google Scholar 

    14.
    Caza, F., Cledon, M. & St-Pierre, Y. Biomonitoring climate change and pollution in marine ecosystems: a review on Aulacomya ater. J. Mar. Biol. https://doi.org/10.1155/2016/183813 (2016).
    Article  Google Scholar 

    15.
    Farcy, E., Voiseux, C., Lebel, J. M. & Fievet, B. Seasonal changes in mRNA encoding for cell stress markers in the oyster Crassostrea gigas exposed to radioactive discharges in their natural environment. Sci. Total Environ. 374, 328–341 (2007).
    ADS  Article  CAS  PubMed  Google Scholar 

    16.
    Yao, C. L. & Somero, G. N. Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: cell cycle regulation and DNA repair. Comp. Biochem. Physiol. Part A 165, 159–168 (2013).
    Article  CAS  Google Scholar 

    17.
    Negri, A. et al. Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PLoS ONE 8, e66802. https://doi.org/10.1371/journal.pone/0066802 (2013).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Heare, J. E., White, S. J., Vadopalas, B. & Roberts, S. B. Differential response to stress in Ostrea lurida as measured by gene expression. Peer J. 6, e4261. https://doi.org/10.7717/peerj.4261 (2018).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Caza, F. et al. Comparative analysis of hemocyte properties from Mytilus edulis desolationis and Aulacomya ater in the Kerguelen Islands. Mar. Environ. Res. 110, 174–182 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Comeau, L. A., Babarro, J. M., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa, Spain. Aquac. Rep. 9, 68–73 (2018).
    Article  Google Scholar 

    21.
    Weston, S. A. & Parish, C. R. New fluorescent dyes for lymphocyte migration studies: analysis by flow cytometry and fluorescence microscopy. J. Immunol. Meth. 133, 87–97 (1990).
    Article  CAS  Google Scholar 

    22.
    Daley, R. J. & Hobbie, J. E. Direct counts of aquatic bacteria by a modified epifluorescence technique 1. Limnol. Oceanogr. 20, 875–882 (1975).
    ADS  Article  Google Scholar 

    23.
    Ferguson, R. L. & Rublee, P. Contribution of bacteria to standing crop of coastal plankton 1. Limnol. Oceanogr. 21, 141–145 (1976).
    ADS  Article  Google Scholar 

    24.
    Aubry, A., Mougari, F., Reibel, F. & Cambau, E. Mycobacterium marinum. In Tuberculosis and Nontuberculous Mycobacterial Infections (ed. Schlossberg, D.) 735–752 (McGraw-Hill, New York, 2017).
    Google Scholar 

    25.
    Kennedy, G. M., Morisaki, J. H. & Champion, P. A. Conserved mechanisms of Mycobacterium marinum pathogenesis within the environmental amoeba Acanthamoeba castellanii. Appl. Environ. Microbiol. 78, 20249–22052 (2012).
    Article  CAS  Google Scholar 

    26.
    Barker, L. P., George, K. M., Falkow, S. & Small, P. L. Differential trafficking of live and dead Mycobacterium marinum organisms in macrophages. Infect. Immun. 65, 1497–1504 (1997).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Nguyen, L. & Pieters, J. The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell Biol. 15, 269–276 (2005).
    Article  CAS  PubMed  Google Scholar 

    28.
    Jørgensen, C. B., Larsen, P. S. & Riisgård, H. U. Effects of temperature on the mussel pump. Mar. Ecol. Progr. Ser. 28, 89–97 (1990).
    ADS  Article  Google Scholar 

    29.
    Podolsky, R. D. Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science 265, 100–103 (1994).
    ADS  Article  CAS  PubMed  Google Scholar 

    30.
    Riisgård, H. U. & Seerup, D. F. Filtration rates in the soft clam Mya arenaria: effects of temperature and body size. Sarsia 88, 416–428 (2003).
    Article  Google Scholar 

    31.
    Dowd, W. W. & Somero, G. N. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater. J. Exp. Biol. 216, 502–514 (2013).
    Article  PubMed  Google Scholar 

    32.
    Cellura, C., Toubiana, M., Parrinello, N. & Roch, P. HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus. Dev. Comp. Immunol. 30, 984–997 (2006).
    Article  CAS  PubMed  Google Scholar 

    33.
    Watermann, B. T. et al. Pathology and mass mortality of Pacific oysters, Crassostrea gigas (Thunberg), in 2005 at the East Frisian coast, Germany. J. Fish Dis. 31, 621–630 (2008).
    Article  CAS  PubMed  Google Scholar 

    34.
    Polsenaere, P. et al. Potential environmental drivers of a regional blue mussel mass mortality event (winter of 2014, Breton Sound, France). J. Sea Res. 123, 39–50 (2017).
    ADS  Article  Google Scholar 

    35.
    Vázquez-Luis, M. et al. SOS Pinna nobilis: a mass mortality event in western Mediterranean Sea. Front. Mar. Sci. 4, 220. https://doi.org/10.3389/fmars.2017.00220 (2017).
    Article  Google Scholar 

    36.
    Lattos, A., Giantsis, I. A., Karagiannis, D. & Michaelidis, B. First detection of the invasive Haplosporidian and Mycobacteria parasites hosting the endangered bivalve Pinna nobilis in Thermaikos Gulf, North Greece. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2020.104889 (2020).
    Article  PubMed  Google Scholar 

    37.
    Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi, E. & Boero, F. Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS ONE 9, e115655. https://doi.org/10.1371/journal.pone.0115655 (2014).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Zhang, Y., Li, J., Yu, F., He, X. & Yu, Z. Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas. Fish Shellfish Immunol. 34, 1071–1077 (2013).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Cellura, C., Toubiana, M., Parrinello, N. & Roch, P. Specific expression of antimicrobial peptide and HSP70 genes in response to heat-shock and several bacterial challenges in mussels. Fish Shellfish Immunol. 22, 340–350 (2007).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Novoa, B. et al. Immune tolerance in Mytilus galloprovincialis haemocytes after repeated contact with Vibrio splendidus. Front. Immunol. 10, 1894. https://doi.org/10.3389/fimmu.2019.01894 (2019).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Palmer, C. V. Immunity and the coral crisis. Commun. Biol. 1, 1–7 (2018).
    Article  Google Scholar 

    42.
    Yonemitsu, M. A. et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. Elife 8, e47788. https://doi.org/10.7554/eLife.47788 (2019).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 1–4 (2019).
    ADS  Article  Google Scholar 

    44.
    Carroll, P. et al. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS ONE 5, e9823. https://doi.org/10.1371/journal.pone.0009823 (2010).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Li, Y. F. et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus. Front. Physiol. 9, 839. https://doi.org/10.3389/fphys.2018.00839 (2018).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Researchers using environmental DNA must engage ethically with Indigenous communities

    1.
    Day, K. et al. Endanger. Species Res. 40, 171–182 (2019).
    Google Scholar 
    2.
    Fernandes, K. et al. Restor. Ecol. 26, 1098–1107 (2018).
    Google Scholar 

    3.
    van der Heyde, M. et al. Mol. Ecol. Resour. 20, 732–745 (2020).
    Google Scholar 

    4.
    Thomsen, P. F. & Willerslev, E. Biol. Conserv. 183, 4–18 (2015).
    Google Scholar 

    5.
    Giguet-Covex, C. et al. Nat. Commun. 5, 3211 (2014).
    PubMed  Google Scholar 

    6.
    Willerslev, E. et al. Science 300, 791–795 (2003).
    CAS  PubMed  Google Scholar 

    7.
    Willerslev, E. et al. Nature 506, 47–51 (2014).
    CAS  PubMed  Google Scholar 

    8.
    Slon, V. et al. Science 356, 605–608 (2017).
    CAS  PubMed  Google Scholar 

    9.
    Claw, K. G. et al. Nat. Commun. 9, 2957 (2018).
    PubMed  PubMed Central  Google Scholar 

    10.
    Garrison, N. A. et al. Annu. Rev. Genomics Hum. Genet. 20, 495–517 (2019).
    CAS  PubMed  Google Scholar 

    11.
    Kowal, E. in Biomapping Indigenous Peoples: Towards an Understanding of the Issues (eds Berthier-Folgar, S. et al.) 329–347 (Rodopi, 2012).

    12.
    Adams, K., Faulkhead, S., Standfield, R. & Atkinson, P. Women Birth 31, 81–88 (2018).
    PubMed  Google Scholar 

    13.
    National Health and Medical Research Council (NHMRC), Australian Research Council (ARC) & Australian Vice-Chancellors’ Committee (AVCC) National Statement on Ethical Conduct in Human Research (2007) – Updated 2015 (National Health and Medical Research Council, 2015).

    14.
    Pawu-Kurlpurlunu, W. J., Holmes, M. & Box, L. A. Ngurra-kurlu: A Way of Working with Warlpiri People DKCRC Report 41 (Desert Knowledge CRC, 2008); https://go.nature.com/3jl4TR4

    15.
    Rose, D. B. Dingo Makes Us Human: Life and Land in an Australian Aboriginal Culture (Cambridge Univ. Press, 1992).

    16.
    Stanner, W. E. H. in White Man Got No Dreaming: Essays 1938-1973 198–248 (Australian National Univ. Press, 1979).

    17.
    Lewis, C. M. Jr, Obregón-Tito, A., Tito, R. Y., Foster, M. W. & Spicer, P. G. Trends Microbiol. 20, 1–4 (2012).
    CAS  PubMed  Google Scholar 

    18.
    Ma, Y., Chen, H., Lan, C. & Ren, J. Protein Cell 9, 404–415 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. Nucleic Acids Res. 45, 6310–6320 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Andersen, K. et al. Mol. Ecol. 21, 1966–1979 (2012).
    CAS  PubMed  Google Scholar 

    21.
    Haile, J. et al. Mol. Biol. Evol. 24, 982–989 (2007).
    CAS  PubMed  Google Scholar  More

  • in

    Managing incursions of Vespa velutina nigrithorax in the UK: an emerging threat to apiculture

    Nests
    A summary of the nest results can be found in Tables 1 (physical description of nests) and 2 (ploidy). All adult females that were weighed were classed as workers or founder queens using the information found in Rome et al.8, which defined a limit of 593 mg wet weight or 250 mg dry weight to discriminate between workers and founder queens. The average wet weight of founder queens in September was 624 mg (N = 5). All nests recovered had fewer adults present than expected, this was presumed to be due to the loss of adult hornets during the destruction process and subsequent removal of the nest from its original location.
    Table 1 Summary of observations from all nests discovered in the UK.
    Full size table

    Table 2 Ploidy of nests.
    Full size table

    Tetbury
    The findings from the examination of the Tetbury nest have been described previously10 but are briefly summarised again here. This nest was discovered on 28th September 2016. In total, 70 adult hornets were found in the nest. The wet weight of 57 adult female hornets ranged from 202 to 322 mg with a mean of 256 mg (N = 19), whilst that of 13 adult male hornets ranged from 248 to 326 mg with a mean of 290 mg (N = 7). The nest diameter was 23 cm and the nest contained five combs, four of which contained all life stages (eggs, larvae, pupae, teneral adults, adults) of the Asian hornet. All life stages examined were diploid. The nest was likely derived from a single queen mated to a single drone.
    Woolacombe
    A nest was discovered in Woolacombe on 27 September 2017. In total, 166 adult hornets were found in the nest, all female. The wet weight of adult female hornets ranged from 172 to 508 mg with a mean of 333 ± 5 mg (N = 166). Based on the information in Rome et al.8, described above, none of the females found in the Woolacombe nest were founder queens. The nest was 27 cm in diameter and is the largest nest discovered in England to date. The nest contained seven combs and all life stages were present, although the larval samples were too degraded for DNA analysis. Haploid individuals were present at the egg and pupal stages, the remainder of the individuals examined were diploid. Based on life stages present and the ploidy, the queen began laying haploid eggs on approximately 2nd September. The genetic analysis (results from COLONY2, verified manually) showed that the offspring sampled were likely to be the product of a single queen and three drones.
    Fowey nests 1 + 2
    Two nests were discovered in Fowey, Cornwall in 2018 on 3rd and 20th September, 40 m apart. The first nest contained three combs and had a diameter of 15 cm. No eggs or early instar larvae were present but late instar larvae, teneral adults and three adults were present. All individuals sampled were diploid. From the absence of eggs and early instar larvae, it was concluded that the queen was absent/missing in the 2–3 weeks prior to nest discovery. The second nest had a diameter of 19 cm and contained four combs with brood in all stages. Seven adult males and eight females were found in the nest; the males were diploid. All eggs and six of the ten larvae genotyped were haploid, while the pupae, teneral adults and adults were diploid. No queen was found. From the genetic analysis of the two nests, it was shown that both were highly likely to be offspring of a single queen and drone, with the first nest discovered presumably a primary nest and the other nest the secondary nest. From the ploidy of the life-stages present, it was inferred that the queen began laying haploid eggs around the 30th August.
    New Alresford nest
    The first nest found in Hampshire was discovered in New Alresford on 24th September 2018. The nest was 18 cm diameter and contained four combs with all life stages present. Twenty-eight males and 94 females were found. All the adults, teneral adults and pupae sampled were diploid, while within the larvae, five out of 10 were haploid, and within the eggs, two out of seven were haploid. The queen began laying haploid eggs around the 3rd September. The individuals from this nest were highly likely the offspring of a single queen and two drones.
    Brockenhurst nest
    The second nest found in Hampshire was discovered in Brockenhurst (approximately 30 miles away from New Alresford) and was destroyed on 04th October 2018. The nest was 18.5 cm diameter and there were three combs present with brood from the larvae stage onwards; no eggs were present indicating a recent loss of the queen or cessation of laying. All larvae and pupae were haploid and adult males were also haploid. The only diploid individuals present were worker females. The queen ceased laying before any diploid (future gyne) eggs were laid. The nest was consistent with being the offspring of a single queen mated with two drones.
    Drayton Bassett nest
    The first nest of 2019 was discovered on September 2nd at Drayton Bassett, Staffordshire. On arrival at Fera Science Ltd, the nest was too damaged to determine its size. Five adult female hornets were found in the nest. The wet weight of adult female hornets ranged from 197 to 312 mg with a mean of 271.6 (n = 5). The average wet weight of founder queens in September in the study by Rome et al.8 was 624 mg (n = 5). Based on this, it would appear that none of the females found in the nest were founder queens. All life stages were present in the nest, and all individuals genotyped were diploid. The nest was consistent with being the offspring of a single queen mated to a single drone.
    Christchurch nests 1 + 2
    On 01st October, 2019, a nest 13 cm diameter was discovered in Christchurch, Dorset. Two combs were present in the nest. One adult female hornet was found in the nest. The wet weight of this adult female hornet was 545 mg and the mesoscutum width was 4.6 mm. In a study by Pérez de Heredia et al.16 individuals taken from nests with a unimodal population had one individual per nest that had a mesoscutum width above 4.5 mm; no other individuals in these nests reached a mesoscutum width of 4.5 mm. It is therefore likely that the individual found in this nest was the queen. The combs contained eggs and larvae and had genotypes consistent with being the offspring of the queen that was present. Two eggs were haploid, the remainder of the eggs and larvae genotyped were diploid. On October 10th, a second nest was discovered in Christchurch, 10 m from the first nest, but could not be measured as it was intertwined with vegetation and fragmented upon removal. No adult hornets were found in the nest. Two combs were present, with capped and uncapped cells. Larvae, pupae and teneral adults were found, all of which were diploid. No eggs were found. Both nests from Christchurch were consistent with being the offspring of the same queen, mated to a single drone. The first nest found was likely to be the secondary nest, the second nest found likely to be the primary nest.
    Information on all nests is found in Table 1. Map locations for each nest are shown in Fig. 1 and images of each nest are shown in Fig. 2.
    Figure 2

    Images of UK nests: (a) Tetbury, (b) Woolacombe, (c) Fowey nest 1, (d) Fowey nest 2, (e) Brockenhurst, (f) New Alresford, (g) Drayton Bassett, (h) Christchurch nest 1 and (i) Christchurch nest 2. Where shown, scale bar represents 5 cm.

    Full size image

    Genetic relatedness
    Overall, the genetic diversity in the UK is relatively low for all locations, for all three measures used (mean number of alleles per locus, observed and expected heterozygosity; Table 3). However, it should be taken into consideration that the data for each UK nest are from individuals that were all closely related to each other (full, half siblings). A single combined figure for the UK was not calculated as it seems unlikely there is a UK population. Compared to the Asian hornet diversity data from Arca et al. (2015)11, the UK diversity is lower than France, which itself is lower than the diversity found in Asia (Table 2). This trend reflects the likely colonisation history of the hornet, which colonised France from Asia, and the UK incursions are likely to derive from populations on the European mainland.
    Table 3 Genetic diversity measure (average number of alleles per locus) and the observed and expected heterozygosity for Asian hornet populations sampled in the British Isles, and from France (data from Arca et al. 201511).
    Full size table

    The occurrence of microsatellite alleles in the UK nests and France and Asia (from Arca et al.11) are given in supplementary material 1. In comparison with the Asian and French data in Arca et al.11, the UK samples had a restricted subset of alleles (35 alleles in total) that were all found in the French populations (60 alleles). In turn, all French alleles were a subset of those found in Asia (178 alleles). Similarly, the majority of private alleles were found in Asia (114), a small number in France (n = 3) and none in the UK (supplementary material 1).
    In all cases, individuals recovered near a nest (within 2 km) were offspring of the recovered nearby nest (or nests, where there were primary and secondary nests). The majority of these individuals were found within 500 m of the nest. Most individuals caught in isolated locations away from nests (over 15 km) were not offspring of the recovered nests, with the exception of the individual recovered in Liskeard, which had a genotype compatible with being the offspring of the Fowey nest, some 17 km distant.
    To exclude the possibility that any of the founding queens that escaped the destruction of the nest went on to produce viable nests that gave rise to nests caught in the subsequent year, we considered whether the inferred parental genotypes from a nest in year one could be the parents of the inferred parental genotypes in year two. For example, whether the queen from the Tetbury nest in 2016 could have formed a second nest and the offspring from that nest been the parents to the Woolacombe nest in 2017. In no case were the inferred parental genotypes compatible with this scenario. Additionally, where more than one nest was found in a single year (i.e. New Alresford/ Brockenhurst/ Fowey in 2018, Christchurch / Drayton Bassett in 2019), we considered whether the foundress queens and founder drones were full siblings to each other. Again, in no case was this possible (although they could have been half siblings to each other). Genotype data are provided in Supplementary material 2. More

  • in

    Phenotypic variation, functional traits repeatability and core collection inference in Synsepalum dulcificum (Schumach & Thonn.) Daniell reveals the Dahomey Gap as a centre of diversity

    1.
    Kurihara, K. & Beidler, L. M. Taste-modifying protein from miracle fruit. Science 161, 1241–1243 (1968).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Achigan-Dako, E. G., Tchokponhoué, D. A., N’Danikou, S., Gebauer, J. & Vodouhè, R. S. Current knowledge and breeding perspectives for the miracle plant Synsepalum dulcificum (Schum. et Thonn.) Daniell. Genet. Resour. Crop. Evol. 62, 465–476 (2015).

    3.
    Fandohan, A. B. et al. Usages traditionnels et valeur économique de Synsepalum dulcificum au Sud-Bénin. Bois For. Trop. 332, 17–30 (2017).
    Article  Google Scholar 

    4.
    Oumorou, M., Dah-Dovonon, J., Aboh, B., Hounsoukaka, M. & Sinsin, B. Contribution á la conservation de Synsepalum dulcificum: régénération et importance socio-économique dans le département de l’ouémé (Bénin). Ann. Sci. Agron. 14, 101–120 (2010).
    Google Scholar 

    5.
    Rodrigues, J. F., da Silva Andrade, R., Bastos, S. C., Coelho, S. B. & Pinheiro, A. C. M. Miracle fruit: An alternative sugar substitute in sour beverages. Appetite 107, 645–653 (2016).
    Article  PubMed  Google Scholar 

    6.
    Andrade, A. C. et al. Effect of different quantities of miracle fruit on sour and bitter beverages. LWT 99, 89–97 (2019).
    CAS  Article  Google Scholar 

    7.
    Swamy, K. B., Hadi, S. A., Sekaran, M. & Pichika, M. R. The clinical effects of Synsepalum dulcificum: a review. J. Med. Food. 17, 1165–1169 (2014).
    CAS  Article  PubMed  Google Scholar 

    8.
    Chen, C. C., Liu, I. M. & Cheng, J. T. Improvement of insulin resistance by miracle fruit (Synsepalum dulcificum) in fructose-rich chow-fed rats. Phytother. Res. 20, 987–992 (2006).
    Article  PubMed  Google Scholar 

    9.
    Han, Y. C., Wu, J. Y. & Wang, C. K. Modulatory effects of miracle fruit ethanolic extracts on glucose uptake through the insulin signaling pathway in C2C12 mouse myotubes cells. Food Sci. Nutr. 7, 1035–1042 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Obafemi, T. O., Akinmoladun, A. C., Olaleye, M. T., Agboade, S. O. & Onasanya, A. A. Antidiabetic potential of methanolic and flavonoid-rich leaf extracts of Synsepalum dulcificum in type 2 diabetic rats. J. Ayurveda Integr. Med. 8, 238–246. https://doi.org/10.1016/j.jaim.2017.01.008 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Buckmire, R. & Francis, F. Pigments of miracle fruit, Synsepalum dulcificum, Schum, as potential food colorants. J. Food Sci. 43, 908–911 (1978).
    CAS  Article  Google Scholar 

    12.
    Del Campo, R., Zhang, Y. & Wakeford, C. Effect of miracle fruit (Synsepalum dulcificum) seed oil (MFSO®) on the measurable improvement of hair breakage in women with damaged hair: a randomized, double-blind, placebo-controlled, eight-month trial. J. Clin. Aesthet. Dermat. 10, 39–48 (2017).
    Google Scholar 

    13.
    Gorin, S. et al. Beneficial effects of an investigational wristband containing Synsepalum dulcificum (miracle fruit) seed oil on the performance of hand and finger motor skills in healthy subjects: a randomized controlled preliminary study. Phytother. Res. 32, 321–332 (2018).
    CAS  Article  PubMed  Google Scholar 

    14.
    Adomou, A. Vegetation patterns and environmental gradients in Benin PhD thesis, University of Wageningen, (2005).

    15.
    Tchokponhoué, D. et al. Regeneration ability and seedling growth in the miracle plant Synsepalum dulcificum (Schumach. & Thonn.) Daniell. Fruits 73, 13–21 (2018).

    16.
    Tchokponhoué, D. A., N’Danikou, S., Houéto, J. S. & Achigan-Dako, E. G. Shade and nutrient-mediated phenotypic plasticity in the miracle plant Synsepalum dulcificum (Schumach. & Thonn.) Daniell. Sci. Rep. 9(5137), 1–11 (2019).

    17.
    Tchokponhoué, D. A., N’Danikou, S., Hale, I., Van Deynze, A. & Achigan-Dako, E. G. Early fruiting in Synsepalum dulcificum (Schumach. & Thonn.) Daniell juveniles induced by water and inorganic nutrient management. F1000Res. 6, 1–17 (2017).

    18.
    Choi, S. E. & Garza, J. Effects of different miracle fruit products on the sensory characteristics of different types of sour foods by descriptive analysis. J. Food Sci. 85, 36–49 (2020).
    CAS  Article  PubMed  Google Scholar 

    19.
    Tafazoli, S. et al. Safety assessment of miraculin using in silico and in vitro digestibility analyses. Food Chem. Toxicol. 133(110762), 1–10 (2019).
    Google Scholar 

    20.
    Chibuzor, I. A., Bukola, O., Adejoke, A. O. & Chidozie, O. P. Genetic assessment of the shrub Synsepalum dulcificum (Schumach & Thonn.) Daniell in Nigeria using the Randomly Amplified Polymorphic DNA (RAPD). Int. J. Genet. Genom. 4, 45–50 (2017).

    21.
    Sogbohossou, E. D. et al. Association between vitamin content, plant morphology and geographical origin in a worldwide collection of the orphan crop Gynandropsis gynandra (Cleomaceae). Planta 250, 933–947 (2019).
    CAS  Article  PubMed  Google Scholar 

    22.
    Singh, K., Sharma, Y. P. & Gairola, S. Morphological characterization of wild Rosa L. germplasm from the Western Himalaya, India. Euphytica 216(41), 1–24. https://doi.org/https://doi.org/10.1007/s10681-020-2567-2 (2020).

    23.
    Sun, W. et al. Multivariate analysis reveals phenotypic diversity of Euscaphis japonica population. PLoS ONE 14, 1. https://doi.org/10.1371/journal.pone.0219046 (2019).
    CAS  Article  Google Scholar 

    24.
    Yazdanpour, F., Khadivi, A. & Etemadi-Khah, A. Phenotypic characterization of black raspberry to select the promising genotypes. Sci. Hortic. Amsterdam 235, 95–105. https://doi.org/10.1016/j.scienta.2018.02.071 (2018).
    CAS  Article  Google Scholar 

    25.
    Fereidoonfar, H., Salehi-Arjmand, H., Khadivi, A. & Akramian, M. Morphological variability of sumac (Rhus coriaria L.) germplasm using multivariate analysis. Ind. Crops Prod. 120, 162–170, https://doi.org/https://doi.org/10.1016/j.indcrop.2018.04.034 (2018).

    26.
    Norouzi, E., Erfani-Moghadam, J., Fazeli, A. & Khadivi, A. Morphological variability within and among three species of Ziziphus genus using multivariate analysis. Sci. Hortic. Amsterdam 222, 180–186. https://doi.org/10.1016/j.scienta.2017.05.016 (2017).
    Article  Google Scholar 

    27.
    Khadivi-Khub, A. & Anjam, K. Morphological characterization of Prunus scoparia using multivariate analysis. Plant Syst. Evol. 300, 1361–1372 (2014).
    Article  Google Scholar 

    28.
    Vihotogbé, R., van den Berg, R. G. & Sosef, M. S. Morphological characterization of African bush mango trees (Irvingia species) in West Africa. Genet. Resour. Crop. Evol. 60, 1597–1614 (2013).
    Article  Google Scholar 

    29.
    Ouborg, N. J. Integrating population genetics and conservation biology in the era of genomics. Biol. Lett. 6, 3–6 (2010).
    Article  PubMed  Google Scholar 

    30.
    Martínez-García, P. J. et al. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genet. Genomes 13, 109 (2017).
    Article  Google Scholar 

    31.
    Falconer, D. S. Introduction to quantitative genetics. (Oliver And Boyd; Edinburgh; London, 1960).

    32.
    Fonseca, C. E. L. d., Morais, F. M. d., Gonçalves, H. M., Aquino, F. d. G. & Rocha, F. S. Repeatability of fruit traits from two Hancornia speciosa populations from the core region of the Brazilian Cerrado. Pesqui. Agropecu Bras. 53, 710–716 (2018).

    33.
    Zou, S., Yao, X., Zhong, C., Zhao, T. & Huang, H. Genetic analysis of fruit traits and selection of superior clonal lines in Akebia trifoliate (Lardizabalaceae). Euphytica 214(111), 1–9. https://doi.org/10.1007/s10681-018-2198-z (2018).
    ADS  CAS  Article  Google Scholar 

    34.
    Sanou, H. et al. Phenotypic variation of agromorphological traits of the shea tree, Vitellaria paradoxa CF Gaertn., in Mali. Genet. Resour. Crop. Evol. 53, 145–161 (2006).

    35.
    Albuquerque, A. S., Bruckner, C. H., Cruz, C. D., Salomão, L. C. C. & Neves, J. C. L. Repeatability and correlations among peach physical traits. Crop Breed. Appl. Biot. 4, 441–445 (2004).
    Article  Google Scholar 

    36.
    Belaj, A. et al. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet. Genomes 8, 365–378 (2012).

    37.
    Le Cunff, L. et al. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plt. Biol. 8:31, 1–12 (2008).

    38.
    Mahmoodi, R. et al. Development of a core collection in Iranian walnut (Juglans regia L.) germplasm using the phenotypic diversity. Sci. Hortic. Amsterdam 249, 439–448 (2019).

    39.
    Tchokponhoué, D. A., N’Danikou, S. & Achigan-Dako, E. G. A combination of approaches evidenced seed storage behaviour in the miracle berry Synsepalum dulcificum (Schumach. et Thonn.) Daniell. BMC Plt. Biol. 19:117, 1–13 (2019).

    40.
    Edesi, J., Tolonen, J., Ruotsalainen, A. L., Aspi, J. & Häggman, H. Cryopreservation enables long-term conservation of critically endangered species Rubus humulifolius. Biodivers. Conserv. 29, 303–314. https://doi.org/10.1007/s10531-019-01883-9 (2020).
    Article  Google Scholar 

    41.
    Bharuth, V., Naidoo, C., Pammenter, N. W., Lamb, J. M. & Moodley, T. Responses to chilling of recalcitrant seeds of Ekebergia capensis from different provenances. S. Afr. J. Bot. 130, 8–24 (2020).
    Article  Google Scholar 

    42.
    Leal, M. E. The African rain forest during the Last Glacial Maximum an archipelago of forests in a sea of grass. (2004).

    43.
    Swenson, U., Richardson, J. E. & Bartish, I. V. Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 24, 1006–1031 (2008).
    Article  Google Scholar 

    44.
    Juhé-Beaulaton, D. “Fèves”, “pois” et “grains” dans le golfe de Guinée : problèmes d’identification des plantes dans les sources historiques. in Plantes et paysages d’Afrique, une histoire à explorer (ed Chastanet M) 45–68 (1998).

    45.
    Inglett, G. E. & May, J. F. Tropical plants with unusual taste properties. Econ. Bot. 22, 326–331. https://doi.org/10.1007/BF02908127 (1968).
    Article  Google Scholar 

    46.
    Salzmann, U. & Hoelzmann, P. The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene 15, 190–199. https://doi.org/10.1191/0959683605hl799rp (2005).
    ADS  Article  Google Scholar 

    47.
    Booth, A. The Niger, the Volta and the Dahomey Gap as geographic barriers. Evolution 12, 48–62 (1958).
    Article  Google Scholar 

    48.
    White, F. The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. (1983).

    49.
    Niñez, V. Household gardens: theoretical and policy considerations. Agr. Syst. 23, 167–186. https://doi.org/10.1016/0308-521X(87)90064-3 (1987).
    Article  Google Scholar 

    50.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,Vienna, Austria. https://www.R-project.org/. (2019).

    51.
    Peterson, B. G. et al. ‘Performance analytics’: econometric tools for performance and risk analysis. R Team Cooperation. (2018).

    52.
    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3–an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
    Article  Google Scholar 

    53.
    Moon, K.-W. Interactive plot. in Learn ggplot2 Using Shiny App (ed Keon-Woong Moon) 295–347 (Springer, 2016).

    54.
    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Article  Google Scholar 

    55.
    YiLan, L. & RuTong, Z. clustertend: Check the Clustering tendency. R package version 1 (2015).

    56.
    Kassambara, A. & Mundt, F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1, 4 (2017).
    Google Scholar 

    57.
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Article  Google Scholar 

    58.
    De Beukelaer, H., Davenport, G. F. & Fack, V. Core Hunter 3: flexible core subset selection. BMC Bioinformatics 19(203), 1–12 (2018).
    Google Scholar 

    59.
    Kim, K.-W. et al. PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23, 2155–2162 (2007).
    CAS  Article  PubMed  Google Scholar 

    60.
    Hu, J., Zhu, J. & Xu, H. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor. Appl. Genet. 101, 264–268 (2000).
    CAS  Article  Google Scholar 

    61.
    61Wickham, H. ggplot2: elegant graphics for data analysis. (Springer, 2016).

    62.
    Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).
    Article  Google Scholar 

    63.
    South, A. Rworldxtra: Country boundaries at high resolution. R package version 1 (2012).

    64.
    South, A. rnaturalearth: World map data from Natural Earth. R package version 0.1. 0 (2017).

    65.
    Salako, V. K. et al. Home gardens: an assessment of their biodiversity and potential contribution to conservation of threatened species and crop wild relatives in Benin. Genet. Resour. Crop. Evol. 61, 313 (2014).
    Article  Google Scholar 

    66.
    van Rompaey, R. S. Forest gradients in West Africa: a spatial gradient analysis, Wageningen, (1993).

    67.
    Gwali, S. et al. Morphological variation among shea tree (Vitellaria paradoxa subsp. nilotica)‘ethnovarieties’ in Uganda. Genet. Resour. Crop. Evol. 59, 1883–1898 (2012).

    68.
    Metougui, M. L., Mokhtari, M., Maughan, P. J., Jellen, E. N. & Benlhabib, O. Morphological variability, heritability and correlation studies within an argan tree population (Argania spinosa (L.) Skeels) preserved in situ. Int. J. Agr. For. 7, 42–51 (2017).

    69.
    Tsobeng, A. et al. Tree-to-tree variation in fruit of three populations of Trichoscypha acuminata in Cameroon. Sci. Afr. 7, 1–12 (2020).
    Google Scholar 

    70.
    Omondi, M. et al. Fruit morphological diversity and productivity of baobab (Adansonia digitata L.) in coastal and lower eastern Kenya. For. Trees Livelihoods 28, 266–280 (2019).
    Article  Google Scholar 

    71.
    Abdulai, I., Krutovsky, K. V. & Finkeldey, R. Morphological and genetic diversity of shea trea (Vitellaria paradoxa) in the savannah regions of Ghana. Genet Res Crop Evol 64, 1253–1268 (2017).
    Article  Google Scholar 

    72.
    Karambiri, M., Elias, M., Vinceti, B. & Grosse, A. Exploring local knowledge and preferences for shea (Vitellaria pradoxa) ethnovarieties in Soutwest Burkina-Faso through a gender and ethnic lens. For. Trees Livelihoods 26, 13–28 (2016).
    Article  Google Scholar 

    73.
    Ayensu, E. S. Morphology and anatomy of Synsepalum dulcificum (Sapotaceae). Bot. J. Linn. Soc. 65, 179–187 (1972).
    Article  Google Scholar 

    74.
    Lim, T. K. in Edible medicinal and non-medicinal plants Vol. 6 (ed T.K. Lim) 146–150 (Springer, Dordrecht, 2013).

    75.
    Huang, W., Chung, H. Y., Xuan, W., Wang, G. & Li, Y. The cholesterol-lowering activity of miracle fruit (Synsepalum dulcificum). J. Food Biochem. 1, e13185. https://doi.org/10.1111/jfbc.13185 (2020).
    Article  Google Scholar 

    76.
    Ahmed, A. A. O. et al. Tree-to-tree variability in fruits and kernels of a Balanites aegyptiaca (L.) Del. population grown in Sudan. Trees 34, 111–119 (2020).

    77.
    Zou, S., Yao, X., Zhong, C., Zhao, T. & Huang, H. Effectiveness of recurrent selection in Akebia trifoliata (Lardizabalaceae) breeding. Sci. Hortic. Amsterdam 246, 79–85 (2019).
    Article  Google Scholar 

    78.
    Houehanou, T. D. et al. Morphological trait variation and relationships of Afzelia africana Sm. caused by climatic conditions and anthropogenic disturbance in Benin (West Africa). Genet. Resour. Crop. Evol. 66, 1091–1105 (2019).

    79.
    Gouwakinnou, G. N., Assogbadjo, A. E., Lykke, A. M. & Sinsin, B. Phenotypic variations in fruits and selection potential in Sclerocarya birrea subsp. birrea. Sci. Hortic. Amsterdam 129, 777–783 (2011).

    80.
    Cotterill, P. P. & Dean, C. A. Successful tree breeding with index selection (CSIRO, Division of Forestry and Forest Products, 1990).
    Google Scholar 

    81.
    Zobel, B. & Talbert, J. Applied forest tree improvement. (John Wiley & Sons, 1984).

    82.
    Atangana, A. R. et al. Tree-to-tree variation in stearic and oleic acid content in seed fat from Allanblackia floribunda from wild stands: potential for tree breeding. Food Chem. 126, 1579–1585 (2011).
    CAS  Article  PubMed  Google Scholar 

    83.
    Shelbourne, C. Genetic gains from different kinds of breeding population and seed or plant production population. S. Afr. For. J. 160, 49–65 (1992).
    Google Scholar 

    84.
    Leakey, R. & Page, T. The ‘ideotype concept’and its application to the selection of cultivars of trees providing agroforestry tree products. For. Trees Livelihoods 16, 5–16 (2006).
    Article  Google Scholar 

    85.
    Bhattacharjee, R., Khairwal, I., Bramel, P. J. & Reddy, K. Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155, 35–45 (2007).

    86.
    Escribano, P., Viruel, M. & Hormaza, J. in XII EUCARPIA Symposium on Fruit Breeding and Genetics 814. 67–70.

    87.
    Duan, H. et al. Genetic characterization of Chinese fir from six provinces in southern China and construction of a core collection. Sci. Rep. 7, 1–10 (2017).
    Article  CAS  Google Scholar  More

  • in

    Co-activation of Akt, Nrf2, and NF-κB signals under UPRER in torpid Myotis ricketti bats for survival

    1.
    Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Rev. 83, 1153–1181 (2003).
    CAS  Article  Google Scholar 
    2.
    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).
    CAS  Article  Google Scholar 

    3.
    Lindell, S. L. et al. Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype. Am. J. Physiol.-Gastrointest. Liver Physiol. 288, G473–G480 (2005).
    CAS  Article  Google Scholar 

    4.
    Dave, K. R., Christian, S. L., Perez-Pinzon, M. A. & Drew, K. L. Neuroprotection: lessons from hibernators. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 162, 1–9 (2012).
    CAS  Article  Google Scholar 

    5.
    Hofmann, S., Cherkasova, V., Bankhead, P., Bukau, B. & Stoecklin, G. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol. Biol. Cell 23, 3786–3800 (2012).
    CAS  Article  Google Scholar 

    6.
    Pluquet, O., Pourtier, A. & Abbadie, C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am. J. Physiol.-Cell Physiol. 308, C415–C425 (2015).
    CAS  Article  Google Scholar 

    7.
    Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89 (2012).
    CAS  Article  Google Scholar 

    8.
    Guo, F.-J. et al. XBP1S protects cells from ER stress-induced apoptosis through Erk1/2 signaling pathway involving CHOP. Histochemistry Cell Biol. 138, 447–460 (2012).
    CAS  Article  Google Scholar 

    9.
    Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).
    CAS  Article  Google Scholar 

    10.
    Kramer, G. Two phosphorylation sites on eIF-2α. FEBS Lett. 267, 181–182 (1990).
    CAS  Article  Google Scholar 

    11.
    Wek, R., Jiang, H.-Y. & Anthony, T. Coping with stress: eIF2 kinases and translational control. (Portland Press Limited, 2006).

    12.
    Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286, 10939–10949 (2011).

    13.
    Roller, C. & Maddalo, D. The molecular chaperone GRP78/BiP in the development of chemoresistance: mechanism and possible treatment. Front. Pharmacol. 4, 10 (2013).
    Article  CAS  Google Scholar 

    14.
    Lee, A. S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373–381 (2005).
    CAS  Article  Google Scholar 

    15.
    Jiang, H.-Y. et al. Phosphorylation of the α subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol. Cell. Biol. 23, 5651–5663 (2003).
    CAS  Article  Google Scholar 

    16.
    Prell, T. et al. Endoplasmic reticulum stress is accompanied by activation of NF-κB in amyotrophic lateral sclerosis. J. Neuroimmunol. 270, 29–36 (2014).
    CAS  Article  Google Scholar 

    17.
    Rajesh, K. et al. Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis. 6, e1591 (2015).
    CAS  Article  Google Scholar 

    18.
    Nivon, M. et al. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol. Biol. Cell 27, 1712–1727 (2016).
    CAS  Article  Google Scholar 

    19.
    Lemasters, J. J. In Molecular Pathology (second edn) 1–24 (Elsevier, 2018).

    20.
    Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol. 3, 221 (2002).
    CAS  Article  Google Scholar 

    21.
    Schmidlin, C. J., Dodson, M. B., Madhavan, L. & Zhang, D. D. Redox regulation by NRF2 in aging and disease. Free Rad. Biol. Med. 134, 702–707 (2019).

    22.
    Cullinan, S. B. & Diehl, J. A. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol. 38, 317–332 (2006).
    CAS  Article  Google Scholar 

    23.
    Wiersma, M. et al. Torpor-arousal cycles in Syrian hamster heart are associated with transient activation of the protein quality control system. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 223, 23–28 (2018).

    24.
    Mamady, H. & Storey, K. B. Up-regulation of the endoplasmic reticulum molecular chaperone GRP78 during hibernation in thirteen-lined ground squirrels. Mol. Cell. Biochem. 292, 89–98 (2006).
    CAS  Article  Google Scholar 

    25.
    Mamady, H. & Storey, K. B. Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels. Arch. Biochem. Biophys. 477, 77–85 (2008).
    CAS  Article  Google Scholar 

    26.
    Zhang, J. et al. Prosurvival roles mediated by the PERK signaling pathway effectively prevent excessive endoplasmic reticulum stress-induced skeletal muscle loss during high-stress conditions of hibernation. J. Cell. Physiol. 234, 19728–19739 (2019).

    27.
    Carey, H., Frank, C. & Seifert, J. Hibernation induces oxidative stress and activation of NF-κB in ground squirrel intestine. J. Comp. Physiol. B 170, 551–559 (2000).
    CAS  Article  Google Scholar 

    28.
    Fleck, C. C. & Carey, H. V. Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 289, R586–R595 (2005).
    CAS  Article  Google Scholar 

    29.
    Zhang, Y. et al. Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach. J. Proteom. 105, 266–284 (2014).
    CAS  Article  Google Scholar 

    30.
    Cui, X. A., Zhang, H. & Palazzo, A. F. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol. 10, e1001336 (2012).
    CAS  Article  Google Scholar 

    31.
    Wen, W.-L. et al. Vgl1, a multi-KH domain protein, is a novel component of the fission yeast stress granules required for cell survival under thermal stress. Nucleic Acids Res. 38, 6555–6566 (2010).
    CAS  Article  Google Scholar 

    32.
    Tsuchiya, N. et al. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res. 67, 9568–9576 (2007).
    CAS  Article  Google Scholar 

    33.
    Yoo, B. K. et al. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 53, 1538–1548 (2011).
    CAS  Article  Google Scholar 

    34.
    Halperin, L., Jung, J. & Michalak, M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life 66, 318–326 (2014).
    CAS  Article  Google Scholar 

    35.
    Obchoei, S. et al. Cyclophilin A: potential functions and therapeutic target for human cancer. Med. Sci. Monit. 15, RA221–RA232 (2009).
    CAS  Google Scholar 

    36.
    Wei, Y. et al. Antiapoptotic and proapoptotic signaling of cyclophilin A in endothelial cells. Inflammation 36, 567–572 (2013).
    Article  CAS  Google Scholar 

    37.
    Kelleher, D. J. & Gilmore, R. DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc. Natl Acad. Sci. USA 94, 4994–4999 (1997).
    CAS  Article  Google Scholar 

    38.
    Zhou, L. et al. DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes 59, 2809–2816 (2010).
    CAS  Article  Google Scholar 

    39.
    Liu, M. et al. Endoplasmic reticulum (ER) localization is critical for DsbA-L protein to suppress ER stress and adiponectin down-regulation in adipocytes. J. Biol. Chem. 290, 10143–10148 (2015).
    CAS  Article  Google Scholar 

    40.
    Santhekadur, P. K. et al. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor κB and miR-221. J. Biol. Chem. 287, 13952–13958 (2012).
    CAS  Article  Google Scholar 

    41.
    Pan, Y. H. et al. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats. PLoS ONE 8, e62039 (2013).
    CAS  Article  Google Scholar 

    42.
    Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).
    CAS  Article  Google Scholar 

    43.
    Lu, Z. & Xu, S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58, 621–631 (2006).
    CAS  Article  Google Scholar 

    44.
    Sun, F.-C. et al. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem. J. 396, 31–39 (2006).
    CAS  Article  Google Scholar 

    45.
    van Breukelen, F. & Martin, S. L. Translational initiation is uncoupled from elongation at 18 C during mammalian hibernation. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 281, R1374–R1379 (2001).
    Article  Google Scholar 

    46.
    van Breukelen, F., Sonenberg, N. & Martin, S. L. Seasonal and state-dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 287, R349–R353 (2004).
    Article  Google Scholar 

    47.
    Pan, P. & van Breukelen, F. Preference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R370–R377 (2011).
    CAS  Article  Google Scholar 

    48.
    Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521–531 (2006).
    Article  CAS  Google Scholar 

    49.
    Harvey, R., Dezi, V., Pizzinga, M. & Willis, A. E. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem. Soc. Trans. 45, 1007–1014 (2017).
    CAS  Article  Google Scholar 

    50.
    Mobin, M. B. et al. The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nat. Commun. 7, 12848 (2016).
    CAS  Article  Google Scholar 

    51.
    Srere, H. K., Wang, L. & Martin, S. L. Central role for differential gene expression in mammalian hibernation. Proc. Natl Acad. Sci. USA 89, 7119–7123 (1992).
    CAS  Article  Google Scholar 

    52.
    Han, Y. et al. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats. BMC Evolut. Biol. 15, 88 (2015).
    Article  CAS  Google Scholar 

    53.
    Lee, M., Choi, I. & Park, K. Activation of stress signaling molecules in bat brain during arousal from hibernation. J. Neurochem. 82, 867–873 (2002).
    CAS  Article  Google Scholar 

    54.
    Storey, K. B. Out cold: biochemical regulation of mammalian hibernation-a mini-review. Gerontology 56, 220–230 (2010).
    Article  Google Scholar 

    55.
    Lei, M., Dong, D., Mu, S., Pan, Y.-H. & Zhang, S. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS ONE 9, e107746 (2014).
    Article  CAS  Google Scholar 

    56.
    Wortel, I. M., van der Meer, L. T., Kilberg, M. S. & van Leeuwen, F. N. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol. Metab. 28, 794–806 (2017).
    CAS  Article  Google Scholar 

    57.
    Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209 (2003).
    CAS  Article  Google Scholar 

    58.
    Ni, M., Zhang, Y. & Lee, A. S. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem. J. 434, 181–188 (2011).
    CAS  Article  Google Scholar 

    59.
    Yin, Q. et al. Antioxidant defenses in the brains of bats during hibernation. PLoS ONE 11, e0152135 (2016).
    Article  CAS  Google Scholar 

    60.
    Allan, M. E. & Storey, K. B. Expression of NF-κB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, Spermophilus tridecemlineatus. Cell Biochem. Funct. 30, 166–174 (2012).
    CAS  Article  Google Scholar 

    61.
    Ni, Z., McMullen, D. C. & Storey, K. B. Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels, Spermophilus tridecemlineatus. Mol. Cell. Biochem. 312, 121–129 (2008).
    Article  CAS  Google Scholar 

    62.
    Németh, J. et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology 50, 1251–1262 (2009).
    Article  CAS  Google Scholar 

    63.
    Sun, S. et al. Cyclophilin A (CypA) interacts with NF-κB subunit, p65/RelA, and contributes to NF-κB activation signaling. PLoS ONE 9, e96211 (2014).
    Article  CAS  Google Scholar 

    64.
    Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett. 288, 10–16 (2010).
    CAS  Article  Google Scholar 

    65.
    Drew, K. L., Rice, M. E., Kuhn, T. B. & Smith, M. A. Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radic. Biol. Med. 31, 563–573 (2001).
    CAS  Article  Google Scholar 

    66.
    Bouma, H. R. et al. Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J. Cell Physiol. 227, 1285–1290 (2012).
    CAS  Article  Google Scholar 

    67.
    Cerri, M. et al. Hibernation for space travel: Impact on radioprotection. Life Sci. Space Res. 11, 1–9 (2016).
    Article  Google Scholar 

    68.
    Uchida, Y., Tokizawa, K. & Nagashima, K. Characteristics of activated neurons in the suprachiasmatic nucleus when mice become hypothermic during fasting and cold exposure. Neurosci. Lett. 579, 177–182 (2014).
    CAS  Article  Google Scholar 

    69.
    Sato, N., Marui, S., Ozaki, M. & Nagashima, K. Cold exposure and/or fasting modulate the relationship between sleep and body temperature rhythms in mice. Physiol. Behav. 149, 69–75 (2015).
    CAS  Article  Google Scholar 

    70.
    Tokizawa, K., Uchida, Y. & Nagashima, K. Thermoregulation in the cold changes depending on the time of day and feeding condition: physiological and anatomical analyses of involved circadian mechanisms. Neuroscience 164, 1377–1386 (2009).
    CAS  Article  Google Scholar 

    71.
    Van Breukelen, F. & Martin, S. L. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol. 92, 2640–2647 (2002).
    Article  Google Scholar 

    72.
    Piersma, S. R. et al. Workflow comparison for label-free, quantitative secretome proteomics for cancer biomarker discovery: method evaluation, differential analysis, and verification in serum. J. Proteome Res. 9, 1913–1922 (2010).
    CAS  Article  Google Scholar 

    73.
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2018).
    Article  CAS  Google Scholar 

    74.
    Yu, D. et al. EGPS 1.0: Comprehensive software for multi-omic and evolutionary analyses. Natl Sci. Rev. 6, 867–869 (2019).

    75.
    Yin, Q. et al. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis. Biochim. Biophys. Acta Proteins Proteom. 1865, 1004–1019 (2017).
    CAS  Article  Google Scholar 

    76.
    Romero-Calvo, I. et al. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal. Biochem. 401, 318–320 (2010).
    CAS  Article  Google Scholar 

    77.
    Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).
    CAS  PubMed  Google Scholar  More

  • in

    Toxicity of the herbicides diuron, propazine, tebuthiuron, and haloxyfop to the diatom Chaetoceros muelleri

    1.
    Carbery, K., Owen, R., Frickers, T., Otero, E. & Readman, J. Contamination of Caribbean coastal waters by the antifouling herbicide Irgarol 1051. Mar. Pollut. Bull. 52, 635–644. https://doi.org/10.1016/j.marpolbul.2005.10.013 (2006).
    CAS  Article  Google Scholar 
    2.
    Hernández-Romero, A. H., Tovilla-Hernández, C., Malo, E. A. & Bello-Mendoza, R. Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar. Pollut. Bull. 48, 1130–1141. https://doi.org/10.1016/j.marpolbul.2004.01.003 (2004).
    CAS  Article  Google Scholar 

    3.
    Castillo, L. E., de la Cruz, E. & Ruepert, C. Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environ. Toxicol. Chem. 16, 41–51. https://doi.org/10.1002/etc.5620160104 (1997).
    CAS  Article  Google Scholar 

    4.
    Basheer, C., Obbard, J. P. & Lee, H. K. Persistent organic pollutants in Singapore’s coastal marine environment: part I, seawater. Water Air Soil Pollut. 149, 295–313. https://doi.org/10.1023/A:1025689600993 (2003).
    ADS  CAS  Article  Google Scholar 

    5.
    Ali, H. R. et al. Contamination of diuron in coastal waters around Malaysian Peninsular. Mar. Pollut. Bull. 85, 287–291. https://doi.org/10.1016/j.marpolbul.2014.05.049 (2014).
    CAS  Article  Google Scholar 

    6.
    Okamura, H., Aoyama, I., Ono, Y. & Nishida, T. Antifouling herbicides in the coastal waters of western Japan. Mar. Pollut. Bull. 47, 59–67. https://doi.org/10.1016/S0025-326X(02)00418-6 (2003).
    CAS  Article  Google Scholar 

    7.
    Roche, H., Salvat, B. & Ramade, F. Assessment of the pesticides pollution of coral reefs communities from French Polynesia. Rev. Ecol. https://hdl.handle.net/2042/55860 (2011).

    8.
    Sarkar, S. K. et al. Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview. Environ. Int. 34, 1062–1071. https://doi.org/10.1016/j.envint.2008.02.010 (2008).
    CAS  Article  Google Scholar 

    9.
    Devlin, M. M. et al. Advancing our understanding of the source, management, transport and impacts of pesticides on the Great Barrier Reef 2011–2015. Report for the Queensland Department of Environment and Heritage Protection. Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication, James Cook University, Cairns, Australia (2015).

    10.
    GBR. Great Barrier Reef Marine Park Authority 2019, Great Barrier Reef Outlook Report 2019, GBRMPA, Townsville. https://www.gbrmpa.gov.au/our-work/outlook-report-2019 (2019).

    11.
    Brodie, J. et al. Terrestrial pollutant runoff to the Great Barrier Reef: an update of issues, priorities and management responses. Mar. Pollut. Bull. 65, 81–100. https://doi.org/10.1016/j.marpolbul.2011.12.012 (2012).
    CAS  Article  Google Scholar 

    12.
    Lewis, S. E. et al. Herbicides: a new threat to the Great Barrier Reef. Environ. Pollut. 157, 2470–2484. https://doi.org/10.1016/j.envpol.2009.03.006 (2009).
    CAS  Article  Google Scholar 

    13.
    RWQIP. Reef 2050 Water Quality Improvement Plan 2017–2022. Australian and Queensland Government. https://www.reefplan.qld.gov.au/__data/assets/pdf_file/0017/46115/reef-2050-water-quality-improvement-plan-2017-22.pdf (2018).

    14.
    Shaw, M. et al. Monitoring pesticides in the Great Barrier Reef. Mar. Pollut. Bull. 60, 113–122. https://doi.org/10.1016/j.marpolbul.2009.08.026 (2010).
    CAS  Article  Google Scholar 

    15.
    Grant, S. et al. Marine Monitoring Program: Annual report for inshore pesticide monitoring 2015–2016 (Report for the Great Barrier Reef Marine Park Authority, Great Barrier Reef Marine Park Authority, Townsville, Australia, 2017).
    Google Scholar 

    16.
    O’Brien, D. et al. Spatial and temporal variability in pesticide exposure downstream of a heavily irrigated cropping area: application of different monitoring techniques. J. Agric. Food Chem. 64, 3975–3989. https://doi.org/10.1021/acs.jafc.5b04710 (2016).
    CAS  Article  Google Scholar 

    17.
    Radcliffe, J. Pesticide use in Australia. A review undertaken by the Australian Academy of Technological Sciences, Victoria, Australia. https://www.atse.org.au/ (2002).

    18.
    Oettmeier, W. Herbicides of photosystems II. in Structure, Function and Molecular Biology (Barber, J., ed) (Elsevier, Amsterdam, 349–408). https://doi.org/10.1016/B978-0-444-89440-3.50018-7 (1992).

    19.
    Lewis, S. E. et al. Using monitoring data to model herbicides exported to the Great Barrier Reef, Australia. in The 19th International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand. MODSIM2011, 2051–2056 (2011).

    20.
    Kennedy, K. et al. The influence of a season of extreme wet weather events on exposure of the World Heritage Area Great Barrier Reef to pesticides. Mar. Pollut. Bull. 64, 1495–1507. https://doi.org/10.1016/j.marpolbul.2012.05.014 (2012).
    CAS  Article  Google Scholar 

    21.
    Kennedy, K. et al. Long term monitoring of photosystem II herbicides: correlation with remotely sensed freshwater extent to monitor changes in the quality of water entering the Great Barrier Reef, Australia. Mar. Pollut. Bull. 65, 292–305. https://doi.org/10.1016/j.marpolbul.2011.10.029 (2012).
    CAS  Article  Google Scholar 

    22.
    Mercurio, P., Mueller, J. F., Eaglesham, G., Flores, F. & Negri, A. P. Herbicide persistence in seawater simulation experiments. PLoS ONE 10, e0136391. https://doi.org/10.1371/journal.pone.0136391 (2015).
    CAS  Article  Google Scholar 

    23.
    Mercurio, P. et al. Degradation of herbicides in the tropical marine environment: influence of light and sediment. PLoS ONE 11, e0165890. https://doi.org/10.1371/journal.pone.0165890 (2016).
    CAS  Article  Google Scholar 

    24.
    Gallen, C. et al. Marine Monitoring Program: Annual report for inshore pesticide monitoring 2017–18. Report for the Great Barrier Reef Marine Park Authority, Great Barrier Reef Marine Park Authority, Townsville, Australia. https://elibrary.gbrmpa.gov.au/jspui/handle/11017/3489 (2019).

    25.
    Davis, A., Lewis, S., Brodie, J. & Benson, A. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area. Sci. Total Environ. 490, 81–92. https://doi.org/10.1016/j.scitotenv.2014.04.005 (2014).
    ADS  CAS  Article  Google Scholar 

    26.
    Thomas, M. C., Flores, F., Kaserzon, S., Fisher, R. & Negri, A. P. Toxicity of ten herbicides to the tropical marine microalgae Rhodomonas salina. Sci. Rep. 10, 7612. https://doi.org/10.1038/s41598-020-64116-y (2020).
    ADS  CAS  Article  Google Scholar 

    27.
    ANZG. Revised Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia. https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/toxicants (2018).

    28.
    Warne, M. St. J. et al. Revised method for deriving Australian and New Zealand water quality guideline values for toxicants: update of 2015 version. Prepared for the revision of the Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, Australia. 48 pp, https://www.waterquality.gov.au/anz-guidelines/guideline-values/derive/warne-method-derive. https://doi.org/10.13140/RG.2.2.36577.35686 (2018).

    29.
    Warne, M. St. J., Smith, R. & Turner, R. Analysis of pesticide mixtures discharged to the lagoon of the Great Barrier Reef, Australia. Environ. Pollut. 265, 114088. https://doi.org/10.1016/j.envpol.2020.114088 (2020).
    CAS  Article  Google Scholar 

    30.
    Magnusson, M., Heimann, K., Quayle, P. & Negri, A. P. Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Mar. Pollut. Bull. 60, 1978–1987. https://doi.org/10.1016/j.marpolbul.2010.07.031 (2010).
    CAS  Article  Google Scholar 

    31.
    Faust, M. et al. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat. Toxicol. 56, 13–32. https://doi.org/10.1016/S0166-445X(01)00187-4 (2001).
    CAS  Article  Google Scholar 

    32.
    Wilkinson, A. D., Collier, C. J., Flores, F. & Negri, A. P. Acute and additive toxicity of ten photosystem-II herbicides to seagrass. Sci. Rep. 5, 17443. https://doi.org/10.1038/srep17443 (2015).
    ADS  CAS  Article  Google Scholar 

    33.
    Traas, T. P. et al. The potentially affected fraction as a measure of ecological risk. in Species sensitivity distributions in ecotoxicology (L. Posthuma, & G. W. Suter, Eds.) (pp. 315–344). https://doi.org/10.1201/9781420032314-20 (2002).

    34.
    Negri, A. P. et al. Adjusting tropical marine water quality guideline values for elevated ocean temperatures. Environ. Sci. Technol. 54, 1102–1110. https://doi.org/10.1021/acs.est.9b05961 (2019).
    ADS  CAS  Article  Google Scholar 

    35.
    King, O., Smith, R., Mann, R. & Warne, M. St. J. Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area: Part 1 (amended): 2,4-D, Ametryn, Diuron, Glyphosate, Hexazinone, Imazapic, Imidacloprid, Isoxaflutole, Metolachlor, Metribuzin, Metsulfuron-methyl, Simazine, Tebuthiuron. Department of Environment and Science, Brisbane, Australia. https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment (2017).

    36.
    King, O., Smith, R., Warne, M. St. J. & Mann, R. Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area: Part 2: Bromacil, Chlorothalonil, Fipronil, Fluometuron, Fluroxypyr, Haloxyfop, MCPA, Pendimethalin, Prometryn, Propazine, Propiconazole, Terbutryn, Triclopyr and Terbuthylazine. Department of Science, Information Technology and Innovation, Brisbane, Australia. https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment (2017).

    37.
    Fleeger, J. W., Carman, K. R. & Nisbet, R. M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 317, 207–233. https://doi.org/10.1016/S0048-9697(03)00141-4 (2003).
    ADS  CAS  Article  Google Scholar 

    38.
    Ralph, P. J. & Gademann, R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237. https://doi.org/10.1016/j.aquabot.2005.02.006 (2005).
    CAS  Article  Google Scholar 

    39.
    Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. in Chlorophyll a fluorescence (Springer, Dordrecht, 2004) 279–319.

    40.
    Magnusson, M., Heimann, K. & Negri, A. P. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar. Pollut. Bull. 56, 1545–1552. https://doi.org/10.1016/j.marpolbul.2008.05.023 (2008).
    CAS  Article  Google Scholar 

    41.
    Sjollema, S. B. et al. Hazard and risk of herbicides for marine microalgae. Environ. Pollut. 187, 106–111. https://doi.org/10.1016/j.envpol.2013.12.019 (2014).
    CAS  Article  Google Scholar 

    42.
    Muller, R. et al. Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci. Total Environ. 401, 51–59. https://doi.org/10.1016/j.scitotenv.2008.02.062 (2008).
    ADS  CAS  Article  Google Scholar 

    43.
    Bengston-Nash, S. M., Quayle, P. A., Schreiber, U. & Muller, J. F. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay. Aquat. Toxicol. 72, 315–326. https://doi.org/10.1016/j.aquatox.2005.02.004 (2005).
    CAS  Article  Google Scholar 

    44.
    Duggleby, R. G., McCourt, J. A. & Guddat, L. W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46, 309–324. https://doi.org/10.1016/j.plaphy.2007.12.004 (2008).
    CAS  Article  Google Scholar 

    45.
    Grossmann, K. Auxin herbicides: current status of mechanism and mode of action. Pest Manage. Sci. 66, 113–120. https://doi.org/10.1002/ps.1860 (2010).
    CAS  Article  Google Scholar 

    46.
    OECD. Organisation for Economic Cooperation and Development (OECD) guidelines for the testing of chemicals: freshwater alga and cyanobacteria, growth inhibition test. Test No. 201, https://search.oecd.org/env/test-no-201-alga-growth-inhibition-test-9789264069923-en.htm (2011).

    47.
    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).
    CAS  Article  Google Scholar 

    48.
    Rutherford, A. W. & Krieger-Liszkay, A. Herbicide-induced oxidative stress in photosystem II. Trends Biochem. Sci. 26, 648–653. https://doi.org/10.1016/S0968-0004(01)01953-3 (2001).
    CAS  Article  Google Scholar 

    49.
    Chen, S., Yin, C., Strasser, R. J., Yang, C. & Qiang, S. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol. Biochem. 52, 38–51. https://doi.org/10.1016/j.plaphy.2011.11.004 (2012).
    CAS  Article  Google Scholar 

    50.
    Chesworth, J., Donkin, M. & Brown, M. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.). Aquat. Toxicol. 66, 293–305. https://doi.org/10.1016/j.aquatox.2003.10.002 (2004).
    CAS  Article  Google Scholar 

    51.
    Jones, R. J. & Kerswell, A. P. Phytotoxicity of photosystem II (PSII) herbicides to coral. Mar. Ecol. Prog. Ser. 261, 149–159. https://doi.org/10.3354/meps261149 (2003).
    ADS  CAS  Article  Google Scholar 

    52.
    van Dam, J. W., Negri, A. P., Mueller, J. F. & Uthicke, S. Symbiont-specific responses in foraminifera to the herbicide diuron. Mar. Pollut. Bull. 65, 373–383. https://doi.org/10.1016/j.marpolbul.2011.08.008 (2012).
    CAS  Article  Google Scholar 

    53.
    Negri, A. P., Flores, F., Röthig, T. & Uthicke, S. Herbicides increase the vulnerability of corals to rising sea surface temperature. Limnol. Oceanogr. 56, 471–485. https://doi.org/10.4319/lo.2011.56.2.0471 (2011).
    ADS  CAS  Article  Google Scholar 

    54.
    USEPA. ECOTOX User Guide: ECOTOXicology Database System. Version 5.0. United States Environmental Protection Agency. https://cfpub.epa.gov/ecotox/ (2019).

    55.
    Bao, V. W., Leung, K. M., Qiu, J.-W. & Lam, M. H. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 62, 1147–1151. https://doi.org/10.1016/j.marpolbul.2011.02.041 (2011).
    CAS  Article  Google Scholar 

    56.
    Gatidou, G., Thomaidis, N. S. & Zhou, J. L. Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int. 33, 70–77. https://doi.org/10.1016/j.envint.2006.07.002 (2007).
    CAS  Article  Google Scholar 

    57.
    Jung, S. et al. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar. Pollut. Bull. 124, 811–818. https://doi.org/10.1016/j.marpolbul.2016.11.047 (2017).
    CAS  Article  Google Scholar 

    58.
    Koutsaftis, A. & Aoyama, I. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environ. Toxicol. Int. J. 21, 432–439. https://doi.org/10.1002/tox.20202 (2006).
    ADS  CAS  Article  Google Scholar 

    59.
    Booij, P. et al. Identification of photosynthesis inhibitors of pelagic marine algae using 96-well plate microfractionation for enhanced throughput in effect-directed analysis. Environ. Sci. Technol. 48, 8003–8011. https://doi.org/10.1021/es405428t (2014).
    ADS  CAS  Article  Google Scholar 

    60.
    DeLorenzo, M. E., Danese, L. E. & Baird, T. D. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton. Environ. Toxicol. 28, 359–371. https://doi.org/10.1002/tox.20726 (2013).
    ADS  CAS  Article  Google Scholar 

    61.
    Devilla, R. A. et al. Impact of antifouling booster biocides on single microalgal species and on a natural marine phytoplankton community. Mar. Ecol. Prog. Ser. 286, 1–12. https://doi.org/10.3354/MEPS286001 (2005).
    ADS  CAS  Article  Google Scholar 

    62.
    Mercurio, P. et al. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms. Sci. Rep. 8, 4808. https://doi.org/10.1038/s41598-018-23153-4 (2018).
    ADS  CAS  Article  Google Scholar 

    63.
    Jones, R. The ecotoxicological effects of Photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506. https://doi.org/10.1016/j.marpolbul.2005.06.027 (2005).
    CAS  Article  Google Scholar 

    64.
    Guasch, H. & Sabater, S. Light history influences the sensitivity to atrazine in periphytic algae. J. Phycol. 34, 233–241. https://doi.org/10.1046/j.1529-8817.1998.340233.x (1998).
    CAS  Article  Google Scholar 

    65.
    Millie, D. F., Hersh, C. M. & Dionigi, C. P. Simazine-induced inhibition in photoacclimated populations of Anabaena circinalis (Cyanophyta). J. Phycol. 28, 19–26. https://doi.org/10.1111/j.0022-3646.1992.00019.x (1992).
    CAS  Article  Google Scholar 

    66.
    Bérard, A. et al. Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53, 935–944. https://doi.org/10.1016/S0045-6535(03)00674-X (2003).
    ADS  CAS  Article  Google Scholar 

    67.
    Descolas-Gros, C. & Oriol, L. Variations in carboxylase activity in marine phytoplankton cultures. ß-carboxylation in carbon flux studies. Mar. Ecol. Prog. Ser. 85, 163–169 (1992).
    ADS  CAS  Article  Google Scholar 

    68.
    Tang, J., Hoagland, K. D. & Siegfried, B. D. Uptake and bioconcentration of atrazine by selected freshwater algae. Environ. Toxicol. Chem. 17, 1085–1090. https://doi.org/10.1002/etc.5620170614 (1998).
    CAS  Article  Google Scholar 

    69.
    Magnusson, M., Heimann, K., Ridd, M. & Negri, A. P. Chronic herbicide exposures affect the sensitivity and community structure of tropical benthic microalgae. Mar. Pollut. Bull. 65, 363–372. https://doi.org/10.1016/j.marpolbul.2011.09.029 (2012).
    CAS  Article  Google Scholar 

    70.
    Tuchman, N. C., Schollett, M. A., Rier, S. T. & Geddes, P. Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 561, 167–177. https://doi.org/10.1007/s10750-005-1612-4 (2006).
    CAS  Article  Google Scholar 

    71.
    APVMA. Australian Pesticides and Veterinary Medicines Authority. https://apvma.gov.au/ (2019).

    72.
    EPA. U.S. Environmental Protection Agency. https://www.epa.gov/pesticides (2020).

    73.
    EC. European Commission. EU Pesticides database. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/ (2020).

    74.
    Novic, A. J. et al. Monitoring herbicide concentrations and loads during a flood event: a comparison of grab sampling with passive sampling. Environ. Sci. Technol. 51, 3880–3891. https://doi.org/10.1021/acs.est.6b02858 (2017).
    ADS  CAS  Article  Google Scholar 

    75.
    Mercurio, P. Herbicide persistence and toxicity in the tropical marine environment. PhD University of Queensland. 148 p. https://doi.org/10.14264/uql.2016.722 (2016).

    76.
    MacBean, C. The pesticide manual: a world compendium, 6th Edition 598–601 (British Crop Production Council (BCPC), Alton, 2012).

    77.
    Huerlimann, R. & Heimann, K. Comprehensive guide to acetyl-carboxylases in algae. Crit. Rev. Biotechnol. 33, 49–65. https://doi.org/10.3109/07388551.2012.668671 (2013).
    CAS  Article  Google Scholar 

    78.
    Kukorelli, G., Reisinger, P. & Pinke, G. ACCase inhibitor herbicides – selectivity, weed resistance and fitness cost: a review. Int. J. Pest Manage. 59, 165–173. https://doi.org/10.1080/09670874.2013.821212 (2013).
    CAS  Article  Google Scholar 

    79.
    Huerlimann, R., Zenger, K. R., Jerry, D. R. & Heimann, K. Phylogenetic analysis of nucleus-encoded acetyl-CoA carboxylases targeted at the cytosol and plastid of algae. PLoS ONE https://doi.org/10.1371/journal.pone.0131099 (2015).
    Article  Google Scholar 

    80.
    Tang, C. Y., Huang, Z. & Allen, H. C. Interfacial water structure and effects of Mg2+ and Ca2+ binding to the COOH headgroup of a palmitic acid monolayer studied by sum frequency spectroscopy. J. Phys. Chem. B 115, 34–40. https://doi.org/10.1021/jp1062447 (2010).
    CAS  Article  Google Scholar 

    81.
    Brzozowska, A., Duits, M. H. & Mugele, F. Stability of stearic acid monolayers on Artificial Sea Water. Colloids Surf. Physicochem. Eng. Aspects 407, 38–48. https://doi.org/10.1016/j.colsurfa.2012.04.055 (2012).
    CAS  Article  Google Scholar 

    82.
    Bengston-Nash, S. M., Schreiber, U., Ralph, P. J. & Muller, J. F. The combined SPE : ToxY-PAM phytotoxicity assay; application and appraisal of a novel biomonitoring tool for the aquatic environment. Biosens. Bioelectron. 20, 1443–1451. https://doi.org/10.1016/j.bios.2004.09.019 (2005).
    CAS  Article  Google Scholar 

    83.
    Schreiber, U., Quayle, P., Schmidt, S., Escher, B. I. & Mueller, J. F. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosens. Bioelectron. 22, 2554–2563. https://doi.org/10.1016/j.bios.2006.10.018 (2007).
    CAS  Article  Google Scholar 

    84.
    Haynes, D., Muller, J. & Carter, S. Pesticide and herbicide residues in sediments and seagrasses from the Great Barrier Reef World Heritage Area and Queensland coast. Mar. Pollut. Bull. 41, 279–287. https://doi.org/10.1016/s0025-326x(00)00097-7 (2000).
    CAS  Article  Google Scholar 

    85.
    Ralph, P., Smith, R., Macinnis-Ng, C. & Seery, C. Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems. Toxicol. Environ. Chem. 89, 589–607. https://doi.org/10.1080/02772240701561593 (2007).
    CAS  Article  Google Scholar 

    86.
    Lemmermann, E. D. grosse Waterneverstorfer Binnensee: Eine biologische Studie. Forsch. Biol. Station Plön 6, 166–205 (1896).
    Google Scholar 

    87.
    Li, Y. et al. Diversity in the globally distributed diatom genus Chaetoceros (Bacillariophyceae): three new species from warm-temperate waters. PLoS ONE https://doi.org/10.1371/journal.pone.0168887 (2017).
    Article  Google Scholar 

    88.
    Helm, M. M., and Neil Bourne. Hatchery culture of bivalves: a practical manual. Ed. Alessandro Lovatelli. Fisheries Technical Paper 471. Food and Agriculture Organization of the United (FAO), 177 pp (2004).

    89.
    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms: I Cyclotellanana Hustedt, and Detonulaconfervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239. https://doi.org/10.1139/m62-029 (1962).
    CAS  Article  Google Scholar 

    90.
    Schreiber, U., Müller, J. F., Haugg, A. & Gademann, R. New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth. Res. 74, 317–330. https://doi.org/10.1023/A:1021276003145 (2002).
    CAS  Article  Google Scholar 

    91.
    Fisher, R., Ricardo, G., and Fox, D. jags NEC: A Bayesian No Effect Concentration (NEC) package. https://github.com/AIMS/NEC-estimation (2019).

    92.
    Fox, D. R. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Ecotoxicol. Environ. Saf. 73, 123–131. https://doi.org/10.1016/j.ecoenv.2009.09.012 (2010).
    CAS  Article  Google Scholar  More