Soil–vegetation moisture capacitor maintains dry season vegetation productivity over India
Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).Article
ADS
CAS
Google Scholar
Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).Article
ADS
CAS
Google Scholar
Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).Article
CAS
Google Scholar
Devaraju, N., Bala, G. & Nemani, R. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 38, 1931–1946 (2015).Article
CAS
Google Scholar
Chu, C. et al. Does climate directly influence NPP globally?. Glob. Change Biol. 22, 12–24 (2016).Article
ADS
Google Scholar
Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article
Google Scholar
Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 48 (2017).Article
Google Scholar
Cheng, J. et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene. Nat. Commun. 12, 1–9 (2021).ADS
Google Scholar
Yu, Y. et al. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nat. Commun. 8, 1–9 (2017).Article
ADS
Google Scholar
Betts, R. A., Cox, P. M., Lee, S. E. & Woodward, F. I. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387, 796–799 (1997).Article
ADS
CAS
Google Scholar
Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 10, 356–362 (2020).Article
ADS
Google Scholar
Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Chang. 6, 75–78 (2016).Article
ADS
Google Scholar
Steffen, W. et al. Trajectories of the earth system in the anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).Article
ADS
CAS
Google Scholar
Bruijnzeel, L. A. Hydrological functions of tropical forests: Not seeing the soil for the trees?. Agric. Ecosyst. Environ. 104, 185–228 (2004).Article
Google Scholar
Bierkens, M. F. P. & van den Hurk, B. J. J. M. Groundwater convergence as a possible mechanism for multi-year persistence in rainfall. Geophys. Res. Lett. 34, 2402 (2007).Article
ADS
Google Scholar
Idso, S. B. & Brazel, A. J. Rising atmospheric carbon dioxide concentrations may increase streamflow. Nature 312, 51–53 (1984).Article
ADS
CAS
Google Scholar
Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).Article
ADS
CAS
Google Scholar
Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA. 113, 10019–10024 (2016).Article
ADS
CAS
Google Scholar
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).Article
ADS
CAS
Google Scholar
Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang. 5, 579–583 (2015).Article
ADS
CAS
Google Scholar
Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 1–9 (2015).
Google Scholar
Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, 23 (2006).Article
Google Scholar
Teuling, A. J., Uijlenhoet, R., Hupert, F. & Troch, P. A. Impact of plant water uptake strategy on soil moisture and evapotranspiration dynamics during drydown. Geophys. Res. Lett. 33, 3401 (2006).Article
ADS
Google Scholar
Vivoni, E. R. et al. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett. 35, 22 (2008).Article
Google Scholar
Dirmeyer, P. A., Jin, Y., Csingh, C. & Yan, C. Evolving land-atmosphere interactions over North America from CMIP5 simulations. J. Clim. 26, 7313–7327 (2013).Article
ADS
Google Scholar
Dirmeyer, P. A. et al. Verification of land-atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeorol. 19, 375–392 (2018).Article
ADS
Google Scholar
Friedlingstein, P. et al. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543–1546 (2001).Article
ADS
CAS
Google Scholar
Arora, K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).Article
ADS
CAS
Google Scholar
Song, X., Wang, D. Y., Li, F. & Zeng, X. D. Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Adv. Clim. Chang. Res. 12, 584–595 (2021).Article
Google Scholar
Levine, P. A., Randerson, J. T., Swenson, S. C. & Lawrence, D. M. Evaluating the strength of the land-atmosphere moisture feedback in Earth system models using satellite observations. Hydrol. Earth Syst. Sci. 20, 4837–4856 (2016).Article
ADS
Google Scholar
Wei, N. et al. Evolution of uncertainty in terrestrial carbon storage in earth system models from CMIP5 to CMIP6. J. Clim. 35, 5483–5499 (2022).Article
ADS
Google Scholar
Smith, N. G. et al. Toward a better integration of biological data from precipitation manipulation experiments into Earth system models. Rev. Geophys. 52, 412–434 (2014).Article
ADS
Google Scholar
Yuan, K., Zhu, Q., Riley, W. J., Li, F. & Wu, H. Understanding and reducing the uncertainties of land surface energy flux partitioning within CMIP6 land models. Agric. For. Meteorol. 319, 108920 (2022).Article
ADS
Google Scholar
Baker, J. C. A. et al. An assessment of land-atmosphere interactions over south america using satellites, reanalysis, and two global climate models. J. Hydrometeorol. 22, 905–922 (2021).Article
ADS
Google Scholar
Mooley, D. A. & Parthasarathy, B. Fluctuations in All-India summer monsoon rainfall during 1871?1978. Clim. Change 6, 287–301 (1984).Article
ADS
Google Scholar
Guhathakurta, P. & Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. 28, 1453–1469 (2008).Article
Google Scholar
Sarkar, S. & Kafatos, M. Interannual variability of vegetation over the Indian sub-continent and its relation to the different meteorological parameters. Remote Sens. Environ. 90, 268–280 (2004).Article
ADS
Google Scholar
Roy, P. S. et al. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int. J. Appl. Earth Obs. Geoinf. 39, 142–159 (2015).ADS
Google Scholar
Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).Article
ADS
CAS
Google Scholar
Paul, S. et al. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 6, 1–10 (2016).Article
Google Scholar
Pathak, A., Ghosh, S., Kumar, P. & Murtugudde, R. Role of oceanic and terrestrial atmospheric moisture sources in intraseasonal variability of indian summer monsoon rainfall. Sci. Rep. 7, 12729 (2017).Article
ADS
Google Scholar
Pradhan, R., Singh, N. & Singh, R. P. Onset of summer monsoon in Northeast India is preceded by enhanced transpiration. Sci. Rep. 9, 1–11 (2019).Article
Google Scholar
Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article
ADS
CAS
Google Scholar
Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).Article
ADS
Google Scholar
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article
Google Scholar
Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).Article
ADS
CAS
Google Scholar
Pathak, A. et al. Role of oceanic and land moisture sources and transport in the seasonal and interannual variability of summer monsoon in India. J. Clim. 30, 1839–1859 (2017).Article
ADS
Google Scholar
Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article
ADS
CAS
Google Scholar
Venkateswarlu, B. & Prasad, J. V. N. Carrying capacity of Indian agriculture: issues related to rainfed agriculture. Curr. Sci. 102, 6 (2012).
Google Scholar
Pai, D. S. et al. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65, 1–18 (2014).Article
Google Scholar
Rodríguez-Fernández, N. J. et al. Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data. Remote Sens. 8, 959 (2016).Article
ADS
Google Scholar
Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article
ADS
Google Scholar
Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).Article
ADS
Google Scholar
Doelling, D. R. et al. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 30, 1072–1090 (2013).Article
ADS
Google Scholar
Doelling, D. R. et al. Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product. J. Atmos. Ocean. Technol. 33, 503–521 (2016).Article
ADS
Google Scholar
Running, S. W., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. (2015). https://doi.org/10.5067/MODIS/MOD17A2H.006. Accessed 22 May 2021.Pathak, A., Ghosh, S. & Kumar, P. Precipitation recycling in the Indian subcontinent during summer monsoon. J. Hydrometeorol. 15, 2050 (2014).Article
ADS
Google Scholar
Paul, S., Ghosh, S., Rajendran, K. & Murtugudde, R. Moisture supply from the western ghats forests to water deficit east coast of India. Geophys. Res. Lett. 45, 4337–4344 (2018).Article
ADS
Google Scholar
Sebastian, D. E. et al. Multi-scale association between vegetation growth and climate in India: A wavelet analysis approach. Remote Sens. 11, 2073 (2019).Article
Google Scholar
Tabari, H. & Hosseinzadeh Talaee, P. Sensitivity of evapotranspiration to climatic change in different climates. Glob. Planet. Change 115, 16–23 (2014).Article
ADS
Google Scholar
Roy, A., Das, S. K., Tripathi, A. K., Singh, N. U. & Barman, H. K. Biodiversity in North East India and their conservation. Progress. Agric. 15, 182 (2015).Article
Google Scholar
Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA. 112, 436–441 (2015).Article
ADS
CAS
Google Scholar
Verma, A., Chandel, V. & Ghosh, S. Climate drivers of the variations of vegetation productivity in India. Environ. Res. Lett. 17, 084023 (2022).Article
ADS
Google Scholar
Dimri, A. P. et al. Western disturbances: A review. Rev. Geophys. 53, 225–246 (2015).Article
ADS
Google Scholar
Joseph, J., Scheidegger, J. M., Jackson, C. R., Barik, B. & Ghosh, S. Is flood to drip irrigation a solution to groundwater depletion in the Indo-Gangetic plain?. Environ. Res. Lett. 17, 104002 (2022).Article
ADS
Google Scholar
Sahastrabuddhe, R., Ghosh, S., Saha, A. & Murtugudde, R. A minimalistic seasonal prediction model for Indian monsoon based on spatial patterns of rainfall anomalies. Clim. Dyn. 52, 3661–3681 (2019).Article
Google Scholar
Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415 (1994).Article
ADS
Google Scholar
Friedl, M. A. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. (2019). https://doi.org/10.5067/MODIS/MCD12Q1.006. Accessed 22 May 2021.Myneni, R., Knyazikhin, Y. & Park, T. MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC. (2021) https://doi.org/10.5067/MODIS/MOD15A2H.061. Accessed 22 May 2021.Schaaf, C. & Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD43A3.006. (2015). https://www.umb.edu/spectralmass/terra_aqua_modis/v006. Accessed 22 May 2021.Didan, K., Barreto Munoz, A., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series).Liu, S.-J., Zhang, J.-H., Tian, G.-H. & Cai, D.-X. Detection Fractional Vegetation Cover Changes Using MODIS Data. in 2008 Congress on Image and Signal Processing 707–710 (IEEE, 2008). https://doi.org/10.1109/CISP.2008.46. More