More stories

  • in

    Early human impact on lake cyanobacteria revealed by a Holocene record of sedimentary ancient DNA

    Taranu, Z. E. et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 18, 375–384 (2015).Article 

    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).Article 
    CAS 

    Google Scholar 
    Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).Article 

    Google Scholar 
    Chorus, I. & Bartram, J. Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring, and Management. In: World Health Organization (eds. Chorus I. & Bertram J.) (CRC Press, 1999).Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).Article 
    CAS 

    Google Scholar 
    Carmichael, W. W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. Int. J. 7, 1393–1407 (2001).Article 

    Google Scholar 
    Whitton, B. A. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer, 2012).Smol, J. P., Birks, H. J. B. & Last, W. M. Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators, Developments in Paleoenvironmental Research. (Springer, 2002).Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 52, 1–21 (2017).Article 

    Google Scholar 
    Livingstone, D. & Jaworski, G. H. M. The viability of akinetes of blue-green algae recovered from the sediments of rostherne mere. Br. Phycol. J. 15, 357–364 (1980).Article 

    Google Scholar 
    van Geel, B., Mur, L. R., Ralska-Jasiewiczowa, M. & Goslar, T. Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev. Palaeobot. Palynol. 83, 97–105 (1994).Article 

    Google Scholar 
    Hillbrand, M., van Geel, B., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human- and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 bc). Holocene 24, 559–568 (2014).Article 

    Google Scholar 
    Gosling, W. D. et al. Human occupation and ecosystem change on Upolu (Samoa) during the Holocene. J. Biogeogr. 47, 600–614 (2020).Article 

    Google Scholar 
    Hertzberg, S., Liaaen-Jensen, S. & Siegelman, H. W. The carotenoids of blue-green algae. Phytochemistry 10, 3121–3127 (1971).Article 
    CAS 

    Google Scholar 
    Leavitt, P. R. & Findlay, D. L. Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario. Can. J. Fish. Aquat. Sci. 51, 2286–2299 (1994).Article 
    CAS 

    Google Scholar 
    Kaiser, J., Ön, B., Arz, H. & Akçer-Ön, S. Sedimentary lipid biomarkers in the magnesium-rich and highly alkaline Lake Salda (south-western Anatolia). J. Limnol. 75, 581–596 (2016).
    Google Scholar 
    Bauersachs, T., Talbot, H. M., Sidgwick, F., Sivonen, K. & Schwark, L. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea. PLoS ONE 12, e0186360 (2017).Article 

    Google Scholar 
    Domaizon, I. et al. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosci. Discuss. 10, 2515–2564 (2013).
    Google Scholar 
    Britton, G., Liaaen-Jensen, S. & Pfander, H. in Carotenoids (eds. Britton, G., Liaaen-Jensen, S., Pfander, H.). Vol. 4, 1–6 (Birkhäuser Press, 2008).Capo, E. et al. Lake sedimentary dna research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Monchamp, M. E., Walser, J. C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).Article 
    CAS 

    Google Scholar 
    Nwosu, E. C. et al. Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany. J. Paleolimnol. 66, 279–296 (2021).Article 

    Google Scholar 
    Zhang, J. et al. Pre-industrial cyanobacterial dominance in Lake Moon (NE China) revealed by sedimentary ancient DNA. Quat. Sci. Rev. 261, 106966 (2021).Article 

    Google Scholar 
    Brauer, A., Schwab, M. J., Brademann, B., Pinkerneil, S. & Theuerkauf, M. Tiefer See–a key site for lake sediment research in NE Germany. DEUQUA Spec. Publ. 2, 89–93 (2019).Article 

    Google Scholar 
    Dräger, N. et al. Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). Holocene 27, 450–464 (2017).Article 

    Google Scholar 
    Dräger, N. et al. Hypolimnetic oxygen conditions influence varve preservation and δ13C of sediment organic matter in Lake Tiefer See, NE Germany. J. Paleolimnol. 62, 181–194 (2019).Article 

    Google Scholar 
    Theuerkauf, M., Dräger, N., Kienel, U., Kuparinen, A. & Brauer, A. Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene 25, 733–744 (2015).Article 

    Google Scholar 
    Heinrich, I. et al. Interdisciplinary geo-ecological research across time scales in the Northeast German Lowland Observatory (TERENO-NE). Vadose Zone J. 17, 1–25 (2018).Article 

    Google Scholar 
    Roeser, P. et al. Advances in understanding calcite varve formation: new insights from a dual lake monitoring approach in the southern Baltic lowlands. Boreas 50, 419–440 (2021).Article 

    Google Scholar 
    Nwosu, E. C. et al. From water into sediment—tracing freshwater Cyanobacteria via DNA analyses. Microorganisms 9, 1778 (2021).Article 
    CAS 

    Google Scholar 
    Schmidt, J. -P. Ein Fremdling im Nordischen Kreis Jungbronzezeitliche Funde aus dem Flachen See bei Sophienhof, Lkr. Mecklenburgische Seenplatte. In: D. Brandherm/B. Nessel (Hrsg.), Phasenübergänge und Umbrüche im bronzezeitlichen Europa. Beiträge zur Sitzung der Arbeitsgemeinschaft Bronzezeit auf der 80. Jahrestagung des Nordwestdeutschen Verbandes für Altertumskunde. Vol. 297, 271–281. (Universitätsforschungen zur Prähistorischen Archäologie, 2017).Raese, H. & Schmidt, J. -P. Zur Besiedlung Mecklenburg-Vorpommernswährend des Spätneolithikums und der frühenBronzezeit (2500–1500 v. Chr.). In: Siedlungsarchäologie des Endneolithikums und der frühen Bronzezeit. 11. Mitteldeutscher Archäologentag (eds. Meller, H., Friedderich, S., Küßner, M., Stäuble, H. & Risch, R.) 621–634 (2019).Kienel, U., Dulski, P., Ott, F., Lorenz, S. & Brauer, A. Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. J. Paleolimnol. 50, 535–544 (2013).Article 

    Google Scholar 
    Callieri, C. & Stockner, J. Picocyanobacteria success in oligotrophic lakes: fact or fiction? J. Limnol. 59, 72–76 (2000).Article 

    Google Scholar 
    Sollai, M. et al. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation. Biogeosciences 14, 5789–5804 (2017).Article 

    Google Scholar 
    Mur, L. R., Skulberg, O. M. & Utkilen, H. In: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. (eds. Chorus, I. and Bartram, J.) 15–40 (St Edmundsbury Press, 1999).Schmidt, J.-P. Ein bronzenes Hallstattschwert der Periode VI aus dem Flachen See bei Sophienhof, Lkr. Mecklenburgische Seenplatte. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 26, 26–34 (2019).
    Google Scholar 
    Schmidt, J.-P. “Aller guten Dinge sind drei!”–Ein weiteres bronzezeitliches Schwert aus dem Flachen See bei Lütgendorf, Lkr. Mecklenburgische Seenplatte. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 27, 49–55 (2020).
    Google Scholar 
    Küster, M., Stöckmann, M., Fülling, A. & Weber, R. Kulturlandschaftselemente, Kolluvien und Flugsande als Archive der spätholozänen Landschaftsentwicklung im Bereich des Messtischblattes Thurow (Müritz-Nationalpark, Mecklenburg). In: Neue Beiträge zum Naturraum und zur Landschaftsgeschichte im Teilgebiet. (Geozon Science Media, 2015).Feeser, I., Dörfler, W., Kneisel, J., Hinz, M. & Dreibrodt, S. Human impact and population dynamics in the Neolithic and Bronze Age: Multi-proxy evidence from north-western Central Europe. Holocene 29, 1596–1606 (2019).Article 

    Google Scholar 
    Alsleben, A. In How’s Life? Living Conditions in the 2nd and 1st Millennia BCE. Scales of Transformation in Prehistoric and Archaic Societies (eds. Dal Corso, M. et al.) 85–102 (Sidestone Press, 2019).Kneisel, J., Bork, H.-R. & Czebreszuk, J. In Defensive Structures from Central Europe to the Aegean in the 3rd and 2nd Millennia bc (eds. Czebreszuk, J., Kadrow, S. & Müller, J.) 155–170 (Habelt, 2008).Haas, J. N. & Wahlmüller, N. Floren-, Vegetations- und Milieuveränderungen im Zuge der bronzezeitlichen Besiedlung von Bruszczewo (Polen) und der landwirtschaftlichen Nutzung der umliegenden Gebiete. In: Ausgrabungen und Forschungen in einer prähistorischen Siedlungskammer Großpolens. (eds. Müller, J., Czebreszuk, J. & Kneisel, J.) Studien zur Archäologie in Ostmitteleuropa Vol. 6.1, 50–81 (Bonn, 2010).Theuerkauf, M. et al. Holocene lake-level evolution of Lake Tiefer See, NE Germany, caused by climate and land cover changes. Boreas 51, 299–316 (2021).Article 

    Google Scholar 
    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).Article 

    Google Scholar 
    Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).Article 

    Google Scholar 
    Kienel, U. et al. Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. J. Paleolimnol. 57, 37–49 (2017).Article 

    Google Scholar 
    Monchamp, M. E., Spaak, P. & Pomati, F. High dispersal levels and lake warming are emergent drivers of cyanobacterial community assembly in peri-Alpine lakes. Sci. Rep. 9, 7366 (2019).Article 

    Google Scholar 
    Erratt, K. et al. Paleolimnological evidence reveals climate-related preeminence of cyanobacteria in a temperate meromictic lake. Can. J. Fish. Aquat. Sci. 79, 558–565 (2021).Article 

    Google Scholar 
    Schmidt, J.-P. ders., Kein Ende in Sicht? Neue Untersuchungen auf dem Feuerstellenplatz von Naschendorf, Lkr. Nordwestmecklenburg. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 19, 26–46 (2012).
    Google Scholar 
    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).Article 
    CAS 

    Google Scholar 
    Wanner, H. et al. Holocene climate variability and change; a data-based review. J. Geol. Soc. Lond. 172, 254–263 (2015).Article 

    Google Scholar 
    Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).Article 

    Google Scholar 
    Dittmann, E., Fewer, D. P. & Neilan, B. A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43 (2013).Article 
    CAS 

    Google Scholar 
    Dolman, A. M. et al. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).Article 
    CAS 

    Google Scholar 
    Kurmayer, R., Christiansen, G., Fastner, J. & Börner, T. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ. Microbiol. 6, 831–841 (2004).Article 
    CAS 

    Google Scholar 
    Liu, A., Zhu, T., Lu, X. & Song, L. Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl. Energy 11, 383–393 (2013).Article 

    Google Scholar 
    Coates, R. C. et al. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9, e85140 (2014).Article 

    Google Scholar 
    Marciniak, S. et al. Ancient human genomics: the methodology behind reconstructing evolutionary pathways. J. Hum. Evol. 79, 21–34 (2015).Article 

    Google Scholar 
    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. in. Bioinformatics 29, 1682–1684 (2013).Article 

    Google Scholar 
    Borry, M., Hübner, A., Rohrlach, A. B. & Warinner, C. PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9, e11845 (2021).Article 

    Google Scholar 
    Murchie, T. J. et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. Quat. Res. (U. S.) 99, 305–328 (2021).Article 
    CAS 

    Google Scholar 
    Armbrecht, L., Hallegraeff, G., Bolch, C. J. S., Woodward, C. & Cooper, A. Hybridisation capture allows DNA damage analysis of ancient marine eukaryotes. Sci. Rep. 11, 3220 (2021).Article 
    CAS 

    Google Scholar 
    Wulf, S. et al. Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). Quat. Sci. Rev. 132, 1–14 (2016).Article 

    Google Scholar 
    Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 17, 2 (2007).Article 

    Google Scholar 
    Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. In: Ancient DNA. Methods in Molecular Biology (eds. Shapiro B., Barlow A., Heintzman P., Hofreiter M., Paijmans J., Soares A.) Vol. 1963, 31–44 (Humana Press, 2019).Janse, I., Meima, M., Kardinaal, W. E. A. & Zwart, G. High-resolution differentiation of Cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69, 6634–6643 (2003).Article 
    CAS 

    Google Scholar 
    Nwosu, E. C. et al. Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics. Front. Microbiol. 12, https://doi.org/10.3389/fmicb.2021.761259 (2021).Savichtcheva, O. et al. Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total cyanobacteria in preserved DNA isolated from lake sediments. Appl. Environ. Microbiol. 77, 8744–8753 (2011).Article 
    CAS 

    Google Scholar 
    Coolen, M. J. L. et al. Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea. Paleoceanography 21, PA1005 (2006).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina 7 amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformat. 21, 257 (2020).Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformat. 11, 119–119 (2010).Article 

    Google Scholar 
    Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).Article 
    CAS 

    Google Scholar 
    Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab293 (2021).Shen, W. & Ren, H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics. 48, 844–850 (2021).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 29, 471–482 (2001).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-2. Cran R (2019).Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).CAS 

    Google Scholar 
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).Article 

    Google Scholar  More

  • in

    Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent

    Steffen, W. Introducing the Anthropocene: The human epoch. Ambio 50, 1784–1787 (2021).Article 

    Google Scholar 
    Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).Article 

    Google Scholar 
    Bell, G. Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120080 (2013).Article 

    Google Scholar 
    Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).Article 
    CAS 

    Google Scholar 
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).Article 
    CAS 

    Google Scholar 
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).Article 

    Google Scholar 
    Hill, T. S. & Hoogenboom, M. O. The indirect effects of ocean acidification on corals and coral communities. Coral Reefs https://doi.org/10.1007/s00338-022-02286-z (2022).Biagi, E. et al. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents. Sci. Total Environ. 724, 138048 (2020).Article 
    CAS 

    Google Scholar 
    Chen, B. et al. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. Sci. Total Environ. 765, 142690 (2021).Article 
    CAS 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).Article 
    CAS 

    Google Scholar 
    Wood, R. The ecological evolution of reefs. Annu. Rev. Ecol. Syst. 29, 179–206 (1998).Article 

    Google Scholar 
    Drake, J. L. et al. How corals made rocks through the ages. Glob. Chang. Biol. 26, 31–53 (2020).Article 

    Google Scholar 
    Stanley, G. D. Photosymbiosis and the evolution of modern coral reefs. Science 312, 857–858 (2006).Article 
    CAS 

    Google Scholar 
    Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D. & Miller, D. J. A comprehensive phylogenetic analysis of the scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One. 5, e11490 (2010).Article 

    Google Scholar 
    Dubinsky, Z. & Jokiel, P. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).
    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).Article 
    CAS 

    Google Scholar 
    Frankowiak, K., Roniewicz, E. & Stolarski, J. Photosymbiosis in Late Triassic scleractinian corals from the Italian Dolomites. PeerJ 9, e11062 (2021).Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).Article 
    CAS 

    Google Scholar 
    Kremer, P. Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. J. Mar. Biol. Assoc. UK. 85, 613–625 (2005).Article 

    Google Scholar 
    Welsh, D. T., Dunn, R. J. K. & Meziane, T. Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635, 351–362 (2009).Article 
    CAS 

    Google Scholar 
    Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).Article 
    CAS 

    Google Scholar 
    Ferrier‐Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740 (2019).Article 

    Google Scholar 
    Teixidó, N. et al. Ocean acidification causes variable trait shifts in a coral species. Glob. Chang. Biol. 26, 6813–6830 (2020).Article 

    Google Scholar 
    Fantazzini, P. et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat. Commun. 6, 7785 (2015).Article 
    CAS 

    Google Scholar 
    Prada, F. et al. Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Sci. Rep. 11, 19927 (2021).Article 
    CAS 

    Google Scholar 
    Kerrison, P., Hall-Spencer, J. M., Suggett, D. J., Hepburn, L. J. & Steinke, M. Assessment of pH variability at a coastal CO2 vent for ocean acidification studies. Estuar. Coast. Shelf Sci. 94, 129–137 (2011).Article 
    CAS 

    Google Scholar 
    Johnson, V. R., Russell, B. D., Fabricius, K. E., Brownlee, C. & Hall-Spencer, J. M. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob. Chang. Biol. 18, 2792–2803 (2012).Article 

    Google Scholar 
    Caroselli, E. et al. Low and variable pH decreases recruitment efficiency in populations of a temperate coral naturally present at a CO2 vent. Limnol. Oceanogr. 64, 1059–1069 (2019).Article 
    CAS 

    Google Scholar 
    González-Delgado, S. & Hernández, J. C. The importance of natural acidified systems in the study of ocean acidification: what have we learned? Adv. Mar. Biol. 80, 57–99 (2018).Article 

    Google Scholar 
    Capaccioni, B., Tassi, F., Vaselli, O., Tedesco, D. & Poreda, R. Submarine gas burst at Panarea Island (southern Italy) on 3 November 2002: A magmatic versus hydrothermal episode. J. Geophys. Res. 112, B05201 (2007).
    Google Scholar 
    Reggi, M. et al. Biomineralization in mediterranean corals: The role of the intraskeletal organic matrix. Cryst. Growth Des. 14, 4310–4320 (2014).Article 
    CAS 

    Google Scholar 
    Prada, F. et al. Ocean warming and acidification synergistically increase coral mortality. Sci. Rep. 7, 1–10 (2017).Article 

    Google Scholar 
    Goffredo, S. et al. Biomineralization control related to population density under ocean acidification. Nat. Clim. Chang. 4, 593–597 (2014).Article 
    CAS 

    Google Scholar 
    Wall, M. et al. Linking internal carbonate chemistry regulation and calcification in corals growing at a Mediterranean CO2 vent. Front. Mar. Sci. 6, 699 (2019).Article 

    Google Scholar 
    Zohary, T., Erez, J., Gophen, M., Berman-Frank, I. & Stiller, M. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39, 1030–1043 (1994).Article 
    CAS 

    Google Scholar 
    Xu, S. et al. Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: Insights into their different adaptabilities under contrasting environmental conditions. Sci. China Earth Sci. 64, 839–852 (2021).Article 

    Google Scholar 
    Horwitz, R., Borell, E. M., Yam, R., Shemesh, A. & Fine, M. Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis. Sci. Rep. 5, 1–9 (2015).Article 

    Google Scholar 
    Chen, B., Zou, D., Zhu, M. & Yang, Y. Effects of CO2 levels and light intensities on growth and amino acid contents in red seaweed Gracilaria lemaneiformis. Aquac. Res. 48, 2683–2690 (2017).Article 
    CAS 

    Google Scholar 
    Winters, G., Beer, S., Zvi, B., Brickner, I. & Loya, Y. Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar. Ecol. Prog. Ser. 384, 107–119 (2009).Article 

    Google Scholar 
    Fitt, W. K., McFarland, F. K., Warner, M. E. & Chilcoat, G. C. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 45, 677–685 (2000).Article 
    CAS 

    Google Scholar 
    Wangpraseurt, D., Larkum, A. W. D., Ralph, P. J. & Kühl, M. Light gradients and optical microniches in coral tissues. Front. Microbiol. 3, 1–9 (2012).Article 

    Google Scholar 
    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta. 74, 4988–5001 (2010).Article 
    CAS 

    Google Scholar 
    Scucchia, F., Malik, A., Zaslansky, P., Putnam, H. M. & Mass, T. Combined responses of primary coral polyps and their algal endosymbionts to decreasing seawater pH. Proc. R. Soc. B Biol. Sci. 288, 20210328 (2021).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).Article 
    CAS 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Chang. 2, 116–120 (2012).Article 

    Google Scholar 
    Brading, P. et al. Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 56, 927–938 (2011).Article 
    CAS 

    Google Scholar 
    Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90, 6907 (1985).Article 
    CAS 

    Google Scholar 
    Xu, Z. et al. Changes of carbon to nitrogen ratio in particulate organic matter in the marine mesopelagic zone: A case from the South China Sea. Mar. Chem. 231, 103930 (2021).Article 
    CAS 

    Google Scholar 
    Crawford, D. W. et al. Low particulate carbon to nitrogen ratios in marine surface waters of the Arctic. Glob. Biogeochem. Cycles. 29, 2021–2033 (2015).Article 
    CAS 

    Google Scholar 
    Kikumoto, R. et al. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Res. 25, 1057–1069 (2014).Article 
    CAS 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).Article 
    CAS 

    Google Scholar 
    Benavides, M., Bednarz, V. N. & Ferrier-Pagès, C. Diazotrophs: Overlooked key players within the coral symbiosis and tropical reef ecosystems? Front. Mar. Sci. 4, 10 (2017).Article 

    Google Scholar 
    Wannicke, N., Frey, C., Law, C. S. & Voss, M. The response of the marine nitrogen cycle to ocean acidification. Glob. Chang. Biol. 24, 5031–5043 (2018).Article 

    Google Scholar 
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).Article 
    CAS 

    Google Scholar 
    Palladino, G. et al. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO2 gradient. ISME Commun. 2, 65 (2022).Article 

    Google Scholar 
    Muscatine, L. et al. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proc. Natl Acad. Sci. 102, 1525–1530 (2005).Article 
    CAS 

    Google Scholar 
    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).Article 
    CAS 

    Google Scholar 
    Alamaru, A., Loya, Y., Brokovich, E., Yam, R. & Shemesh, A. Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim. Cosmochim. Acta. 73, 5333–5342 (2009).Article 
    CAS 

    Google Scholar 
    Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).Article 
    CAS 

    Google Scholar 
    Lesser, M. P., Morrow, K. M., Pankey, S. M. & Noonan, S. H. C. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 12, 813–824 (2018).Article 
    CAS 

    Google Scholar 
    Marcelino, V. R., Morrow, K. M., Oppen, M. J. H., Bourne, D. G. & Verbruggen, H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Mol. Ecol. 26, 5344–5357 (2017).Article 
    CAS 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).Article 

    Google Scholar 
    Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).Article 

    Google Scholar 
    Olson, N. D., Ainsworth, T. D., Gates, R. D. & Takabayashi, M. Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Bio. Ecol. 371, 140–146 (2009).Article 
    CAS 

    Google Scholar 
    Zheng, X. et al. Effects of ocean acidification on carbon and nitrogen fixation in the hermatypic coral Galaxea fascicularis. Front. Mar. Sci. 8, 644965 (2021).Article 

    Google Scholar 
    Lewis, E. & Wallace, D. Program developed for CO2 system calculations. Ornl/Cdiac-105 1–21 (1998).Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A. Oceanogr. Res. Pap. 34, 1733–1743 (1987).Article 
    CAS 

    Google Scholar 
    Dickson, A. G. Thermodynamics of the dissociation of boric acid in potassium chloride solutions from 273.15 to 318.15 K. J. Chem. Eng. Data. 35, 253–257 (1990).Article 
    CAS 

    Google Scholar 
    Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).Article 
    CAS 

    Google Scholar 
    Ivancic, I. & Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18, 1143–1147 (1984).Article 
    CAS 

    Google Scholar 
    Parson, T. R., Maita, Y. & Llli, C. M. A manual of chemical & biological methods for seawater analysis. (Elsevier, 1984). https://doi.org/10.1016/C2009-0-07774-5Schreiber, U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. in Chlorophyll a Fluorescence 1367, 279–319 (Springer Netherlands, 2004).Grover, R., Maguer, J. F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: Effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).Article 

    Google Scholar 
    Tremblay, P., Grover, R., Maguer, J. F., Hoogenboom, M. & Ferrier-Pagès, C. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs. 33, 1–13 (2014).Article 

    Google Scholar 
    Pupier, C. A. et al. Productivity and carbon fluxes depend on species and symbiont density in soft coral symbioses. Sci. Rep. 9, 17819 (2019).Article 

    Google Scholar 
    Ritchie, R. J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46, 115–126 (2008).Article 
    CAS 

    Google Scholar 
    Goffredo, S., Arnone, S. & Zaccanti, F. Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar. Ecol. Prog. Ser. 229, 83–94 (2002).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).Article 
    CAS 

    Google Scholar 
    Moore, R. B. Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. Int. J. Syst. Evol. Microbiol. 53, 1725–1734 (2003).Article 
    CAS 

    Google Scholar 
    LaJeunesse, T. C. & Thornhill, D. J. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One. 6, e29013 (2011).Article 
    CAS 

    Google Scholar 
    LaJeunesse, T. C. et al. Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres. Eur. J. Phycol. 57, 166–180 (2022).Article 

    Google Scholar 
    Anderson, M. J. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Wiley StatsRef: Statistics Reference Online (2005). More

  • in

    Water masses shape pico-nano eukaryotic communities of the Weddell Sea

    Guillou, L. et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349–3365 (2008).Article 
    CAS 

    Google Scholar 
    Massana, R. Eukaryotic picoplankton in surface oceans. Annu. Rev. Microbiol. 65, 91–110 (2011).Article 
    CAS 

    Google Scholar 
    Rocke, E., Pachiadaki, M. G., Cobban, A., Kujawinski, E. B. & Edgcomb, V. P. Protist community grazing on prokaryotic prey in deep ocean water masses. PLoS ONE 10, e0124505 (2015).Article 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).Article 
    CAS 

    Google Scholar 
    Cordier, T. et al. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Sci. Adv. 8, https://doi.org/10.1126/sciadv.abj9309 (2022).Giner, C. R. et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 14, 437–449 (2020).Article 

    Google Scholar 
    Obiol, A. et al. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol. Ecol. Resour. 20, 718–731 (2020).Article 
    CAS 

    Google Scholar 
    Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).Article 

    Google Scholar 
    Santoferrara, L. et al. Perspectives from ten years of protist studies by high‐throughput metabarcoding. J. Eukaryot. Microbiol. 67, 612–622 (2020).Article 

    Google Scholar 
    Schoenle, A. et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Sommeria-Klein, G. et al. Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science 374, 594–599 (2021).Article 
    CAS 

    Google Scholar 
    Tremblay, J. É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).Article 

    Google Scholar 
    Zoccarato, L., Pallavicini, A., Cerino, F., Umani, S. F. & Celussi, M. Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers. Prog. Oceanogr. 149, 16–26 (2016).Article 

    Google Scholar 
    Biggs, T. E. G., Huisman, J. & Brussaard, C. P. D. Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean. ISME J. 15, 3615–3622 (2021).Article 
    CAS 

    Google Scholar 
    Clarke, L. J., Bestley, S., Bissett, A. & Deagle, B. E. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 13, 734–737 (2019).Article 
    CAS 

    Google Scholar 
    Gast, R. J., Fay, S. A. & Sanders, R. W. Mixotrophic activity and diversity of Antarctic marine protists in austral summer. Front. Mar. Sci. 5, 13 (2018).Article 

    Google Scholar 
    Grattepanche, J. D., Jeffrey, W. H., Gast, R. J. & Sanders, R. W. Diversity of microbial eukaryotes along the West Antarctic Peninsula in austral spring. Front. Microbiol. 13, 844856 (2022).Article 

    Google Scholar 
    Hamilton, M. et al. Spatiotemporal variations in Antarctic protistan communities highlight phytoplankton diversity and seasonal dominance by a novel cryptophyte lineage. mBio 12, e0297321 (2021).Article 

    Google Scholar 
    Lin, Y. et al. Decline in plankton diversity and carbon flux with reduced sea ice extent along the Western Antarctic Peninsula. Nat. Commun. 12, 4948 (2021).Article 
    CAS 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).Article 
    CAS 

    Google Scholar 
    Vernet, M. et al. The Weddell Gyre, Southern Ocean: present knowledge and future challenges. Rev. Geophysics 57, 623–708 (2019).Article 

    Google Scholar 
    Callahan, J. E. The structure and circulation of deep water in the Antarctic. Deep‐Sea Res. 19, 563–575 (1972).
    Google Scholar 
    Janout, M. A. et al. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne ice shelves in the southern Weddell Sea. J. Geophys. Res.: Oceans 126, e2021JC017269 (2021).Article 

    Google Scholar 
    Orsi, A. H., Smethie, W. M. & Bullister, J. L. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. 107, 3122 (2002).Article 

    Google Scholar 
    Hoppema, M., Fahrbach, E. & Schröder, M. On the total carbon dioxide and oxygen signature of the circumpolar deep water in the Weddell Gyre. Oceanol. Acta 20, 783–798 (1997).CAS 

    Google Scholar 
    Karstensen, J. & Tomczak, M. Age determination of mixed water masses using CFC and oxygen data. J. Geophys. Res. 103, 18599–18609 (1998).Article 
    CAS 

    Google Scholar 
    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).Article 

    Google Scholar 
    Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 20, 258–274 (2011).Article 

    Google Scholar 
    Celussi, M., Bergamasco, A., Cataletto, B., Umani, S. F. & Del Negro, P. Water masses bacterial community structure and microbial activities in the Ross Sea, Antarctica. Antarct. Sci. 22, 361–370 (2010).Article 

    Google Scholar 
    Galand, P. E., Potvin, M., Casamayor, E. O. & Lovejoy, C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 4, 564–576 (2010).Article 

    Google Scholar 
    Hamdan, L. J. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 7, 685–696 (2013).Article 
    CAS 

    Google Scholar 
    Wilkins, D., van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 2457 (2013).Article 

    Google Scholar 
    Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).Article 
    CAS 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).Article 
    CAS 

    Google Scholar 
    Jeong, H. J. et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. 45, 65–91 (2010).Article 
    CAS 

    Google Scholar 
    Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the marine Plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2016).Article 

    Google Scholar 
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).Article 
    CAS 

    Google Scholar 
    Gutierrez-Rodriguez, A. et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 13, 964–976 (2019).Article 
    CAS 

    Google Scholar 
    Lampitt, R. S., Salter, I. & Johns, D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob. Biogeochem. Cycles 23, GB1010 (2009).Article 

    Google Scholar 
    Suzuki, N. & Not, F. In Marine Protists: Diversity and Dynamics 179–222 (Springer Japan, 2015).Decelle, J. et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS ONE 8, e53598 (2013).Article 
    CAS 

    Google Scholar 
    Tashyreva, D. et al. Diplonemids—a review on “new“ flagellates on the oceanic block. Protist 173, 125868 (2022).Article 
    CAS 

    Google Scholar 
    Flegontova, O. et al. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol 22, 4014–4031 (2020).Article 
    CAS 

    Google Scholar 
    Xu, D. et al. Microbial eukaryote diversity and activity in the water column of the South China sea based on DNA and RNA high throughput sequencing. Front. Microbiol. 8, 1121 (2017).Article 

    Google Scholar 
    Bråte, J. et al. Radiolaria associated with large diversity of marine alveolates. Protist 163, 767–777 (2012).Article 

    Google Scholar 
    Strassert, J. F. H. et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 12, 304–308 (2017).Article 

    Google Scholar 
    Yabuki, A. & Tame, A. Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996. J. Eukaryot. Microbiol. 62, 426–429 (2015).Article 

    Google Scholar 
    Larsen, J. & Patterson, J. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801–937 (1990).Article 

    Google Scholar 
    Prokopchuk, G. et al. Trophic flexibility of marine diplonemids – switching from osmotrophy to bacterivory. ISME J. 16, 1409–1419 (2022).Article 
    CAS 

    Google Scholar 
    Arístegui, J. & Gasol, J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).Article 

    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).Article 

    Google Scholar 
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).Article 

    Google Scholar 
    Kolisko, M. et al. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. Database 2020, baaa080 (2020).
    Google Scholar 
    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).Article 

    Google Scholar 
    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Under-ice observations by trawls and multi-frequency acoustics in the Central Arctic Ocean reveals abundance and composition of pelagic fauna

    Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).Article 
    ADS 

    Google Scholar 
    Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front. Mar. Sci. 7, 983–992 (2020).Article 

    Google Scholar 
    Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change. 10, 983–992 (2020).Article 
    ADS 

    Google Scholar 
    Macias-Fauria, M. & Post, E. Effects of sea ice on Arctic biota: An emerging crisis discipline. Biol. Lett. 14, 20170702 (2018).Article 

    Google Scholar 
    Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).Article 
    ADS 

    Google Scholar 
    Søreide, J. E. et al. Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. Mar. Biol. Res. 9, 831–850 (2013).Article 

    Google Scholar 
    Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2015, 2 (2015).
    Google Scholar 
    FISCAO. Final Report of the Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean. https://apps-afsc.fisheries.noaa.gov/documents/Arctic_fish_stocks_fifth_meeting/508_Documents/508_Final_report_of_the_505th_FiSCAO_meeting.pdf (2018).David, C. et al. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 39, 981–994 (2016).Article 

    Google Scholar 
    Gradinger, R. Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar. Biol. 133, 745–754 (1999).Article 

    Google Scholar 
    Kosobokova, K. N., Hopcroft, R. R. & Hirche, H.-J. Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers. 41, 29–50 (2011).Article 

    Google Scholar 
    Mumm, N. et al. Breaking the ice: Large-scale distribution of mesozooplankton after a decade of Arctic and transpolar cruises. Polar Biol. 20, 189–197 (1998).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. Unexpected fish and squid in the central Arctic deep scattering layer. Sci. Adv. 8, 7536 (2022).Article 

    Google Scholar 
    David, C., Lange, B., Rabe, B. & Flores, H. Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar. Ecol. Prog. Ser. 522, 15–32 (2015).Article 
    ADS 

    Google Scholar 
    Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A. & Booth, B. C. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. Part II(44), 1623–1644 (1997).Article 
    ADS 

    Google Scholar 
    Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change. 10, 892–903 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hays, G. C. In Migrations and Dispersal of Marine Organisms. (eds Jones, M. B. et al.) 163–170 (Springer).Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).Article 
    ADS 

    Google Scholar 
    Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Gjøsæter, H., Wiebe, P. H., Knutsen, T. & Ingvaldsen, R. B. Evidence of Diel vertical migration of mesopelagic sound-scattering organisms in the Arctic. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Knutsen, T., Wiebe, P. H., Gjøsæter, H., Ingvaldsen, R. B. & Lien, G. High latitude epipelagic and mesopelagic scattering layers—a reference for future arctic ecosystem change. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Priou, P. et al. Dense mesopelagic sound scattering layer and vertical segregation of pelagic organisms at the Arctic-Atlantic gateway during the midnight sun. Prog. Oceanogr. 196, 102611 (2021).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. A deep scattering layer under the North Pole pack ice. Prog. Oceanogr. 194, 102560 (2021).Article 

    Google Scholar 
    St-John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community. Front. Mar. Sci. 2016, 3 (2016).
    Google Scholar 
    Fransson, A. et al. Joint cruise 2-2 2021: Cruise report. The Nansen Legacy Report Series, 30/2022. https://doi.org/10.7557/nlrs.6413 (2022).Rudels, B. et al. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci. 9, 147–169 (2013).Article 
    ADS 

    Google Scholar 
    Krumpen, T. et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 9, 5459 (2019).Article 
    ADS 

    Google Scholar 
    Aagaard, K. A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Rcun. Cons. int. Explor. Mer. 188, 11–22 (1989).
    Google Scholar 
    Perez-Hernandez, M. D. et al. The Atlantic Water boundary current north of Svalbard in late summer. J. Geophys. Res. 122, 2269–2290 (2017).Article 
    ADS 

    Google Scholar 
    Våge, K. et al. The Atlantic Water boundary current in the Nansen Basin: Transport and mechanisms of lateral exchange. J. Geophys. Res. 121, 6946–6960 (2016).Article 
    ADS 

    Google Scholar 
    Crews, L., Sundfjord, A., Albretsen, J. & Hattermann, T. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard. J. Geophys. Res. 123, 201–215 (2018).Article 
    ADS 

    Google Scholar 
    Kolås, E. H., Koenig, Z., Fer, I., Nilsen, F. & Marnela, M. Structure and Transport of Atlantic Water North of Svalbard From Observations in Summer and Fall 2018. J. Geophys. Res. 125, 6174 (2020).Article 

    Google Scholar 
    Basedow, S. L. et al. Seasonal variation in transport of zooplankton into the arctic basin through the atlantic gateway. Fram Strait. Front. Mar. Sci. 2018, 5 (2018).
    Google Scholar 
    Vernet, M., Carstensen, J., Reigstad, M. & Svensen, C. Editorial: Carbon bridge to the Arctic. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).Article 
    ADS 

    Google Scholar 
    Wassmann, P., Slagstad, D. & Ellingsen, I. Advection of mesozooplankton into the northern svalbard shelf region. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Auel, H. Egg size and reproductive adaptations among Arctic deep-sea copepods (Calanoida, Paraeuchaeta). Helgol. Mar. Res. 58, 147–153 (2004).Article 
    ADS 

    Google Scholar 
    Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar Biol. 39, 1785–1802 (2016).Article 

    Google Scholar 
    Wang, Y.-G., Tseng, L.-C., Lin, M. & Hwang, J.-S. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin. Arctic Ocean. Plos One. 14, e0219319 (2019).Article 
    CAS 

    Google Scholar 
    Gislason, A. & Silva, T. Abundance, composition, and development of zooplankton in the Subarctic Iceland Sea in 2006, 2007, and 2008. ICES J. Mar. Sci. 69, 1263–1276 (2012).Article 

    Google Scholar 
    Zhukova, N. G., Nesterova, V. N., Prokopchuk, I. P. & Rudneva, G. B. Winter distribution of euphausiids (Euphausiacea) in the Barents Sea (2000–2005). Deep-Sea Res. Part II(56), 1959–1967 (2009).Article 
    ADS 

    Google Scholar 
    Dalpadado, P. & Skjoldal, H. R. Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar. Ecol. Prog. Ser. 144, 175–183 (1996).Article 
    ADS 

    Google Scholar 
    Koszteyn, J., Timofeev, S., Węsławski, J. M. & Malinga, B. Size structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) populations in European Arctic seas. Polar Biol. 15, 85–92 (1995).Article 

    Google Scholar 
    Dalpadado, P., Borkner, N., Bogstad, B. & Mehl, S. Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator-prey interactions. ICES J. Mar. Sci. 58, 876–895 (2001).Article 

    Google Scholar 
    Macnaughton, M. O., Thormar, J. & Berge, J. Sympagic amphipods in the Arctic pack ice: Redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959). Polar Biol. 30, 1013–1025 (2007).Article 

    Google Scholar 
    Kraft, A., Graeve, M., Janssen, D., Greenacre, M. & Falk-Petersen, S. Arctic pelagic amphipods: Lipid dynamics and life strategy. J. Plankton Res. 37, 790–807 (2015).Article 
    CAS 

    Google Scholar 
    Kreibich, T., Hagen, W. & Saborowski, R. Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea). Mar. Ecol. Prog. Ser. 413, 105–115 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619 (2018).Article 

    Google Scholar 
    Grigor, J. J., Søreide, J. E. & Varpe, Ø. Seasonal ecology and life-history strategy of the high-latitude predatory zooplankter Parasagitta elegans. Mar. Ecol. Prog. Ser. 499, 77–88 (2014).Article 
    ADS 

    Google Scholar 
    Maclennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Gjøsæter, H. & Ushakov, N. G. Acoustic estimates of the Barents Sea Arctic cod Stock (Boreogadus saida). Forage Fishes in Marine Ecosystems. Alaska Sea Grant Collage Program, University of Alaska Fairbanks 97:01, 485–504 (1997).Raskoff, K. A., Hopcroft, R. R., Kosobokova, K. N., Purcell, J. E. & Youngbluth, M. Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep-Sea Res. Part II(57), 111–126 (2010).Article 
    ADS 

    Google Scholar 
    Bluhm, B. A. et al. The Pan-Arctic continental slope: Sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Hop, H. et al. Pelagic ecosystem characteristics across the atlantic water boundary current from Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014). Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Mumm, N. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol. 13, 451–461 (1993).Article 

    Google Scholar 
    Ona, E. & Nielsen, J. Acoustic detection of the Greenland shark (Somniosus microcephalus) using multifrequency split beam echosounder in Svalbard waters. Prog. Oceanogr. 206, 102842 (2022).Article 

    Google Scholar 
    Gjøsæter, H., Ingvaldsen, R. & Christiansen, J. S. Acoustic scattering layers reveal a faunal connection across the Fram Strait. Prog. Oceanogr. 185, 102348 (2020).Article 

    Google Scholar 
    Ingvaldsen, R. B., Gjosaeter, H., Ona, E. & Michalsen, K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol. 40, 2105–2111 (2017).Article 

    Google Scholar 
    Chawarski, J., Klevjer, T. A., Coté, D. & Geoffroy, M. Evidence of temperature control on mesopelagic fish and zooplankton communities at high latitudes. Front. Mar. Sci. 2022, 9 (2022).
    Google Scholar 
    Chernova, N. V. Catching of Greenland halibut Reinhardtius hippoglossoides (Pleuronectidae) on the shelf edge of the Laptev and East Siberian Seas. J. Ichthyol. 57, 219–227 (2017).Article 

    Google Scholar 
    Benzik, A. N., Budanova, L. K. & Orlov, A. M. Hard life in cold waters: Size distribution and gonads show that Greenland halibut temporarily inhabit the Siberian Arctic. Water Biol. Secur. 1, 100037 (2022).Article 

    Google Scholar 
    Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536 (2019).Article 
    ADS 

    Google Scholar 
    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).Article 
    ADS 

    Google Scholar 
    Drivdal, M. et al. Connections to the deep: Deep vertical migrations, an important part of the life cycle of Apherusa glacialis, an arctic ice-associated amphipod. Front. Mar. Sci. 2021, 8 (2021).
    Google Scholar 
    Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000 (2015).Article 
    ADS 

    Google Scholar 
    Popova, E. E., Yool, A., Aksenov, Y. & Coward, A. C. Role of advection in Arctic Ocean lower trophic dynamics: A modeling perspective. J. Geophys. Res. 118, 1571–1586 (2013).Article 
    ADS 

    Google Scholar 
    Saunders, R. A., Ingvarsdóttir, A., Rasmussen, J., Hay, S. J. & Brierley, A. S. Regional variation in distribution pattern, population structure and growth rates of Meganyctiphanes norvegica and Thysanoessa longicaudata in the Irminger Sea, North Atlantic. Prog. Oceanogr. 72, 313–342 (2007).Article 
    ADS 

    Google Scholar 
    Tarling, G. A. et al. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs. Ambio 51, 333–344 (2022).Article 

    Google Scholar 
    Purcell, J. E., Juhl, A. R., Manko, M. K. & Aumack, C. F. Overwintering of gelatinous zooplankton in the coastal Arctic Ocean. Mar. Ecol. Prog. Ser. 591, 281–286 (2018).Article 
    ADS 

    Google Scholar 
    Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep-Sea Res. Part II(57), 127–135 (2010).Article 
    ADS 

    Google Scholar 
    Solvang, H. K. et al. Distribution of rorquals and Atlantic cod in relation to their prey in the Norwegian high Arctic. Polar Biol. 44, 761–782 (2021).Article 

    Google Scholar 
    Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874–889 (2021).Article 
    ADS 

    Google Scholar 
    Flores, H. et al. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res. Part II(58), 1948–1961 (2011).Article 
    ADS 

    Google Scholar 
    Godø, O. R., Valdemarsen, J. W. & Engås, A. Comparison of efficiency of standard and experimental juvenile gadoid sampling trawls. ICES Mar. Sci. Symp. 196, 196–201 (1993).
    Google Scholar 
    Klevjer, T. et al. Micronekton biomass distribution, improved estimates across four north Atlantic basins. Deep-Sea Res. Part II. 180, 104691 (2020).Article 

    Google Scholar 
    Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968 (2010).Article 

    Google Scholar 
    Foote, K. G. Maintaining precision calibrations with optimal copper spheres. J. Acoust. Soc. Am. 73, 1054–1063 (1983).Article 
    ADS 

    Google Scholar 
    Korneliussen, R. J. et al. Acoustic identification of marine species using a feature library. Methods Oceanogr. 17, 187–205 (2016).Article 

    Google Scholar 
    Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere. 13, 49–78 (2019).Article 
    ADS 

    Google Scholar 
    Firing, E., Ramada, J. & Caldwell, P. Processing ADCP Data with the CODAS Software System Version 3.1. Joint Institute for Marine and Atmospheric Research University of Hawaii. http://currents.soest.hawaii.edu/docs/adcp_doc/index.html (1995).Padman, L. & Erofeeva, S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 31, 256 (2004).Article 

    Google Scholar  More

  • in

    Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi

    With human movement and globalization, invasive container breeding vectors responsible for dengue, Zika, chikungunya and now malaria, with An. stephensi, are being introduced and establishing populations in new locations. They are bringing with them the threat of increasing or novel cases of vector-borne diseases to new locations where health systems may not be prepared.Anopheles stephensi was first detected on the African continent in Djibouti in 2012 and has since been confirmed in Ethiopia, Somalia, and Sudan. Unlike most malaria vectors, An. stephensi is often found in artificial containers and in urban settings. This unique ecology combined with its initial detection in seaports in Djibouti, Somalia, and Sudan has led scientists to believe that the movement of this vector is likely facilitated through maritime trade.By modeling inter- and intra-continental maritime connectivity in Africa we identified countries with higher likelihood of An. stephensi introduction if facilitated through maritime movement and ranked them based on this data. Anopheles stephensi was not detected in Africa (Djibouti) until 2012. To determine whether historical maritime data would have identified the first sites of introduction, 2011 maritime data were analyzed to determine whether the sites with confirmed An. stephensi would rank highly in connectivity to An. stephensi endemic countries. Using 2011 data on maritime connectivity alone, Djibouti and Sudan were identified as the top two countries at risk of An. stephensi introduction if it is facilitated by marine cargo shipments. In 2021, these are two of the three African coastal nations where An. stephensi is confirmed to be established.When 2011 maritime data were combined with the HSI for An. stephensi establishment, the top five countries remain the same as with maritime data alone: Sudan, Djibouti, Egypt, Kenya and Tanzania, in that order. The maritime data show likelihood of introduction and HSI shows likelihood of establishment. When combined, the analyses show a likelihood of being able to establish and survive once introduced. Interestingly, the results of the combined analyses align with the detection data being reported in the Horn of Africa. The 2011 maritime data reinforces the validity of the model as it points to Sudan and Djibouti, where An. stephensi established in the following years. Similarly, the HSI data for Ethiopia has aligned closely with detections of the species to date15. Interestingly, around this time of initial detection in Djibouti, Djibouti City port underwent development and organizational change. The government of Djibouti took back administrative control of the port as early as 201230.Following this method, maritime trade data from 2020 could point to countries at risk of An. stephensi introduction from endemic countries as well as from the coastal African countries with newly introduced populations. Here we provide a prioritization list and heat map of countries for the early detection, rapid response, and targeted surveillance of An. stephensi in Africa based on this data and the HSI (Fig. 4). Further invasion of An. stephensi on the African continent has the potential to reverse progress made on malaria control in the last century. Anopheles stephensi thrives in urban settings and in containers, in contrast to the rural settings and natural habitats where most Anopheles spp. are found20. The situation in Djibouti may be a harbinger for what is to come if immediate surveillance and control strategies are not initiated18.Figure 4Prioritization Heat Map of African Countries. These 2020 heat maps rank African countries using (A) the Likelihood of An. stephensi through Maritime Trade Index (LASIMTI) data alone and (B) LASIMTI and HSI combined, based on maritime connectivity to countries where An. stephensi is endemic. Higher ranking countries which are at greater risk of An. stephensi introduction are darker in red color than those that are lower ranking (lighter red). Countries which are shaded grey are inland countries that do not have a coast and therefore no data on maritime movement into ports. Countries which are grey and checkered have established or endemic An. stephensi populations and are considered source locations for potential An. stephensi introduction in this analysis. Map was generated using MapChart (mapchart.net).Full size imageMaritime data from 2020, with Djibouti and Sudan considered as potential source populations for intracontinental introduction of An. stephensi, indicate the top five countries at risk for maritime introduction are Egypt, Kenya, Mauritius, Tanzania, and Morocco, suggesting that targeted larval surveillance in these countries near seaports may provide a better understanding of whether there are maritime introductions. When the data from 2020 data is combined with HSI for An. stephensi, the top five countries are instead Egypt, Kenya, Tanzania, Morocco, and Libya. Interestingly, historical reports of An. stephensi in Egypt exist; however, following further identification these specimens were determined to be An. ainshamsi31. With several suitable habitats both along the coast and inland of Egypt, revisiting surveillance efforts there would provide insight into how countries that are highly connected to An. stephensi locations through maritime traffic may experience introductions.Further field validation of this prioritization list is necessary, because it is possible that An. stephensi is being introduced through other transportation routes, such as dry ports or airports32, or may even be dispersed through wind facilitation33. However, countries highlighted here with high levels of connectivity to known An. stephensi locations should be considered seriously at risk and surveillance urgently established to determine whether An. stephensi introduction has already occurred or to enable early detection. Primary vector surveillance for both Ae. aegypti and An. stephensi are through larval surveys, and the two mosquitoes are commonly detected in the same breeding habitats. It could therefore be beneficial to coordinate with existing Aedes surveillance efforts to be able to simultaneously gather data on medically relevant Aedes vectors while seeking to determine whether An. stephensi is present. Similarly, in locations with known An. stephensi and not well established Aedes programs, coordinating surveillance efforts provides an opportunity to conduct malaria and arboviral surveillance by container breeding mosquitoes simultaneously.Efforts to map pinch points or key points of introduction based on the movement of goods and populations could provide high specificity for targeted surveillance and control efforts. For example, participatory mapping or population mobility data collection methods, such as those used to determine routes of human movement for malaria elimination, may simultaneously provide information on where targeted An. stephensi surveillance efforts should focus. Several methods have been proposed in the literature for modeling human movement and one in particular, PopCAB, which is often used for communicable diseases, combined quantitative and qualitative data with geospatial information to identify points of control34.Data on invasive mosquito species has shown that introduction events are rarely a one-time occurrence. Population genetics data on Aedes species indicate that reintroductions are very common and can facilitate the movement of genes between geographically distinct populations, raising the potential for introduction of insecticide resistance, thermotolerance, and other phenotypic and even behavioral traits which may be facilitated by gene flow and introgression35. Djibouti, Sudan, Somalia, and Ethiopia, countries with established invasive populations of An. stephensi, should continue to monitor invasive populations and points of introduction to control and limit further expansion and adaptation of An. stephensi. Work by Carter et al. has shown that An. stephensi populations in Ethiopia in the north and central regions can be differentiated genetically, potentially indicating that these populations are a result of more than one introduction into Ethiopia from South Asia, further emphasizing the potential role of anthropogenic movement on the introduction of the species17.One major limitation of this work is that Somalia is the third coastal nation where An. stephensi has been confirmed; however, marine traffic data were not available for Somalia so it could not be included in this analysis. The potential impact of Somalia on maritime trade is unknown and it should not be excluded as a potential source population. Additionally, this model does not account for the possibility of other countries with An. stephensi populations that have not been detected yet. As new data on An. stephensi expansion becomes available, more countries will be at higher risk. Other countries with An. stephensi populations, such as Iran, Myanmar, and Iraq, constitute lower relative percentages of trade with these countries so were not included in the analysis. However, genetic similarities were noted from An. stephensi in Pakistan, so this nation was included10.Due to the nature of maritime traffic, inland countries were also not included in this prioritization ranking. Countries which are inland but share borders with high-risk countries according to the LASTIMI index should also be considered with high priority. For example, the ranking from 2011 highlights Sudan and Djibouti, both which border Ethiopia, and efforts to examine key land transportation routes between bordering nations where humans and goods travel may provide additional insight into the expansion routes of this invasive species.In Ethiopia, An. stephensi was detected in 2016. It has largely been detected along major transportation routes although further data is needed to understand the association between movement and An. stephensi introductions and expansion since most sampling sites have also been located along transport routes. Importantly, Ethiopia relies heavily on the ports of Djibouti and Somalia for maritime imports and exports. Surveillance efforts have revealed that the species is also frequently associated with livestock shelters and An. stephensi are frequently found with livestock bloodmeals15. Interestingly, the original detection of An. stephensi was found in a livestock quarantine station in the port of Djibouti. Additionally, livestock constitutes one of the largest exports of maritime trade from this region. For countries with high maritime connectivity to An. stephensi locations, surveillance efforts near seaports, in particular those with livestock trade, may be targeted locations for countries without confirmed An. stephensi to begin larval surveillance.As Ae. aegypti and Culex coronator were detected in tires or Ae. albopictus through tire and bamboo (Dracaena sanderiana) trade, An. stephensi could be carried through maritime trade of a specific good36,37,38. Future examination of the movement of specific goods would be beneficial in interpreting potential An. stephensi invasion pathways. Additionally, the various types of vessels used to transport certain cargo such as container, bulk, and livestock ships could affect An. stephensi survivability during transit. Sugar and grain are often shipped in bulk or break bulk vessels which store cargo in large unpackaged containers. Container ships transport products stored in containers sized for land transportation via trucks and carry goods such as tires. Livestock vessels are often multilevel, open-air ships which require more hands working on deck and water management39.Using LSBCI index data from 2020, we developed a network to highlight how coastal African nations are connected through maritime trade (Fig. 4). The role of this network analysis is two-fold, (1) it demonstrates an understanding of intracontinental maritime connectivity; and (2) it highlights the top three countries connected via maritime trade through an interactive html model (Supplemental File). For example, if An. stephensi is detected and established in a specific coastal African nation such as Djibouti, selecting the Djibouti node reveals the top three locations at risk of introduction from that source country (Djibouti links to Sudan, Egypt and Kenya). This can be used as an actionable prioritization list for surveillance if An. stephensi is detected in any given country and highlights major maritime hubs in Africa which could be targeted for surveillance and control. For example, since the development of this model, An. stephensi has been detected in Nigeria. Through the use of this interactive model, Ghana, Cote d’Ivoire, and Benin have been identified as countries most connected to Nigeria through maritime trade and therefore surveillance prioritization activities could consider these locations.The network analysis reveals the significance of South African trade to the rest of the continent. Due to the distance, South Africa did not appear to be high in risk of An. stephensi introduction. However, this analysis does reveal that if An. stephensi were to enter nearby countries, it could very easily be introduced because of its high centrality. Western African countries such as Ghana, Togo, and Morocco are also heavily connected to other parts of Africa. Interestingly, Mauritius appears to be highly significant to this network of African maritime trade. Based on 2020 maritime data, Mauritius is ranked as the country with the third greatest likelihood of introduction of An. stephensi and has the second highest centrality rank value of 0.159. Considering these factors, Mauritius could serve as an important port of call connecting larger ports throughout Africa or other continents. With long standing regular larval surveillance efforts across the island for Aedes spp., this island nation is well suited to look for Anopheles larvae as part of Aedes surveillance efforts for early detection and rapid response to prevent the establishment of An. stephensi. If An. stephensi were to become established in countries with high centrality ranks, further expansion on the continent could be accelerated drastically. These ports could serve as important watchpoints and indicators of An. stephensi’s incursion into Africa. Anopheles stephensi is often found in shared habitats with Aedes spp. and a great opportunity exists to leverage Aedes arboviral surveillance efforts to initiate the search for An. stephensi, especially in countries that have high potential of introduction through maritime trade. More

  • in

    Human activities favour prolific life histories in both traded and introduced vertebrates

    Data collectionWe obtained trade data from two different sources: the United States Fish and Wildlife Service (USFWS) Law Enforcement Management Information System (LEMIS)31 and the International Union for Conservation of Nature (IUCN) Red List32. We used the former to obtain data on the live wildlife trade in general and the latter for data on the pet trade specifically. We then matched trade data with our previously compiled global scale datasets of life history traits and introductions in mammals, reptiles and amphibians25,26.We obtained data on the US live wildlife trade from LEMIS by a Freedom of Information Act Request on 12/08/2019. We requested summary data on all US imports and exports of wildlife across all available years (1999-2019) and all trade purposes, including information on species identities and shipment contents (e.g. live individuals, meat, skins, etc.). For each species, we summed the total number of recorded shipments of live individuals (including individuals that died in transit, and live eggs) as a measure of trade frequency. We classified species as in trade if there was at least one shipment of live individuals recorded in the LEMIS database, and as not traded otherwise. The LEMIS dataset is geographically limited to trade by the US, and therefore may not capture the full diversity of species involved in the wildlife trade. For example, the LEMIS database may be missing some species involved in the substantial trade in live wildlife between South–East Asian countries50. However, the US represents one of the most dominant players in the global market for live wildlife16, and by summing both imports and exports we capture demand for species in countries beyond the US to some extent. Supplementary Fig. 2 illustrates the frequency of trade between the US and countries represented in the US LEMIS dataset. LEMIS data should be considered a minimum estimate of the diversity of species involved in the wildlife trade since they mostly record only legal trade (although confiscated shipments are recorded), and shipments are sometimes not identified to the species level16,51,53,53. The LEMIS database also contains some mis-spelled and incorrectly identified species due to human input errors52. To minimise the effect of misidentified shipments on our species level classifications of US trade status, we discarded all LEMIS records that were not identified to the species level (i.e. those identified using genus, common or generic names only), and manually checked the LEMIS data for synonyms and alternate spellings when we could not automatically match any records in LEMIS with species in our life history datasets. Species classified as traded on the basis of a single recorded live shipment in LEMIS are most vulnerable to species level misclassification due to misidentified shipments. The vast majority of traded species have multiple shipments recorded in LEMIS (259/312 [83%] of traded mammals, 265/285 [93%] of traded reptiles and 72/75 [96%] of traded amphibians), reducing the potential impact of shipment level misidentification over the reliability of species level trade classifications. However, to investigate the robustness of our findings to possible errors in species identification in LEMIS, we re-ran our key analyses excluding species classified as traded on the basis of a single live shipment. We found qualitatively the same effects of life history traits on the probability of trade when removing these species as in our full sample (Supplementary Tables 25–27). Despite its limitations, LEMIS is an invaluable resource for identifying broad scale trends in the wildlife trade since few other countries maintain such detailed records, and it is the only large-scale international trade dataset that includes both CITES- and non-CITES-listed species16,41. Including non-CITES listed species in our analyses is important because CITES-listed species represent only a small minority of those in trade14 and are likely to be a biased sample in terms of life history traits, since species vulnerable to extinction typically have slower life histories40.We obtained separate data on the pet trade from the IUCN Red List. The IUCN has assessed the vast majority of mammal, reptile and amphibian species (91%, 79% and 86% respectively54). Here, we classified a species as involved in the pet trade if the IUCN species account included at least one clear description of involvement in the pet trade. Otherwise, we considered a species as not involved in the pet trade. Although LEMIS records the purpose of trade, it uses broad categories (e.g. ‘Commercial’, ‘Personal’, ‘Breeding in captivity’), none of which refers specifically to nor necessarily equates to trade for pets. Therefore, we sought this additional data on the pet trade from the IUCN Red List instead of following the approach of some previous studies which have used LEMIS data as a proxy for the pet trade (e.g. Refs. 15,19). In contrast, the IUCN Red List contains clear textual descriptions of use and trade for many species, allowing us to identify which species are traded specifically for pets32. The IUCN data has further complementary strengths compared with LEMIS in that it is global in scope and includes both legal and illegal trade. We obtained data from the IUCN Red List by manually searching the binomial name of each species in our samples and consulting the ‘Threats’ and ‘Use and Trade’ sections of the species accounts. We classified species as in the pet trade if the information clearly stated this was the case (e.g. “It has been recorded in the pet trade”, “This species appears in the international pet trade”). We discounted descriptions where the information was uncertain (e.g. the species is described as “probably” or “possibly” traded for pets). We did not count as pets those species that the IUCN categorises as used for “Pets/display animals, horticulture” but which are used only for zoos or captive display, such as beluga whales (Delphinapterus leucas). All species described as pets by the IUCN are ‘exotic’, i.e. those without a long history of domestication14, since the IUCN does not list domesticated species.We matched trade data with our previously published global scale datasets on life history traits and introductions25,26. Internationally traded species may or not be released in the wild outside their native range: some may remain in the confines of captivity (e.g. in zoos or kept by private owners). We defined a species as introduced if there was at least one reliable record of its release, by humans, into the wild outside of its native range, either accidentally or intentionally25,26. We included only species with complete data for the same life history traits as used in our prior analyses (mammals: body mass, gestation period, weaning age, neonatal body mass, litter size, litters per year, age at first reproduction and reproductive lifespan; reptiles: body mass, hatchling mass, clutch size, clutches per year, age of sexual maturity, reproductive lifespan and parity; amphibians: snout-vent length, egg size, clutch size, age of sexual maturity and reproductive lifespan) to facilitate direct comparisons with previous results and to allow us to account for covariation between life history traits55. Species with complete life history data represent 7.8%, 3.5% and 1.6% of the total estimated number of species of mammals, reptiles and amphibians respectively56,57,58. These samples are not random as they over-represent orders containing many species of interest and utility to humans (e.g. ungulates, primates, crocodilians) (Supplementary Tables 28–30). However, these biases are unlikely to undermine our results since we examine life history effects on trade and introduction within these samples. Trade and introduction data do not necessarily cover the same time periods: the US dataset covers only the years 1999-present and the IUCN descriptions also typically refer to recent trade. In contrast, our introduction dataset includes both historical and recent introductions25,26. Therefore, the goal of our analyses is not to test causal hypotheses on the direct relationship between trade and introduction but rather to investigate whether the same life history traits predispose species towards both trade and introduction across diverse taxa, locations and circumstances. When combining the datasets and phylogenies59,60,61,62,63, we resolved species name mis-matches by referring to taxonomic information from the IUCN Red List32, the Global Biodiversity Information Facility (GBIF33) and the Integrated Taxonomic Information System (ITIS64). Table 1 summarises final sample sizes and Supplementary Table 1 the degree of overlap between the trade datasets. Most species in the pet trade are also in the general live wildlife trade, but many more species are traded by the US for general purposes than are involved in the pet trade specifically.Finally, we obtained data for a proxy measure of species detectability in order to control for a potential confounding effect on relationships between life history traits and introduction: larger bodied and longer-lived species may be more likely to be recorded by human observers when introduced compared with smaller and shorter-lived species. We obtained data on species occurrence records, geographic range size and population density, assuming that highly detectable species will have a disproportionately large number of recorded observations than expected based on the size of their geographic ranges and average population densities, following similar approaches by e.g. Refs. 65,66. We obtained occurrence records from the Global Biodiversity Information Facility (GBIF33) via the R package rgbif67 selecting only records resulting from human observation. We obtained range sizes (in decimal degrees squared) from the IUCN Red List32 and processed them for analysis using functions from the rgdal package68, excluding areas of uncertain presence (i.e. limiting range to presence code 1, ‘extant’). We obtained population density estimates from the TetraDENSITY database (version 134), a global database of population density estimates for terrestrial vertebrates. Most species in the TetraDENSITY dataset are represented by estimates from multiple different studies (median = 3, range 1–408). We collapsed density estimates to the species level by taking the median value across studies, including all estimates regardless of sampling method to maximise sample size, and converting all units to individuals/km2 to ensure comparability.Statistical analysesTo investigate relationships between life history traits and trade, we run models treating US or pet trade as the outcome variable and life history traits as the predictors. For all analyses, all life history variables were included in the same models to account for covariation among life history traits55. For US trade, where data on trade frequency are available, we run models both in which trade is treated as a binary variable (traded vs. not traded) and as a count variable (frequency of live shipments, including zero values), while for the pet trade, we have no data on trade frequency and so we treat pet trade as a binary variable only. To investigate the effects of life history traits on introduction, we run models in which introduction is the outcome variable and life history traits are the predictors. In introduction models, we only include traded species (running separate models for the set of species in US trade and the set of species in the pet trade). This approach allows us to disentangle effects associated with trade and introduction and thus identify at which stage(s) life history biases emerge. We also run introduction models in which frequency of US trade is included as an additional predictor alongside life history traits, anticipating that highly traded species are more likely to be introduced. Finally, to investigate possible confounding effects of species detectability on relationships between life history traits and introduction, we investigate effects of number of observations, geographic range size and, where sample sizes allowed, population density on the probability of introduction. If highly detectable species are more likely to be recorded as introduced, we expect to find a positive effect of the number of observations (while accounting for geographic range size and population density) on the probability of introduction. If this effect confounds relationships between body mass/lifespan and introduction, the effect of these life history traits on the probability of introduction should disappear when detectability measures are included in the models alongside life history traits. All analyses were conducted using the R statistical programming environment (Version 4.2.069). Plots were coloured using palettes from the viridis package70.To estimate effects of predictor variables, we fit generalized linear mixed models (GLMMs) using Markov chain Monte-Carlo (MCMC) estimation, implemented in the MCMCglmm package35,36. For analyses with binary outcome variables (traded vs. not traded, introduced vs. not introduced) we fit probit models, while for analyses with US trade frequency as the outcome variable we fit hurdle models. Hurdle models estimate two latent variables: the probability that the outcome is zero (on the logit scale), and the probability of the outcome modelled as a Poisson distribution for non-zero values71. This method therefore allows us to estimate effects of life history traits on the probability and frequency of trade in the same model. While the binary component of a hurdle model estimates the probability that outcomes are zero, when reporting results we reverse the sign of coefficients from the binary model for ease of interpretation, so that effects can be interpreted as the probability that the outcome is not zero. Therefore, here predictors with consistent effects on the probability and frequency of trade in hurdle models will have the same sign (so that if, for example, litter size has a positive effect on both the probability and frequency of trade, both coefficients for litter size from the hurdle model will be positive).Datasets comprising biological measures from multiple related species violate the fundamental statistical assumption that observations are independent of one another, since closely related species are more phenotypically similar than expected by chance due to their shared evolutionary history72. To account for the non-independence of species due to shared ancestry, we included a phylogenetic random effect in all models, represented by a variance-covariance (VCV) matrix derived from the phylogeny. The off-diagonal elements of the VCV matrix contain the amount of shared evolutionary history for each pair of species35,37,38 based on the branch lengths of the phylogeny (here proportional to time)59,61,62,63,63. This approach allows us to estimate phylogenetic signal using the heritability (H2) parameter, which measures the proportion of total variance in the latent variable attributable to the phylogeny35,37,38. Heritability is interpreted in the same way as Pagel’s λ in phylogenetic generalized least squares regression35,37,38,72. Specifically, phylogenetic signal is constrained between 0, indicating no phylogenetic effect so that species can be treated as independent, and 1, indicating that similarity between species is directly proportional to their amount of shared evolutionary history35,38,72. As hurdle models estimate two latent variables, for each hurdle model we report two heritability estimates, one for the binary and one for the Poisson component. All continuous independent variables were log-10 transformed due to positively skewed distributions. Although GLMMs do not require normally distributed predictor variables, log-transforming positively skewed life history predictors in phylogenetic comparative analyses allows us to model life history evolution on proportional rather than absolute scales. This is important as it facilitates biologically meaningful comparisons between species across large scales of life history variation73. Further, log-transforming positively skewed predictors helps to meet assumptions of the underlying Brownian motion model of evolutionary change, which assumes that phenotypic change along branches of the phylogeny is normally distributed74.We calculated variance inflation factors (VIFs) using functions from the car R package75 to check for multicollinearity between predictor variables. Where any model reported a variance inflation factor of 5 or above, indicating potentially problematic levels of collinearity76, we re-ran the model removing the variable with the highest VIF iteratively until all the remaining variables had VIFs of More

  • in

    Soil–vegetation moisture capacitor maintains dry season vegetation productivity over India

    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).Article 
    CAS 

    Google Scholar 
    Devaraju, N., Bala, G. & Nemani, R. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 38, 1931–1946 (2015).Article 
    CAS 

    Google Scholar 
    Chu, C. et al. Does climate directly influence NPP globally?. Glob. Change Biol. 22, 12–24 (2016).Article 
    ADS 

    Google Scholar 
    Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article 

    Google Scholar 
    Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 48 (2017).Article 

    Google Scholar 
    Cheng, J. et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene. Nat. Commun. 12, 1–9 (2021).ADS 

    Google Scholar 
    Yu, Y. et al. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nat. Commun. 8, 1–9 (2017).Article 
    ADS 

    Google Scholar 
    Betts, R. A., Cox, P. M., Lee, S. E. & Woodward, F. I. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387, 796–799 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 10, 356–362 (2020).Article 
    ADS 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Chang. 6, 75–78 (2016).Article 
    ADS 

    Google Scholar 
    Steffen, W. et al. Trajectories of the earth system in the anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bruijnzeel, L. A. Hydrological functions of tropical forests: Not seeing the soil for the trees?. Agric. Ecosyst. Environ. 104, 185–228 (2004).Article 

    Google Scholar 
    Bierkens, M. F. P. & van den Hurk, B. J. J. M. Groundwater convergence as a possible mechanism for multi-year persistence in rainfall. Geophys. Res. Lett. 34, 2402 (2007).Article 
    ADS 

    Google Scholar 
    Idso, S. B. & Brazel, A. J. Rising atmospheric carbon dioxide concentrations may increase streamflow. Nature 312, 51–53 (1984).Article 
    ADS 
    CAS 

    Google Scholar 
    Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA. 113, 10019–10024 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang. 5, 579–583 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 1–9 (2015).
    Google Scholar 
    Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, 23 (2006).Article 

    Google Scholar 
    Teuling, A. J., Uijlenhoet, R., Hupert, F. & Troch, P. A. Impact of plant water uptake strategy on soil moisture and evapotranspiration dynamics during drydown. Geophys. Res. Lett. 33, 3401 (2006).Article 
    ADS 

    Google Scholar 
    Vivoni, E. R. et al. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett. 35, 22 (2008).Article 

    Google Scholar 
    Dirmeyer, P. A., Jin, Y., Csingh, C. & Yan, C. Evolving land-atmosphere interactions over North America from CMIP5 simulations. J. Clim. 26, 7313–7327 (2013).Article 
    ADS 

    Google Scholar 
    Dirmeyer, P. A. et al. Verification of land-atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeorol. 19, 375–392 (2018).Article 
    ADS 

    Google Scholar 
    Friedlingstein, P. et al. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543–1546 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Arora, K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Song, X., Wang, D. Y., Li, F. & Zeng, X. D. Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Adv. Clim. Chang. Res. 12, 584–595 (2021).Article 

    Google Scholar 
    Levine, P. A., Randerson, J. T., Swenson, S. C. & Lawrence, D. M. Evaluating the strength of the land-atmosphere moisture feedback in Earth system models using satellite observations. Hydrol. Earth Syst. Sci. 20, 4837–4856 (2016).Article 
    ADS 

    Google Scholar 
    Wei, N. et al. Evolution of uncertainty in terrestrial carbon storage in earth system models from CMIP5 to CMIP6. J. Clim. 35, 5483–5499 (2022).Article 
    ADS 

    Google Scholar 
    Smith, N. G. et al. Toward a better integration of biological data from precipitation manipulation experiments into Earth system models. Rev. Geophys. 52, 412–434 (2014).Article 
    ADS 

    Google Scholar 
    Yuan, K., Zhu, Q., Riley, W. J., Li, F. & Wu, H. Understanding and reducing the uncertainties of land surface energy flux partitioning within CMIP6 land models. Agric. For. Meteorol. 319, 108920 (2022).Article 
    ADS 

    Google Scholar 
    Baker, J. C. A. et al. An assessment of land-atmosphere interactions over south america using satellites, reanalysis, and two global climate models. J. Hydrometeorol. 22, 905–922 (2021).Article 
    ADS 

    Google Scholar 
    Mooley, D. A. & Parthasarathy, B. Fluctuations in All-India summer monsoon rainfall during 1871?1978. Clim. Change 6, 287–301 (1984).Article 
    ADS 

    Google Scholar 
    Guhathakurta, P. & Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. 28, 1453–1469 (2008).Article 

    Google Scholar 
    Sarkar, S. & Kafatos, M. Interannual variability of vegetation over the Indian sub-continent and its relation to the different meteorological parameters. Remote Sens. Environ. 90, 268–280 (2004).Article 
    ADS 

    Google Scholar 
    Roy, P. S. et al. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int. J. Appl. Earth Obs. Geoinf. 39, 142–159 (2015).ADS 

    Google Scholar 
    Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Paul, S. et al. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Pathak, A., Ghosh, S., Kumar, P. & Murtugudde, R. Role of oceanic and terrestrial atmospheric moisture sources in intraseasonal variability of indian summer monsoon rainfall. Sci. Rep. 7, 12729 (2017).Article 
    ADS 

    Google Scholar 
    Pradhan, R., Singh, N. & Singh, R. P. Onset of summer monsoon in Northeast India is preceded by enhanced transpiration. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).Article 
    ADS 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pathak, A. et al. Role of oceanic and land moisture sources and transport in the seasonal and interannual variability of summer monsoon in India. J. Clim. 30, 1839–1859 (2017).Article 
    ADS 

    Google Scholar 
    Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Venkateswarlu, B. & Prasad, J. V. N. Carrying capacity of Indian agriculture: issues related to rainfed agriculture. Curr. Sci. 102, 6 (2012).
    Google Scholar 
    Pai, D. S. et al. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65, 1–18 (2014).Article 

    Google Scholar 
    Rodríguez-Fernández, N. J. et al. Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data. Remote Sens. 8, 959 (2016).Article 
    ADS 

    Google Scholar 
    Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article 
    ADS 

    Google Scholar 
    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).Article 
    ADS 

    Google Scholar 
    Doelling, D. R. et al. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 30, 1072–1090 (2013).Article 
    ADS 

    Google Scholar 
    Doelling, D. R. et al. Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product. J. Atmos. Ocean. Technol. 33, 503–521 (2016).Article 
    ADS 

    Google Scholar 
    Running, S. W., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. (2015). https://doi.org/10.5067/MODIS/MOD17A2H.006. Accessed 22 May 2021.Pathak, A., Ghosh, S. & Kumar, P. Precipitation recycling in the Indian subcontinent during summer monsoon. J. Hydrometeorol. 15, 2050 (2014).Article 
    ADS 

    Google Scholar 
    Paul, S., Ghosh, S., Rajendran, K. & Murtugudde, R. Moisture supply from the western ghats forests to water deficit east coast of India. Geophys. Res. Lett. 45, 4337–4344 (2018).Article 
    ADS 

    Google Scholar 
    Sebastian, D. E. et al. Multi-scale association between vegetation growth and climate in India: A wavelet analysis approach. Remote Sens. 11, 2073 (2019).Article 

    Google Scholar 
    Tabari, H. & Hosseinzadeh Talaee, P. Sensitivity of evapotranspiration to climatic change in different climates. Glob. Planet. Change 115, 16–23 (2014).Article 
    ADS 

    Google Scholar 
    Roy, A., Das, S. K., Tripathi, A. K., Singh, N. U. & Barman, H. K. Biodiversity in North East India and their conservation. Progress. Agric. 15, 182 (2015).Article 

    Google Scholar 
    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA. 112, 436–441 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Verma, A., Chandel, V. & Ghosh, S. Climate drivers of the variations of vegetation productivity in India. Environ. Res. Lett. 17, 084023 (2022).Article 
    ADS 

    Google Scholar 
    Dimri, A. P. et al. Western disturbances: A review. Rev. Geophys. 53, 225–246 (2015).Article 
    ADS 

    Google Scholar 
    Joseph, J., Scheidegger, J. M., Jackson, C. R., Barik, B. & Ghosh, S. Is flood to drip irrigation a solution to groundwater depletion in the Indo-Gangetic plain?. Environ. Res. Lett. 17, 104002 (2022).Article 
    ADS 

    Google Scholar 
    Sahastrabuddhe, R., Ghosh, S., Saha, A. & Murtugudde, R. A minimalistic seasonal prediction model for Indian monsoon based on spatial patterns of rainfall anomalies. Clim. Dyn. 52, 3661–3681 (2019).Article 

    Google Scholar 
    Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415 (1994).Article 
    ADS 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. (2019). https://doi.org/10.5067/MODIS/MCD12Q1.006. Accessed 22 May 2021.Myneni, R., Knyazikhin, Y. & Park, T. MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC. (2021) https://doi.org/10.5067/MODIS/MOD15A2H.061. Accessed 22 May 2021.Schaaf, C. & Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD43A3.006. (2015). https://www.umb.edu/spectralmass/terra_aqua_modis/v006. Accessed 22 May 2021.Didan, K., Barreto Munoz, A., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series).Liu, S.-J., Zhang, J.-H., Tian, G.-H. & Cai, D.-X. Detection Fractional Vegetation Cover Changes Using MODIS Data. in 2008 Congress on Image and Signal Processing 707–710 (IEEE, 2008). https://doi.org/10.1109/CISP.2008.46. More

  • in

    Plant nitrogen retention in alpine grasslands of the Tibetan Plateau under multi-level nitrogen addition

    Study siteThe field experiment was conducted at Namco Station (30°47’N, 90°58’E, altitude 4730 m) of the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS), which is located in the alpine steppes of TP in China. The experiment was permitted by ITPCAS, complied with local and national guidelines and regulations. From 2006 to 2017, the mean annual temperature (MAT) and mean annual precipitation (MAP) was about − 0.6 °C and 406 mm, respectively. Monthly mean temperature varied from − 10.8 °C in January to 9.1 °C in July and most of the precipitation occurred from May to October37,38. During our six-year observations (2010, 2011, 2012, 2013, 2015 and 2017), climate change during the growing season from May to September varied differently, with the annual precipitation ranged from 255.9 mm to 493.8 mm and the MAT from 6.7 to 7.4 °C. Androsace tapete, Kobresia pygmaea, Stipa purpurea and Leontopodium pusillum were the dominant plant species at the alpine steppe.Experimental design and treatmentsThe long-term experiment began in May, 2010. Three homogenous plots were randomly arranged as replicates at the alpine steppe and six subplots (~ 13 m2) were distributed in each plot by a cycle, with a 2 m buffer zone between each adjacent subplot (Appendix S1: Fig. S1). In this experiment, six treatments of N fertilization rate (0, 1, 2, 4, 8, and 16 g N m−2 yr−1) were clockwise applied in each subplot. The subplots of 0 g N m−2 yr−1 were control group. We sprayed NH4NO3 solution on the first day of each month in the growing season (from May to September) each year. After fertilizing, we rinsed plant residual fertilizer with a little deionized water (no more than 2 mm rainfall). For the control groups, we added equivalent amount of water. The experiment was conducted from 2010 to 2017 (it should be pointed out that there was no fertilization in 2014 and 2016).Sampling and measurementsThe samples were collected with the training and permission of ITPCAS and involved plants that are common species and not endangered or protected. The identification of the plants was done by referring to a book of Chen and Yang39. Pictures of the corresponding specimens can be seen on the website of ITPCAS (http://itpcas.cas.cn/kxcb/kxtp/nmc_normal_plant/).Vegetation samples were collected in August in 2011 and repeated at the same time in 2012, 2013, 2015 and 2017. We established one 50 × 50 cm quadrat in each subplot, clipped aboveground biomass (AGB) and sorted species by families. The biomass was used to measure ANPP (g m−2 yr−1). Following aboveground portion collected, we used three soil cores (5 cm diameter) to collect the belowground roots at 0–30 cm depth and mixed into one sample, which were used to assess belowground net primary productivity (BNPP, g m−2 yr−1). The roots were cleaned with running water to remove sand and stones.Both plant and root samples were dried at 75 °C for 48 h and then ground into powder (particle size ~ 5 μm) by a laboratory mixer mill (MM400, Retsch). To determine N and C content of plants, we weighed the samples into tin capsules and measured with the elemental analyzer (MAT253, Finnigan MAT GmbH, Germany).Estimation of the critical N rate (Ncr), N retention fraction (NRF), N retention capacity and N-induced C gainAccording to the N saturation hypothesis, plant productivity increases gradually during N addition, reaches a maximum at the Ncr, and eventually declines16,17. We considered the Ncr to be the rate where ANPP no longer remarkably changed with N addition (Fig. 1).We defined plant N retention fraction (NRF, %; Eq. 1) as the aboveground N storage caused by unit N addition rate, and N retention capacity (g N m−2 yr−1; Eq. 2) was the increment of N storage due to exogenous N addition compared to the control40. The equations are as following:$$N;retention;fraction = frac{{ANPP_{tr} times N;content_{tr} – ANPP_{ck} times N;content_{ck} }}{N;rate}$$
    (1)
    $$N;retention;capacity = ANPP_{tr} times N;content_{tr} – ANPP_{ck} times N;content_{ck}$$
    (2)
    where ANPPtr and N contenttr (%) refer to those in the treatment (tr) groups, and ANPPck and N contentck refer to those in the control (ck) groups. These expressions are also used in the following equations (Eqs. 3–5).The N-induced C gain (g C m−2 yr−1; Eq. 3) was estimated by the increment of C storage owing to exogenous N addition compared to the control40. Maximum N retention capacity (MNRC, Eq. 4) and maximum N-induced C gain (Eq. 5) mean the maximum N and C storage increment in plant caused by exogenous N input at Ncr, respectively. The formulas are as following:$$N{text{-}}induced;C;gain = ANPP_{tr} times C;content_{tr} – ANPP_{ck} times C;content_{ck}$$
    (3)
    $$MNRC = ANPP_{max } times N;content_{max } – ANPP_{ck} times N;content_{ck}$$
    (4)
    $$Maximum;N{text{-}}induced;C;gain = ANPP_{max } times C;content_{max } – ANPP_{ck} times C;content_{ck}$$
    (5)
    where ANPPmax, N contentmax and C contentmax refer to the value of ANPP, N content and C content at Ncr, respectively.Data synthesisTo evaluate N limitation and saturation on the TP more accurately, we searched papers from the Web of Science (https://www.webofscience.com) and the China National Knowledge Infrastructure (https://www.cnki.net). The keywords used by article searching were: (a) N addition, N deposition or N fertilization, (b) grassland, steppe or meadow. Article selection was based on the following conditions. First, the experimental site must be conducted in a grassland ecosystem. Second, the experiment had at least three N addition levels and a control group. Third, if the experiment lasted for many years, we analyzed data with multi-year average. Based on the above, we collected 89 independent experimental cases. Among these, 27 cases were located on the TP alpine grasslands, 25 in the Inner Mongolia (IM) grasslands and 37 in other terrestrial grasslands (detailed information sees Appendix S2: Table S1).We extracted ANPP data and N addition rate of these cases and estimated Ncr and ANPPmax (Appendix S2: Fig. S2). We then calculated NRF, N retention and C gain of each group of data for further analysis (Appendix S2: Table S2). Most of the 89 cases did not have data on N and C content. To facilitate the calculation, we summarized N and C content from 40 articles in the neighboring areas of the cases and divided the N and C content into seven intervals according to the N addition rate (Appendix S2: Table S3 and Fig. S3). The unit of N addition rate was unified to “g N m−2 yr−1”. All the original data were obtained directly from texts and tables of published papers. If the data were displayed only in graphs, Getdata 2.20 was used to digitize the numerical data. For the estimation of N retention and C gain of the TP at current N deposition rates and future at Ncr, we fitted the exponential relationship to the data from 27 cases on the TP, and then substituted N rates into the fitted equations (Eq. 6):$$y = a times left[ {1 – exp left( { – bx} right)} right].$$
    (6)
    We also included MAT, MAP, soil C:N ratio, fencing management (fencing or grazing) and grassland type (meadow, steppe and desert steppe) of the experiment sites for exploring the drivers affecting N limitation (Appendix S2: Table S1). When climatic data were missing from the article, MAT and MAP were obtained from the WorldClim (http://www.worldclim.org).Species were usually divided into four functional groups (grasses, sedges, legumes and forbs) to study the response of species composition to N addition in previous study41. We synthesized 13 TP experimental cases (including our field experiment) from the data synthesis and each case included at least three functional groups (detailed references see Appendix S2).Statistical analysisThere were 42 species in our field experiment. We divided them by family into eleven groups: Asteraceae (forbs), Poaceae (grasses), Leguminosae (legumes), Rosaceae (forbs), Boraginaceae (forbs), Caryophyllaceae (forbs), Cyperaceae (sedges), Labiatae (forbs), Primulaceae (forbs), Scrophulariaceae (forbs) and Others. Due to species in the group of Others contributed only 1.22% of AGB, we analyzed AGB and foliar stoichiometry among other ten families (Appendix S1: Table S1). In Namco steppe, forbs, grasses, sedges and legumes accounted for 78.0%, 7.4%, 8.2% and 5.2% of the AGB respectively (Appendix S1: Table S1 and Fig. S2). Such a large number of forbs suggested that our experiment was conducted on a severely degraded grassland.For our field data, two-way ANOVAs were used to analyze the effects of year, N fertilization rate and their interactions on species AGB. One-way ANOVAs were used to test the response of ANPP, BNPP, root:shoot ratio, species foliar C content, N content and C:N ratio to N addition rate. Duncan’s new multiple range test was used to compare the fertilization influences at each rate in these ANOVAs. Prior to the above ANOVAs, we performed homogeneity of variance test and transformed the data logarithmically when necessary. Simple regression was used to estimate the relevance among ANPP, NRF, N retention capacity and C gain with N addition rates.Structural equation modeling (SEM) was used to explore complex relationships among multiple variables. To quantify the contribution of drivers such as climate and soil to Ncr, ANPP, NRF and MNRC, we constructed SEM based on existing ecological knowledge and the possible relationships between variables. We considered environmental factors (MAT, MAP and soil C:N) and ANPPck as explanatory variables, and Ncr, NRF and MNRC as response variables. We included the ANPPck in the SEM rather than the ANPPmax because we wonder whether there was a relationship between ANPP in the absence of exogenous N input and the ecosystem N retention in the presence of N saturation. This has important implications for assessing N input. Before constructing the SEM, we excluded collinearity between the factors. In addition, Student’s t-test and one-way ANOVAs were performed to explain the effect of fencing management and grassland type on above response variables, respectively. The SEM was constructed using the R package “piecewiseSEM”42. Fisher’s C was used to assess the goodness-of-model fit, and AIC was for model comparison.Given the influence of extreme values in the data synthesis, we calculated the geometric mean of Ncr, NRF, N retention and N-induced C gain. All statistical analyses were performed with SPSS 26.0 and RStudio (Version 1.2.1335) based on R version 3.6.2 (R Core Team, 2019). More