Ecological corridors for the amphibians and reptiles in the Natura 2000 sites of Romania
1.
Turner, M. G. Landscape ecology: The effects of pattern on process. Annu. Rev. Ecol. Syst. 20, 171–197 (1989).
Article Google Scholar
2.
Noss, R. F. Wildlife corridors. in Ecology of Greenways (eds. Smith, D. & Hellmund, P.) 43–98 (University of Minesota Press, Minesota, 1993).
3.
Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).
Article Google Scholar
4.
Hanski, I. The Shrinking World: Ecological Consequences of Habitat Loss, Vol. 14 (International Ecology Institute, Philadelphia, 2005).
Google Scholar
5.
IUCN. The World Conservation Strategy. (IUCN, UNEP, 1980).
6.
IUCN. The IUCN Red List of Threatened Species. Version 2014.3. (2014).
7.
Dirnböck, T., Dullinger, S. & Grabherr, G. A regional impact assessment of climate and land-use change on alpine vegetation. J. Biogeogr. 30, 401–417 (2003).
Article Google Scholar
8.
Gonçalves, J., Honrado, J. P., Vicente, J. R. & Civantos, E. A model-based framework for assessing the vulnerability of low dispersal vertebrates to landscape fragmentation under environmental change. Ecol. Complex. 28, 174–186 (2016).
Article Google Scholar
9.
Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
Article Google Scholar
10.
Fahrig, L. & Merriam, G. Conservation of fragmented populations. Conserv. Biol. 8, 50–59 (1994).
Article Google Scholar
11.
Wiens, J. A. Habitat fragmentation: Island v landscape perspectives on bird conservation. Ibis 137, S97–S104 (1994).
Article Google Scholar
12.
Diamond, J. M. ‘Normal’ extinctions of isolated populations. In extinctions (ed. Nitecki, M. H.) 191–246 (University of Chicago Press, Chicago, 1984).
Google Scholar
13.
Laurance, W. F. Comparative responses of five arboreal marsupials to tropical forest fragmentation. J. Mammal. 71, 641–653 (1990).
Article Google Scholar
14.
Bennett, A. F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. (IUCN, 2003).
15.
Opdam, P. Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landsc. Ecol. 5, 93–106 (1991).
Article Google Scholar
16.
Thomas, C. D. & Jones, T. M. Partial recovery of a skipper butterfly (Hesperia comma) from population refuges: Lessons for conservation in a fragmented landscape. J. Anim. Ecol. 62, 472–481 (1993).
Article Google Scholar
17.
Haddad, N. M. et al. Corridor use by diverse taxa. Ecology 84, 609–615 (2003).
Article Google Scholar
18.
Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).
Article Google Scholar
19.
Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
Article Google Scholar
20.
Noss, R. F. A regional landscape approach to maintain diversity. Bioscience 33, 700–706 (1983).
Article Google Scholar
21.
Noss, R. F. & Harris, L. D. Nodes, networks and MUMS: Preserving diversity at all scales. Environ. Manag. 10, 299–309 (1986).
ADS Article Google Scholar
22.
Grumbine, R. E. What is ecosystem management?. Conserv. Biol. 8, 27–38 (1994).
Article Google Scholar
23.
Forman, R. T. T. Land Mosaics. The Ecology of Landscapes and Regions ( Cambridge University Press, Cambridge, 1995).
Google Scholar
24.
Jongman, R. H. G. Nature conservation planning in Europe: Developing ecological networks. Landsc. Urban Plan. 32, 169–183 (1995).
Article Google Scholar
25.
Kubeš, J. Biocentres and corridors in a cultural landscape. A critical assessment of the ‘territorial system of ecological stability’. Landsc. Urban Plan. 35, 231–240 (1996).
Article Google Scholar
26.
Diamond, J. M. The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol. Cons. 7, 129–146 (1975).
Article Google Scholar
27.
Wilson, E. O. & Willis, E. O. Applied biogeography. In Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 522–534 (Belknap Press, New York, 1975).
Google Scholar
28.
Soulé, M. E. Land use planning and wildlife maintainance: Guidelines for conserving wildlife in an urban landscape. J. Am. Plan. Assoc. 3, 313–323 (1991).
Article Google Scholar
29.
Opdam, P., Van Apeldoorn, R., Schotman, A. & Kalkhoven, J. Population responses to landscape fragmentation. In Landscape Ecology of A Stressed Environment (eds Vos, C. C. & Opdam, P.) 147–171 (Chapman and Hall, London, 1993).
Google Scholar
30.
Beier, P. & Noss, R. F. Do habitat corridors provide connectivity?. Conserv. Biol. 12, 1241–1252 (1998).
Article Google Scholar
31.
Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).
Article Google Scholar
32.
Barrett, G. W. & Bohlen, P. J. Landscape Ecology Landscape Linkages and Biodiversity (Island Press, New York, 1991).
Google Scholar
33.
Forman, R. T. T. & Godron, M. Landscape Ecology (Wiley, New York, 1986).
Google Scholar
34.
Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24, 660–668 (2010).
Article Google Scholar
35.
Mech, S. G. & Hallett, J. G. Evaluating the effectiveness of corridors: A genetic approach. Conserv. Biol. 15, 467–474 (2001).
Article Google Scholar
36.
Harris, L. D. & Scheck, J. From implications to applications: the dispersal corridor principle applied to the conservation of biological diversity. in Nature Conservation 2: The Role of Corridors (eds. Saunders, D. A. & Hobbs, R. J.) 189–220 (Surrey Beatty & Sons, 1991).
37.
Hobbs, R. J. & Hopkins, A. J. M. The role of conservation corridors in a changing climate. In The Role of Corridors (eds Saunders, D. A. & Hobbs, R. J.) 281–290 (Surrey Beaty & Sons, New York, 1991).
Google Scholar
38.
McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl. Acad. Sci. 99, 6070–6074 (2002).
ADS CAS Article Google Scholar
39.
Bennett, G. & Mulongoy, K. J. Review of Experience with Ecological Networks, Corridors and Buffer Zones (Secretariat of the Convention on Biological Diversity, 2006).
40.
MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).
Article Google Scholar
41.
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).
Google Scholar
42.
Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42, 3–16 (1991).
Article Google Scholar
43.
Bosso, L., Mucedda, M., Fichera, G., Kiefer, A. & Russo, D. A gap analysis for threatened bat populations on Sardinia. Hystrix Ital. J. Mammal. 27, 11788. https://doi.org/10.4404/hystrix-27.2-11788 (2016).
Article Google Scholar
44.
Deus, E. et al. Current and future conflicts between eucalypt plantations and high biodiversity areas in the Iberian Peninsula. J. Nat. Conserv. 45, 107–117 (2018).
Article Google Scholar
45.
Johovic, I., Gama, M., Banha, F., Tricarico, E. & Anastácio, P. M. A potential threat to amphibians in the European Natura 2000 network: Forecasting the distribution of the American bullfrog Lithobates catesbeianus. Biol. Conserv. 245, 108–551. https://doi.org/10.1016/j.biocon.2020.108551 (2020).
Article Google Scholar
46.
van der Sluis, T. et al. How much Biodiversity is in Natura 2000? The “Umbrella Effect” of the European Natura 2000 protected area network. 147 (Alterra, Wageningen, 2016).
47.
Natura 2000 https://ec.europa.eu/environment/nature/natura2000/index_en.htm (2019).
48.
European Comission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. 11 (Brussels, 2013).
49.
European Comission. Technical information on Green Infrastructure (GI). 24 (Brussels, 2013).
50.
Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).
Article Google Scholar
51.
Bennett, A. F. & Saunders, D. A. Habitat fragmentation and landscape change. In Conservation Biology for All (eds Sodhi, N. S. & Ehrlich, P. R.) 88–106 (Oxford University Press, Oxford, 2010).
Google Scholar
52.
Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Cons. 128, 231–240 (2006).
Article Google Scholar
53.
Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127 (2017).
Article Google Scholar
54.
Blaustein, A. R. et al. Amphibian breeding and climate change. Conserv. Biol. 15, 1804–1809 (2001).
Article Google Scholar
55.
Gibbons, W. J. et al. The Global Decline of Reptiles Déjà Vu Amphibians. Bioscience 50, 653–666 (2000).
Article Google Scholar
56.
Rivera-Ortiz, F. A., Aguilar, R., Arizmendi, M. D. C., Quesada-Avendaño, M. & Oyama, K. Habitat fragmentation and genetic variability of tetrapod populations. Anim. Conserv. 18, 249–258 (2015).
Article Google Scholar
57.
Andrews, K. M., Gibbons, J. W. & Jochimsen, D. M. Ecological effects of roads on amphibians and reptiles: A literature review. In Urban Herpetology (eds Mitchell, J. C. et al.) 121–143 (Society for the Study of Amphibians & Reptiles, London, 2008).
Google Scholar
58.
Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43 (2019).
Article Google Scholar
59.
McCallum, M. L. Tropical Herpetology: A drop in the bucket. Trends Ecol. Evol. 20, 289–290 (2005).
Article Google Scholar
60.
Bonnet, X., Shine, R. & Lourdais, O. Taxonomic chauvinism. Trends Ecol. Evol. 17, 1–3 (2002).
Article Google Scholar
61.
Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Cons. 204, 1–5 (2016).
Article Google Scholar
62.
Beier, P., Majka, D. & Jenness, J. Conceptual Steps for Designing Wildlife Corridors. www.corridordesign.org (2007).
63.
Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272 (2013).
Article Google Scholar
64.
Hager, H. A. Area-sensitivity of reptiles and amphibians: Are there indicator species for habitat fragmentation?. Écoscience 66, 139–147 (1998).
Article Google Scholar
65.
Almasieh, K., Mirghazanfari, S. M. & Mahmoodi, S. Biodiversity hotspots for modeled habitat patches and corridors of species richness and threatened species of reptiles in central Iran. Eur. J. Wildl. Res. 65, 92. https://doi.org/10.1007/s10344-019-1335-x (2019).
Article Google Scholar
66.
Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).
CAS Article Google Scholar
67.
Brooke, Z. M., Bielby, J., Nambiar, K. & Carbone, C. correlates of research effort in carnivores: Body size, range size and diet matter. PLoS ONE 9, e93195. https://doi.org/10.1371/journal.pone.0093195 (2014).
ADS CAS Article Google Scholar
68.
Rozylowicz, L., Popescu, V. D., Pătroescu, M. & Chișamera, G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 20, 561–579 (2011).
Article Google Scholar
69.
Beier, P., Majka, D. R. & Spencer, W. D. Forks in the road choices in procedures for designing wildland linkages. Conserv. Biol. 22, 836–851 (2008).
Article Google Scholar
70.
Burbrink, F. T., Phillips, C. A. & Heske, E. J. A riparian zone in southern Illinois as a potential dispersal corridor for reptiles and amphibians. Biol. Cons. 86, 107–115 (1998).
Article Google Scholar
71.
Dixo, M. & Metzger, J. P. Are corridors, fragment size and forest structure important for the conservation of leaf-litter lizards in a fragmented landscape?. Oryx 43, 435–442 (2009).
Article Google Scholar
72.
ArcGIS Release 10.4 (Redlands, CA, 2013).
73.
Hamer, A. J. & McDonnell, M. J. The response of herpetofauna to urbanization: Inferring patterns of persistence from wildlife databases. Austral Ecol. 35, 568–580 (2010).
Article Google Scholar
74.
Vignoli, L., Mocaer, I., Luiselli, L. & Bologna, M. A. Can a large metropolis sustain complex herpetofauna communities? An analysis of the suitability of green space fragments in Rome. Anim. Conserv. 12, 456–466 (2009).
Article Google Scholar
75.
Strugariu, A., Gherghel, I., Huțuleac-Volosciuc, M. V. & Pușcașu, C. M. Preliminary aspects concerning the herpetofauna from urban and peri-urban environments from North-Eastern Romania: A case study in the city of Suceava. Herpetol. Roman. 1, 53–61 (2007).
Google Scholar
76.
Gherghel, I., Strugariu, A., Sahlean, T. C. & Zamfirescu, O. Anthropogenic impact or anthropogenic accommodation? Distribution range expansion of the common wall lizard (Podarcis muralis) by means of artificial habitats in the north-eastern limits of its distribution range. Acta Herpetol. 4, 183–189 (2009).
Google Scholar
77.
Gherghel, I. & Tedrow, R. Manmade structures are used by an invasive species to colonize new territory across a fragmented landscape. Acta Oecol. 101, 103479. https://doi.org/10.1016/j.actao.2019.103479 (2019).
Article Google Scholar
78.
Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563. https://doi.org/10.1038/s41467-020-18457-x (2020).
CAS Article Google Scholar
79.
Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
Article Google Scholar
80.
Fitzgerald, L. A. et al. The future for reptiles: advances and challenges in the anthropocene. Encycl. Anthropocene 3, 163–174 (2018).
Article Google Scholar
81.
Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).
ADS CAS Article Google Scholar
82.
Meta-Analysis, A. Rey Benayas, J. M., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration. Science 325, 1121–1124 (2009).
Article CAS Google Scholar
83.
Van Der Windt, H. J. & Swart, J. A. A. Ecological corridors, connecting science and politics: the case of the Green River in the Netherlands. J. Appl. Ecol. 45, 124–132 (2008).
Article Google Scholar
84.
Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors (International Union for Conservation of Nature, 2020).
85.
Gregory, A. J. & Beier, P. Response variables for evaluation of the effectiveness of conservation corridors. Conserv. Biol. 28, 689–695 (2014).
Article Google Scholar
86.
Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Lin. Soc. 119, 528–559 (2016).
Article Google Scholar
87.
Deodatus, F. et al. Creation of ecological corridors in the Ukrainian Carpathians. In The Carpathians: Integrating Nature and Society Towards Sustainability Environmental Science and Engineering (eds Kozak, J. et al.) 701–717 (Springer, Berlin, 2013).
Google Scholar
88.
Favilli, F., Hoffmann, C., Elmi, M., Ravazzoli, E. & Streifeneder, T. The BioREGIO Carpathians project: Aims, methodology and results from the “Continuity and Connectivity” analysis. Nat. Conserv. 11, 95–111 (2015).
Article Google Scholar
89.
Csagoly, P., Magnin, G. & Hulea, O. Lower Danube Green Corridor. in The Wetland Book: II: Distribution, Description and Conservation (eds. Finlayson, M. C., Milton, R. G., Prentice, C. R. & Davidson, N. C.) 1–6 (Springer, Netherlands, 2016).
90.
Belote, R. T. et al. Identifying corridors among large protected areas in the United States. PLoS ONE 11, e0154223. https://doi.org/10.1371/journal.pone.0154223 (2016).
CAS Article Google Scholar
91.
Breckheimer, I. et al. Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity. Conserv. Biol. 28, 1584–1593 (2014).
Article Google Scholar
92.
Meurant, M., Gonzales, A., Doxa, A. & Albert, C. H. Selecting surrogate species for connectivity conservation. Biol. Cons. 227, 326–334 (2018).
Article Google Scholar
93.
Dondina, O., Orioli, V., Chiatante, G. & Bani, L. Practical insights to select focal species and design priority areas for conservation. Ecol. Indic. 108, 105767. https://doi.org/10.1016/j.ecolind.2019.105767 (2020).
Article Google Scholar
94.
Churko, G., Kienast, F. & Bolliger, J. A multispecies assessment to identify the functional connectivity of amphibians in a human-dominated landscape. Int. J. Geo-Inf. 9, 287. https://doi.org/10.3390/ijgi9050287 (2020).
Article Google Scholar
95.
Cushman, S. A. & Landguth, E. L. Multi-taxa population connectivity in the Northern Rocky Mountains. Ecol. Model. 231, 101–112 (2012).
Article Google Scholar
96.
Krosby, M. et al. Focal species and landscape “naturalness” corridor models offer complementary approaches for connectivity conservation planning. Landsc. Ecol. 30, 2121–2132 (2015).
Article Google Scholar
97.
Wiens, J. A., Hayward, G. D., Holthausen, R. S. & Wisdom, M. J. Using surrogate species and groups for conservation planning and management. Bioscience 58, 241–252 (2008).
Article Google Scholar
98.
Macdonald, E. A. et al. Identifying ambassador species for conservation marketing. Glob. Ecol. Conserv. 12, 204–214 (2017).
Article Google Scholar
99.
Fleury, A. M. & Brown, R. D. A framework for the design of wildlife conservation corridors with specific application to southwestern Ontario. Landsc. Urban Plan. 37, 163–186 (1997).
Article Google Scholar
100.
Cogălniceanu, D. et al. Diversity and distribution of amphibians in Romania. ZooKeys 296, 35–57 (2013).
Article Google Scholar
101.
Cogălniceanu, D. et al. Diversity and distribution of reptiles in Romania. ZooKeys 341, 49–76 (2013).
Article Google Scholar
102.
LaRue, M. A. & Nielsen, C. K. Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol. Model. 212, 372–381 (2008).
Article Google Scholar
103.
Adriaensen, F. et al. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64, 233–247 (2003).
Article Google Scholar
104.
Correa Ayram, C. A., Mendoza, M. E., Etter, A. & Salicrup, D. R. P. Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog. Phys. Geogr. 1, 1–32 (2015).
Google Scholar
105.
Ribeiro, J. W. et al. LandScape Corridors (LSCORRIDORS): A new softwarepackage for modelling ecological corridors based onlandscape patterns and species requirements. Methods Ecol. Evol. 8, 1425–1432 (2017).
Article Google Scholar
106.
Linkage Mapper Connectivity Analysis Software v. 2.0.0 (The Nature Conservancy, Seattle, 2011).
107.
Popescu, V. D., Rozylowicz, L., Cogălniceanu, D., Niculae, I. M. & Cucu, A. L. Moving into protected areas? Setting conservation priorities for Romanian Reptiles and Amphibians at risk from climate change. PLoS ONE 8, e79330. https://doi.org/10.1371/journal.pone.0079330 (2014).
ADS CAS Article Google Scholar
108.
Lambeck, R. J. Focal species: A multispecies umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).
Article Google Scholar More