More stories

  • in

    Ecological corridors for the amphibians and reptiles in the Natura 2000 sites of Romania

    1.
    Turner, M. G. Landscape ecology: The effects of pattern on process. Annu. Rev. Ecol. Syst. 20, 171–197 (1989).
    Article  Google Scholar 
    2.
    Noss, R. F. Wildlife corridors. in Ecology of Greenways (eds. Smith, D. & Hellmund, P.) 43–98 (University of Minesota Press, Minesota, 1993).

    3.
    Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).
    Article  Google Scholar 

    4.
    Hanski, I. The Shrinking World: Ecological Consequences of Habitat Loss, Vol. 14 (International Ecology Institute, Philadelphia, 2005).
    Google Scholar 

    5.
    IUCN. The World Conservation Strategy. (IUCN, UNEP, 1980).

    6.
    IUCN. The IUCN Red List of Threatened Species. Version 2014.3. (2014).

    7.
    Dirnböck, T., Dullinger, S. & Grabherr, G. A regional impact assessment of climate and land-use change on alpine vegetation. J. Biogeogr. 30, 401–417 (2003).
    Article  Google Scholar 

    8.
    Gonçalves, J., Honrado, J. P., Vicente, J. R. & Civantos, E. A model-based framework for assessing the vulnerability of low dispersal vertebrates to landscape fragmentation under environmental change. Ecol. Complex. 28, 174–186 (2016).
    Article  Google Scholar 

    9.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Article  Google Scholar 

    10.
    Fahrig, L. & Merriam, G. Conservation of fragmented populations. Conserv. Biol. 8, 50–59 (1994).
    Article  Google Scholar 

    11.
    Wiens, J. A. Habitat fragmentation: Island v landscape perspectives on bird conservation. Ibis 137, S97–S104 (1994).
    Article  Google Scholar 

    12.
    Diamond, J. M. ‘Normal’ extinctions of isolated populations. In extinctions (ed. Nitecki, M. H.) 191–246 (University of Chicago Press, Chicago, 1984).
    Google Scholar 

    13.
    Laurance, W. F. Comparative responses of five arboreal marsupials to tropical forest fragmentation. J. Mammal. 71, 641–653 (1990).
    Article  Google Scholar 

    14.
    Bennett, A. F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. (IUCN, 2003).

    15.
    Opdam, P. Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landsc. Ecol. 5, 93–106 (1991).
    Article  Google Scholar 

    16.
    Thomas, C. D. & Jones, T. M. Partial recovery of a skipper butterfly (Hesperia comma) from population refuges: Lessons for conservation in a fragmented landscape. J. Anim. Ecol. 62, 472–481 (1993).
    Article  Google Scholar 

    17.
    Haddad, N. M. et al. Corridor use by diverse taxa. Ecology 84, 609–615 (2003).
    Article  Google Scholar 

    18.
    Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).
    Article  Google Scholar 

    19.
    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
    Article  Google Scholar 

    20.
    Noss, R. F. A regional landscape approach to maintain diversity. Bioscience 33, 700–706 (1983).
    Article  Google Scholar 

    21.
    Noss, R. F. & Harris, L. D. Nodes, networks and MUMS: Preserving diversity at all scales. Environ. Manag. 10, 299–309 (1986).
    ADS  Article  Google Scholar 

    22.
    Grumbine, R. E. What is ecosystem management?. Conserv. Biol. 8, 27–38 (1994).
    Article  Google Scholar 

    23.
    Forman, R. T. T. Land Mosaics. The Ecology of Landscapes and Regions ( Cambridge University Press, Cambridge, 1995).
    Google Scholar 

    24.
    Jongman, R. H. G. Nature conservation planning in Europe: Developing ecological networks. Landsc. Urban Plan. 32, 169–183 (1995).
    Article  Google Scholar 

    25.
    Kubeš, J. Biocentres and corridors in a cultural landscape. A critical assessment of the ‘territorial system of ecological stability’. Landsc. Urban Plan. 35, 231–240 (1996).
    Article  Google Scholar 

    26.
    Diamond, J. M. The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol. Cons. 7, 129–146 (1975).
    Article  Google Scholar 

    27.
    Wilson, E. O. & Willis, E. O. Applied biogeography. In Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 522–534 (Belknap Press, New York, 1975).
    Google Scholar 

    28.
    Soulé, M. E. Land use planning and wildlife maintainance: Guidelines for conserving wildlife in an urban landscape. J. Am. Plan. Assoc. 3, 313–323 (1991).
    Article  Google Scholar 

    29.
    Opdam, P., Van Apeldoorn, R., Schotman, A. & Kalkhoven, J. Population responses to landscape fragmentation. In Landscape Ecology of A Stressed Environment (eds Vos, C. C. & Opdam, P.) 147–171 (Chapman and Hall, London, 1993).
    Google Scholar 

    30.
    Beier, P. & Noss, R. F. Do habitat corridors provide connectivity?. Conserv. Biol. 12, 1241–1252 (1998).
    Article  Google Scholar 

    31.
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).
    Article  Google Scholar 

    32.
    Barrett, G. W. & Bohlen, P. J. Landscape Ecology Landscape Linkages and Biodiversity (Island Press, New York, 1991).
    Google Scholar 

    33.
    Forman, R. T. T. & Godron, M. Landscape Ecology (Wiley, New York, 1986).
    Google Scholar 

    34.
    Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24, 660–668 (2010).
    Article  Google Scholar 

    35.
    Mech, S. G. & Hallett, J. G. Evaluating the effectiveness of corridors: A genetic approach. Conserv. Biol. 15, 467–474 (2001).
    Article  Google Scholar 

    36.
    Harris, L. D. & Scheck, J. From implications to applications: the dispersal corridor principle applied to the conservation of biological diversity. in Nature Conservation 2: The Role of Corridors (eds. Saunders, D. A. & Hobbs, R. J.) 189–220 (Surrey Beatty & Sons, 1991).

    37.
    Hobbs, R. J. & Hopkins, A. J. M. The role of conservation corridors in a changing climate. In The Role of Corridors (eds Saunders, D. A. & Hobbs, R. J.) 281–290 (Surrey Beaty & Sons, New York, 1991).
    Google Scholar 

    38.
    McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl. Acad. Sci. 99, 6070–6074 (2002).
    ADS  CAS  Article  Google Scholar 

    39.
    Bennett, G. & Mulongoy, K. J. Review of Experience with Ecological Networks, Corridors and Buffer Zones (Secretariat of the Convention on Biological Diversity, 2006).

    40.
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).
    Article  Google Scholar 

    41.
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).
    Google Scholar 

    42.
    Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42, 3–16 (1991).
    Article  Google Scholar 

    43.
    Bosso, L., Mucedda, M., Fichera, G., Kiefer, A. & Russo, D. A gap analysis for threatened bat populations on Sardinia. Hystrix Ital. J. Mammal. 27, 11788. https://doi.org/10.4404/hystrix-27.2-11788 (2016).
    Article  Google Scholar 

    44.
    Deus, E. et al. Current and future conflicts between eucalypt plantations and high biodiversity areas in the Iberian Peninsula. J. Nat. Conserv. 45, 107–117 (2018).
    Article  Google Scholar 

    45.
    Johovic, I., Gama, M., Banha, F., Tricarico, E. & Anastácio, P. M. A potential threat to amphibians in the European Natura 2000 network: Forecasting the distribution of the American bullfrog Lithobates catesbeianus. Biol. Conserv. 245, 108–551. https://doi.org/10.1016/j.biocon.2020.108551 (2020).
    Article  Google Scholar 

    46.
    van der Sluis, T. et al. How much Biodiversity is in Natura 2000? The “Umbrella Effect” of the European Natura 2000 protected area network. 147 (Alterra, Wageningen, 2016).

    47.
    Natura 2000 https://ec.europa.eu/environment/nature/natura2000/index_en.htm (2019).

    48.
    European Comission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. 11 (Brussels, 2013).

    49.
    European Comission. Technical information on Green Infrastructure (GI). 24 (Brussels, 2013).

    50.
    Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).
    Article  Google Scholar 

    51.
    Bennett, A. F. & Saunders, D. A. Habitat fragmentation and landscape change. In Conservation Biology for All (eds Sodhi, N. S. & Ehrlich, P. R.) 88–106 (Oxford University Press, Oxford, 2010).
    Google Scholar 

    52.
    Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Cons. 128, 231–240 (2006).
    Article  Google Scholar 

    53.
    Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127 (2017).
    Article  Google Scholar 

    54.
    Blaustein, A. R. et al. Amphibian breeding and climate change. Conserv. Biol. 15, 1804–1809 (2001).
    Article  Google Scholar 

    55.
    Gibbons, W. J. et al. The Global Decline of Reptiles Déjà Vu Amphibians. Bioscience 50, 653–666 (2000).
    Article  Google Scholar 

    56.
    Rivera-Ortiz, F. A., Aguilar, R., Arizmendi, M. D. C., Quesada-Avendaño, M. & Oyama, K. Habitat fragmentation and genetic variability of tetrapod populations. Anim. Conserv. 18, 249–258 (2015).
    Article  Google Scholar 

    57.
    Andrews, K. M., Gibbons, J. W. & Jochimsen, D. M. Ecological effects of roads on amphibians and reptiles: A literature review. In Urban Herpetology (eds Mitchell, J. C. et al.) 121–143 (Society for the Study of Amphibians & Reptiles, London, 2008).
    Google Scholar 

    58.
    Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43 (2019).
    Article  Google Scholar 

    59.
    McCallum, M. L. Tropical Herpetology: A drop in the bucket. Trends Ecol. Evol. 20, 289–290 (2005).
    Article  Google Scholar 

    60.
    Bonnet, X., Shine, R. & Lourdais, O. Taxonomic chauvinism. Trends Ecol. Evol. 17, 1–3 (2002).
    Article  Google Scholar 

    61.
    Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Cons. 204, 1–5 (2016).
    Article  Google Scholar 

    62.
    Beier, P., Majka, D. & Jenness, J. Conceptual Steps for Designing Wildlife Corridors. www.corridordesign.org (2007).

    63.
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272 (2013).
    Article  Google Scholar 

    64.
    Hager, H. A. Area-sensitivity of reptiles and amphibians: Are there indicator species for habitat fragmentation?. Écoscience 66, 139–147 (1998).
    Article  Google Scholar 

    65.
    Almasieh, K., Mirghazanfari, S. M. & Mahmoodi, S. Biodiversity hotspots for modeled habitat patches and corridors of species richness and threatened species of reptiles in central Iran. Eur. J. Wildl. Res. 65, 92. https://doi.org/10.1007/s10344-019-1335-x (2019).
    Article  Google Scholar 

    66.
    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).
    CAS  Article  Google Scholar 

    67.
    Brooke, Z. M., Bielby, J., Nambiar, K. & Carbone, C. correlates of research effort in carnivores: Body size, range size and diet matter. PLoS ONE 9, e93195. https://doi.org/10.1371/journal.pone.0093195 (2014).
    ADS  CAS  Article  Google Scholar 

    68.
    Rozylowicz, L., Popescu, V. D., Pătroescu, M. & Chișamera, G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 20, 561–579 (2011).
    Article  Google Scholar 

    69.
    Beier, P., Majka, D. R. & Spencer, W. D. Forks in the road choices in procedures for designing wildland linkages. Conserv. Biol. 22, 836–851 (2008).
    Article  Google Scholar 

    70.
    Burbrink, F. T., Phillips, C. A. & Heske, E. J. A riparian zone in southern Illinois as a potential dispersal corridor for reptiles and amphibians. Biol. Cons. 86, 107–115 (1998).
    Article  Google Scholar 

    71.
    Dixo, M. & Metzger, J. P. Are corridors, fragment size and forest structure important for the conservation of leaf-litter lizards in a fragmented landscape?. Oryx 43, 435–442 (2009).
    Article  Google Scholar 

    72.
    ArcGIS Release 10.4 (Redlands, CA, 2013).

    73.
    Hamer, A. J. & McDonnell, M. J. The response of herpetofauna to urbanization: Inferring patterns of persistence from wildlife databases. Austral Ecol. 35, 568–580 (2010).
    Article  Google Scholar 

    74.
    Vignoli, L., Mocaer, I., Luiselli, L. & Bologna, M. A. Can a large metropolis sustain complex herpetofauna communities? An analysis of the suitability of green space fragments in Rome. Anim. Conserv. 12, 456–466 (2009).
    Article  Google Scholar 

    75.
    Strugariu, A., Gherghel, I., Huțuleac-Volosciuc, M. V. & Pușcașu, C. M. Preliminary aspects concerning the herpetofauna from urban and peri-urban environments from North-Eastern Romania: A case study in the city of Suceava. Herpetol. Roman. 1, 53–61 (2007).
    Google Scholar 

    76.
    Gherghel, I., Strugariu, A., Sahlean, T. C. & Zamfirescu, O. Anthropogenic impact or anthropogenic accommodation? Distribution range expansion of the common wall lizard (Podarcis muralis) by means of artificial habitats in the north-eastern limits of its distribution range. Acta Herpetol. 4, 183–189 (2009).
    Google Scholar 

    77.
    Gherghel, I. & Tedrow, R. Manmade structures are used by an invasive species to colonize new territory across a fragmented landscape. Acta Oecol. 101, 103479. https://doi.org/10.1016/j.actao.2019.103479 (2019).
    Article  Google Scholar 

    78.
    Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563. https://doi.org/10.1038/s41467-020-18457-x (2020).
    CAS  Article  Google Scholar 

    79.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Article  Google Scholar 

    80.
    Fitzgerald, L. A. et al. The future for reptiles: advances and challenges in the anthropocene. Encycl. Anthropocene 3, 163–174 (2018).
    Article  Google Scholar 

    81.
    Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).
    ADS  CAS  Article  Google Scholar 

    82.
    Meta-Analysis, A. Rey Benayas, J. M., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration. Science 325, 1121–1124 (2009).
    Article  CAS  Google Scholar 

    83.
    Van Der Windt, H. J. & Swart, J. A. A. Ecological corridors, connecting science and politics: the case of the Green River in the Netherlands. J. Appl. Ecol. 45, 124–132 (2008).
    Article  Google Scholar 

    84.
    Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors (International Union for Conservation of Nature, 2020).

    85.
    Gregory, A. J. & Beier, P. Response variables for evaluation of the effectiveness of conservation corridors. Conserv. Biol. 28, 689–695 (2014).
    Article  Google Scholar 

    86.
    Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Lin. Soc. 119, 528–559 (2016).
    Article  Google Scholar 

    87.
    Deodatus, F. et al. Creation of ecological corridors in the Ukrainian Carpathians. In The Carpathians: Integrating Nature and Society Towards Sustainability Environmental Science and Engineering (eds Kozak, J. et al.) 701–717 (Springer, Berlin, 2013).
    Google Scholar 

    88.
    Favilli, F., Hoffmann, C., Elmi, M., Ravazzoli, E. & Streifeneder, T. The BioREGIO Carpathians project: Aims, methodology and results from the “Continuity and Connectivity” analysis. Nat. Conserv. 11, 95–111 (2015).
    Article  Google Scholar 

    89.
    Csagoly, P., Magnin, G. & Hulea, O. Lower Danube Green Corridor. in The Wetland Book: II: Distribution, Description and Conservation (eds. Finlayson, M. C., Milton, R. G., Prentice, C. R. & Davidson, N. C.) 1–6 (Springer, Netherlands, 2016).

    90.
    Belote, R. T. et al. Identifying corridors among large protected areas in the United States. PLoS ONE 11, e0154223. https://doi.org/10.1371/journal.pone.0154223 (2016).
    CAS  Article  Google Scholar 

    91.
    Breckheimer, I. et al. Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity. Conserv. Biol. 28, 1584–1593 (2014).
    Article  Google Scholar 

    92.
    Meurant, M., Gonzales, A., Doxa, A. & Albert, C. H. Selecting surrogate species for connectivity conservation. Biol. Cons. 227, 326–334 (2018).
    Article  Google Scholar 

    93.
    Dondina, O., Orioli, V., Chiatante, G. & Bani, L. Practical insights to select focal species and design priority areas for conservation. Ecol. Indic. 108, 105767. https://doi.org/10.1016/j.ecolind.2019.105767 (2020).
    Article  Google Scholar 

    94.
    Churko, G., Kienast, F. & Bolliger, J. A multispecies assessment to identify the functional connectivity of amphibians in a human-dominated landscape. Int. J. Geo-Inf. 9, 287. https://doi.org/10.3390/ijgi9050287 (2020).
    Article  Google Scholar 

    95.
    Cushman, S. A. & Landguth, E. L. Multi-taxa population connectivity in the Northern Rocky Mountains. Ecol. Model. 231, 101–112 (2012).
    Article  Google Scholar 

    96.
    Krosby, M. et al. Focal species and landscape “naturalness” corridor models offer complementary approaches for connectivity conservation planning. Landsc. Ecol. 30, 2121–2132 (2015).
    Article  Google Scholar 

    97.
    Wiens, J. A., Hayward, G. D., Holthausen, R. S. & Wisdom, M. J. Using surrogate species and groups for conservation planning and management. Bioscience 58, 241–252 (2008).
    Article  Google Scholar 

    98.
    Macdonald, E. A. et al. Identifying ambassador species for conservation marketing. Glob. Ecol. Conserv. 12, 204–214 (2017).
    Article  Google Scholar 

    99.
    Fleury, A. M. & Brown, R. D. A framework for the design of wildlife conservation corridors with specific application to southwestern Ontario. Landsc. Urban Plan. 37, 163–186 (1997).
    Article  Google Scholar 

    100.
    Cogălniceanu, D. et al. Diversity and distribution of amphibians in Romania. ZooKeys 296, 35–57 (2013).
    Article  Google Scholar 

    101.
    Cogălniceanu, D. et al. Diversity and distribution of reptiles in Romania. ZooKeys 341, 49–76 (2013).
    Article  Google Scholar 

    102.
    LaRue, M. A. & Nielsen, C. K. Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol. Model. 212, 372–381 (2008).
    Article  Google Scholar 

    103.
    Adriaensen, F. et al. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64, 233–247 (2003).
    Article  Google Scholar 

    104.
    Correa Ayram, C. A., Mendoza, M. E., Etter, A. & Salicrup, D. R. P. Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog. Phys. Geogr. 1, 1–32 (2015).
    Google Scholar 

    105.
    Ribeiro, J. W. et al. LandScape Corridors (LSCORRIDORS): A new softwarepackage for modelling ecological corridors based onlandscape patterns and species requirements. Methods Ecol. Evol. 8, 1425–1432 (2017).
    Article  Google Scholar 

    106.
    Linkage Mapper Connectivity Analysis Software v. 2.0.0 (The Nature Conservancy, Seattle, 2011).

    107.
    Popescu, V. D., Rozylowicz, L., Cogălniceanu, D., Niculae, I. M. & Cucu, A. L. Moving into protected areas? Setting conservation priorities for Romanian Reptiles and Amphibians at risk from climate change. PLoS ONE 8, e79330. https://doi.org/10.1371/journal.pone.0079330 (2014).
    ADS  CAS  Article  Google Scholar 

    108.
    Lambeck, R. J. Focal species: A multispecies umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).
    Article  Google Scholar  More

  • in

    Mutual mate choice and its benefits for both sexes

    1.
    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity (Edinb). 2, 349–368 (1948).
    CAS  Article  Google Scholar 
    2.
    Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man (Ed. B. Campbell.) 136–179 (Aldinc, Chicago, 1972).

    3.
    Parker, G. A. & Pizzari, T. Sexual selection: the logical imperative. In Current Perspectives on Sexual Selection: What’s Left After Darwin? (Ed. T. Horquet.) 119–163 (Springer, Dordrecht, 2015).

    4.
    Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. Biol. B Sci. 372, 20160310 (2017).
    Article  Google Scholar 

    5.
    Kokko, H., Brooks, R., Jennions, M. D. & Morley, J. The evolution of mate choice and mating biases. Proc. R. Soc. London. Ser. B Biol. Sci. 270, 653–664 (2003).
    Article  Google Scholar 

    6.
    Ihle, M., Kempenaers, B. & Forstmeier, W. Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biol. 13, e1002248 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Fromhage, L. & Jennions, M. D. Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nat. Commun. 7, 12517 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Courtiol, A., Etienne, L., Feron, R., Godelle, B. & Rousset, F. The evolution of mutual mate choice under direct benefits. Am. Nat. 188, 521–538 (2016).
    Article  Google Scholar 

    9.
    Byrne, P. G. & Rice, W. R. Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 273, 917–922 (2006).
    Article  Google Scholar 

    10.
    Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964–976 (2017).
    Article  PubMed  Google Scholar 

    11.
    Gwynne, D. T. Sexual competition among females: What causes courtship-role reversal?. Trends Ecol. Evol. 6, 118–121 (1991).
    CAS  Article  PubMed  Google Scholar 

    12.
    Edward, D. A. & Chapman, T. The evolution and significance of male mate choice. Trends Ecol. Evol. 26, 647–654 (2011).
    Article  PubMed  Google Scholar 

    13.
    Vallejos, J. G., Grafe, T. U., Sah, H. H. A. & Wells, K. D. Calling behavior of males and females of a Bornean frog with male parental care and possible sex-role reversal. Behav. Ecol. Sociobiol. 71, 95 (2017).
    Article  Google Scholar 

    14.
    Amundsen, T. & Forsgren, E. Male mate choice selects for female coloration in a fish. Proc. Natl. Acad. Sci. 98, 13155–13160 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Bonduriansky, R. The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. 76, 305–339 (2001).
    CAS  Article  PubMed  Google Scholar 

    16.
    Servedio, M. R. & Lande, R. Population genetic models of male and mutual mate choice. Evolution (N. Y.). 60, 674–685 (2006).
    Google Scholar 

    17.
    Lailvaux, S. P. & Irschick, D. J. A functional perspective on sexual selection: Insights and future prospects. Anim. Behav. 72, 263–273 (2006).
    Article  Google Scholar 

    18.
    Kirkpatrick, M., Rand, A. S. & Ryan, M. J. Mate choice rules in animals. Anim. Behav. 71, 1215–1225 (2006).
    Article  Google Scholar 

    19.
    Holveck, M.-J. & Riebel, K. Low-quality females prefer low-quality males when choosing a mate. Proc. R. Soc. B Biol. Sci. 277, 153–160 (2009).
    Article  Google Scholar 

    20.
    Aquiloni, L. & Gherardi, F. Mutual mate choice in crayfish: Large body size is selected by both sexes, virginity by males only. J. Zool. 274, 171–179 (2008).
    Article  Google Scholar 

    21.
    Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).
    Article  Google Scholar 

    22.
    Monroe, M. J., South, S. H. & Alonzo, S. H. The evolution of fecundity is associated with female body size but not female-biased sexual size dimorphism among frogs. J. Evol. Biol. 28, 1793–1803 (2015).
    CAS  Article  PubMed  Google Scholar 

    23.
    Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92, 341–356 (2017).
    Article  PubMed  Google Scholar 

    24.
    Dosen, L. D. & Montgomerie, R. Female size influences mate preferences of male guppies. Ethology 110, 245–255 (2004).
    Article  Google Scholar 

    25.
    Kokko, H., Jennions, M. D. & Brooks, R. Unifying and testing models of sexual selection. Annu. Rev. Ecol. Evol. Syst. 37, 43–66 (2006).
    Article  Google Scholar 

    26.
    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: A systematic review and meta-analysis. Biol. Rev. 92, 108–134 (2017).
    Article  PubMed  Google Scholar 

    27.
    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: A role for parasites?. Science 218, 384–387 (1982).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Dunn, P. O., Garvin, J. C., Whittingham, L. A., Freeman-Gallant, C. R. & Hasselquist, D. Carotenoid and melanin-based ornaments signal similar aspects of male quality in two populations of the common yellowthroat. Funct. Ecol. 24, 149–158 (2010).
    Article  Google Scholar 

    29.
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science (80-). 337, 860–864 (2012).
    ADS  CAS  Article  Google Scholar 

    30.
    Dhole, S., Stern, C. A. & Servedio, M. R. Direct detection of male quality can facilitate the evolution of female choosiness and indicators of good genes: Evolution across a continuum of indicator mechanisms. Evolution (N.Y.). 72, 770–784 (2018).
    Google Scholar 

    31.
    Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: A review of the evidence. Anim. Behav. 68, 227–239 (2004).
    Article  Google Scholar 

    32.
    Joye, P. & Kawecki, T. J. Sexual selection favours good or bad genes for pathogen resistance depending on males’ pathogen exposure. Proc. R. Soc. B 286, 20190226 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Able, D. J. The contagion indicator hypothesis for parasite-mediated sexual selection. Proc. Natl. Acad. Sci. 93, 2229–2233 (1996).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Penn, D. & Potts, W. K. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 13, 391–396 (1998).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Arakawa, H., Cruz, S. & Deak, T. From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci. Biobehav. Rev. 35, 1916–1928 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Beltran-Bech, S. & Richard, F.-J. Impact of infection on mate choice. Anim. Behav. 90, 159–170 (2014).
    Article  Google Scholar 

    37.
    Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A. & Suhonen, J. Condition dependence of pheromones and immune function in the grain beetle, Tenebrio molitor. Funct. Ecol. 17, 534–540 (2003).
    Article  Google Scholar 

    38.
    Wyatt, T. D. Pheromones. Curr. Biol. 27, R739–R743 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82, 265–289 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Koh, T. H., Seah, W. K., Yap, L.-M.Y.L. & Li, D. Pheromone-based female mate choice and its effect on reproductive investment in a spitting spider. Behav. Ecol. Sociobiol. 63, 923–930 (2009).
    Article  Google Scholar 

    41.
    Peso, M., Elgar, M. A. & Barron, A. B. Pheromonal control: Reconciling physiological mechanism with signalling theory. Biol. Rev. 90, 542–559 (2015).
    Article  PubMed  Google Scholar 

    42.
    Roberts, S. C., Gosling, L. M., Thornton, E. A. & McClung, J. Scent-marking by male mice under the risk of predation. Behav. Ecol. 12, 698–705 (2001).
    Article  Google Scholar 

    43.
    Foster, S. P. & Anderson, K. G. Sex pheromones in mate assessment: Analysis of nutrient cost of sex pheromone production by females of the moth, Heliothis virescens. J. Exp. Biol. 218, 1252–1258 (2015).
    Article  PubMed  Google Scholar 

    44.
    Happ, G. M. Multiple sex pheromones of the mealworm beetle, Tenebrio molitor L.. Nature 222, 180 (1969).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Stökl, J. & Steiger, S. Evolutionary origin of insect pheromones. Curr. Opin. Insect Sci. 24, 36–42 (2017).
    Article  PubMed  Google Scholar 

    46.
    Roitberg, B. D. Chemical communication. in Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds. Córdoba-Aguilar et al.) vol. I 416 (Oxford University Press, 2018).

    47.
    Hurd, H. & Parry, G. Metacestode-induced depression of the production of, and response to, sex pheromone in the intermediate host, Tenebrio molitor. J. Invertebr. Pathol. 58, 82–87 (1991).
    CAS  Article  PubMed  Google Scholar 

    48.
    McConnell, M. W. & Judge, K. A. Body size and lifespan are condition dependent in the mealworm beetle, Tenebrio molitor, but not sexually selected traits. Behav. Ecol. Sociobiol. 72, 32 (2018).
    Article  Google Scholar 

    49.
    Bryning, G. P., Chambers, J. & Wakefield, M. E. Identification of a sex pheromone from male yellow mealworm beetles, Tenebrio molitor. J. Chem. Ecol. 31, 2721–2730 (2005).
    CAS  Article  PubMed  Google Scholar 

    50.
    Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: Immune-challenged males produce more attractive pheromones. Funct. Ecol. 26, 20–28 (2012).
    Article  Google Scholar 

    51.
    Worden, B. D., Parker, P. G. & Pappas, P. W. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59, 543–550 (2000).
    CAS  Article  PubMed  Google Scholar 

    52.
    Worden, B. D. & Parker, P. G. Females prefer noninfected males as mates in the grain beetle Tenebrio molitor: Evidence in pre-and postcopulatory behaviours. Anim. Behav. 70, 1047–1053 (2005).
    Article  Google Scholar 

    53.
    Sadd, B. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).
    CAS  Article  PubMed  Google Scholar 

    54.
    Krams, I. A. et al. Male mealworm beetles increase resting metabolic rate under terminal investment. J. Evol. Biol. 27, 541–550 (2014).
    CAS  Article  PubMed  Google Scholar 

    55.
    Kivleniece, I., Krams, I., Daukšte, J., Krama, T. & Rantala, M. J. Sexual attractiveness of immune-challenged male mealworm beetles suggests terminal investment in reproduction. Anim. Behav. 80, 1015–1021 (2010).
    Article  Google Scholar 

    56.
    Reyes-Ramírez, A., Enríquez-Vara, J. N., Rocha-Ortega, M., Téllez-García, A. & Córdoba-Aguilar, A. Female choice for sick males over healthy males: Consequences for offspring. Ethology 125, 241–249 (2019).
    Article  Google Scholar 

    57.
    Oliveira, A. S., Braga, G. U. L. & Rangel, D. E. N. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biol. 122, 555–562 (2018).
    Article  PubMed  Google Scholar 

    58.
    Sasan, R. K. & Bidochka, M. J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am. J. Bot. 99, 101–107 (2012).
    Article  PubMed  Google Scholar 

    59.
    Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–664 (2016).
    CAS  Article  PubMed  Google Scholar 

    60.
    Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, e1007831 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Keyser, C. A., Thorup-Kristensen, K. & Meyling, N. V. Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal. Ecol. 11, 122–131 (2014).
    Article  Google Scholar 

    62.
    Castro, T. et al. Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric. Ecosyst. Environ. 233, 361–369 (2016).
    Article  Google Scholar 

    63.
    Härdling, R. & Kokko, H. The evolution of prudent choice. Evol. Ecol. Res. 7, 697–715 (2005).
    Google Scholar 

    64.
    Venner, S., Bernstein, C., Dray, S. & Bel-Venner, M.-C. Make love not war: When should less competitive males choose low-quality but defendable females?. Am. Nat. 175, 650–661 (2010).
    Article  PubMed  Google Scholar 

    65.
    Bhattacharya, A. K., Ameel, J. J. & Waldbauer, G. P. A method for sexing living pupal and adult yellow mealworms. Ann. Entomol. Soc. Am. 63, 1783 (1970).
    Article  Google Scholar 

    66.
    Silva, W. O. B., Mitidieri, S., Schrank, A. & Vainstein, M. H. Production and extraction of an extracellular lipase from the entomopathogenic fungus, Metarhizium anisopliae. Process Biochem. 40, 321–326 (2005).
    Article  CAS  Google Scholar 

    67.
    Zhou, J., Jiang, W., Ding, J., Zhang, X. & Gao, S. Effect of Tween 80 and β-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70, 172–177 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    68.
    Liu, Y.-S. & Wu, J.-Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. J. Ind. Microbiol. Biotechnol. 39, 623–628 (2012).
    CAS  Article  PubMed  Google Scholar 

    69.
    Gerber, G. H. Reproductive behaviour and physiology of Tenebrio molitor (Coleoptera: Tenebrionidae). III. Histogenetic changes in the internal genitalia, mesenteron, and cuticle during sexual maturation. Can. J. Zool. 54, 990–1002 (1976).
    Article  Google Scholar 

    70.
    Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510 (2001).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Team, R. C. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org (2017).

    72.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv Prepr. arXiv1406.5823 (2014).

    73.
    Jaeger, B. Package ‘r2glmm’. R Found. Stat. Comput. Vienna Avail. CRAN R-Project org/package=R2glmm Stat https://doi.org/10.1002/sim.3429 (2017).
    Article  Google Scholar 

    74.
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).
    Article  Google Scholar 

    75.
    Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).
    Article  Google Scholar 

    76.
    Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    77.
    Jones, K. M., Monaghan, P. & Nager, R. G. Male mate choice and female fecundity in zebra finches. Anim. Behav. 62, 1021–1026 (2001).
    Article  Google Scholar 

    78.
    Griggio, M., Valera, F., Casas, A. & Pilastro, A. Males prefer ornamented females: A field experiment of male choice in the rock sparrow. Anim. Behav. 69, 1243–1250 (2005).
    Article  Google Scholar 

    79.
    Naud, M.-J., Curtis, J. M. R., Woodall, L. C. & Gaspar, M. B. Mate choice, operational sex ratio, and social promiscuity in a wild population of the long-snouted seahorse Hippocampus guttulatus. Behav. Ecol. 20, 160–164 (2008).
    Article  Google Scholar 

    80.
    Cutrera, A. P., Fanjul, M. S. & Zenuto, R. R. Females prefer good genes: MHC-associated mate choice in wild and captive tuco-tucos. Anim. Behav. 83, 847–856 (2012).
    Article  Google Scholar 

    81.
    Mobley, K. B., Chakra, M. A. & Jones, A. G. No evidence for size-assortative mating in the wild despite mutual mate choice in sex-role-reversed pipefishes. Ecol. Evol. 4, 67–78 (2014).
    Article  PubMed  Google Scholar 

    82.
    Tschinkel, W. R. & Willson, C. D. Inhibition of pupation due to crowding in some tenebrionid beetles. J. Exp. Zool. 176, 137–145 (1971).
    CAS  Article  PubMed  Google Scholar 

    83.
    Morales-Ramos, J. A. & Rojas, M. G. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Econ. Entomol. 108, 2259–2267 (2015).
    CAS  Article  PubMed  Google Scholar 

    84.
    Morales-Ramos, J. A., Rojas, M. G., Kay, S., Shapiro-Ilan, D. I. & Tedders, W. L. Impact of adult weight, density, and age on reproduction of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 47, 208–220 (2012).
    Article  Google Scholar 

    85.
    Kraak, S. B. M. & Bakker, T. C. M. Mutual mate choice in sticklebacks: Attractive males choose big females, which lay big eggs. Anim. Behav. 56, 859–866 (1998).
    CAS  Article  PubMed  Google Scholar 

    86.
    Sandvik, M., Rosenqvist, G. & Berglund, A. Male and female mate choice affects offspring quality in a sex–role–reversed pipefish. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2151–2155 (2000).
    CAS  Article  Google Scholar 

    87.
    Drickamer, L. C., Gowaty, P. A. & Wagner, D. M. Free mutual mate preferences in house mice affect reproductive success and offspring performance. Anim. Behav. 65, 105–114 (2003).
    Article  Google Scholar 

    88.
    Bertram, S. M. et al. Linking mating preferences to sexually selected traits and offspring viability: Good versus complementary genes hypotheses. Anim. Behav. 119, 75–86 (2016).
    Article  Google Scholar 

    89.
    Bowers, E. K. et al. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon). Proc. R. Soc. B Biol. Sci. 279, 2891–2898 (2012).
    Article  Google Scholar 

    90.
    Poulin, R. & Maure, F. Host manipulation by parasites: A look back before moving forward. Trends Parasitol. 31, 563–570 (2015).
    Article  PubMed  Google Scholar 

    91.
    August, C. J. The role of male and female pheromones in the mating behaviour of Tenebrio molitor. J. Insect Physiol. 17, 739–751 (1971).
    Article  Google Scholar 

    92.
    Font, E. & Desfilis, E. Courtship, mating, and sex pheromones in the mealworm beetle (Tenebrio molitor). In Exploring Animal Behavior in Laboratory and Field (eds. Ploger, B. J. & Yasukawa, K.) 43–58 (Elsevier, New York, 2003).

    93.
    Obata, S. & Hidaka, T. Experimental analysis of mating behavior in Tenebrio molitor L. (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 17, 60–66 (1982).
    Article  Google Scholar  More

  • in

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    1.
    Otles, S., Despoudi, S., Bucatariu, C. & Kartal, C. Food waste management, valorization, and sustainability in the food industry. In Food Waste Recovery (ed. Galanakis, C. M.) 3–23 (Academic Press, London, 2015).
    Google Scholar 
    2.
    Schieber, A., Stintzing, F. C. & Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 12, 401–413 (2001).
    CAS  Article  Google Scholar 

    3.
    Gowe, C. Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Sci. Qual. Manag. 45, 47–61 (2015).
    Google Scholar 

    4.
    Chia, S. Y. et al. Effects of waste stream combinations from brewing industry on performance of Black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). PeerJ. 6, e5885 (2018).
    Article  CAS  Google Scholar 

    5.
    Newman, P. & Jennings, I. Cities as Sustainable Ecosystems: Principles and Practices (Island Press, Washington, D.C., 2008).
    Google Scholar 

    6.
    Lynch, K. M., Steffen, E. J. & Arendt, E. K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 122, 553–568 (2016).
    CAS  Article  Google Scholar 

    7.
    Bolwig, S., Mark, M. S., Happel, M. K. & Brekke, A. Beyond animal feed?: the valorisation of brewers’ spent grain. In From Waste to Value: Valorisation Pathways for Organic Waste Streams in Circular Bioeconomies (ed. Taylor & Francis) 107–126 (2019).

    8.
    Malakhova, D. V., Egorova, M. A., Prokudina, L. I., Netrusov, A. I. & Tsavkelova, E. A. The biotransformation of brewer’s spent grain into biogas by anaerobic microbial communities. World J. Microbiol. Biotechnol. 31, 2015–2023 (2015).
    CAS  Article  Google Scholar 

    9.
    Čičková, H., Newton, G. L., Lacy, R. C. & Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 35, 68–80 (2015).
    Article  CAS  Google Scholar 

    10.
    Van Huis, A. Potential of insects as food and feed in assuring food security. Ann. Rev. Entomol. 58, 563–583 (2013).
    Article  CAS  Google Scholar 

    11.
    Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A. & van Loon, J. J. A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 10, e0144601 (2015).
    Article  Google Scholar 

    12.
    Wang, Y. S. & Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods. 6, 91 (2017).
    Article  CAS  Google Scholar 

    13.
    Costa-Neto, E. M. Insects as human food: An overview. Amazon. Rev. Antropol. 5, 562–582 (2013).
    Google Scholar 

    14.
    Diener, S. et al. Black soldier fly larvae for organic waste treatment–prospects and constraints. In Proceedings, WasteSafe 2011—2nd Int. Conf. on Solid Waste Management in the Developing Countries (eds. Alamgir, M. et al.) 52–59 (2011).

    15.
    Zhou, F., Tomberlin, J. K., Zheng, L., Yu, Z. & Zhang, J. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J. Med. Entomol. 50, 1224–1230 (2013).
    Article  Google Scholar 

    16.
    Nguyen, T., Tomberlin, J. K. & Vanlaerhoven, S. Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 44, 406–410 (2015).
    CAS  Article  Google Scholar 

    17.
    Zheng, L., Li, Q., Zhang, J. & Yu, Z. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew. Energy. 41, 75–79 (2012).
    CAS  Article  Google Scholar 

    18.
    Webster, C. D. et al. Bio-ag reutilization of distiller’s dried grains with solubles (DDGS) as a substrate for black soldier fly larvae, Hermetia illucens, along with poultry by-product meal and soybean meal, as total replacement of fish meal in diets for Nile tilapia, Oreochromis niloticus.. Aquacult. Nutr. 22, 976–988 (2016).
    CAS  Article  Google Scholar 

    19.
    Lalander, C. et al. Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—From a hygiene aspect. Sci. Total Environ. 458, 312–318 (2013).
    ADS  Article  CAS  Google Scholar 

    20.
    Banks, I. J., Gibson, W. T. & Cameron, M. M. Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Trop. Med. Int. Health. 19, 14–22 (2014).
    Article  Google Scholar 

    21.
    Barroso, F. G. et al. The potential of various insect species for use as food for fish. Aquaculture 422, 193–201 (2014).
    Article  Google Scholar 

    22.
    Henry, M., Gasco, L., Piccolo, G. & Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 203, 1–22 (2015).
    CAS  Article  Google Scholar 

    23.
    Surendra, K. C., Olivier, R., Tomberlin, J. K., Rajesh Jha, R. & Khanalet, S. K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy. 98, 197–202 (2016).
    CAS  Article  Google Scholar 

    24.
    Leong, S. Y., Kutty, S. R. M., Malakahmad, A. & Tan, C. K. Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Manag. 47, 84–90 (2016).
    CAS  Article  Google Scholar 

    25.
    Li, W. et al. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour Technol. 194, 276–282 (2015).
    CAS  Article  Google Scholar 

    26.
    Cammack, J. A. & Tomberlin, J. K. The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects. 8, 56 (2017).
    Article  Google Scholar 

    27.
    Li, W. et al. Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly. Biotechnol. Biofuels. 8, 1–6 (2015).
    Article  CAS  Google Scholar 

    28.
    Soma, D. D. et al. Does mosquito mass-rearing produce an inferior mosquito?. Malar. J. 16, 357 (2017).
    Article  CAS  Google Scholar 

    29.
    Sørensen, J., Addison, M. & Terblanche, J. Mass-rearing of insects for pest management: Challenges, synergies and advances from evolutionary physiology. Crop Prot. 38, 87–94 (2012).
    Article  Google Scholar 

    30.
    Kuriwada, T., Kumano, N., Shiromoto, K. & Haraguchi, D. Effect of mass rearing on life history traits and inbreeding depression in the sweetpotato weevil (Coleoptera: Brentidae). J. econ. entomol. 103, 1144–1148 (2010).
    CAS  Article  Google Scholar 

    31.
    Zheng, M. L., Zhang, D. J., Damiens, D. D., Yamada, H. & Gilles, J. R. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)—I—egg quantification. Parasit. Vectors. 8, 42 (2015).
    Article  Google Scholar 

    32.
    Ghimire, M. N. & Phillips, T. W. Mass rearing of Habrobracon hebetor Say (Hymenoptera: Braconidae) on larvae of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae): Effects of host density, parasitoid density, and rearing containers. J. Stored Prod. Res. 46, 214–220 (2010).
    Article  Google Scholar 

    33.
    Chia, S. Y. et al. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS ONE 13, 1–26 (2018).
    Article  CAS  Google Scholar 

    34.
    McGill, B. J. Matters of scale. Science 328, 575–576 (2010).
    ADS  CAS  Article  Google Scholar 

    35
    Jucker, C., Erba, D., Leonardi, M. G., Lupi, D. & Savoldelli, S. Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) larvae. Environ. Entomol. 46, 1415–1423 (2017).
    CAS  Article  Google Scholar 

    36.
    Jucker, C., Leonardi, M. G., Rigamonti, I., Lupi, D. & Savoldelli, S. Brewery’s waste streams as a valuable substrate for Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae). J. Entomol. Acarol. Res. 51, 8876 (2020).
    Article  Google Scholar 

    37.
    Nguyen, T. T. X., Tomberlin, J. K. & Vanlaerhoven, S. Influence of resources on Hermetia illucens (Diptera: Stratiomyidae) larval development. J. Med. Entomol. 50, 898–906 (2013).
    Article  Google Scholar 

    38.
    Barbi, S. et al. Valorization of seasonal agri-food leftovers through insects. Sci. Total Environ. 709, 136209 (2020).
    ADS  CAS  Article  Google Scholar 

    39.
    Bava, L. et al. Rearing of Hermetia illucens on different organic by-products: Influence on growth, waste reduction, and environmental impact. Animals 29, 289 (2019).
    Article  Google Scholar 

    40.
    Meneguz, M. et al. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 98, 5776–5784 (2018).
    CAS  Article  Google Scholar 

    41.
    Slone, D. & Gruner, S. V. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae). J. Med. Entomol. 44, 516–523 (2007).
    CAS  Article  Google Scholar 

    42.
    Gere, G. Investigations into the laws governing the growth of Hyphantria cunea drury caterpillars. Acta Biol. Hung. 7, 43–72 (1956).
    Google Scholar 

    43.
    Long, D. B. Effects of population density on larvae of Lepidoptera. Trans. R. Entomol. Soc. Lond. 104, 543–585 (1953).
    Article  Google Scholar 

    44.
    Parra Paz, A. S., Carrejo, N. S. & Gómez Rodríguez, C. H. Effects of larval density and feeding rates on the bioconversion of vegetable waste using black soldier fly larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste Biomass Valor. 6, 1059–1065 (2015).
    Article  Google Scholar 

    45.
    Bonelli, M. et al. Structural and functional characterization of Hermetia illucens larval midgut. Front. Physiol. 10, 204 (2019).
    Article  Google Scholar 

    46.
    Tschirner, M. & Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insect Food Feed. 1, 249–259 (2015).
    Article  Google Scholar 

    47.
    Gobbi, P., Martinez Sanchez, A. & Rojo, S. The effects of larval diet on adult life history traits of the black soldier fly, Hermetia illucens [Diptera: Stratiomyidae]. Eur. J. Entomol. 110, 461–468. https://doi.org/10.14411/eje.2013.061 (2013).
    Article  Google Scholar 

    48.
    Kim, E., Park, J., Lee, S. & Kim, Y. Identification and physiological characters of intestinal bacteria of the black soldier fly, Hermetia illucens. Korean J. Appl. Entomol. 53, 15–26 (2014).
    Article  Google Scholar 

    49.
    Spranghers, T. et al. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 97, 2594–2600 (2017).
    CAS  Article  Google Scholar 

    50.
    Inagaki, S. & Yamashita, O. Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat body of the silkworm, Bombyx mori. Insect Biochem. 16, 327–331 (1986).
    CAS  Article  Google Scholar 

    51.
    Tomberlin, J. K., Sheppard, D. C. & Joyce, J. A. Selected life-history traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Ann. Entomol. Soc. Am. 95, 379–386 (2002).
    Article  Google Scholar 

    52.
    Bosch, G. et al. Standardisation of quantitative resource conversion studies with black soldier fly larvae. J. Insects Food Feed. 6, 95–109 (2020).
    Article  Google Scholar 

    53.
    Ståhls, G. et al. The puzzling mitochondrial phylogeography of the black soldier fly (Hermetia illucens), the commercially most important insect protein species. BMC Evol. Biol. 20, 60 (2020).
    Article  Google Scholar 

    54.
    Zhan, S. et al. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell. Res. 30, 50–60 (2019).
    Article  Google Scholar 

    55.
    Barragan-Fonseca, K. B., Dicke, M. & van Loon, J. J. A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 1, 1–16 (2017).
    Google Scholar 

    56.
    Booth, D. C. & Sheppard, C. Oviposition of the black soldier fly, Hermetia Illucens (Diptera: Stratiomyidae): Eggs, masses, timing, and site characteristics. Environ. Entomol. 13, 421–423 (1984).
    Article  Google Scholar 

    57.
    Hogsette, J. A. New diets for production of house flies and stable flies (Diptera: Muscidae) in the laboratory. J. Econ. Entomol. 85, 2291–2294 (1992).
    CAS  Article  Google Scholar 

    58.
    Loveridge, J. P. Age and the changes in water and fat content of adult laboratory- reared Locusta migratoria migratorioides. Rhod. J. Agric. Res. 11, 131–143 (1973).
    Google Scholar 

    59.
    Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and Practice of Statistics in Biological Research 887 (W.H. Freeman & Company, New York, 1995).
    Google Scholar  More

  • in

    The politics of biodiversity offsetting across time and institutional scales

    1.
    Bull, J. W., Gordon, A., Watson, J. E. M. & Maron, M. Seeking convergence on the key concepts in ‘no net loss’ policy. J. Appl. Ecol. 53, 1686–1693 (2016).
    Article  Google Scholar 
    2.
    Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain 1, 19–27 (2018).
    Article  Google Scholar 

    3.
    Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain 1, 790–798 (2018).
    Article  Google Scholar 

    4.
    von Hase, A. & ten Kate, K. Correct framing of biodiversity offsets and conservation: a response to Apostolopoulou & Adams. Oryx 51, 32–34 (2017).
    Article  Google Scholar 

    5.
    Standard on Biodiversity Offsets (BBOP, Forest Trends, 2012).

    6.
    Zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. https://doi.org/10.1111/conl.12664 (2019).

    7.
    Moreno-Mateos, D., Maris, V., Béchet, A. & Curran, M. The true loss caused by biodiversity offsets. Biol. Conserv. 192, 552–559 (2015).
    Article  Google Scholar 

    8.
    Bonneuil, C. Tell me where you come from, I will tell you who you are: a genealogy of biodiversity offsetting mechanisms in historical context. Biol. Conserv. 192, 485–491 (2015).
    Article  Google Scholar 

    9.
    Boon, P. I. & Prahalad, V. Ecologists, economics and politics: problems and contradictions in applying neoliberal ideology to nature conservation in Australia. Pac. Conserv. Biol. 23, 115–132 (2017).
    Article  Google Scholar 

    10.
    Penca, J. Marketing the market: the ideology of market mechanisms for biodiversity conservation. Transnatl Environ. Law 2, 235–257 (2013).
    Article  Google Scholar 

    11.
    Lapeyre, R., Froger, G. & Hrabanski, M. Biodiversity offsets as market-based instruments for ecosystem services? From discourses to practices. Ecosyst. Serv. 15, 125–133 (2015).
    Article  Google Scholar 

    12.
    Hackett, R. Market-based environmental governance and public resources in Alberta, Canada. Ecosyst. Serv. 15, 174–180 (2015).
    Article  Google Scholar 

    13.
    Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).

    14.
    Feindt, P. H. & Oels, A. Does discourse matter? Discourse analysis in environmental policy making. J. Environ. Policy Plan. 7, 161–173 (2005).
    Article  Google Scholar 

    15.
    Leipold, S., Feindt, P. H., Winkel, G. & Keller, R. Discourse analysis of environmental policy revisited: traditions, trends, perspectives. J. Environ. Policy Plan. 21, 445–463 (2019).
    Article  Google Scholar 

    16.
    Hajer, M. & Versteeg, W. A decade of discourse analysis of environmental politics: achievements, challenges, perspectives. J. Environ. Policy Plan. 7, 175–184 (2005).
    Article  Google Scholar 

    17.
    Bacchi, C. & Goodwin, S. Poststructural Policy Analysis: A Guide to Practice (Springer, 2016).

    18.
    Dryzek, J. S. The Politics of the Earth: Environmental Discourses (Oxford Univ. Press, 2013).

    19.
    Foucault, M. The History of Sexuality: An Introduction Vol. 1(Penguin Group, 2008).

    20.
    Hajer, M. A. in Words Matter in Policy and Planning: Discource Theory and Method in the Social Sciences (eds Van den Brink, M. & Metze, T.) 65–76 (Netherlands Graduate School of Urban and Regional Research, 2006).

    21.
    Hajer, M. A. The Politics of Environmental Discourse: Ecological Modernization and the Policy Process (Clarendon Press, 1995).

    22.
    Hopwood, B., Mellor, M. & O’Brien, G. Sustainable development: mapping different approaches. Sustain. Dev. 13, 38–52 (2005).
    Article  Google Scholar 

    23.
    Carson, R. Silent Spring (Houghton Mifflin, 1962).

    24.
    Our Common Future (United Nations World Commission on Environment and Development, Oxford Univ. Press, 1987).

    25.
    Robertson, M. M. The neoliberalization of ecosystem services: wetland mitigation banking and problems in environmental governance. Geoforum 35, 361–373 (2004).
    Article  Google Scholar 

    26.
    Clapp, J. & Dauvergne, P. in Paths to a Green World: The Political Economy of the Global Environment (eds Clapp, J. & Dauvergne, P.) 161–191 (MIT Press, 2011).

    27.
    Werksman, J. The clean development mechanism: unwrapping the Kyoto surprise. Rev. Eur. Comp. Int. Environ. Law 7, 147–158 (1998).
    Article  Google Scholar 

    28.
    Christoff, P. Ecological modernisation, ecological modernities. Environ. Polit. 5, 476–500 (1996).
    Article  Google Scholar 

    29.
    Breaking New Ground: The Report of the Mining, Minerals and Sustainable Development Project (International Institute for Environment and Development, World Business Council for Sustainable Development, Earthscan Publications, 2002).

    30.
    Hrabanski, M. The biodiversity offsets as market-based instruments in global governance: origins, success and controversies. Ecosyst. Serv. 15, 143–151 (2015).
    Article  Google Scholar 

    31.
    Ecosystems and Human Well-Being: Our Human Planet: Summary for Decision Makers (Millennium Ecosystem Assessment, 2005); http://millenniumassessment.org/en/Global.html

    32.
    The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB (TEEB, 2010); http://teebweb.org/publications/teeb-for/synthesis/

    33.
    Bassey, N. et al. IUCN Withdrawal (Friends of the Earth International, 2009).

    34.
    WWC 10 Final Resolution 12: Building a Global Alliance to Assert ‘No-Go Areas’ for Mining and Other Extractive Industries and Destructive Activities Threatening World Heritage Sites, and Protected Areas, including Indigenous Peoples’ and Local Communities Conserved Areas and Territories (ICCAs) and Sacred Natural Sites and Territories (WWC, 2013).

    35.
    WCC-2012-Res-110-EN: Biodiversity Offsets and Related Compensatory Approaches (WCC, 2012).

    36.
    IUCN Resolutions, Recommendations and Other Decisions (IUCN, 2016).

    37.
    Permitted Clearing of Native Vegetation: Biodiversity Assessment Guidelines (The Victorian Government, Department of Environment and Primary Industries, 2013).

    38.
    NSW Biodiversity Offsets Policy for Major Projects (State of NSW, Office of Environment and Heritage, 2014).

    39.
    Our Evolving Approach to Biodiversity: The Next Chapter in Biodiversity Management (Rio Tinto, 2017); http://www.riotinto.com/ourcommitment/spotlight-18130_21621.aspx

    40.
    Konisky, D. M. & Woods, N. D. Environmental federalism and the Trump presidency: a preliminary assessment. Publius 48, 345–371 (2018).
    Article  Google Scholar 

    41.
    Working for Biodiversity Net Gain: An Overview of the Business and Biodiversity Offsets Programme (BBOP) 2004–2018 (BBOP, Forest Trends, 2018).

    42.
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

    43.
    Leipold, S. & Winkel, G. Discursive agency: (re-)conceptualizing actors and practices in the analysis of discursive policymaking. Policy Stud. J. 45, 510–534 (2017).
    Article  Google Scholar 

    44.
    Foucault, M. The History of Sexuality: The Will to Knowledge Vol. I (Penguin Group, 2008).

    45.
    Walker, S., Brower, A. L., Stephens, R. T. T. & Lee, W. G. Why bartering biodiversity fails. Conserv. Lett. 2, 149–157 (2009).
    Article  Google Scholar 

    46.
    Bäckstrand, K. & Lövbrand, E. The road to Paris: contending climate governance discourses in the post-Copenhagen era. J. Environ. Policy Plan. 21, 519–532 (2016).
    Article  Google Scholar 

    47.
    Griggs, S. & Howarth, D. Discourse, policy and the environment: hegemony, statements and the analysis of UK airport expansion. J. Environ. Policy Plan. 21, 464–478 (2019).
    Article  Google Scholar 

    48.
    Reflections on the Zero Draft Post-2020 Global Biodiversity Framework (BirdLife International, 2020).

    49.
    IUCN Position: Zero Draft of the Post-2020 Global Biodiversity Framework (IUCN, 2020); https://go.nature.com/3kEA4rP

    50.
    Dingler, J. The discursive nature of nature: towards a post-modern concept of nature. J. Environ. Policy Plan. 7, 209–225 (2005).
    Article  Google Scholar 

    51.
    Sharp, L. & Richardson, T. Reflections on Foucauldian discourse analysis in planning and environmental policy research. J. Environ. Policy Plan. 3, 193–209 (2001).
    Article  Google Scholar 

    52.
    Moon, K. & Blackman, D. A guide to understanding social science research for natural scientists. Conserv. Biol. 28, 1167–1177 (2014).
    Article  Google Scholar 

    53.
    Fairclough, N. Critical discourse analysis. Marges Linguist. 9, 76–94 (2005).
    Google Scholar 

    54.
    NVivo qualitative data analysis software (QSR International, 2019); https://www.qsrinternational.com/nvivo/home

    55.
    Calvet, C., Ollivier, G. & Napoleone, C. Tracking the origins and development of biodiversity offsetting in academic research and its implications for conservation: a review. Biol. Conserv. 192, 492–503 (2015).
    Article  Google Scholar 

    56.
    Darier, É. (ed.) Discourses of the Environment (Blackwell, 1999).

    57.
    Bäckstrand, K. & Lövbrand, E. in The Social Construction of Climate Change: Power, Knowledge, Norms, Discourses (ed. Pettenger, M. E.) 123–147 (Taylor & Francis Group, 2007).

    58.
    Mol, A. P. J., Spaargaren, G. & Sonnenfeld, D. A. in The Ecological Modernisation Reader. Environmental Reform in Theory and Practice (eds Mol, A. P. J. et al.) 3–14 (Routledge, 2009).

    59.
    Nilsen, H. R. The joint discourse ‘reflexive sustainable development’—from weak towards strong sustainable development. Ecol. Econ. 69, 495–501 (2010).
    Article  Google Scholar 

    60.
    Jacobs, M. in The Handbook of Global Climate and Environment Policy (ed. Falkner, R.) 197–214 (John Wiley & Sons, 2013); https://doi.org/10.1002/9781118326213.ch12

    61.
    Ferguson, P. The green economy agenda: business as usual or transformational discourse? Environ. Polit. 24, 17–37 (2015).
    Article  Google Scholar 

    62.
    Coffey, B. Unpacking the politics of natural capital and economic metaphors in environmental policy discourse. Environ. Polit. 25, 203–222 (2016).
    Article  Google Scholar 

    63.
    Bakker, K. The limits of ‘neoliberal natures’: debating green neoliberalism. Prog. Hum. Geogr. 34, 715–735 (2010).
    Article  Google Scholar  More

  • in

    Cryopreservation of testicular tissue from Murray River Rainbowfish, Melanotaenia fluviatilis

    Animal husbandry and sample collection
    All animal handling and experimental procedures were approved by the Animal Ethics Committee B at Monash Medical Centre (MMCB/2017/39) and conducted in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. Melanotaenia fluviatilis (Aquarium Industries, Victoria, Australia) were held at 25 °C ± 1 °C on a 12:12 light–dark cycle. At the time of experimentation, fish 5.76 cm ± 1.00 cm in length and weighing 3.25 g ± 1.38 g, were humanely killed by anesthetic overdose using aquatic anaesthetic AQUI-S (Primo Aquaculture, Queensland, Australia) and death was confirmed by destruction of the brain. The gonads were removed and placed into handling medium composed of Eagles minimum essential media (EMEM, SigmaAldrich) supplemented with 5% FBS (ThermoFisher Scientific, Victoria Australia), and 25 mM HEPES (ThermoFisher Scientific; pH 7.8) and kept on ice.
    Histology and immunohistochemistry
    Whole testes were fixed in 10% neutral buffered formalin (Merck, Victoria, Australia) for 48 h and processed by the Monash Histology Platform which included standard hematoxylin and eosin staining. Unstained sections were stained for Vasa using a zebrafish-specific anti-Vasa antibody (Sapphire Bioscience Pty. Ltd, New South Wales, Australia) and counter-stained with Hoechst (ThermoFisher Scientific). De-paraffinised sections were rehydrated through changes of xylene and a standard series of decreasing ethanol dilutions before antigen retrieval in 10 mM citrate buffer (pH 6), microwaved to boiling point for 10 min. Sections were rested in citrate buffer for 30 min prior to blocking with CAS Block (Invitrogen) for one hour followed by incubation with anti-Vasa antibody (1:200) in 5% BSA in PBS at 4 °C overnight. Sections were washed in PBS and incubated with secondary antibody, Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:500; Invitrogen), and Hoechst nuclear counterstain (1:1000) in 5% BSA and PBS for one hour at room temperature.
    Images were captured using the EVOS FL Auto 2 Imaging system (ThermoFisher Scientific) and an Olympus BX43 Upright Microscope with an X-Cite Series 120 Q laser (Lumen Dynamics). Approximate cell sizes were measured using cellSens Standard imaging software (Software version: 1.16, build 15,404, Olympus) and images were analysed in FIJI23 (Software version: 2.0.0-rc-69/1.52p, Image J).
    Validation of size-based cell sorting by flow cytometry
    Using cell measurements taken from histological analysis as a guide, a size-based cell sorting method was developed to isolate our target spermatogonial cells. A set of five size-specific beads (16.5 μm, 10.2 μm, 7.56 μm, 5.11 μm, 3.3 μm, Spherotech, Lake Forest, IL, USA) were analysed on a FACS Aria Fusion flow cytometer (BD Biosciences, New South Wales, Australia). These sizes cover the range of cell sizes seen in the testis, with sperm heads being approximately 2–3 μm and spermatogonia being over 10 μm in M.fluviatilis. Due to differences in the light scattering properties of plastic beads in comparison to live cells, these bead sizes can only be interpreted as a guide of scale and not as an exact size indication for cells in suspension. Using the scatter profile produced by these beads, two gates were set: the “A” gate surrounded events in the high forward scatter region on the scatter plot, approximately 9 μm and larger to capture larger cells such as spermatogonia; the “B” gate surrounded events in a low forward scatter region, between 2—5 μm, to capture smaller germ cells such as spermatids and spermatocytes. An unstained cell suspension was then sorted through these gates and sorted cells were pelleted by centrifugation (500 g for 15mins). Images were taken of live cells in suspension using the EVOS FL Auto 2 Imaging system (ThermoFisher Scientific) and cell sizes were measured in FIJI. Samples were then fixed in 2% PFA (Thermo Fisher Scientific) for 10 min and suspended in PBS.
    Aliquots of each sample (A gate, B gate and an unsorted control) were smeared onto Superfrost Plus slides (ThermoFisher Scientific), baked overnight at 37 °C and stained with anti-Vasa antibody to determine the number of Vasa-positive cells in each sample. Briefly, the slides were washed with MilliQ water to remove any salt that was present and irrigated with wash buffer (0.1% BSA in PBS) before blocking with 10% goat serum, 0.1% Triton X in PBS for 45 min. Sections were stained with anti-Vasa antibody (1:200) in PBS containing 5% BSA for 1 h at room temperature, washed with wash buffer, incubated with Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:500), and counterstained with Hoechst (1:1000). Sections were imaged on the EVOS FL Auto 2 and analysed using FIJI.
    Cryopreservation protocol
    This cryopreservation method was adapted from research described by Lee et al.14,15. Whole gonads weighing 0.0124 g ± 0.0095 g were transferred into 1.2-ml CryoTubes with 500 μl of cryomedia containing a permeating cryoprotectant, dimethyl sulfoxide (DMSO), ethylene glycol (EG), methanol or glycerol (all purchased from Merck), at concentrations ranging between 1.0 M and 2.0 M, with 0.1 M trehalose (Merck), and 1.5% BSA (Bovogen Biologicals Pty. Ltd, Victoria, Australia) in a mixed salt solution (~ 296 mOsm, pH 7.8) previously described by Lee et al.14. Control samples contained all components except the permeating cryoprotectant. Samples were equilibrated on ice for one hour and then cooled at a rate of -1 °C/minute in a CoolCell (Merck) in a -80 °C freezer for at least 3 h before being plunged into liquid nitrogen. Samples were held in liquid nitrogen for at least 24 h before thawing.
    Thawing and cell suspension preparation
    Samples were thawed in a 30 °C water bath for 1 min. The gonad was removed and gently blotted on a Kim-wipe to remove excess cryoprotectant residue and then rehydrated in three changes of handling medium (as described under “Animal husbandry and sample collection”) for 20 min per change (60 min total). After rehydration, the testis was placed in a tissue grinder with 500 μl of PBS and crushed. The tissue grinder was washed with another 500 μl of PBS resulting in a final volume of 1 ml. The cell suspension was passed through a 40 μm nylon filter to remove any large particulates prior to flow cytometry.
    Viability assessment by flow cytometry
    Cell suspensions were stained with the LIVE/DEAD Sperm Viability Kit (ThermoFisher Scientific) which included a membrane-permeating SYBR14 nucleic acid dye for detecting live cells and membrane-impermeable Propidium Iodide (PI) nucleic acid dye to detect membrane-compromised, presumably dead cells. SYBR14 was added and incubated for 5 min in the dark, followed by PI for a further 5-min incubation.
    Prior to the assessment of experimental samples, the sized beads (Spherotech) were analysed on the FACS Aria Fusion flow cytometer. Using these beads as a guide, a gate was set for the approximate size of the spermatogonial cells based on our own histological analysis of this species and previous publications on fish in general24. An unstained control and two single stain controls (PI only or SYBR14 only) were included with the experimental samples in the analysis. The sample used for the PI-only control was flash frozen in liquid nitrogen three times to ensure a high percentage of dead cell to provide an adequate count for PI staining. Flow cytometry output was analysed in FlowJoTM25. Events captured by the gate were analysed for SYBR14 and PI spectra and divided into quartiles based on the absorbance of single stain controls (Fig. 1).
    Figure 1

    Flow cytometry scatter plots and gating method. (a) Analysis of size-specific beads shows five distinct clusters. (b) A gate is set to capture events from the 9 μm measurement and above. (c) Events detected in this region are replotted to determine SYB14 and PI absorbance. Events in the Q3 region are SYB14 positive and PI negative and therefore viable. In samples treated with a negative control (d), the majority of events falls in the Q1 region, with only propidium iodide detected (e).

    Full size image

    Statistical analysis
    Statistical analysis was performed using GraphPad Prism version 8.1.2 for MacOS, GraphPad Software, La Jolla California USA, www.graphpad.com. Data is presented as mean ± standard deviation, with a p-value less than 0.05 considered statistically significant.
    For cell gating data, the proportion of cell sizes in live cell suspensions in each treatment group was analysed using a chi-square. The percentage of Vasa-positive cells in the unsorted sample and the “A” gate was analysed using an un-paired t-test; data for the “B” gate was excluded as no Vasa-positive cells were detected.
    For percentage viability data assumptions for normality and variance were met using the Shapiro–Wilk test and the Brown-Forsythe test, respectively. Following this, treatment groups were compared by one-way ANOVA and Tukey’s post hoc test. More

  • in

    Impact of local and landscape complexity on the stability of field-level pest control

    1.
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).
    Article  Google Scholar 
    2.
    Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).
    Article  Google Scholar 

    3.
    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).
    CAS  Article  Google Scholar 

    4.
    Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).
    Article  Google Scholar 

    5.
    Root, R. B. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).
    Article  Google Scholar 

    6.
    McCann, K. The diversity–stability debate. Nature 405, 228–233 (2000).
    CAS  Article  Google Scholar 

    7.
    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
    Article  Google Scholar 

    8.
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).
    Article  Google Scholar 

    9.
    Tilman, D. & Wedin, D. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
    CAS  Google Scholar 

    10.
    McNaughton, S. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Natur. 111, 515–525 (1977).
    Article  Google Scholar 

    11.
    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).
    CAS  Article  Google Scholar 

    12.
    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
    CAS  Article  Google Scholar 

    13.
    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
    Article  Google Scholar 

    14.
    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 111, E7863–E7870 (2018).
    Article  CAS  Google Scholar 

    15.
    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).
    Article  Google Scholar 

    16.
    Larsen, A. E. & Noack, F. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proc. Natl Acad. Sci. USA 114, 5473–5478 (2017).
    CAS  Article  Google Scholar 

    17.
    Sexton, S. E., Lei, Z. & Zilberman, D. The economics of pesticides and pest control. Int. Rev. Envir. Resour. Econ. 1, 271–326 (2007).
    Article  Google Scholar 

    18.
    Waterfield, G. & Zilberman, D. Pest management in food systems: an economic perspective. Annu. Rev. 37, 223–245 (2012).

    19.
    O’Rourke, M. E. & Jones, L. E. Analysis of landscape-scale insect pest dynamics and pesticide use: an empirical and modeling study. Ecol. Appl. 21, 3199–3210 (2011).
    Article  Google Scholar 

    20.
    Gross, K. & Rosenheim, J. A. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol. Appl. 21, 2770–2780 (2011).
    Article  Google Scholar 

    21.
    Rosenheim, J. A. & Meisner, M. H. Ecoinformatics can reveal yield gaps associated with crop–pest interactions: a proof-of-concept. PLoS ONE 8, e80518 (2013).
    Article  CAS  Google Scholar 

    22.
    Meisner, M. H., Zaviezo, T. & Rosenheim, J. A. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use. Pest Manag. Sci. 73, 232–239 (2016).
    Article  CAS  Google Scholar 

    23.
    Farrar, J. J., Baur, M. E. & Elliott, S. F. Adoption of IPM practices in grape, tree fruit, and nut production in the western United States. J. Integr. Pest Manag. 7, 8 (2016).

    24.
    Rosenheim, J. A., Cass, B. N., Kahl, H. & Steinmann, K. P. Variation in pesticide use across crops in California agriculture: economic and ecological drivers. Sci. Total Environ. 733, 138683 (2020).
    CAS  Article  Google Scholar 

    25.
    Möhring, N., Bozzola, M., Hirsch, S. & Finger, R. Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis. Agric. Econ. 51, 429–444 (2020).
    Article  Google Scholar 

    26.
    Larsen, A. E., Patton, M. & Martin, E. A. High highs and low lows: elucidating striking seasonal variability in pesticide use and its environmental implications. Sci. Total Environ. 651, 828–837 (2019).
    CAS  Article  Google Scholar 

    27.
    Dudley, N. et al. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol. Conserv. 209, 449–453 (2017).
    Article  Google Scholar 

    28.
    Kim, K.-H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575, 525–535 (2017).
    CAS  Article  Google Scholar 

    29.
    Chay, K. Y. & Greenstone, M. The impact of air pollution on infant mortality: evidence from the Clean Air Act of 1970. Q. J. Econ. 118, 1121–1167 (2003).
    Article  Google Scholar 

    30.
    Larsen, A. E., Gaines, S. D. & Deschenes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 8, 302 (2017).

    31.
    California Agricultural Statistics Review 2017–2018 1–105 (California Department of Food & Agriculture, 2018).

    32.
    Summary of Pesticide Use Report Data 2017 (California Department of Pesticide Regulation, 2018).

    33.
    Bourque, K. et al. Balancing agricultural production, groundwater management, and biodiversity goals: a multi-benefit optimization model of agriculture in Kern County, California. Sci. Total Environ. 670, 865–875 (2019).
    CAS  Article  Google Scholar 

    34.
    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).
    Article  Google Scholar 

    35.
    Just, R. E. & Pope, R. D. Stochastic specification of production functions and economic implications. J. Econ. 7, 67–86 (1978).
    Article  Google Scholar 

    36.
    Murdoch, W. W. Diversity, complexity, stability and pest control. J. Appl. Ecol. 12, 795–807 (1975).
    Article  Google Scholar 

    37.
    Van Emden, H. F. & Williams, G. Insect stability and diversity in agro-ecosystems. Annu. Rev. Entomol. 19, 455–475 (1974).
    Article  Google Scholar 

    38.
    Edwards, C. B., Rosenheim, J. A. & Segoli, M. Aggregating fields of annual crops to form larger-scale monocultures can suppress dispersal-limited herbivores. Theor. Ecol. 11, 321–331.

    39.
    O’Rourke, M. E., Rienzo-Stack, K. & Power, A. G. A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol. Appl. 21, 1782–1791 (2011).
    Article  Google Scholar 

    40.
    Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in Western Europe. Proc. R. Soc. B 285, 1872 (2018).
    Article  Google Scholar 

    41.
    Holzschuh, A., Dewenter, I. S. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J. Anim. Ecol. 79, 491–500 (2010).
    Article  Google Scholar 

    42.
    Rusch, A. et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204 (2016).
    Article  Google Scholar 

    43.
    Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354 (2013).
    Article  Google Scholar 

    44.
    Zhao, Z. & Reddy, G. V. P. Semi-natural habitats mediate influence of inter-annual landscape variation on cereal aphid-parasitic wasp system in an agricultural landscape. Biol. Control 128, 17–23 (2019).
    Article  Google Scholar 

    45.
    Costello, C., Quérou, N. & Tomini, A. Private eradication of mobile public bads. Eur. Econ. Rev. 94, 23–44 (2017).
    Article  Google Scholar 

    46.
    Noack, F. & Larsen, A. The contrasting effects of farm size on farm incomes and food production. Environ. Res. Lett. 14, 084024 (2019).
    Article  Google Scholar 

    47.
    Gong, Y., Baylis, K., Kozak, R. & Bull, G. Farmers’ risk preferences and pesticide use decisions: evidence from field experiments in China. Agric. Econ. 47, 411–421 (2016).
    Article  Google Scholar 

    48.
    Möhring, N., Wuepper, D., Musa, T. & Finger, R. Why farmers deviate from recommended pesticide timing: the role of uncertainty and information. Pest Manag. Sci. 76, 2787–2798 (2020).
    Article  CAS  Google Scholar 

    49.
    Larsen, A. E., Farrant, D. N. & MacDonald, A. J. Spatiotemporal overlap of pesticide use and species richness hotspots in California. Agric. Ecosyst. Environ. 289, 106741 (2020).
    CAS  Article  Google Scholar 

    50.
    Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 5, 497–526 (2005).
    CAS  Article  Google Scholar 

    51.
    Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).
    Article  Google Scholar 

    52.
    Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402–1419 (2011).
    CAS  Article  Google Scholar 

    53.
    Mullin, C. A., Fine, J. D., Reynolds, R. D. & Frazier, M. T. Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Front. Public Health 4, 320–328 (2016).
    Article  Google Scholar 

    54.
    Kniss, A. R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8, 14865–14867 (2017).
    CAS  Article  Google Scholar 

    55.
    Estrada, J. Mean-semivariance optimization: a heuristic approach. J. Appl. Financ. 18, 1–16 (2008).
    Article  Google Scholar 

    56.
    Finger, R., Dalhaus, T., Allendorf, J. & Hirsch, S. Determinants of downside risk exposure of dairy farms. Eur. Rev. Agric. Econ. 45, 641–674 (2018).
    Article  Google Scholar 

    57.
    Miranda, M. J. & Glauber, J. W. Providing crop disaster assistance through a modified deficiency payment program. Am. J. Agric. Econ. 73, 1233–1243 (1991).
    Article  Google Scholar 

    58.
    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2002).

    59.
    Cabas, J., Weersink, A. & Olale, E. Crop yield response to economic, site and climatic variables. Clim. Change 101, 599–616 (2009).
    Article  CAS  Google Scholar 

    60.
    Isik, M. & Devadoss, S. An analysis of the impact of climate change on crop yields and yield variability. Appl. Econ. 38, 835–844 (2006).
    Article  Google Scholar 

    61.
    Arellano, M. & Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991).
    Article  Google Scholar 

    62.
    Bellemare, M. F. & Wichman, C. J. Elasticities and the inverse hyperbolic sine transformation. Oxf. Bull. Econ. Stat. 82, 50–61 (2019).
    Article  Google Scholar 

    63.
    Conley, T. G. & Molinari, F. Spatial correlation robust inference with errors in location or distance. J. Econ. 140, 76–96 (2007).
    Article  Google Scholar 

    64.
    Hsiang, S. M. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl Acad. Sci. USA 107, 15367–15372 (2010).
    CAS  Article  Google Scholar 

    65.
    Fetzer, T. Can Workfare Programs Moderate Conflict? Evidence from India The Warwick Economics Research Paper Series (TWERPS) 1220 (University of Warwick, Department of Economics, 2019); https://ideas.repec.org/p/wrk/warwec/1220.html More

  • in

    Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans

    1.
    Engelmann, T. W. Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot. Zeit. 40, 419–426 (1882).
    Google Scholar 
    2.
    Engelmann, T. W. Farbe und assimilation. Bot. Zeit. 41, 1–29 (1883).
    Google Scholar 

    3.
    Stomp, M. et al. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104–107 (2004).
    CAS  Google Scholar 

    4.
    Stomp, M., Huisman, J., Stal, L. J. & Matthijs, H. C. P. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282 (2007).
    CAS  Google Scholar 

    5.
    Pick, F. R. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol. Oceanogr. 36, 1457–1462 (1991).
    CAS  Google Scholar 

    6.
    Vörös, L., Callieri, C., Balogh, K. V. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).
    Google Scholar 

    7.
    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).
    Google Scholar 

    8.
    Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).
    CAS  Google Scholar 

    9.
    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl Acad. Sci. USA 115, E2010–E2019 (2018).
    Google Scholar 

    10.
    Luimstra, V. M., Verspagen, J. M. H., Xu, T., Schuurmans, J. M. & Huisman, J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 101, e02951 (2020).
    PubMed  PubMed Central  Google Scholar 

    11.
    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

    12.
    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems 3rd edn (Cambridge Univ. Press, 2011).

    13.
    Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E. & Slade, W. H. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences 6, 947–967 (2009).
    Google Scholar 

    14.
    Morel, A. et al. Optical properties of the “clearest” natural waters. Limnol. Oceanogr. 52, 217–229 (2007).
    CAS  Google Scholar 

    15.
    Pegau, W. S., Gray, D. & Zaneveld, J. R. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).
    CAS  Google Scholar 

    16.
    Sogandares, F. M. & Fry, E. S. Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl. Opt. 36, 8699–8709 (1997).
    CAS  Google Scholar 

    17.
    Pope, R. M. & Fry, E. S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710–8723 (1997).
    CAS  Google Scholar 

    18.
    Mason, J. D., Cone, M. T. & Fry, E. S. Ultraviolet (250–550 nm) absorption spectrum of pure water. Appl. Opt. 55, 7163–7172 (2016).
    CAS  Google Scholar 

    19.
    Mobley, C. D. & Sundman, L. K. HydroLight 5.3—EcoLight 5.3 (Sequoia Scientific Inc., 2016).

    20.
    Sathyendranath, S., Brewin, R. J., Jackson, T., Mélin, F. & Platt, T. Ocean-colour products for climate-change studies: what are their ideal characteristics? Remote Sens. Environ. 203, 125–138 (2017).
    Google Scholar 

    21.
    Neeley, A. R. & Mannino, A. (eds) IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 1.0. Inherent Optical Property Measurements and Protocols: Absorption Coefficient (IOCCG, 2018).

    22.
    Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl Acad. Sci. USA 113, E3365–E3374 (2016).
    CAS  Google Scholar 

    23.
    Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297–300 (1992).
    CAS  Google Scholar 

    24.
    Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Moore, L. R., Goericke, R. & Chisholm, S. W. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
    Google Scholar 

    26.
    Tandeau de Marsac, N. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 76, 193–205 (2003).
    Google Scholar 

    27.
    Six, C. et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8, R259 (2007).
    PubMed  PubMed Central  Google Scholar 

    28.
    Watanabe, M. & Ikeuchi, M. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116, 265–276 (2013).
    CAS  Google Scholar 

    29.
    Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).
    CAS  Google Scholar 

    30.
    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Stomp, M. et al. The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat. 172, E169–E185 (2008).
    Google Scholar 

    32.
    Hirose, Y. et al. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 12, 715–725 (2019).
    CAS  Google Scholar 

    33.
    Luimstra, V. M. et al. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth. Res. 138, 177–189 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Humily, F. et al. A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus. PLoS ONE 8, e84459 (2013).
    PubMed  PubMed Central  Google Scholar 

    35.
    Haverkamp, T. et al. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 10, 174–188 (2008).
    CAS  Google Scholar 

    36.
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
    CAS  Google Scholar 

    37.
    Chen, F. et al. Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences. Aquat. Microb. Ecol. 36, 153–164 (2004).
    Google Scholar 

    38.
    Somogyi, B., Felföldi, T., Tóth, L. G., Bernát, G. & Vörös, L. Photoautotrophic picoplankton: a review on their occurrence, role and diversity in Lake Balaton. Biol. Futur. https://doi.org/10.1007/s42977-020-00030-8 (2020).

    39.
    Kardinaal, W. E. A. et al. Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl. Environ. Microbiol. 73, 2939–2946 (2007).
    PubMed  PubMed Central  Google Scholar 

    40.
    Bricaud, A., Claustre, H., Ras, J. & Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. 109, C11010 (2004).
    Google Scholar 

    41.
    Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–541 (2007).
    CAS  Google Scholar 

    42.
    Weyhenmeyer, G. A., Müller, R. A., Norman, M. & Tranvik, L. J. Sensitivity of freshwaters to browning in response to future climate change. Clim. Change 134, 225–239 (2016).
    Google Scholar 

    43.
    Kritzberg, E. S. Centennial‐long trends of lake browning show major effect of afforestation. Limnol. Oceanogr. Lett. 2, 105–112 (2017).
    Google Scholar 

    44.
    Leech, D. M., Pollard, A. I., Labou, S. G. & Hampton, S. E. Fewer blue lakes and more murky lakes across the continental U.S.: implications for planktonic food webs. Limnol. Oceanogr. 63, 2661–2680 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Ekvall, M. K. et al. Synergistic and species‐specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshw. Biol. 58, 2414–2422 (2013).
    CAS  Google Scholar 

    46.
    Urrutia‐Cordero, P. et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshw. Biol. 62, 1869–1878 (2017).
    Google Scholar 

    47.
    Wilken, S. et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol. Oceanogr. 63, S142–S155 (2018).
    Google Scholar 

    48.
    Feuchtmayr, H. et al. Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. Sci. Tot. Environ. 678, 227–238 (2019).
    CAS  Google Scholar 

    49.
    Deininger, A., Faithfull, C. L. & Bergström, A. K. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology 98, 982–994 (2017).
    CAS  Google Scholar 

    50.
    Tan, X., Zhang, D., Duan, Z., Parajuli, K. & Hu, J. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment. Environ. Sci. Pollut. Res. 27, 344–352 (2020).
    CAS  Google Scholar 

    51.
    Burson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99, 1108–1118 (2018).
    Google Scholar 

    52.
    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).
    Google Scholar 

    53.
    Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).
    CAS  Google Scholar 

    54.
    Malmstrom, R. R. et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific Oceans. ISME J. 4, 1252–1264 (2010).
    Google Scholar 

    55.
    Lange, P. K. et al. Scratching beneath the surface: a model to predict the vertical distribution of Prochlorococcus using remote sensing. Remote Sens. 10, 847 (2018).
    Google Scholar 

    56.
    Wernand, M. R., van der Woerd, H. J. & Gieskes, W. W. C. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE 8, e63766 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Bricaud, A., Morel, A. & Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26, 43–53 (1981).
    CAS  Google Scholar 

    59.
    Twardowski, M. S., Boss, E., Sullivan, J. M. & Donaghay, P. L. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 89, 69–88 (2004).
    CAS  Google Scholar 

    60.
    Babin, M. et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108, 1–20 (2003).
    Google Scholar 

    61.
    Babin, M., Morel, A., Fournier-Sicre, V., Fell, F. & Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843–859 (2003).
    Google Scholar 

    62.
    Doxaran, D. et al. Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared. Limnol. Oceanogr. 54, 1257–1271 (2009).
    CAS  Google Scholar 

    63.
    Nechad, B., Ruddick, K. G. & Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114, 854–866 (2010).
    Google Scholar 

    64.
    Petzold, T. J. Volume Scattering Functions for Selected Ocean Waters (No. SIO-REF-72-78) (Scripps Institution of Oceanography, 1972).

    65.
    Morel, A. & Gentili, B. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Appl. Opt. 30, 4427–4438 (1991).
    CAS  Google Scholar 

    66.
    Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 19, 4285 (2019).
    CAS  Google Scholar 

    67.
    Holtrop, T. et al. Data: vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. https://doi.org/10.6084/m9.figshare.c.5140601.v1 (2020).

    68.
    Sanfilippo, J. E. et al. Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proc. Natl Acad. Sci. USA 116, 6457–6462 (2019).
    CAS  Google Scholar  More

  • in

    Tree mode of death and mortality risk factors across Amazon forests

    School of Geography, Earth and Enviornmental Sciences, University of Birmingham, Birmingham, UK
    Adriane Esquivel-Muelbert & Thomas A. M. Pugh

    School of Geography, University of Leeds, Leeds, UK
    Adriane Esquivel-Muelbert, Oliver L. Phillips, Roel J. W. Brienen, Martin J. P. Sullivan, Timothy R. Baker, Emanuel Gloor, Aurora Levesley, Simon L. Lewis, Karina Liana Lisboa Melgaço Ladvocat, Gabriela Lopez-Gonzalez, Nadir Pallqui Camacho, Julie Peacock, Georgia Pickavance & David Galbraith

    Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
    Adriane Esquivel-Muelbert & Thomas A. M. Pugh

    School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
    Sophie Fauset

    Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
    Martin J. P. Sullivan

    International Master Program of Agriculture, National Chung Hsing University, Taichung, Taiwan
    Kuo-Jung Chao

    Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
    Ted R. Feldpausch

    Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
    Niro Higuchi, Adriano José Nogueira Lima & Carlos Quesada

    School of Mathematics, University of Leeds, Leeds, UK
    Jeanne Houwing-Duistermaat & Haiyan Liu

    Faculty of Natural Sciences, Department of Life, Imperial College London Sciences, London, UK
    Jon Lloyd

    Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
    Yadvinder Malhi & Simone Matias de Almeida Reis

    UNEMAT – Universidade do Estado de Mato Grosso PPG-Ecologia e Conservação, Campus de Nova Xavantina, Nova Xavantina, MT, Brazil
    Beatriz Marimon, Ben Hur Marimon Junior, Paulo Morandi, Edmar Almeida de Oliveira & Simone Matias de Almeida Reis

    Jardín Botánico de Missouri, Oxapampa, Peru
    Abel Monteagudo-Mendoza, Victor Chama Moscoso, Luis Valenzuela Gamarra & Rodolfo Vasquez Martinez

    Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
    Lourens Poorter, Frans Bongers, Marielos Peña-Claros & Pieter Zuidema

    Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, AC, Brazil
    Marcos Silveira

    Instituto de Investigaciones para el Desarrollo Forestal (INDEFOR), Universidad de Los Andes, Mérida, Venezuela
    Emilio Vilanova Torre & Julio Serrano

    University of California, Berkeley, CA, USA
    Emilio Vilanova Torre

    Escuela de Ciencias Agropecuarias y Ambientales, Universidad Nacional Abierta y a Distancia, Boyacá, Colombia
    Esteban Alvarez Dávila

    Fundación ConVida, Medellín, Colombia
    Esteban Alvarez Dávila

    Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
    Jhon del Aguila Pasquel, Gerardo A. Aymard C., Nallaret Davila Cardozo & Eurídice Honorio Coronado

    Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, Brazil
    Everton Almeida

    Center for Tropical Conservation, Nicholas School of the Environment, University in Durham, Durham, NC, USA
    Patricia Alvarez Loayza

    Projeto Dinâmica Biológica de Fragmentos, Instituto Nacional de Pesquisas da Amazônia Florestais, Manaus, AM, Brazil
    Ana Andrade & José Luís Camargo

    National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
    Luiz E. O. C. Aragão

    Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Santa Cruz de la Sierra, Bolivia
    Alejandro Araujo-Murakami & Marisol Toledo

    Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
    Eric Arets

    Dirección de la Carrera de Biología, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
    Luzmila Arroyo

    INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, France
    Michel Baisie, Damien Bonal, Benoit Burban, Aurélie Dourdain, Maxime Rejou-Machain & Clement Stahl

    Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, USA
    Christopher Baraloto

    Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
    Plínio Barbosa Camargo

    Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul, Brazil
    Jorcely Barroso

    UR Forest & Societies, CIRAD, Montpellier, France
    Lilian Blanc

    Department of Biology, Utrecht, Netherlands
    René Boot

    Woods Hole Research Center, Falmouth, MA, USA
    Foster Brown

    Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, Brazil
    Wendeson Castro

    Laboratoire Evolution et Diversite Biologique, CNRS, Toulouse, France
    Jerome Chave

    Inventory and Monitoring Program, National Park Service, Fort Collins, CO, USA
    James Comiskey

    Proyecto Castaña, Madre de Dios, Peru
    Fernando Cornejo Valverde

    Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Para, Belém, Brazil
    Antonio Lola da Costa

    Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, University of Texas, Austin, TX, USA
    Anthony Di Fiore

    National Museum of Natural History, Smithsonian Institute, Washington, DC, USA
    Terry Erwin

    Universidad Nacional Jorge Basadre de Grohmann, Tacna, Peru
    Gerardo Flores Llampazo

    Museu Paraense Emílio Goeldi, Belém, Brazil
    Ima Célia Guimarães Vieira & Rafael Salomão

    Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
    Rafael Herrera

    IIAMA, Universitat Politécnica de València, València, Spain
    Rafael Herrera

    Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
    Isau Huamantupa-Chuquimaco

    Instituto Amazónico de Investigaciones Imani, Universidad Nacional de Colombia Sede Amazonia, Leticia, Colombia
    Eliana Jimenez-Rojas

    Agteca, Santa Cruz, Bolivia
    Timothy Killeen

    College of Science and Engineering, James Cook University, Cairns, QLD, Australia
    Susan Laurance & William Laurance

    Department of Geography, University College London, London, UK
    Simon L. Lewis

    Environmental Science and Policy, George Mason University, Fairfax, VA, USA
    Thomas Lovejoy

    Research School of Biology, Australian National University, Canberra, ACT, Australia
    Patrick Meir

    School of Geosciences, University of Edinburgh, Edinburgh, UK
    Patrick Meir

    Escuela de Ciencias Forestales, Unidad Académica del Trópico, Universidad Mayor de San Simón, Cochabamba, Bolivia
    Casimiro Mendoza

    Facultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, Ecuador
    David Neill

    Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
    Percy Nuñez Vargas, Nadir Pallqui Camacho & Javier Silva Espejo

    Universidad Autónoma del Beni José Ballivián, Trinidad, Bolivia
    Guido Pardo & Vincent Vos

    Universidad Regional Amazónica Ikiam, Ikiam, Ecuador
    Maria Cristina Peñuela-Mora

    Broward County Parks Recreation, Oakland Park, FL, USA
    John Pipoly

    Keller Science Action Center, Field Museum, Chicago, IL, USA
    Nigel Pitman

    Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
    Adriana Prieto & Agustín Rudas

    Institute of Research for Forestry Development (INDEFOR), Universidad de los Andes, Mérida, Venezuela
    Hirma Ramirez-Angulo

    Socioecosistemas y Cambio Climatico, Fundacion Con Vida, Medellín, Colombia
    Zorayda Restrepo Correa

    Centro de Conservacion, Investigacion y Manejo de Areas Naturales, CIMA Cordillera Azul, Lima, Peru
    Lily Rodriguez Bayona

    Universidade Federal Rural da Amazônia, Belém, Brazil
    Rafael Salomão & Natalino Silva

    Departamento de Biología, Universidad de La Serena, La Serena, Chile
    Javier Silva Espejo

    Guyana Forestry Commission, Georgetown, Guyana
    James Singh

    Federal University of Alagoas, Maceió, Brazil
    Juliana Stropp

    Institute for Conservation Research, Escondido, CA, USA
    Varun Swamy

    Institute for Transport Studies, University of Leeds, Leeds, UK
    Joey Talbot

    Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, The Netherlands
    Hans ter Steege

    Systems Ecology, Free University, De Boelelaan 1087, Amsterdam, Netherlands
    Hans ter Steege

    Department of Biology, University of Florida, Gainesville, FL, USA
    John Terborgh

    Iwokrama International Centre for Rainforest Conservation and Development, Georgetown, Guyana
    Raquel Thomas

    Universidad de los Andes, Mérida, Venezuela
    Armando Torres-Lezama

    School of Geography, University of Nottingham, Nottingham, UK
    Geertje van der Heijden

    Van Hall Larenstein University of Applied Sciences, Leeuwarden, Netherlands
    Peter van der Meer

    Van der Hoult Forestry Consulting, Leeuwarden, The Netherlands
    Peter van der Hout

    Núcleo de Estudos e Pesquisas Ambientais – Universidade Estadual de Campinas, Campinas, Brazil
    Simone Aparecida Vieira

    Herbario del Sur de Bolivia, Universidad de San Francisco Xavier de Chuquisaca, Sucre, Bolivia
    Jeanneth Villalobos Cayo

    Tropenbos International, Wageningen, Netherlands
    Roderick Zagt

    A.E.-M. and D.G. designed the study with contributions from O.L.P., R.J.W.B., S.F. and M.J.P.S. A.E.-M. carried out the analyses with inputs from D.G., O.L.P., R.J.W.B., S.F., M.J.P.S., J.H.-.D. and H.L. A.E.-M. wrote a first draft with contributions from D.G., M.J.P.S., T.A.M.P., S.F. and O.L.P. O.L.P., R.J.W.B., S.F., M.J.P.S., T.R.B., K.-J.C., T.R.F., N.H., Y.M., B.M., B.H.M.J., A.M.-M., L.P., M.S., E.V.T., E.A.D., J.d.A.P., E.A., P.A.L., A.A., L.E.O.CA., A.A.-M., E.Arets, L.A., G.A.A.C., M.B., C.B., P.B.C., J.B., L.B., D.B., F.B., R.J.W.B., F.Brown, B.B., J.L.C., W.C., V.C.M., J.C., J.Comiskey, F.C.V., A.L.d.C., N.D.C., A.D.F., A.D., T.E., G.F.L., I.C.G.V., R.H., E.H.C., I.H.-C., E.J.-R., T.K., S.L., W.L., S.L.L., T.L., P.M., C.M., P.Morandi, D.N., A.J.N.L., P.N.V., E.A.d.O., N.P.C., G.Prado, J.Pipoly, M.P.-C., M.C.P.-M., N.P., A.P., C.Q., H.R.-A., S.M.d.A.R., M.R.-M., Z.R.C., L.R.B., A.R., R.S., J.S., J.S.E., N.S., J.Singh, C.S., J.Stroop, V.S., J.T., H.t.S., J.T., R.T., M.T., A.T.-L., L.V.G., G.v.d.H., P.v.d.M., P.v.d.H., R.V.M., S.A.V., J.V.C., V.V., R.Z. and P.Z. led field expeditions for data collection. O.L.P., J.L. and Y.M. conceived the RAINFOR forest plot network; D.G., E.G. and T.R.B. contributed to its development. O.L.P., R.J.W.B., T.R.F., T.R.B., A.M.‐M., L.E.O.C.A., E.A.D., B.M., B.H.M.J., N.H., E.V.T., J.C., E.G. and Y.M. coordinated data collection with the help of many co‐authors. O.L.P., T.R.B., S.L.L. and G.L.-G. conceived ForestPlots.net, and M.J.P.S., A.L., J.Peacock, G.P., K.L.L.M.L., D.G. and E.G. helped to develop it. All authors read and approved the manuscript (with important insights provided by O.L.P., L.P., H.t.S., T.E., W.C., S.M.d.A.R., E.G., E.A.d.O., P.M., M.J.P.S., D.B., G.v.d.H. and P.Z.). More