More stories

  • in

    Managing incursions of Vespa velutina nigrithorax in the UK: an emerging threat to apiculture

    Nests
    A summary of the nest results can be found in Tables 1 (physical description of nests) and 2 (ploidy). All adult females that were weighed were classed as workers or founder queens using the information found in Rome et al.8, which defined a limit of 593 mg wet weight or 250 mg dry weight to discriminate between workers and founder queens. The average wet weight of founder queens in September was 624 mg (N = 5). All nests recovered had fewer adults present than expected, this was presumed to be due to the loss of adult hornets during the destruction process and subsequent removal of the nest from its original location.
    Table 1 Summary of observations from all nests discovered in the UK.
    Full size table

    Table 2 Ploidy of nests.
    Full size table

    Tetbury
    The findings from the examination of the Tetbury nest have been described previously10 but are briefly summarised again here. This nest was discovered on 28th September 2016. In total, 70 adult hornets were found in the nest. The wet weight of 57 adult female hornets ranged from 202 to 322 mg with a mean of 256 mg (N = 19), whilst that of 13 adult male hornets ranged from 248 to 326 mg with a mean of 290 mg (N = 7). The nest diameter was 23 cm and the nest contained five combs, four of which contained all life stages (eggs, larvae, pupae, teneral adults, adults) of the Asian hornet. All life stages examined were diploid. The nest was likely derived from a single queen mated to a single drone.
    Woolacombe
    A nest was discovered in Woolacombe on 27 September 2017. In total, 166 adult hornets were found in the nest, all female. The wet weight of adult female hornets ranged from 172 to 508 mg with a mean of 333 ± 5 mg (N = 166). Based on the information in Rome et al.8, described above, none of the females found in the Woolacombe nest were founder queens. The nest was 27 cm in diameter and is the largest nest discovered in England to date. The nest contained seven combs and all life stages were present, although the larval samples were too degraded for DNA analysis. Haploid individuals were present at the egg and pupal stages, the remainder of the individuals examined were diploid. Based on life stages present and the ploidy, the queen began laying haploid eggs on approximately 2nd September. The genetic analysis (results from COLONY2, verified manually) showed that the offspring sampled were likely to be the product of a single queen and three drones.
    Fowey nests 1 + 2
    Two nests were discovered in Fowey, Cornwall in 2018 on 3rd and 20th September, 40 m apart. The first nest contained three combs and had a diameter of 15 cm. No eggs or early instar larvae were present but late instar larvae, teneral adults and three adults were present. All individuals sampled were diploid. From the absence of eggs and early instar larvae, it was concluded that the queen was absent/missing in the 2–3 weeks prior to nest discovery. The second nest had a diameter of 19 cm and contained four combs with brood in all stages. Seven adult males and eight females were found in the nest; the males were diploid. All eggs and six of the ten larvae genotyped were haploid, while the pupae, teneral adults and adults were diploid. No queen was found. From the genetic analysis of the two nests, it was shown that both were highly likely to be offspring of a single queen and drone, with the first nest discovered presumably a primary nest and the other nest the secondary nest. From the ploidy of the life-stages present, it was inferred that the queen began laying haploid eggs around the 30th August.
    New Alresford nest
    The first nest found in Hampshire was discovered in New Alresford on 24th September 2018. The nest was 18 cm diameter and contained four combs with all life stages present. Twenty-eight males and 94 females were found. All the adults, teneral adults and pupae sampled were diploid, while within the larvae, five out of 10 were haploid, and within the eggs, two out of seven were haploid. The queen began laying haploid eggs around the 3rd September. The individuals from this nest were highly likely the offspring of a single queen and two drones.
    Brockenhurst nest
    The second nest found in Hampshire was discovered in Brockenhurst (approximately 30 miles away from New Alresford) and was destroyed on 04th October 2018. The nest was 18.5 cm diameter and there were three combs present with brood from the larvae stage onwards; no eggs were present indicating a recent loss of the queen or cessation of laying. All larvae and pupae were haploid and adult males were also haploid. The only diploid individuals present were worker females. The queen ceased laying before any diploid (future gyne) eggs were laid. The nest was consistent with being the offspring of a single queen mated with two drones.
    Drayton Bassett nest
    The first nest of 2019 was discovered on September 2nd at Drayton Bassett, Staffordshire. On arrival at Fera Science Ltd, the nest was too damaged to determine its size. Five adult female hornets were found in the nest. The wet weight of adult female hornets ranged from 197 to 312 mg with a mean of 271.6 (n = 5). The average wet weight of founder queens in September in the study by Rome et al.8 was 624 mg (n = 5). Based on this, it would appear that none of the females found in the nest were founder queens. All life stages were present in the nest, and all individuals genotyped were diploid. The nest was consistent with being the offspring of a single queen mated to a single drone.
    Christchurch nests 1 + 2
    On 01st October, 2019, a nest 13 cm diameter was discovered in Christchurch, Dorset. Two combs were present in the nest. One adult female hornet was found in the nest. The wet weight of this adult female hornet was 545 mg and the mesoscutum width was 4.6 mm. In a study by Pérez de Heredia et al.16 individuals taken from nests with a unimodal population had one individual per nest that had a mesoscutum width above 4.5 mm; no other individuals in these nests reached a mesoscutum width of 4.5 mm. It is therefore likely that the individual found in this nest was the queen. The combs contained eggs and larvae and had genotypes consistent with being the offspring of the queen that was present. Two eggs were haploid, the remainder of the eggs and larvae genotyped were diploid. On October 10th, a second nest was discovered in Christchurch, 10 m from the first nest, but could not be measured as it was intertwined with vegetation and fragmented upon removal. No adult hornets were found in the nest. Two combs were present, with capped and uncapped cells. Larvae, pupae and teneral adults were found, all of which were diploid. No eggs were found. Both nests from Christchurch were consistent with being the offspring of the same queen, mated to a single drone. The first nest found was likely to be the secondary nest, the second nest found likely to be the primary nest.
    Information on all nests is found in Table 1. Map locations for each nest are shown in Fig. 1 and images of each nest are shown in Fig. 2.
    Figure 2

    Images of UK nests: (a) Tetbury, (b) Woolacombe, (c) Fowey nest 1, (d) Fowey nest 2, (e) Brockenhurst, (f) New Alresford, (g) Drayton Bassett, (h) Christchurch nest 1 and (i) Christchurch nest 2. Where shown, scale bar represents 5 cm.

    Full size image

    Genetic relatedness
    Overall, the genetic diversity in the UK is relatively low for all locations, for all three measures used (mean number of alleles per locus, observed and expected heterozygosity; Table 3). However, it should be taken into consideration that the data for each UK nest are from individuals that were all closely related to each other (full, half siblings). A single combined figure for the UK was not calculated as it seems unlikely there is a UK population. Compared to the Asian hornet diversity data from Arca et al. (2015)11, the UK diversity is lower than France, which itself is lower than the diversity found in Asia (Table 2). This trend reflects the likely colonisation history of the hornet, which colonised France from Asia, and the UK incursions are likely to derive from populations on the European mainland.
    Table 3 Genetic diversity measure (average number of alleles per locus) and the observed and expected heterozygosity for Asian hornet populations sampled in the British Isles, and from France (data from Arca et al. 201511).
    Full size table

    The occurrence of microsatellite alleles in the UK nests and France and Asia (from Arca et al.11) are given in supplementary material 1. In comparison with the Asian and French data in Arca et al.11, the UK samples had a restricted subset of alleles (35 alleles in total) that were all found in the French populations (60 alleles). In turn, all French alleles were a subset of those found in Asia (178 alleles). Similarly, the majority of private alleles were found in Asia (114), a small number in France (n = 3) and none in the UK (supplementary material 1).
    In all cases, individuals recovered near a nest (within 2 km) were offspring of the recovered nearby nest (or nests, where there were primary and secondary nests). The majority of these individuals were found within 500 m of the nest. Most individuals caught in isolated locations away from nests (over 15 km) were not offspring of the recovered nests, with the exception of the individual recovered in Liskeard, which had a genotype compatible with being the offspring of the Fowey nest, some 17 km distant.
    To exclude the possibility that any of the founding queens that escaped the destruction of the nest went on to produce viable nests that gave rise to nests caught in the subsequent year, we considered whether the inferred parental genotypes from a nest in year one could be the parents of the inferred parental genotypes in year two. For example, whether the queen from the Tetbury nest in 2016 could have formed a second nest and the offspring from that nest been the parents to the Woolacombe nest in 2017. In no case were the inferred parental genotypes compatible with this scenario. Additionally, where more than one nest was found in a single year (i.e. New Alresford/ Brockenhurst/ Fowey in 2018, Christchurch / Drayton Bassett in 2019), we considered whether the foundress queens and founder drones were full siblings to each other. Again, in no case was this possible (although they could have been half siblings to each other). Genotype data are provided in Supplementary material 2. More

  • in

    Phenotypic variation, functional traits repeatability and core collection inference in Synsepalum dulcificum (Schumach & Thonn.) Daniell reveals the Dahomey Gap as a centre of diversity

    1.
    Kurihara, K. & Beidler, L. M. Taste-modifying protein from miracle fruit. Science 161, 1241–1243 (1968).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Achigan-Dako, E. G., Tchokponhoué, D. A., N’Danikou, S., Gebauer, J. & Vodouhè, R. S. Current knowledge and breeding perspectives for the miracle plant Synsepalum dulcificum (Schum. et Thonn.) Daniell. Genet. Resour. Crop. Evol. 62, 465–476 (2015).

    3.
    Fandohan, A. B. et al. Usages traditionnels et valeur économique de Synsepalum dulcificum au Sud-Bénin. Bois For. Trop. 332, 17–30 (2017).
    Article  Google Scholar 

    4.
    Oumorou, M., Dah-Dovonon, J., Aboh, B., Hounsoukaka, M. & Sinsin, B. Contribution á la conservation de Synsepalum dulcificum: régénération et importance socio-économique dans le département de l’ouémé (Bénin). Ann. Sci. Agron. 14, 101–120 (2010).
    Google Scholar 

    5.
    Rodrigues, J. F., da Silva Andrade, R., Bastos, S. C., Coelho, S. B. & Pinheiro, A. C. M. Miracle fruit: An alternative sugar substitute in sour beverages. Appetite 107, 645–653 (2016).
    Article  PubMed  Google Scholar 

    6.
    Andrade, A. C. et al. Effect of different quantities of miracle fruit on sour and bitter beverages. LWT 99, 89–97 (2019).
    CAS  Article  Google Scholar 

    7.
    Swamy, K. B., Hadi, S. A., Sekaran, M. & Pichika, M. R. The clinical effects of Synsepalum dulcificum: a review. J. Med. Food. 17, 1165–1169 (2014).
    CAS  Article  PubMed  Google Scholar 

    8.
    Chen, C. C., Liu, I. M. & Cheng, J. T. Improvement of insulin resistance by miracle fruit (Synsepalum dulcificum) in fructose-rich chow-fed rats. Phytother. Res. 20, 987–992 (2006).
    Article  PubMed  Google Scholar 

    9.
    Han, Y. C., Wu, J. Y. & Wang, C. K. Modulatory effects of miracle fruit ethanolic extracts on glucose uptake through the insulin signaling pathway in C2C12 mouse myotubes cells. Food Sci. Nutr. 7, 1035–1042 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Obafemi, T. O., Akinmoladun, A. C., Olaleye, M. T., Agboade, S. O. & Onasanya, A. A. Antidiabetic potential of methanolic and flavonoid-rich leaf extracts of Synsepalum dulcificum in type 2 diabetic rats. J. Ayurveda Integr. Med. 8, 238–246. https://doi.org/10.1016/j.jaim.2017.01.008 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Buckmire, R. & Francis, F. Pigments of miracle fruit, Synsepalum dulcificum, Schum, as potential food colorants. J. Food Sci. 43, 908–911 (1978).
    CAS  Article  Google Scholar 

    12.
    Del Campo, R., Zhang, Y. & Wakeford, C. Effect of miracle fruit (Synsepalum dulcificum) seed oil (MFSO®) on the measurable improvement of hair breakage in women with damaged hair: a randomized, double-blind, placebo-controlled, eight-month trial. J. Clin. Aesthet. Dermat. 10, 39–48 (2017).
    Google Scholar 

    13.
    Gorin, S. et al. Beneficial effects of an investigational wristband containing Synsepalum dulcificum (miracle fruit) seed oil on the performance of hand and finger motor skills in healthy subjects: a randomized controlled preliminary study. Phytother. Res. 32, 321–332 (2018).
    CAS  Article  PubMed  Google Scholar 

    14.
    Adomou, A. Vegetation patterns and environmental gradients in Benin PhD thesis, University of Wageningen, (2005).

    15.
    Tchokponhoué, D. et al. Regeneration ability and seedling growth in the miracle plant Synsepalum dulcificum (Schumach. & Thonn.) Daniell. Fruits 73, 13–21 (2018).

    16.
    Tchokponhoué, D. A., N’Danikou, S., Houéto, J. S. & Achigan-Dako, E. G. Shade and nutrient-mediated phenotypic plasticity in the miracle plant Synsepalum dulcificum (Schumach. & Thonn.) Daniell. Sci. Rep. 9(5137), 1–11 (2019).

    17.
    Tchokponhoué, D. A., N’Danikou, S., Hale, I., Van Deynze, A. & Achigan-Dako, E. G. Early fruiting in Synsepalum dulcificum (Schumach. & Thonn.) Daniell juveniles induced by water and inorganic nutrient management. F1000Res. 6, 1–17 (2017).

    18.
    Choi, S. E. & Garza, J. Effects of different miracle fruit products on the sensory characteristics of different types of sour foods by descriptive analysis. J. Food Sci. 85, 36–49 (2020).
    CAS  Article  PubMed  Google Scholar 

    19.
    Tafazoli, S. et al. Safety assessment of miraculin using in silico and in vitro digestibility analyses. Food Chem. Toxicol. 133(110762), 1–10 (2019).
    Google Scholar 

    20.
    Chibuzor, I. A., Bukola, O., Adejoke, A. O. & Chidozie, O. P. Genetic assessment of the shrub Synsepalum dulcificum (Schumach & Thonn.) Daniell in Nigeria using the Randomly Amplified Polymorphic DNA (RAPD). Int. J. Genet. Genom. 4, 45–50 (2017).

    21.
    Sogbohossou, E. D. et al. Association between vitamin content, plant morphology and geographical origin in a worldwide collection of the orphan crop Gynandropsis gynandra (Cleomaceae). Planta 250, 933–947 (2019).
    CAS  Article  PubMed  Google Scholar 

    22.
    Singh, K., Sharma, Y. P. & Gairola, S. Morphological characterization of wild Rosa L. germplasm from the Western Himalaya, India. Euphytica 216(41), 1–24. https://doi.org/https://doi.org/10.1007/s10681-020-2567-2 (2020).

    23.
    Sun, W. et al. Multivariate analysis reveals phenotypic diversity of Euscaphis japonica population. PLoS ONE 14, 1. https://doi.org/10.1371/journal.pone.0219046 (2019).
    CAS  Article  Google Scholar 

    24.
    Yazdanpour, F., Khadivi, A. & Etemadi-Khah, A. Phenotypic characterization of black raspberry to select the promising genotypes. Sci. Hortic. Amsterdam 235, 95–105. https://doi.org/10.1016/j.scienta.2018.02.071 (2018).
    CAS  Article  Google Scholar 

    25.
    Fereidoonfar, H., Salehi-Arjmand, H., Khadivi, A. & Akramian, M. Morphological variability of sumac (Rhus coriaria L.) germplasm using multivariate analysis. Ind. Crops Prod. 120, 162–170, https://doi.org/https://doi.org/10.1016/j.indcrop.2018.04.034 (2018).

    26.
    Norouzi, E., Erfani-Moghadam, J., Fazeli, A. & Khadivi, A. Morphological variability within and among three species of Ziziphus genus using multivariate analysis. Sci. Hortic. Amsterdam 222, 180–186. https://doi.org/10.1016/j.scienta.2017.05.016 (2017).
    Article  Google Scholar 

    27.
    Khadivi-Khub, A. & Anjam, K. Morphological characterization of Prunus scoparia using multivariate analysis. Plant Syst. Evol. 300, 1361–1372 (2014).
    Article  Google Scholar 

    28.
    Vihotogbé, R., van den Berg, R. G. & Sosef, M. S. Morphological characterization of African bush mango trees (Irvingia species) in West Africa. Genet. Resour. Crop. Evol. 60, 1597–1614 (2013).
    Article  Google Scholar 

    29.
    Ouborg, N. J. Integrating population genetics and conservation biology in the era of genomics. Biol. Lett. 6, 3–6 (2010).
    Article  PubMed  Google Scholar 

    30.
    Martínez-García, P. J. et al. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genet. Genomes 13, 109 (2017).
    Article  Google Scholar 

    31.
    Falconer, D. S. Introduction to quantitative genetics. (Oliver And Boyd; Edinburgh; London, 1960).

    32.
    Fonseca, C. E. L. d., Morais, F. M. d., Gonçalves, H. M., Aquino, F. d. G. & Rocha, F. S. Repeatability of fruit traits from two Hancornia speciosa populations from the core region of the Brazilian Cerrado. Pesqui. Agropecu Bras. 53, 710–716 (2018).

    33.
    Zou, S., Yao, X., Zhong, C., Zhao, T. & Huang, H. Genetic analysis of fruit traits and selection of superior clonal lines in Akebia trifoliate (Lardizabalaceae). Euphytica 214(111), 1–9. https://doi.org/10.1007/s10681-018-2198-z (2018).
    ADS  CAS  Article  Google Scholar 

    34.
    Sanou, H. et al. Phenotypic variation of agromorphological traits of the shea tree, Vitellaria paradoxa CF Gaertn., in Mali. Genet. Resour. Crop. Evol. 53, 145–161 (2006).

    35.
    Albuquerque, A. S., Bruckner, C. H., Cruz, C. D., Salomão, L. C. C. & Neves, J. C. L. Repeatability and correlations among peach physical traits. Crop Breed. Appl. Biot. 4, 441–445 (2004).
    Article  Google Scholar 

    36.
    Belaj, A. et al. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet. Genomes 8, 365–378 (2012).

    37.
    Le Cunff, L. et al. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plt. Biol. 8:31, 1–12 (2008).

    38.
    Mahmoodi, R. et al. Development of a core collection in Iranian walnut (Juglans regia L.) germplasm using the phenotypic diversity. Sci. Hortic. Amsterdam 249, 439–448 (2019).

    39.
    Tchokponhoué, D. A., N’Danikou, S. & Achigan-Dako, E. G. A combination of approaches evidenced seed storage behaviour in the miracle berry Synsepalum dulcificum (Schumach. et Thonn.) Daniell. BMC Plt. Biol. 19:117, 1–13 (2019).

    40.
    Edesi, J., Tolonen, J., Ruotsalainen, A. L., Aspi, J. & Häggman, H. Cryopreservation enables long-term conservation of critically endangered species Rubus humulifolius. Biodivers. Conserv. 29, 303–314. https://doi.org/10.1007/s10531-019-01883-9 (2020).
    Article  Google Scholar 

    41.
    Bharuth, V., Naidoo, C., Pammenter, N. W., Lamb, J. M. & Moodley, T. Responses to chilling of recalcitrant seeds of Ekebergia capensis from different provenances. S. Afr. J. Bot. 130, 8–24 (2020).
    Article  Google Scholar 

    42.
    Leal, M. E. The African rain forest during the Last Glacial Maximum an archipelago of forests in a sea of grass. (2004).

    43.
    Swenson, U., Richardson, J. E. & Bartish, I. V. Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 24, 1006–1031 (2008).
    Article  Google Scholar 

    44.
    Juhé-Beaulaton, D. “Fèves”, “pois” et “grains” dans le golfe de Guinée : problèmes d’identification des plantes dans les sources historiques. in Plantes et paysages d’Afrique, une histoire à explorer (ed Chastanet M) 45–68 (1998).

    45.
    Inglett, G. E. & May, J. F. Tropical plants with unusual taste properties. Econ. Bot. 22, 326–331. https://doi.org/10.1007/BF02908127 (1968).
    Article  Google Scholar 

    46.
    Salzmann, U. & Hoelzmann, P. The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene 15, 190–199. https://doi.org/10.1191/0959683605hl799rp (2005).
    ADS  Article  Google Scholar 

    47.
    Booth, A. The Niger, the Volta and the Dahomey Gap as geographic barriers. Evolution 12, 48–62 (1958).
    Article  Google Scholar 

    48.
    White, F. The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. (1983).

    49.
    Niñez, V. Household gardens: theoretical and policy considerations. Agr. Syst. 23, 167–186. https://doi.org/10.1016/0308-521X(87)90064-3 (1987).
    Article  Google Scholar 

    50.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,Vienna, Austria. https://www.R-project.org/. (2019).

    51.
    Peterson, B. G. et al. ‘Performance analytics’: econometric tools for performance and risk analysis. R Team Cooperation. (2018).

    52.
    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3–an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
    Article  Google Scholar 

    53.
    Moon, K.-W. Interactive plot. in Learn ggplot2 Using Shiny App (ed Keon-Woong Moon) 295–347 (Springer, 2016).

    54.
    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Article  Google Scholar 

    55.
    YiLan, L. & RuTong, Z. clustertend: Check the Clustering tendency. R package version 1 (2015).

    56.
    Kassambara, A. & Mundt, F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1, 4 (2017).
    Google Scholar 

    57.
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Article  Google Scholar 

    58.
    De Beukelaer, H., Davenport, G. F. & Fack, V. Core Hunter 3: flexible core subset selection. BMC Bioinformatics 19(203), 1–12 (2018).
    Google Scholar 

    59.
    Kim, K.-W. et al. PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23, 2155–2162 (2007).
    CAS  Article  PubMed  Google Scholar 

    60.
    Hu, J., Zhu, J. & Xu, H. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor. Appl. Genet. 101, 264–268 (2000).
    CAS  Article  Google Scholar 

    61.
    61Wickham, H. ggplot2: elegant graphics for data analysis. (Springer, 2016).

    62.
    Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).
    Article  Google Scholar 

    63.
    South, A. Rworldxtra: Country boundaries at high resolution. R package version 1 (2012).

    64.
    South, A. rnaturalearth: World map data from Natural Earth. R package version 0.1. 0 (2017).

    65.
    Salako, V. K. et al. Home gardens: an assessment of their biodiversity and potential contribution to conservation of threatened species and crop wild relatives in Benin. Genet. Resour. Crop. Evol. 61, 313 (2014).
    Article  Google Scholar 

    66.
    van Rompaey, R. S. Forest gradients in West Africa: a spatial gradient analysis, Wageningen, (1993).

    67.
    Gwali, S. et al. Morphological variation among shea tree (Vitellaria paradoxa subsp. nilotica)‘ethnovarieties’ in Uganda. Genet. Resour. Crop. Evol. 59, 1883–1898 (2012).

    68.
    Metougui, M. L., Mokhtari, M., Maughan, P. J., Jellen, E. N. & Benlhabib, O. Morphological variability, heritability and correlation studies within an argan tree population (Argania spinosa (L.) Skeels) preserved in situ. Int. J. Agr. For. 7, 42–51 (2017).

    69.
    Tsobeng, A. et al. Tree-to-tree variation in fruit of three populations of Trichoscypha acuminata in Cameroon. Sci. Afr. 7, 1–12 (2020).
    Google Scholar 

    70.
    Omondi, M. et al. Fruit morphological diversity and productivity of baobab (Adansonia digitata L.) in coastal and lower eastern Kenya. For. Trees Livelihoods 28, 266–280 (2019).
    Article  Google Scholar 

    71.
    Abdulai, I., Krutovsky, K. V. & Finkeldey, R. Morphological and genetic diversity of shea trea (Vitellaria paradoxa) in the savannah regions of Ghana. Genet Res Crop Evol 64, 1253–1268 (2017).
    Article  Google Scholar 

    72.
    Karambiri, M., Elias, M., Vinceti, B. & Grosse, A. Exploring local knowledge and preferences for shea (Vitellaria pradoxa) ethnovarieties in Soutwest Burkina-Faso through a gender and ethnic lens. For. Trees Livelihoods 26, 13–28 (2016).
    Article  Google Scholar 

    73.
    Ayensu, E. S. Morphology and anatomy of Synsepalum dulcificum (Sapotaceae). Bot. J. Linn. Soc. 65, 179–187 (1972).
    Article  Google Scholar 

    74.
    Lim, T. K. in Edible medicinal and non-medicinal plants Vol. 6 (ed T.K. Lim) 146–150 (Springer, Dordrecht, 2013).

    75.
    Huang, W., Chung, H. Y., Xuan, W., Wang, G. & Li, Y. The cholesterol-lowering activity of miracle fruit (Synsepalum dulcificum). J. Food Biochem. 1, e13185. https://doi.org/10.1111/jfbc.13185 (2020).
    Article  Google Scholar 

    76.
    Ahmed, A. A. O. et al. Tree-to-tree variability in fruits and kernels of a Balanites aegyptiaca (L.) Del. population grown in Sudan. Trees 34, 111–119 (2020).

    77.
    Zou, S., Yao, X., Zhong, C., Zhao, T. & Huang, H. Effectiveness of recurrent selection in Akebia trifoliata (Lardizabalaceae) breeding. Sci. Hortic. Amsterdam 246, 79–85 (2019).
    Article  Google Scholar 

    78.
    Houehanou, T. D. et al. Morphological trait variation and relationships of Afzelia africana Sm. caused by climatic conditions and anthropogenic disturbance in Benin (West Africa). Genet. Resour. Crop. Evol. 66, 1091–1105 (2019).

    79.
    Gouwakinnou, G. N., Assogbadjo, A. E., Lykke, A. M. & Sinsin, B. Phenotypic variations in fruits and selection potential in Sclerocarya birrea subsp. birrea. Sci. Hortic. Amsterdam 129, 777–783 (2011).

    80.
    Cotterill, P. P. & Dean, C. A. Successful tree breeding with index selection (CSIRO, Division of Forestry and Forest Products, 1990).
    Google Scholar 

    81.
    Zobel, B. & Talbert, J. Applied forest tree improvement. (John Wiley & Sons, 1984).

    82.
    Atangana, A. R. et al. Tree-to-tree variation in stearic and oleic acid content in seed fat from Allanblackia floribunda from wild stands: potential for tree breeding. Food Chem. 126, 1579–1585 (2011).
    CAS  Article  PubMed  Google Scholar 

    83.
    Shelbourne, C. Genetic gains from different kinds of breeding population and seed or plant production population. S. Afr. For. J. 160, 49–65 (1992).
    Google Scholar 

    84.
    Leakey, R. & Page, T. The ‘ideotype concept’and its application to the selection of cultivars of trees providing agroforestry tree products. For. Trees Livelihoods 16, 5–16 (2006).
    Article  Google Scholar 

    85.
    Bhattacharjee, R., Khairwal, I., Bramel, P. J. & Reddy, K. Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155, 35–45 (2007).

    86.
    Escribano, P., Viruel, M. & Hormaza, J. in XII EUCARPIA Symposium on Fruit Breeding and Genetics 814. 67–70.

    87.
    Duan, H. et al. Genetic characterization of Chinese fir from six provinces in southern China and construction of a core collection. Sci. Rep. 7, 1–10 (2017).
    Article  CAS  Google Scholar  More

  • in

    Co-activation of Akt, Nrf2, and NF-κB signals under UPRER in torpid Myotis ricketti bats for survival

    1.
    Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Rev. 83, 1153–1181 (2003).
    CAS  Article  Google Scholar 
    2.
    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).
    CAS  Article  Google Scholar 

    3.
    Lindell, S. L. et al. Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype. Am. J. Physiol.-Gastrointest. Liver Physiol. 288, G473–G480 (2005).
    CAS  Article  Google Scholar 

    4.
    Dave, K. R., Christian, S. L., Perez-Pinzon, M. A. & Drew, K. L. Neuroprotection: lessons from hibernators. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 162, 1–9 (2012).
    CAS  Article  Google Scholar 

    5.
    Hofmann, S., Cherkasova, V., Bankhead, P., Bukau, B. & Stoecklin, G. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol. Biol. Cell 23, 3786–3800 (2012).
    CAS  Article  Google Scholar 

    6.
    Pluquet, O., Pourtier, A. & Abbadie, C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am. J. Physiol.-Cell Physiol. 308, C415–C425 (2015).
    CAS  Article  Google Scholar 

    7.
    Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89 (2012).
    CAS  Article  Google Scholar 

    8.
    Guo, F.-J. et al. XBP1S protects cells from ER stress-induced apoptosis through Erk1/2 signaling pathway involving CHOP. Histochemistry Cell Biol. 138, 447–460 (2012).
    CAS  Article  Google Scholar 

    9.
    Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).
    CAS  Article  Google Scholar 

    10.
    Kramer, G. Two phosphorylation sites on eIF-2α. FEBS Lett. 267, 181–182 (1990).
    CAS  Article  Google Scholar 

    11.
    Wek, R., Jiang, H.-Y. & Anthony, T. Coping with stress: eIF2 kinases and translational control. (Portland Press Limited, 2006).

    12.
    Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286, 10939–10949 (2011).

    13.
    Roller, C. & Maddalo, D. The molecular chaperone GRP78/BiP in the development of chemoresistance: mechanism and possible treatment. Front. Pharmacol. 4, 10 (2013).
    Article  CAS  Google Scholar 

    14.
    Lee, A. S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373–381 (2005).
    CAS  Article  Google Scholar 

    15.
    Jiang, H.-Y. et al. Phosphorylation of the α subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol. Cell. Biol. 23, 5651–5663 (2003).
    CAS  Article  Google Scholar 

    16.
    Prell, T. et al. Endoplasmic reticulum stress is accompanied by activation of NF-κB in amyotrophic lateral sclerosis. J. Neuroimmunol. 270, 29–36 (2014).
    CAS  Article  Google Scholar 

    17.
    Rajesh, K. et al. Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis. 6, e1591 (2015).
    CAS  Article  Google Scholar 

    18.
    Nivon, M. et al. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol. Biol. Cell 27, 1712–1727 (2016).
    CAS  Article  Google Scholar 

    19.
    Lemasters, J. J. In Molecular Pathology (second edn) 1–24 (Elsevier, 2018).

    20.
    Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol. 3, 221 (2002).
    CAS  Article  Google Scholar 

    21.
    Schmidlin, C. J., Dodson, M. B., Madhavan, L. & Zhang, D. D. Redox regulation by NRF2 in aging and disease. Free Rad. Biol. Med. 134, 702–707 (2019).

    22.
    Cullinan, S. B. & Diehl, J. A. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol. 38, 317–332 (2006).
    CAS  Article  Google Scholar 

    23.
    Wiersma, M. et al. Torpor-arousal cycles in Syrian hamster heart are associated with transient activation of the protein quality control system. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 223, 23–28 (2018).

    24.
    Mamady, H. & Storey, K. B. Up-regulation of the endoplasmic reticulum molecular chaperone GRP78 during hibernation in thirteen-lined ground squirrels. Mol. Cell. Biochem. 292, 89–98 (2006).
    CAS  Article  Google Scholar 

    25.
    Mamady, H. & Storey, K. B. Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels. Arch. Biochem. Biophys. 477, 77–85 (2008).
    CAS  Article  Google Scholar 

    26.
    Zhang, J. et al. Prosurvival roles mediated by the PERK signaling pathway effectively prevent excessive endoplasmic reticulum stress-induced skeletal muscle loss during high-stress conditions of hibernation. J. Cell. Physiol. 234, 19728–19739 (2019).

    27.
    Carey, H., Frank, C. & Seifert, J. Hibernation induces oxidative stress and activation of NF-κB in ground squirrel intestine. J. Comp. Physiol. B 170, 551–559 (2000).
    CAS  Article  Google Scholar 

    28.
    Fleck, C. C. & Carey, H. V. Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 289, R586–R595 (2005).
    CAS  Article  Google Scholar 

    29.
    Zhang, Y. et al. Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach. J. Proteom. 105, 266–284 (2014).
    CAS  Article  Google Scholar 

    30.
    Cui, X. A., Zhang, H. & Palazzo, A. F. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol. 10, e1001336 (2012).
    CAS  Article  Google Scholar 

    31.
    Wen, W.-L. et al. Vgl1, a multi-KH domain protein, is a novel component of the fission yeast stress granules required for cell survival under thermal stress. Nucleic Acids Res. 38, 6555–6566 (2010).
    CAS  Article  Google Scholar 

    32.
    Tsuchiya, N. et al. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res. 67, 9568–9576 (2007).
    CAS  Article  Google Scholar 

    33.
    Yoo, B. K. et al. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 53, 1538–1548 (2011).
    CAS  Article  Google Scholar 

    34.
    Halperin, L., Jung, J. & Michalak, M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life 66, 318–326 (2014).
    CAS  Article  Google Scholar 

    35.
    Obchoei, S. et al. Cyclophilin A: potential functions and therapeutic target for human cancer. Med. Sci. Monit. 15, RA221–RA232 (2009).
    CAS  Google Scholar 

    36.
    Wei, Y. et al. Antiapoptotic and proapoptotic signaling of cyclophilin A in endothelial cells. Inflammation 36, 567–572 (2013).
    Article  CAS  Google Scholar 

    37.
    Kelleher, D. J. & Gilmore, R. DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc. Natl Acad. Sci. USA 94, 4994–4999 (1997).
    CAS  Article  Google Scholar 

    38.
    Zhou, L. et al. DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes 59, 2809–2816 (2010).
    CAS  Article  Google Scholar 

    39.
    Liu, M. et al. Endoplasmic reticulum (ER) localization is critical for DsbA-L protein to suppress ER stress and adiponectin down-regulation in adipocytes. J. Biol. Chem. 290, 10143–10148 (2015).
    CAS  Article  Google Scholar 

    40.
    Santhekadur, P. K. et al. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor κB and miR-221. J. Biol. Chem. 287, 13952–13958 (2012).
    CAS  Article  Google Scholar 

    41.
    Pan, Y. H. et al. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats. PLoS ONE 8, e62039 (2013).
    CAS  Article  Google Scholar 

    42.
    Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).
    CAS  Article  Google Scholar 

    43.
    Lu, Z. & Xu, S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58, 621–631 (2006).
    CAS  Article  Google Scholar 

    44.
    Sun, F.-C. et al. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem. J. 396, 31–39 (2006).
    CAS  Article  Google Scholar 

    45.
    van Breukelen, F. & Martin, S. L. Translational initiation is uncoupled from elongation at 18 C during mammalian hibernation. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 281, R1374–R1379 (2001).
    Article  Google Scholar 

    46.
    van Breukelen, F., Sonenberg, N. & Martin, S. L. Seasonal and state-dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 287, R349–R353 (2004).
    Article  Google Scholar 

    47.
    Pan, P. & van Breukelen, F. Preference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R370–R377 (2011).
    CAS  Article  Google Scholar 

    48.
    Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521–531 (2006).
    Article  CAS  Google Scholar 

    49.
    Harvey, R., Dezi, V., Pizzinga, M. & Willis, A. E. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem. Soc. Trans. 45, 1007–1014 (2017).
    CAS  Article  Google Scholar 

    50.
    Mobin, M. B. et al. The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nat. Commun. 7, 12848 (2016).
    CAS  Article  Google Scholar 

    51.
    Srere, H. K., Wang, L. & Martin, S. L. Central role for differential gene expression in mammalian hibernation. Proc. Natl Acad. Sci. USA 89, 7119–7123 (1992).
    CAS  Article  Google Scholar 

    52.
    Han, Y. et al. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats. BMC Evolut. Biol. 15, 88 (2015).
    Article  CAS  Google Scholar 

    53.
    Lee, M., Choi, I. & Park, K. Activation of stress signaling molecules in bat brain during arousal from hibernation. J. Neurochem. 82, 867–873 (2002).
    CAS  Article  Google Scholar 

    54.
    Storey, K. B. Out cold: biochemical regulation of mammalian hibernation-a mini-review. Gerontology 56, 220–230 (2010).
    Article  Google Scholar 

    55.
    Lei, M., Dong, D., Mu, S., Pan, Y.-H. & Zhang, S. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS ONE 9, e107746 (2014).
    Article  CAS  Google Scholar 

    56.
    Wortel, I. M., van der Meer, L. T., Kilberg, M. S. & van Leeuwen, F. N. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol. Metab. 28, 794–806 (2017).
    CAS  Article  Google Scholar 

    57.
    Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209 (2003).
    CAS  Article  Google Scholar 

    58.
    Ni, M., Zhang, Y. & Lee, A. S. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem. J. 434, 181–188 (2011).
    CAS  Article  Google Scholar 

    59.
    Yin, Q. et al. Antioxidant defenses in the brains of bats during hibernation. PLoS ONE 11, e0152135 (2016).
    Article  CAS  Google Scholar 

    60.
    Allan, M. E. & Storey, K. B. Expression of NF-κB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, Spermophilus tridecemlineatus. Cell Biochem. Funct. 30, 166–174 (2012).
    CAS  Article  Google Scholar 

    61.
    Ni, Z., McMullen, D. C. & Storey, K. B. Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels, Spermophilus tridecemlineatus. Mol. Cell. Biochem. 312, 121–129 (2008).
    Article  CAS  Google Scholar 

    62.
    Németh, J. et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology 50, 1251–1262 (2009).
    Article  CAS  Google Scholar 

    63.
    Sun, S. et al. Cyclophilin A (CypA) interacts with NF-κB subunit, p65/RelA, and contributes to NF-κB activation signaling. PLoS ONE 9, e96211 (2014).
    Article  CAS  Google Scholar 

    64.
    Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett. 288, 10–16 (2010).
    CAS  Article  Google Scholar 

    65.
    Drew, K. L., Rice, M. E., Kuhn, T. B. & Smith, M. A. Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radic. Biol. Med. 31, 563–573 (2001).
    CAS  Article  Google Scholar 

    66.
    Bouma, H. R. et al. Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J. Cell Physiol. 227, 1285–1290 (2012).
    CAS  Article  Google Scholar 

    67.
    Cerri, M. et al. Hibernation for space travel: Impact on radioprotection. Life Sci. Space Res. 11, 1–9 (2016).
    Article  Google Scholar 

    68.
    Uchida, Y., Tokizawa, K. & Nagashima, K. Characteristics of activated neurons in the suprachiasmatic nucleus when mice become hypothermic during fasting and cold exposure. Neurosci. Lett. 579, 177–182 (2014).
    CAS  Article  Google Scholar 

    69.
    Sato, N., Marui, S., Ozaki, M. & Nagashima, K. Cold exposure and/or fasting modulate the relationship between sleep and body temperature rhythms in mice. Physiol. Behav. 149, 69–75 (2015).
    CAS  Article  Google Scholar 

    70.
    Tokizawa, K., Uchida, Y. & Nagashima, K. Thermoregulation in the cold changes depending on the time of day and feeding condition: physiological and anatomical analyses of involved circadian mechanisms. Neuroscience 164, 1377–1386 (2009).
    CAS  Article  Google Scholar 

    71.
    Van Breukelen, F. & Martin, S. L. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol. 92, 2640–2647 (2002).
    Article  Google Scholar 

    72.
    Piersma, S. R. et al. Workflow comparison for label-free, quantitative secretome proteomics for cancer biomarker discovery: method evaluation, differential analysis, and verification in serum. J. Proteome Res. 9, 1913–1922 (2010).
    CAS  Article  Google Scholar 

    73.
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2018).
    Article  CAS  Google Scholar 

    74.
    Yu, D. et al. EGPS 1.0: Comprehensive software for multi-omic and evolutionary analyses. Natl Sci. Rev. 6, 867–869 (2019).

    75.
    Yin, Q. et al. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis. Biochim. Biophys. Acta Proteins Proteom. 1865, 1004–1019 (2017).
    CAS  Article  Google Scholar 

    76.
    Romero-Calvo, I. et al. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal. Biochem. 401, 318–320 (2010).
    CAS  Article  Google Scholar 

    77.
    Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).
    CAS  PubMed  Google Scholar  More

  • in

    Toxicity of the herbicides diuron, propazine, tebuthiuron, and haloxyfop to the diatom Chaetoceros muelleri

    1.
    Carbery, K., Owen, R., Frickers, T., Otero, E. & Readman, J. Contamination of Caribbean coastal waters by the antifouling herbicide Irgarol 1051. Mar. Pollut. Bull. 52, 635–644. https://doi.org/10.1016/j.marpolbul.2005.10.013 (2006).
    CAS  Article  Google Scholar 
    2.
    Hernández-Romero, A. H., Tovilla-Hernández, C., Malo, E. A. & Bello-Mendoza, R. Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar. Pollut. Bull. 48, 1130–1141. https://doi.org/10.1016/j.marpolbul.2004.01.003 (2004).
    CAS  Article  Google Scholar 

    3.
    Castillo, L. E., de la Cruz, E. & Ruepert, C. Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environ. Toxicol. Chem. 16, 41–51. https://doi.org/10.1002/etc.5620160104 (1997).
    CAS  Article  Google Scholar 

    4.
    Basheer, C., Obbard, J. P. & Lee, H. K. Persistent organic pollutants in Singapore’s coastal marine environment: part I, seawater. Water Air Soil Pollut. 149, 295–313. https://doi.org/10.1023/A:1025689600993 (2003).
    ADS  CAS  Article  Google Scholar 

    5.
    Ali, H. R. et al. Contamination of diuron in coastal waters around Malaysian Peninsular. Mar. Pollut. Bull. 85, 287–291. https://doi.org/10.1016/j.marpolbul.2014.05.049 (2014).
    CAS  Article  Google Scholar 

    6.
    Okamura, H., Aoyama, I., Ono, Y. & Nishida, T. Antifouling herbicides in the coastal waters of western Japan. Mar. Pollut. Bull. 47, 59–67. https://doi.org/10.1016/S0025-326X(02)00418-6 (2003).
    CAS  Article  Google Scholar 

    7.
    Roche, H., Salvat, B. & Ramade, F. Assessment of the pesticides pollution of coral reefs communities from French Polynesia. Rev. Ecol. https://hdl.handle.net/2042/55860 (2011).

    8.
    Sarkar, S. K. et al. Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview. Environ. Int. 34, 1062–1071. https://doi.org/10.1016/j.envint.2008.02.010 (2008).
    CAS  Article  Google Scholar 

    9.
    Devlin, M. M. et al. Advancing our understanding of the source, management, transport and impacts of pesticides on the Great Barrier Reef 2011–2015. Report for the Queensland Department of Environment and Heritage Protection. Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication, James Cook University, Cairns, Australia (2015).

    10.
    GBR. Great Barrier Reef Marine Park Authority 2019, Great Barrier Reef Outlook Report 2019, GBRMPA, Townsville. https://www.gbrmpa.gov.au/our-work/outlook-report-2019 (2019).

    11.
    Brodie, J. et al. Terrestrial pollutant runoff to the Great Barrier Reef: an update of issues, priorities and management responses. Mar. Pollut. Bull. 65, 81–100. https://doi.org/10.1016/j.marpolbul.2011.12.012 (2012).
    CAS  Article  Google Scholar 

    12.
    Lewis, S. E. et al. Herbicides: a new threat to the Great Barrier Reef. Environ. Pollut. 157, 2470–2484. https://doi.org/10.1016/j.envpol.2009.03.006 (2009).
    CAS  Article  Google Scholar 

    13.
    RWQIP. Reef 2050 Water Quality Improvement Plan 2017–2022. Australian and Queensland Government. https://www.reefplan.qld.gov.au/__data/assets/pdf_file/0017/46115/reef-2050-water-quality-improvement-plan-2017-22.pdf (2018).

    14.
    Shaw, M. et al. Monitoring pesticides in the Great Barrier Reef. Mar. Pollut. Bull. 60, 113–122. https://doi.org/10.1016/j.marpolbul.2009.08.026 (2010).
    CAS  Article  Google Scholar 

    15.
    Grant, S. et al. Marine Monitoring Program: Annual report for inshore pesticide monitoring 2015–2016 (Report for the Great Barrier Reef Marine Park Authority, Great Barrier Reef Marine Park Authority, Townsville, Australia, 2017).
    Google Scholar 

    16.
    O’Brien, D. et al. Spatial and temporal variability in pesticide exposure downstream of a heavily irrigated cropping area: application of different monitoring techniques. J. Agric. Food Chem. 64, 3975–3989. https://doi.org/10.1021/acs.jafc.5b04710 (2016).
    CAS  Article  Google Scholar 

    17.
    Radcliffe, J. Pesticide use in Australia. A review undertaken by the Australian Academy of Technological Sciences, Victoria, Australia. https://www.atse.org.au/ (2002).

    18.
    Oettmeier, W. Herbicides of photosystems II. in Structure, Function and Molecular Biology (Barber, J., ed) (Elsevier, Amsterdam, 349–408). https://doi.org/10.1016/B978-0-444-89440-3.50018-7 (1992).

    19.
    Lewis, S. E. et al. Using monitoring data to model herbicides exported to the Great Barrier Reef, Australia. in The 19th International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand. MODSIM2011, 2051–2056 (2011).

    20.
    Kennedy, K. et al. The influence of a season of extreme wet weather events on exposure of the World Heritage Area Great Barrier Reef to pesticides. Mar. Pollut. Bull. 64, 1495–1507. https://doi.org/10.1016/j.marpolbul.2012.05.014 (2012).
    CAS  Article  Google Scholar 

    21.
    Kennedy, K. et al. Long term monitoring of photosystem II herbicides: correlation with remotely sensed freshwater extent to monitor changes in the quality of water entering the Great Barrier Reef, Australia. Mar. Pollut. Bull. 65, 292–305. https://doi.org/10.1016/j.marpolbul.2011.10.029 (2012).
    CAS  Article  Google Scholar 

    22.
    Mercurio, P., Mueller, J. F., Eaglesham, G., Flores, F. & Negri, A. P. Herbicide persistence in seawater simulation experiments. PLoS ONE 10, e0136391. https://doi.org/10.1371/journal.pone.0136391 (2015).
    CAS  Article  Google Scholar 

    23.
    Mercurio, P. et al. Degradation of herbicides in the tropical marine environment: influence of light and sediment. PLoS ONE 11, e0165890. https://doi.org/10.1371/journal.pone.0165890 (2016).
    CAS  Article  Google Scholar 

    24.
    Gallen, C. et al. Marine Monitoring Program: Annual report for inshore pesticide monitoring 2017–18. Report for the Great Barrier Reef Marine Park Authority, Great Barrier Reef Marine Park Authority, Townsville, Australia. https://elibrary.gbrmpa.gov.au/jspui/handle/11017/3489 (2019).

    25.
    Davis, A., Lewis, S., Brodie, J. & Benson, A. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area. Sci. Total Environ. 490, 81–92. https://doi.org/10.1016/j.scitotenv.2014.04.005 (2014).
    ADS  CAS  Article  Google Scholar 

    26.
    Thomas, M. C., Flores, F., Kaserzon, S., Fisher, R. & Negri, A. P. Toxicity of ten herbicides to the tropical marine microalgae Rhodomonas salina. Sci. Rep. 10, 7612. https://doi.org/10.1038/s41598-020-64116-y (2020).
    ADS  CAS  Article  Google Scholar 

    27.
    ANZG. Revised Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia. https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/toxicants (2018).

    28.
    Warne, M. St. J. et al. Revised method for deriving Australian and New Zealand water quality guideline values for toxicants: update of 2015 version. Prepared for the revision of the Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, Australia. 48 pp, https://www.waterquality.gov.au/anz-guidelines/guideline-values/derive/warne-method-derive. https://doi.org/10.13140/RG.2.2.36577.35686 (2018).

    29.
    Warne, M. St. J., Smith, R. & Turner, R. Analysis of pesticide mixtures discharged to the lagoon of the Great Barrier Reef, Australia. Environ. Pollut. 265, 114088. https://doi.org/10.1016/j.envpol.2020.114088 (2020).
    CAS  Article  Google Scholar 

    30.
    Magnusson, M., Heimann, K., Quayle, P. & Negri, A. P. Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Mar. Pollut. Bull. 60, 1978–1987. https://doi.org/10.1016/j.marpolbul.2010.07.031 (2010).
    CAS  Article  Google Scholar 

    31.
    Faust, M. et al. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat. Toxicol. 56, 13–32. https://doi.org/10.1016/S0166-445X(01)00187-4 (2001).
    CAS  Article  Google Scholar 

    32.
    Wilkinson, A. D., Collier, C. J., Flores, F. & Negri, A. P. Acute and additive toxicity of ten photosystem-II herbicides to seagrass. Sci. Rep. 5, 17443. https://doi.org/10.1038/srep17443 (2015).
    ADS  CAS  Article  Google Scholar 

    33.
    Traas, T. P. et al. The potentially affected fraction as a measure of ecological risk. in Species sensitivity distributions in ecotoxicology (L. Posthuma, & G. W. Suter, Eds.) (pp. 315–344). https://doi.org/10.1201/9781420032314-20 (2002).

    34.
    Negri, A. P. et al. Adjusting tropical marine water quality guideline values for elevated ocean temperatures. Environ. Sci. Technol. 54, 1102–1110. https://doi.org/10.1021/acs.est.9b05961 (2019).
    ADS  CAS  Article  Google Scholar 

    35.
    King, O., Smith, R., Mann, R. & Warne, M. St. J. Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area: Part 1 (amended): 2,4-D, Ametryn, Diuron, Glyphosate, Hexazinone, Imazapic, Imidacloprid, Isoxaflutole, Metolachlor, Metribuzin, Metsulfuron-methyl, Simazine, Tebuthiuron. Department of Environment and Science, Brisbane, Australia. https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment (2017).

    36.
    King, O., Smith, R., Warne, M. St. J. & Mann, R. Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area: Part 2: Bromacil, Chlorothalonil, Fipronil, Fluometuron, Fluroxypyr, Haloxyfop, MCPA, Pendimethalin, Prometryn, Propazine, Propiconazole, Terbutryn, Triclopyr and Terbuthylazine. Department of Science, Information Technology and Innovation, Brisbane, Australia. https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment (2017).

    37.
    Fleeger, J. W., Carman, K. R. & Nisbet, R. M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 317, 207–233. https://doi.org/10.1016/S0048-9697(03)00141-4 (2003).
    ADS  CAS  Article  Google Scholar 

    38.
    Ralph, P. J. & Gademann, R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237. https://doi.org/10.1016/j.aquabot.2005.02.006 (2005).
    CAS  Article  Google Scholar 

    39.
    Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. in Chlorophyll a fluorescence (Springer, Dordrecht, 2004) 279–319.

    40.
    Magnusson, M., Heimann, K. & Negri, A. P. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar. Pollut. Bull. 56, 1545–1552. https://doi.org/10.1016/j.marpolbul.2008.05.023 (2008).
    CAS  Article  Google Scholar 

    41.
    Sjollema, S. B. et al. Hazard and risk of herbicides for marine microalgae. Environ. Pollut. 187, 106–111. https://doi.org/10.1016/j.envpol.2013.12.019 (2014).
    CAS  Article  Google Scholar 

    42.
    Muller, R. et al. Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci. Total Environ. 401, 51–59. https://doi.org/10.1016/j.scitotenv.2008.02.062 (2008).
    ADS  CAS  Article  Google Scholar 

    43.
    Bengston-Nash, S. M., Quayle, P. A., Schreiber, U. & Muller, J. F. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay. Aquat. Toxicol. 72, 315–326. https://doi.org/10.1016/j.aquatox.2005.02.004 (2005).
    CAS  Article  Google Scholar 

    44.
    Duggleby, R. G., McCourt, J. A. & Guddat, L. W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46, 309–324. https://doi.org/10.1016/j.plaphy.2007.12.004 (2008).
    CAS  Article  Google Scholar 

    45.
    Grossmann, K. Auxin herbicides: current status of mechanism and mode of action. Pest Manage. Sci. 66, 113–120. https://doi.org/10.1002/ps.1860 (2010).
    CAS  Article  Google Scholar 

    46.
    OECD. Organisation for Economic Cooperation and Development (OECD) guidelines for the testing of chemicals: freshwater alga and cyanobacteria, growth inhibition test. Test No. 201, https://search.oecd.org/env/test-no-201-alga-growth-inhibition-test-9789264069923-en.htm (2011).

    47.
    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).
    CAS  Article  Google Scholar 

    48.
    Rutherford, A. W. & Krieger-Liszkay, A. Herbicide-induced oxidative stress in photosystem II. Trends Biochem. Sci. 26, 648–653. https://doi.org/10.1016/S0968-0004(01)01953-3 (2001).
    CAS  Article  Google Scholar 

    49.
    Chen, S., Yin, C., Strasser, R. J., Yang, C. & Qiang, S. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol. Biochem. 52, 38–51. https://doi.org/10.1016/j.plaphy.2011.11.004 (2012).
    CAS  Article  Google Scholar 

    50.
    Chesworth, J., Donkin, M. & Brown, M. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.). Aquat. Toxicol. 66, 293–305. https://doi.org/10.1016/j.aquatox.2003.10.002 (2004).
    CAS  Article  Google Scholar 

    51.
    Jones, R. J. & Kerswell, A. P. Phytotoxicity of photosystem II (PSII) herbicides to coral. Mar. Ecol. Prog. Ser. 261, 149–159. https://doi.org/10.3354/meps261149 (2003).
    ADS  CAS  Article  Google Scholar 

    52.
    van Dam, J. W., Negri, A. P., Mueller, J. F. & Uthicke, S. Symbiont-specific responses in foraminifera to the herbicide diuron. Mar. Pollut. Bull. 65, 373–383. https://doi.org/10.1016/j.marpolbul.2011.08.008 (2012).
    CAS  Article  Google Scholar 

    53.
    Negri, A. P., Flores, F., Röthig, T. & Uthicke, S. Herbicides increase the vulnerability of corals to rising sea surface temperature. Limnol. Oceanogr. 56, 471–485. https://doi.org/10.4319/lo.2011.56.2.0471 (2011).
    ADS  CAS  Article  Google Scholar 

    54.
    USEPA. ECOTOX User Guide: ECOTOXicology Database System. Version 5.0. United States Environmental Protection Agency. https://cfpub.epa.gov/ecotox/ (2019).

    55.
    Bao, V. W., Leung, K. M., Qiu, J.-W. & Lam, M. H. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 62, 1147–1151. https://doi.org/10.1016/j.marpolbul.2011.02.041 (2011).
    CAS  Article  Google Scholar 

    56.
    Gatidou, G., Thomaidis, N. S. & Zhou, J. L. Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int. 33, 70–77. https://doi.org/10.1016/j.envint.2006.07.002 (2007).
    CAS  Article  Google Scholar 

    57.
    Jung, S. et al. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar. Pollut. Bull. 124, 811–818. https://doi.org/10.1016/j.marpolbul.2016.11.047 (2017).
    CAS  Article  Google Scholar 

    58.
    Koutsaftis, A. & Aoyama, I. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environ. Toxicol. Int. J. 21, 432–439. https://doi.org/10.1002/tox.20202 (2006).
    ADS  CAS  Article  Google Scholar 

    59.
    Booij, P. et al. Identification of photosynthesis inhibitors of pelagic marine algae using 96-well plate microfractionation for enhanced throughput in effect-directed analysis. Environ. Sci. Technol. 48, 8003–8011. https://doi.org/10.1021/es405428t (2014).
    ADS  CAS  Article  Google Scholar 

    60.
    DeLorenzo, M. E., Danese, L. E. & Baird, T. D. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton. Environ. Toxicol. 28, 359–371. https://doi.org/10.1002/tox.20726 (2013).
    ADS  CAS  Article  Google Scholar 

    61.
    Devilla, R. A. et al. Impact of antifouling booster biocides on single microalgal species and on a natural marine phytoplankton community. Mar. Ecol. Prog. Ser. 286, 1–12. https://doi.org/10.3354/MEPS286001 (2005).
    ADS  CAS  Article  Google Scholar 

    62.
    Mercurio, P. et al. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms. Sci. Rep. 8, 4808. https://doi.org/10.1038/s41598-018-23153-4 (2018).
    ADS  CAS  Article  Google Scholar 

    63.
    Jones, R. The ecotoxicological effects of Photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506. https://doi.org/10.1016/j.marpolbul.2005.06.027 (2005).
    CAS  Article  Google Scholar 

    64.
    Guasch, H. & Sabater, S. Light history influences the sensitivity to atrazine in periphytic algae. J. Phycol. 34, 233–241. https://doi.org/10.1046/j.1529-8817.1998.340233.x (1998).
    CAS  Article  Google Scholar 

    65.
    Millie, D. F., Hersh, C. M. & Dionigi, C. P. Simazine-induced inhibition in photoacclimated populations of Anabaena circinalis (Cyanophyta). J. Phycol. 28, 19–26. https://doi.org/10.1111/j.0022-3646.1992.00019.x (1992).
    CAS  Article  Google Scholar 

    66.
    Bérard, A. et al. Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53, 935–944. https://doi.org/10.1016/S0045-6535(03)00674-X (2003).
    ADS  CAS  Article  Google Scholar 

    67.
    Descolas-Gros, C. & Oriol, L. Variations in carboxylase activity in marine phytoplankton cultures. ß-carboxylation in carbon flux studies. Mar. Ecol. Prog. Ser. 85, 163–169 (1992).
    ADS  CAS  Article  Google Scholar 

    68.
    Tang, J., Hoagland, K. D. & Siegfried, B. D. Uptake and bioconcentration of atrazine by selected freshwater algae. Environ. Toxicol. Chem. 17, 1085–1090. https://doi.org/10.1002/etc.5620170614 (1998).
    CAS  Article  Google Scholar 

    69.
    Magnusson, M., Heimann, K., Ridd, M. & Negri, A. P. Chronic herbicide exposures affect the sensitivity and community structure of tropical benthic microalgae. Mar. Pollut. Bull. 65, 363–372. https://doi.org/10.1016/j.marpolbul.2011.09.029 (2012).
    CAS  Article  Google Scholar 

    70.
    Tuchman, N. C., Schollett, M. A., Rier, S. T. & Geddes, P. Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 561, 167–177. https://doi.org/10.1007/s10750-005-1612-4 (2006).
    CAS  Article  Google Scholar 

    71.
    APVMA. Australian Pesticides and Veterinary Medicines Authority. https://apvma.gov.au/ (2019).

    72.
    EPA. U.S. Environmental Protection Agency. https://www.epa.gov/pesticides (2020).

    73.
    EC. European Commission. EU Pesticides database. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/ (2020).

    74.
    Novic, A. J. et al. Monitoring herbicide concentrations and loads during a flood event: a comparison of grab sampling with passive sampling. Environ. Sci. Technol. 51, 3880–3891. https://doi.org/10.1021/acs.est.6b02858 (2017).
    ADS  CAS  Article  Google Scholar 

    75.
    Mercurio, P. Herbicide persistence and toxicity in the tropical marine environment. PhD University of Queensland. 148 p. https://doi.org/10.14264/uql.2016.722 (2016).

    76.
    MacBean, C. The pesticide manual: a world compendium, 6th Edition 598–601 (British Crop Production Council (BCPC), Alton, 2012).

    77.
    Huerlimann, R. & Heimann, K. Comprehensive guide to acetyl-carboxylases in algae. Crit. Rev. Biotechnol. 33, 49–65. https://doi.org/10.3109/07388551.2012.668671 (2013).
    CAS  Article  Google Scholar 

    78.
    Kukorelli, G., Reisinger, P. & Pinke, G. ACCase inhibitor herbicides – selectivity, weed resistance and fitness cost: a review. Int. J. Pest Manage. 59, 165–173. https://doi.org/10.1080/09670874.2013.821212 (2013).
    CAS  Article  Google Scholar 

    79.
    Huerlimann, R., Zenger, K. R., Jerry, D. R. & Heimann, K. Phylogenetic analysis of nucleus-encoded acetyl-CoA carboxylases targeted at the cytosol and plastid of algae. PLoS ONE https://doi.org/10.1371/journal.pone.0131099 (2015).
    Article  Google Scholar 

    80.
    Tang, C. Y., Huang, Z. & Allen, H. C. Interfacial water structure and effects of Mg2+ and Ca2+ binding to the COOH headgroup of a palmitic acid monolayer studied by sum frequency spectroscopy. J. Phys. Chem. B 115, 34–40. https://doi.org/10.1021/jp1062447 (2010).
    CAS  Article  Google Scholar 

    81.
    Brzozowska, A., Duits, M. H. & Mugele, F. Stability of stearic acid monolayers on Artificial Sea Water. Colloids Surf. Physicochem. Eng. Aspects 407, 38–48. https://doi.org/10.1016/j.colsurfa.2012.04.055 (2012).
    CAS  Article  Google Scholar 

    82.
    Bengston-Nash, S. M., Schreiber, U., Ralph, P. J. & Muller, J. F. The combined SPE : ToxY-PAM phytotoxicity assay; application and appraisal of a novel biomonitoring tool for the aquatic environment. Biosens. Bioelectron. 20, 1443–1451. https://doi.org/10.1016/j.bios.2004.09.019 (2005).
    CAS  Article  Google Scholar 

    83.
    Schreiber, U., Quayle, P., Schmidt, S., Escher, B. I. & Mueller, J. F. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosens. Bioelectron. 22, 2554–2563. https://doi.org/10.1016/j.bios.2006.10.018 (2007).
    CAS  Article  Google Scholar 

    84.
    Haynes, D., Muller, J. & Carter, S. Pesticide and herbicide residues in sediments and seagrasses from the Great Barrier Reef World Heritage Area and Queensland coast. Mar. Pollut. Bull. 41, 279–287. https://doi.org/10.1016/s0025-326x(00)00097-7 (2000).
    CAS  Article  Google Scholar 

    85.
    Ralph, P., Smith, R., Macinnis-Ng, C. & Seery, C. Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems. Toxicol. Environ. Chem. 89, 589–607. https://doi.org/10.1080/02772240701561593 (2007).
    CAS  Article  Google Scholar 

    86.
    Lemmermann, E. D. grosse Waterneverstorfer Binnensee: Eine biologische Studie. Forsch. Biol. Station Plön 6, 166–205 (1896).
    Google Scholar 

    87.
    Li, Y. et al. Diversity in the globally distributed diatom genus Chaetoceros (Bacillariophyceae): three new species from warm-temperate waters. PLoS ONE https://doi.org/10.1371/journal.pone.0168887 (2017).
    Article  Google Scholar 

    88.
    Helm, M. M., and Neil Bourne. Hatchery culture of bivalves: a practical manual. Ed. Alessandro Lovatelli. Fisheries Technical Paper 471. Food and Agriculture Organization of the United (FAO), 177 pp (2004).

    89.
    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms: I Cyclotellanana Hustedt, and Detonulaconfervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239. https://doi.org/10.1139/m62-029 (1962).
    CAS  Article  Google Scholar 

    90.
    Schreiber, U., Müller, J. F., Haugg, A. & Gademann, R. New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth. Res. 74, 317–330. https://doi.org/10.1023/A:1021276003145 (2002).
    CAS  Article  Google Scholar 

    91.
    Fisher, R., Ricardo, G., and Fox, D. jags NEC: A Bayesian No Effect Concentration (NEC) package. https://github.com/AIMS/NEC-estimation (2019).

    92.
    Fox, D. R. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Ecotoxicol. Environ. Saf. 73, 123–131. https://doi.org/10.1016/j.ecoenv.2009.09.012 (2010).
    CAS  Article  Google Scholar  More

  • in

    Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance

    1.
    World Health Organization. Antimicrobial resistance: global report on surveillance. 2014.
    2.
    Kåhrström CT. Entering a post-antibiotic era? Nat Rev Microbiol. 2013;11:146.
    PubMed  PubMed Central  Google Scholar 

    3.
    Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008;321:365–7.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4:1–15.
    CAS  Article  Google Scholar 

    5.
    Chen Q-L, Cui H-L, Su J-Q, Penuelas J, Zhu Y-G. Antibiotic resistomes in plant microbiomes. Trends Plant Sci. 2019;24:530–41.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Cernava T, Erlacher A, Soh J, Sensen CW, Grube M, Berg G. Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome. 2019;7:13.
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Blau K, Jacquiod S, Sørensen SJ, Su J-Q, Zhu Y-G, Smalla K, et al. Manure and doxycycline affect the bacterial community and its resistome in lettuce rhizosphere and bulk soil. Front Microbiol. 2019;10:725.
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5:175–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Page SE, Baird AJ. Peatlands and global change: response and resilience. Annu Rev Environ Resour. 2016;41:35–57.
    Article  Google Scholar 

    11.
    Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. N Phytologist. 2016;211:57–64.
    CAS  Article  Google Scholar 

    12.
    Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Müller H, et al. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol Ecol. 2014;23:4498–510.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Opelt K, Chobot V, Hadacek F, Schönmann S, Eberl L, Berg G. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol. 2007;9:2795–809.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Bragina A, Berg C, Berg G. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol. 2015;24:4795–807.
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Opelt K, Berg C, Berg G. The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiol Ecol. 2007;61:38–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8:251–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Mondav R, Woodcroft BJ, Kim EH, Mccalley CK, Hodgkins SB, Crill PM, et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun. 2014;5:1–7.
    Article  CAS  Google Scholar 

    21.
    Müller CA, Oberauner-Wappis L, Peyman A, Amos GCA, EMH Wellington, Berg G. Mining for NRPS and PKS genes revealed a high diversity in the Sphagnum bog metagenome. Appl Environ Microbiol. 2015;81:5064–72.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Bragina A, Maier S, Berg C, Müller H, Chobot V, Hadacek F, et al. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol. 2011;2:275.
    PubMed  PubMed Central  Google Scholar 

    23.
    Wardwell LH, Jude BA, Moody JP, Olcerst AI, Gyure RA, Nelson RE, et al. Co-selection of mercury and antibiotic resistance in sphagnum core samples dating back 2000 years. Geomicrobiol J. 2009;26:351–60.
    CAS  Article  Google Scholar 

    24.
    McInnes L, Healy J, Melville J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426. 2020.

    25.
    Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37:38–47.
    CAS  Article  Google Scholar 

    26.
    Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    27.
    Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance measure. Bioinformatics. 2010;26:1340–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Streit M, Lex A, Gratzl S, Partl C, Schmalstieg D, Pfister H, et al. Guided visual exploration of genomic stratifications in cancer. Nat Methods. 2014;11:884–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrobial agents Chemother. 2013;57:3348–57.
    CAS  Article  Google Scholar 

    30.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Elbehery AHA, Aziz RK, Siam R. Antibiotic resistome: improving detection and quantification accuracy for comparative metagenomics. OMICS: A J Integr Biol. 2016;20:229–38.
    CAS  Article  Google Scholar 

    32.
    Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Allaire J. RStudio: Integrated development environment for R. Boston, MA: RStudio Inc.; 2012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194118/#!po=0.819672.

    34.
    Core Team R. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna. 2013.

    35.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Commun Ecol Package. 2007;10:631–7.
    Google Scholar 

    37.
    Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.
    Google Scholar 

    38.
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:1–15.
    Article  Google Scholar 

    47.
    Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

    49.
    Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M. RAWGraphs: a visualisation platform to create open outputs. In: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter. New York, New York, USA: ACM Press; 2017. p. 28:1–28:5.

    50.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Vercammen K, Garcia-Armisen T, Goeders N, Van Melderen L, Bodilis J, Cornelis P. Identification of a metagenomic gene cluster containing a new class A beta-lactamase and toxin-antitoxin systems. MicrobiologyOpen. 2013;2:674–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J.Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 2009;3:243–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9:1–7.
    Google Scholar 

    54.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics. 2012;28:2678–9.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    57.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids. Res 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.

    62.
    Collignon PC, Conly JM, Andremont A, McEwen SA, Aidara-Kane A, Agerso Y, et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016;63:1087–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Philippon A, Slama P, Dény P, Labia R. A structure-based classification of class A β-lactamases, a broadly diverse family of enzymes. Clin Microbiol Rev. 2016;29:29–57.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Ambler RP. The structure of β-lactamases. Philos Trans R Soc B: Biol Sci. 1980;289:321–31.
    CAS  Google Scholar 

    65.
    D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Forsberg KJ, Patel S, Wencewicz TA, Dantas G. Bacterial phylogeny structures soil resistome across habitats. Nature. 2014;509:612–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of ´historical´antibiotic resistance genes in remote pristine Antarctic soils. Microbiome. 2018;6:40.
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Carr VR, Witherden EA, Lee S, Shoaie S, Mullany P, Proctor GB, et al. Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat Commun. 2020;11:693.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Bragina A, Cardinale M, Berg C, Berg G, Schmid M, Zentrum H. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol. 2013;4:394.
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol. 2017;15:422.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA, Mukherjee S, et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrobial Chemother. 2015;70:2763–9.
    CAS  Article  Google Scholar 

    73.
    Schmidt K, Mwaigwisya S, Crossman L, Doumith M, Munroe D, Pires C, et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrobial Chemother. 2016;72:104–14.
    Article  CAS  Google Scholar 

    74.
    Andersen H, Connolly N, Bangar H, Staat M, Mortensen J, Deburger B, et al. Use of shotgun metagenome sequencing to detect fecal colonization with multidrug-resistant bacteria in children. J Clin Microbiol. 2016;54:1804–13.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33:430–49.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Pehrsson EC, Forsberg KJ, Gibson MK, Ahmadi S, Dantas G. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front Microbiol. 2013;4:1–11.
    Article  Google Scholar 

    77.
    Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002;34:482–92.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Belova SE, Pankratov TA, Dedysh SN. Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology. 2006;75:90–96.
    CAS  Article  Google Scholar 

    79.
    Le Fléche-MatéosA, Kügler JH, Hansen SH, Syldatk C, Hausmann R, Lomprez F, et al. Rouxiella badensis sp. nov. and Rouxiella silvae sp. nov. isolated from peat bog soil and emendation description of the genus Rouxiella. Int J Syst Evolut Microbiol. 2017;67:1255–9.
    Article  CAS  Google Scholar 

    80.
    Coenye T, Falsen E, Hoste B, Ohle M, Goris J, Govan JRW, et al. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov 2000;50:887–99.
    CAS  Google Scholar 

    81.
    Green H, Jones AM. Emerging Gram-negative bacteria: pathogenic or innocent bystanders. Curr Opin Pulm Med. 2018;24:592–8.
    PubMed  Article  PubMed Central  Google Scholar 

    82.
    Schneider I, Queenan AM, Bauernfeind A. Novel carbapenem-hydrolyzing oxacillinase OXA-62 from Pandoraea pnomenusa. Antimicrobial Agents Chemother. 2006;50:1330–5.
    CAS  Article  Google Scholar 

    83.
    Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microbiol Rev. 2011;24:755–91.
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol Rev. 2011;35:652–80.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. 2017;8:11.
    PubMed  PubMed Central  Google Scholar 

    86.
    Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S, De Brandt E, et al. Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int J Syst Evolut Microbiol. 2007;57:2228–35.
    CAS  Article  Google Scholar 

    87.
    Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol. 2005;7:1673–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Lycus P, Lovise Bøthun K, Bergaust L, Peele Shapleigh J, Reier Bakken L, Frostegård Å. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME J. 2017;11:2219–32.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Papanicolaou GA, Medeiros AA, Jacoby GA. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrobial Agents Chemother. 1990;34:2200–9.
    CAS  Article  Google Scholar 

    91.
    Bauernfeind A, Stemplinger I, Jungwirth R, Ernst S, Casellas JM. Sequences of β-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other β-lactamases. Antimicrobial Agents Chemother. 1996;40:509–13.
    CAS  Article  Google Scholar 

    92.
    Dahmen S, Mansour W, Charfi K, Boujaafar N, Arlet G, Bouallègue O. Imipenem resistance in Klebsiella pneumoniae is associated to the combination of plasmid-mediated CMY-4 AmpC β-lactamase and loss of an outer membrane protein. Microb Drug Resistance. 2012;18:479–83.
    CAS  Article  Google Scholar 

    93.
    Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Kurm V, van der Putten WH, de Boer W, Naus-Wiezer S, Hol WHG. Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology. 2017;98:555–64.
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Vadstein O, Attramadal KJK, Bakke I, Olsen Y. K-Selection as microbial community management strategy: a method for improved viability of larvae in aquaculture. Front Microbiol. 2018;9:2730.
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Experimental tests of bivalve shell shape reveal potential tradeoffs between mechanical and behavioral defenses

    Experimental limitations and implications
    Many factors are known to contribute to mollusk shell strength including thickness, microstructure, previous shell damage, and ornamentation19,21,29,30,31. Thus, it is challenging to separate the influence of one feature from another when testing the strength of real shells. Fortunately, there are alternative methods by which to model shells22,32,33,34. 3D printing is an effective tool to create model shells that exhibit brittle behavior in compression, serving as an accurate first-order approximation for shell breakage (Fig. 2). 3D printed models are not created to replicate shell microstructure; rather they serve to normalize confounding factors encountered with real shells, like size, variations in thickness, and taphonomy/degradation of microstructure, to isolate variables of interest while maintaining the predominantly brittle behavior seen in real shells. As a result, the failure of different 3D printed shapes under bulk mechanical compression can be used for relative comparisons between morphologies without needing to reproduce the exact magnitude of load to failure of real shells22,33 (see “Methods”, Fig. 2). Natural shells ultimately break after cracking through microstructural layers. Analogously, in this study, 3D printed shells cracked predominantly through layers of printed materials, not along printing boundaries, demonstrating an appropriate proxy for shell failure (Figs. 1, 2).
    Resistance to compression by a predator can be tested directly using a variety of loading tests, the effectiveness of which has been demonstrated repeatedly by investigators studying topics ranging from predation to climate change22,33,34. Compression experiments of bivalve shells, specifically, have been used extensively for this purpose35,36,37,38,39,40,41,42,43,44,45,46. In this study, the mechanical strength of model bivalve shell shapes was analyzed to understand potential defensive value against durophagous (crushing) predators using hypothetical flat teeth and jaws to crush prey (see Crofts and Summers (2014)22 for examples of flat crushing morphologies) (Figs. 1, 2). These experiments are most analogous to small shell-crushers with flat dentitions, like fishes (e.g., guitar fishes, stingrays, etc.), rather than large predators like the modern walrus or extinct marine reptiles (e.g., placodonts, mosasaurs) which are so much larger than their prey that the differences in shell strength resulting from shape are likely insignificant. Bivalves are also preyed upon by many other predators including asteroids, gastropods, birds, and mammals47. The ability to escape is likely dependent upon predator capabilities, where not all escape mechanisms are equally effective against different predators. The results of these experiments are not intended to be general proxies of predation resistance—they are only applicable as a proxy for predators that use flat crushing dentitions. Additionally, it is important to note that compression of a shell by vertebrate predators is a different mechanical process from compression by an arthropod, as claws localize forces differently than teeth and jaws48. Therefore, the experiments used in this study are not meant to model predation by invertebrate durophages. This experimental setup represents an idealized case of shell compression assuming consistent shell thickness and a common predator using a quasistatic loading regime to isolate the influence of shell shape. Therefore, this study makes no conclusions as to the effects of shell shape on strength under conditions of point loading by claws or impact. Furthermore, while bivalve shape is undoubtedly influenced by many factors including fabrication (shell growth and construction)49, phylogenetics, location of soft tissue, etc., these experiments were designed to study an idealized case in which defense against vertebrate shell crushing predators is the most important functional constraint on shell shape.
    Advantageously, the use of mathematically generated theoretical bivalve shells, rather than real shells, enables testing a range of shapes—some of which can be or have been found in nature—and others that have yet to exist. For example, these methods enable physical testing of morphologies which are only found in the fossil record. Fossils cannot be used for mechanical experimentation due to changes in the integrity of the shell structure resulting from the fossilization process. Furthermore, testing shapes which do not exist due to biological constraints like fabrication, can provide valuable insights when combined with the study of shapes that have evolved naturally. For example, testing theoretical shapes can reveal morphologies that perform better than natural morphologies in specific functional settings. Thus, testing shapes which perform well, but do not exist, is one way to identify the potential influence of evolutionary constraints such as fabrication (shell growth patterns), phylogenetics, or other necessary biological functions. In this study, the extremely perpendicular-elongate shells represent theoretical shapes that are not seen in nature (likely due to space limitations for soft tissue). Developing theoretical physical models also allows for the elimination of many confounding variables that cannot be avoided when testing real shells. The effects of variations in shell thickness and ornamentation, which also play a role in shell strength, can thus be separated from the strength imparted by gross shell shape when theoretical models are generated. However, because overall shell strength is derived from a combination of these many factors (microstructure, thickness, etc.31.) the conclusions from these experiments represent a first-order approximation of the effects of shape on shell strength alone. Because the models for this study were generated mathematically, and are therefore not exact replicas of specific taxa, the discussion below aims to address potential tradeoffs based on general shell shapes that could be further studied for specific bivalve taxa in future experiments.
    Shell shape and strength
    Three parameters of shell shape were modified for this study. (1) Generating curve shape is both a modeling parameter and biological feature of mollusk shells27. In mathematical models, generating curve shape describes the shape that is rotated around an axis to create a surface that represents the overall shell shape. Biologically, the generating curve refers to the portion of the shell upon which new material is secreted by the mantle. In bivalves, this is the shape of the commissure. Thus, by changing the shape of the generating curve in a model bivalve, i.e., changing the shape of the ellipse that generates the surface of the shell, models can be perpendicular-elongated (a  > b) or parallel-elongated (a  More

  • in

    Ecological corridors for the amphibians and reptiles in the Natura 2000 sites of Romania

    1.
    Turner, M. G. Landscape ecology: The effects of pattern on process. Annu. Rev. Ecol. Syst. 20, 171–197 (1989).
    Article  Google Scholar 
    2.
    Noss, R. F. Wildlife corridors. in Ecology of Greenways (eds. Smith, D. & Hellmund, P.) 43–98 (University of Minesota Press, Minesota, 1993).

    3.
    Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).
    Article  Google Scholar 

    4.
    Hanski, I. The Shrinking World: Ecological Consequences of Habitat Loss, Vol. 14 (International Ecology Institute, Philadelphia, 2005).
    Google Scholar 

    5.
    IUCN. The World Conservation Strategy. (IUCN, UNEP, 1980).

    6.
    IUCN. The IUCN Red List of Threatened Species. Version 2014.3. (2014).

    7.
    Dirnböck, T., Dullinger, S. & Grabherr, G. A regional impact assessment of climate and land-use change on alpine vegetation. J. Biogeogr. 30, 401–417 (2003).
    Article  Google Scholar 

    8.
    Gonçalves, J., Honrado, J. P., Vicente, J. R. & Civantos, E. A model-based framework for assessing the vulnerability of low dispersal vertebrates to landscape fragmentation under environmental change. Ecol. Complex. 28, 174–186 (2016).
    Article  Google Scholar 

    9.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Article  Google Scholar 

    10.
    Fahrig, L. & Merriam, G. Conservation of fragmented populations. Conserv. Biol. 8, 50–59 (1994).
    Article  Google Scholar 

    11.
    Wiens, J. A. Habitat fragmentation: Island v landscape perspectives on bird conservation. Ibis 137, S97–S104 (1994).
    Article  Google Scholar 

    12.
    Diamond, J. M. ‘Normal’ extinctions of isolated populations. In extinctions (ed. Nitecki, M. H.) 191–246 (University of Chicago Press, Chicago, 1984).
    Google Scholar 

    13.
    Laurance, W. F. Comparative responses of five arboreal marsupials to tropical forest fragmentation. J. Mammal. 71, 641–653 (1990).
    Article  Google Scholar 

    14.
    Bennett, A. F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. (IUCN, 2003).

    15.
    Opdam, P. Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landsc. Ecol. 5, 93–106 (1991).
    Article  Google Scholar 

    16.
    Thomas, C. D. & Jones, T. M. Partial recovery of a skipper butterfly (Hesperia comma) from population refuges: Lessons for conservation in a fragmented landscape. J. Anim. Ecol. 62, 472–481 (1993).
    Article  Google Scholar 

    17.
    Haddad, N. M. et al. Corridor use by diverse taxa. Ecology 84, 609–615 (2003).
    Article  Google Scholar 

    18.
    Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).
    Article  Google Scholar 

    19.
    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
    Article  Google Scholar 

    20.
    Noss, R. F. A regional landscape approach to maintain diversity. Bioscience 33, 700–706 (1983).
    Article  Google Scholar 

    21.
    Noss, R. F. & Harris, L. D. Nodes, networks and MUMS: Preserving diversity at all scales. Environ. Manag. 10, 299–309 (1986).
    ADS  Article  Google Scholar 

    22.
    Grumbine, R. E. What is ecosystem management?. Conserv. Biol. 8, 27–38 (1994).
    Article  Google Scholar 

    23.
    Forman, R. T. T. Land Mosaics. The Ecology of Landscapes and Regions ( Cambridge University Press, Cambridge, 1995).
    Google Scholar 

    24.
    Jongman, R. H. G. Nature conservation planning in Europe: Developing ecological networks. Landsc. Urban Plan. 32, 169–183 (1995).
    Article  Google Scholar 

    25.
    Kubeš, J. Biocentres and corridors in a cultural landscape. A critical assessment of the ‘territorial system of ecological stability’. Landsc. Urban Plan. 35, 231–240 (1996).
    Article  Google Scholar 

    26.
    Diamond, J. M. The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol. Cons. 7, 129–146 (1975).
    Article  Google Scholar 

    27.
    Wilson, E. O. & Willis, E. O. Applied biogeography. In Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 522–534 (Belknap Press, New York, 1975).
    Google Scholar 

    28.
    Soulé, M. E. Land use planning and wildlife maintainance: Guidelines for conserving wildlife in an urban landscape. J. Am. Plan. Assoc. 3, 313–323 (1991).
    Article  Google Scholar 

    29.
    Opdam, P., Van Apeldoorn, R., Schotman, A. & Kalkhoven, J. Population responses to landscape fragmentation. In Landscape Ecology of A Stressed Environment (eds Vos, C. C. & Opdam, P.) 147–171 (Chapman and Hall, London, 1993).
    Google Scholar 

    30.
    Beier, P. & Noss, R. F. Do habitat corridors provide connectivity?. Conserv. Biol. 12, 1241–1252 (1998).
    Article  Google Scholar 

    31.
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).
    Article  Google Scholar 

    32.
    Barrett, G. W. & Bohlen, P. J. Landscape Ecology Landscape Linkages and Biodiversity (Island Press, New York, 1991).
    Google Scholar 

    33.
    Forman, R. T. T. & Godron, M. Landscape Ecology (Wiley, New York, 1986).
    Google Scholar 

    34.
    Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24, 660–668 (2010).
    Article  Google Scholar 

    35.
    Mech, S. G. & Hallett, J. G. Evaluating the effectiveness of corridors: A genetic approach. Conserv. Biol. 15, 467–474 (2001).
    Article  Google Scholar 

    36.
    Harris, L. D. & Scheck, J. From implications to applications: the dispersal corridor principle applied to the conservation of biological diversity. in Nature Conservation 2: The Role of Corridors (eds. Saunders, D. A. & Hobbs, R. J.) 189–220 (Surrey Beatty & Sons, 1991).

    37.
    Hobbs, R. J. & Hopkins, A. J. M. The role of conservation corridors in a changing climate. In The Role of Corridors (eds Saunders, D. A. & Hobbs, R. J.) 281–290 (Surrey Beaty & Sons, New York, 1991).
    Google Scholar 

    38.
    McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl. Acad. Sci. 99, 6070–6074 (2002).
    ADS  CAS  Article  Google Scholar 

    39.
    Bennett, G. & Mulongoy, K. J. Review of Experience with Ecological Networks, Corridors and Buffer Zones (Secretariat of the Convention on Biological Diversity, 2006).

    40.
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).
    Article  Google Scholar 

    41.
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).
    Google Scholar 

    42.
    Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42, 3–16 (1991).
    Article  Google Scholar 

    43.
    Bosso, L., Mucedda, M., Fichera, G., Kiefer, A. & Russo, D. A gap analysis for threatened bat populations on Sardinia. Hystrix Ital. J. Mammal. 27, 11788. https://doi.org/10.4404/hystrix-27.2-11788 (2016).
    Article  Google Scholar 

    44.
    Deus, E. et al. Current and future conflicts between eucalypt plantations and high biodiversity areas in the Iberian Peninsula. J. Nat. Conserv. 45, 107–117 (2018).
    Article  Google Scholar 

    45.
    Johovic, I., Gama, M., Banha, F., Tricarico, E. & Anastácio, P. M. A potential threat to amphibians in the European Natura 2000 network: Forecasting the distribution of the American bullfrog Lithobates catesbeianus. Biol. Conserv. 245, 108–551. https://doi.org/10.1016/j.biocon.2020.108551 (2020).
    Article  Google Scholar 

    46.
    van der Sluis, T. et al. How much Biodiversity is in Natura 2000? The “Umbrella Effect” of the European Natura 2000 protected area network. 147 (Alterra, Wageningen, 2016).

    47.
    Natura 2000 https://ec.europa.eu/environment/nature/natura2000/index_en.htm (2019).

    48.
    European Comission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. 11 (Brussels, 2013).

    49.
    European Comission. Technical information on Green Infrastructure (GI). 24 (Brussels, 2013).

    50.
    Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).
    Article  Google Scholar 

    51.
    Bennett, A. F. & Saunders, D. A. Habitat fragmentation and landscape change. In Conservation Biology for All (eds Sodhi, N. S. & Ehrlich, P. R.) 88–106 (Oxford University Press, Oxford, 2010).
    Google Scholar 

    52.
    Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Cons. 128, 231–240 (2006).
    Article  Google Scholar 

    53.
    Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127 (2017).
    Article  Google Scholar 

    54.
    Blaustein, A. R. et al. Amphibian breeding and climate change. Conserv. Biol. 15, 1804–1809 (2001).
    Article  Google Scholar 

    55.
    Gibbons, W. J. et al. The Global Decline of Reptiles Déjà Vu Amphibians. Bioscience 50, 653–666 (2000).
    Article  Google Scholar 

    56.
    Rivera-Ortiz, F. A., Aguilar, R., Arizmendi, M. D. C., Quesada-Avendaño, M. & Oyama, K. Habitat fragmentation and genetic variability of tetrapod populations. Anim. Conserv. 18, 249–258 (2015).
    Article  Google Scholar 

    57.
    Andrews, K. M., Gibbons, J. W. & Jochimsen, D. M. Ecological effects of roads on amphibians and reptiles: A literature review. In Urban Herpetology (eds Mitchell, J. C. et al.) 121–143 (Society for the Study of Amphibians & Reptiles, London, 2008).
    Google Scholar 

    58.
    Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43 (2019).
    Article  Google Scholar 

    59.
    McCallum, M. L. Tropical Herpetology: A drop in the bucket. Trends Ecol. Evol. 20, 289–290 (2005).
    Article  Google Scholar 

    60.
    Bonnet, X., Shine, R. & Lourdais, O. Taxonomic chauvinism. Trends Ecol. Evol. 17, 1–3 (2002).
    Article  Google Scholar 

    61.
    Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Cons. 204, 1–5 (2016).
    Article  Google Scholar 

    62.
    Beier, P., Majka, D. & Jenness, J. Conceptual Steps for Designing Wildlife Corridors. www.corridordesign.org (2007).

    63.
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272 (2013).
    Article  Google Scholar 

    64.
    Hager, H. A. Area-sensitivity of reptiles and amphibians: Are there indicator species for habitat fragmentation?. Écoscience 66, 139–147 (1998).
    Article  Google Scholar 

    65.
    Almasieh, K., Mirghazanfari, S. M. & Mahmoodi, S. Biodiversity hotspots for modeled habitat patches and corridors of species richness and threatened species of reptiles in central Iran. Eur. J. Wildl. Res. 65, 92. https://doi.org/10.1007/s10344-019-1335-x (2019).
    Article  Google Scholar 

    66.
    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).
    CAS  Article  Google Scholar 

    67.
    Brooke, Z. M., Bielby, J., Nambiar, K. & Carbone, C. correlates of research effort in carnivores: Body size, range size and diet matter. PLoS ONE 9, e93195. https://doi.org/10.1371/journal.pone.0093195 (2014).
    ADS  CAS  Article  Google Scholar 

    68.
    Rozylowicz, L., Popescu, V. D., Pătroescu, M. & Chișamera, G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 20, 561–579 (2011).
    Article  Google Scholar 

    69.
    Beier, P., Majka, D. R. & Spencer, W. D. Forks in the road choices in procedures for designing wildland linkages. Conserv. Biol. 22, 836–851 (2008).
    Article  Google Scholar 

    70.
    Burbrink, F. T., Phillips, C. A. & Heske, E. J. A riparian zone in southern Illinois as a potential dispersal corridor for reptiles and amphibians. Biol. Cons. 86, 107–115 (1998).
    Article  Google Scholar 

    71.
    Dixo, M. & Metzger, J. P. Are corridors, fragment size and forest structure important for the conservation of leaf-litter lizards in a fragmented landscape?. Oryx 43, 435–442 (2009).
    Article  Google Scholar 

    72.
    ArcGIS Release 10.4 (Redlands, CA, 2013).

    73.
    Hamer, A. J. & McDonnell, M. J. The response of herpetofauna to urbanization: Inferring patterns of persistence from wildlife databases. Austral Ecol. 35, 568–580 (2010).
    Article  Google Scholar 

    74.
    Vignoli, L., Mocaer, I., Luiselli, L. & Bologna, M. A. Can a large metropolis sustain complex herpetofauna communities? An analysis of the suitability of green space fragments in Rome. Anim. Conserv. 12, 456–466 (2009).
    Article  Google Scholar 

    75.
    Strugariu, A., Gherghel, I., Huțuleac-Volosciuc, M. V. & Pușcașu, C. M. Preliminary aspects concerning the herpetofauna from urban and peri-urban environments from North-Eastern Romania: A case study in the city of Suceava. Herpetol. Roman. 1, 53–61 (2007).
    Google Scholar 

    76.
    Gherghel, I., Strugariu, A., Sahlean, T. C. & Zamfirescu, O. Anthropogenic impact or anthropogenic accommodation? Distribution range expansion of the common wall lizard (Podarcis muralis) by means of artificial habitats in the north-eastern limits of its distribution range. Acta Herpetol. 4, 183–189 (2009).
    Google Scholar 

    77.
    Gherghel, I. & Tedrow, R. Manmade structures are used by an invasive species to colonize new territory across a fragmented landscape. Acta Oecol. 101, 103479. https://doi.org/10.1016/j.actao.2019.103479 (2019).
    Article  Google Scholar 

    78.
    Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563. https://doi.org/10.1038/s41467-020-18457-x (2020).
    CAS  Article  Google Scholar 

    79.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Article  Google Scholar 

    80.
    Fitzgerald, L. A. et al. The future for reptiles: advances and challenges in the anthropocene. Encycl. Anthropocene 3, 163–174 (2018).
    Article  Google Scholar 

    81.
    Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).
    ADS  CAS  Article  Google Scholar 

    82.
    Meta-Analysis, A. Rey Benayas, J. M., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration. Science 325, 1121–1124 (2009).
    Article  CAS  Google Scholar 

    83.
    Van Der Windt, H. J. & Swart, J. A. A. Ecological corridors, connecting science and politics: the case of the Green River in the Netherlands. J. Appl. Ecol. 45, 124–132 (2008).
    Article  Google Scholar 

    84.
    Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors (International Union for Conservation of Nature, 2020).

    85.
    Gregory, A. J. & Beier, P. Response variables for evaluation of the effectiveness of conservation corridors. Conserv. Biol. 28, 689–695 (2014).
    Article  Google Scholar 

    86.
    Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Lin. Soc. 119, 528–559 (2016).
    Article  Google Scholar 

    87.
    Deodatus, F. et al. Creation of ecological corridors in the Ukrainian Carpathians. In The Carpathians: Integrating Nature and Society Towards Sustainability Environmental Science and Engineering (eds Kozak, J. et al.) 701–717 (Springer, Berlin, 2013).
    Google Scholar 

    88.
    Favilli, F., Hoffmann, C., Elmi, M., Ravazzoli, E. & Streifeneder, T. The BioREGIO Carpathians project: Aims, methodology and results from the “Continuity and Connectivity” analysis. Nat. Conserv. 11, 95–111 (2015).
    Article  Google Scholar 

    89.
    Csagoly, P., Magnin, G. & Hulea, O. Lower Danube Green Corridor. in The Wetland Book: II: Distribution, Description and Conservation (eds. Finlayson, M. C., Milton, R. G., Prentice, C. R. & Davidson, N. C.) 1–6 (Springer, Netherlands, 2016).

    90.
    Belote, R. T. et al. Identifying corridors among large protected areas in the United States. PLoS ONE 11, e0154223. https://doi.org/10.1371/journal.pone.0154223 (2016).
    CAS  Article  Google Scholar 

    91.
    Breckheimer, I. et al. Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity. Conserv. Biol. 28, 1584–1593 (2014).
    Article  Google Scholar 

    92.
    Meurant, M., Gonzales, A., Doxa, A. & Albert, C. H. Selecting surrogate species for connectivity conservation. Biol. Cons. 227, 326–334 (2018).
    Article  Google Scholar 

    93.
    Dondina, O., Orioli, V., Chiatante, G. & Bani, L. Practical insights to select focal species and design priority areas for conservation. Ecol. Indic. 108, 105767. https://doi.org/10.1016/j.ecolind.2019.105767 (2020).
    Article  Google Scholar 

    94.
    Churko, G., Kienast, F. & Bolliger, J. A multispecies assessment to identify the functional connectivity of amphibians in a human-dominated landscape. Int. J. Geo-Inf. 9, 287. https://doi.org/10.3390/ijgi9050287 (2020).
    Article  Google Scholar 

    95.
    Cushman, S. A. & Landguth, E. L. Multi-taxa population connectivity in the Northern Rocky Mountains. Ecol. Model. 231, 101–112 (2012).
    Article  Google Scholar 

    96.
    Krosby, M. et al. Focal species and landscape “naturalness” corridor models offer complementary approaches for connectivity conservation planning. Landsc. Ecol. 30, 2121–2132 (2015).
    Article  Google Scholar 

    97.
    Wiens, J. A., Hayward, G. D., Holthausen, R. S. & Wisdom, M. J. Using surrogate species and groups for conservation planning and management. Bioscience 58, 241–252 (2008).
    Article  Google Scholar 

    98.
    Macdonald, E. A. et al. Identifying ambassador species for conservation marketing. Glob. Ecol. Conserv. 12, 204–214 (2017).
    Article  Google Scholar 

    99.
    Fleury, A. M. & Brown, R. D. A framework for the design of wildlife conservation corridors with specific application to southwestern Ontario. Landsc. Urban Plan. 37, 163–186 (1997).
    Article  Google Scholar 

    100.
    Cogălniceanu, D. et al. Diversity and distribution of amphibians in Romania. ZooKeys 296, 35–57 (2013).
    Article  Google Scholar 

    101.
    Cogălniceanu, D. et al. Diversity and distribution of reptiles in Romania. ZooKeys 341, 49–76 (2013).
    Article  Google Scholar 

    102.
    LaRue, M. A. & Nielsen, C. K. Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol. Model. 212, 372–381 (2008).
    Article  Google Scholar 

    103.
    Adriaensen, F. et al. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64, 233–247 (2003).
    Article  Google Scholar 

    104.
    Correa Ayram, C. A., Mendoza, M. E., Etter, A. & Salicrup, D. R. P. Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog. Phys. Geogr. 1, 1–32 (2015).
    Google Scholar 

    105.
    Ribeiro, J. W. et al. LandScape Corridors (LSCORRIDORS): A new softwarepackage for modelling ecological corridors based onlandscape patterns and species requirements. Methods Ecol. Evol. 8, 1425–1432 (2017).
    Article  Google Scholar 

    106.
    Linkage Mapper Connectivity Analysis Software v. 2.0.0 (The Nature Conservancy, Seattle, 2011).

    107.
    Popescu, V. D., Rozylowicz, L., Cogălniceanu, D., Niculae, I. M. & Cucu, A. L. Moving into protected areas? Setting conservation priorities for Romanian Reptiles and Amphibians at risk from climate change. PLoS ONE 8, e79330. https://doi.org/10.1371/journal.pone.0079330 (2014).
    ADS  CAS  Article  Google Scholar 

    108.
    Lambeck, R. J. Focal species: A multispecies umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).
    Article  Google Scholar  More

  • in

    Mutual mate choice and its benefits for both sexes

    1.
    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity (Edinb). 2, 349–368 (1948).
    CAS  Article  Google Scholar 
    2.
    Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man (Ed. B. Campbell.) 136–179 (Aldinc, Chicago, 1972).

    3.
    Parker, G. A. & Pizzari, T. Sexual selection: the logical imperative. In Current Perspectives on Sexual Selection: What’s Left After Darwin? (Ed. T. Horquet.) 119–163 (Springer, Dordrecht, 2015).

    4.
    Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. Biol. B Sci. 372, 20160310 (2017).
    Article  Google Scholar 

    5.
    Kokko, H., Brooks, R., Jennions, M. D. & Morley, J. The evolution of mate choice and mating biases. Proc. R. Soc. London. Ser. B Biol. Sci. 270, 653–664 (2003).
    Article  Google Scholar 

    6.
    Ihle, M., Kempenaers, B. & Forstmeier, W. Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biol. 13, e1002248 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Fromhage, L. & Jennions, M. D. Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nat. Commun. 7, 12517 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Courtiol, A., Etienne, L., Feron, R., Godelle, B. & Rousset, F. The evolution of mutual mate choice under direct benefits. Am. Nat. 188, 521–538 (2016).
    Article  Google Scholar 

    9.
    Byrne, P. G. & Rice, W. R. Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 273, 917–922 (2006).
    Article  Google Scholar 

    10.
    Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964–976 (2017).
    Article  PubMed  Google Scholar 

    11.
    Gwynne, D. T. Sexual competition among females: What causes courtship-role reversal?. Trends Ecol. Evol. 6, 118–121 (1991).
    CAS  Article  PubMed  Google Scholar 

    12.
    Edward, D. A. & Chapman, T. The evolution and significance of male mate choice. Trends Ecol. Evol. 26, 647–654 (2011).
    Article  PubMed  Google Scholar 

    13.
    Vallejos, J. G., Grafe, T. U., Sah, H. H. A. & Wells, K. D. Calling behavior of males and females of a Bornean frog with male parental care and possible sex-role reversal. Behav. Ecol. Sociobiol. 71, 95 (2017).
    Article  Google Scholar 

    14.
    Amundsen, T. & Forsgren, E. Male mate choice selects for female coloration in a fish. Proc. Natl. Acad. Sci. 98, 13155–13160 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Bonduriansky, R. The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. 76, 305–339 (2001).
    CAS  Article  PubMed  Google Scholar 

    16.
    Servedio, M. R. & Lande, R. Population genetic models of male and mutual mate choice. Evolution (N. Y.). 60, 674–685 (2006).
    Google Scholar 

    17.
    Lailvaux, S. P. & Irschick, D. J. A functional perspective on sexual selection: Insights and future prospects. Anim. Behav. 72, 263–273 (2006).
    Article  Google Scholar 

    18.
    Kirkpatrick, M., Rand, A. S. & Ryan, M. J. Mate choice rules in animals. Anim. Behav. 71, 1215–1225 (2006).
    Article  Google Scholar 

    19.
    Holveck, M.-J. & Riebel, K. Low-quality females prefer low-quality males when choosing a mate. Proc. R. Soc. B Biol. Sci. 277, 153–160 (2009).
    Article  Google Scholar 

    20.
    Aquiloni, L. & Gherardi, F. Mutual mate choice in crayfish: Large body size is selected by both sexes, virginity by males only. J. Zool. 274, 171–179 (2008).
    Article  Google Scholar 

    21.
    Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).
    Article  Google Scholar 

    22.
    Monroe, M. J., South, S. H. & Alonzo, S. H. The evolution of fecundity is associated with female body size but not female-biased sexual size dimorphism among frogs. J. Evol. Biol. 28, 1793–1803 (2015).
    CAS  Article  PubMed  Google Scholar 

    23.
    Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92, 341–356 (2017).
    Article  PubMed  Google Scholar 

    24.
    Dosen, L. D. & Montgomerie, R. Female size influences mate preferences of male guppies. Ethology 110, 245–255 (2004).
    Article  Google Scholar 

    25.
    Kokko, H., Jennions, M. D. & Brooks, R. Unifying and testing models of sexual selection. Annu. Rev. Ecol. Evol. Syst. 37, 43–66 (2006).
    Article  Google Scholar 

    26.
    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: A systematic review and meta-analysis. Biol. Rev. 92, 108–134 (2017).
    Article  PubMed  Google Scholar 

    27.
    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: A role for parasites?. Science 218, 384–387 (1982).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Dunn, P. O., Garvin, J. C., Whittingham, L. A., Freeman-Gallant, C. R. & Hasselquist, D. Carotenoid and melanin-based ornaments signal similar aspects of male quality in two populations of the common yellowthroat. Funct. Ecol. 24, 149–158 (2010).
    Article  Google Scholar 

    29.
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science (80-). 337, 860–864 (2012).
    ADS  CAS  Article  Google Scholar 

    30.
    Dhole, S., Stern, C. A. & Servedio, M. R. Direct detection of male quality can facilitate the evolution of female choosiness and indicators of good genes: Evolution across a continuum of indicator mechanisms. Evolution (N.Y.). 72, 770–784 (2018).
    Google Scholar 

    31.
    Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: A review of the evidence. Anim. Behav. 68, 227–239 (2004).
    Article  Google Scholar 

    32.
    Joye, P. & Kawecki, T. J. Sexual selection favours good or bad genes for pathogen resistance depending on males’ pathogen exposure. Proc. R. Soc. B 286, 20190226 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Able, D. J. The contagion indicator hypothesis for parasite-mediated sexual selection. Proc. Natl. Acad. Sci. 93, 2229–2233 (1996).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Penn, D. & Potts, W. K. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 13, 391–396 (1998).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Arakawa, H., Cruz, S. & Deak, T. From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci. Biobehav. Rev. 35, 1916–1928 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Beltran-Bech, S. & Richard, F.-J. Impact of infection on mate choice. Anim. Behav. 90, 159–170 (2014).
    Article  Google Scholar 

    37.
    Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A. & Suhonen, J. Condition dependence of pheromones and immune function in the grain beetle, Tenebrio molitor. Funct. Ecol. 17, 534–540 (2003).
    Article  Google Scholar 

    38.
    Wyatt, T. D. Pheromones. Curr. Biol. 27, R739–R743 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82, 265–289 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Koh, T. H., Seah, W. K., Yap, L.-M.Y.L. & Li, D. Pheromone-based female mate choice and its effect on reproductive investment in a spitting spider. Behav. Ecol. Sociobiol. 63, 923–930 (2009).
    Article  Google Scholar 

    41.
    Peso, M., Elgar, M. A. & Barron, A. B. Pheromonal control: Reconciling physiological mechanism with signalling theory. Biol. Rev. 90, 542–559 (2015).
    Article  PubMed  Google Scholar 

    42.
    Roberts, S. C., Gosling, L. M., Thornton, E. A. & McClung, J. Scent-marking by male mice under the risk of predation. Behav. Ecol. 12, 698–705 (2001).
    Article  Google Scholar 

    43.
    Foster, S. P. & Anderson, K. G. Sex pheromones in mate assessment: Analysis of nutrient cost of sex pheromone production by females of the moth, Heliothis virescens. J. Exp. Biol. 218, 1252–1258 (2015).
    Article  PubMed  Google Scholar 

    44.
    Happ, G. M. Multiple sex pheromones of the mealworm beetle, Tenebrio molitor L.. Nature 222, 180 (1969).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Stökl, J. & Steiger, S. Evolutionary origin of insect pheromones. Curr. Opin. Insect Sci. 24, 36–42 (2017).
    Article  PubMed  Google Scholar 

    46.
    Roitberg, B. D. Chemical communication. in Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds. Córdoba-Aguilar et al.) vol. I 416 (Oxford University Press, 2018).

    47.
    Hurd, H. & Parry, G. Metacestode-induced depression of the production of, and response to, sex pheromone in the intermediate host, Tenebrio molitor. J. Invertebr. Pathol. 58, 82–87 (1991).
    CAS  Article  PubMed  Google Scholar 

    48.
    McConnell, M. W. & Judge, K. A. Body size and lifespan are condition dependent in the mealworm beetle, Tenebrio molitor, but not sexually selected traits. Behav. Ecol. Sociobiol. 72, 32 (2018).
    Article  Google Scholar 

    49.
    Bryning, G. P., Chambers, J. & Wakefield, M. E. Identification of a sex pheromone from male yellow mealworm beetles, Tenebrio molitor. J. Chem. Ecol. 31, 2721–2730 (2005).
    CAS  Article  PubMed  Google Scholar 

    50.
    Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: Immune-challenged males produce more attractive pheromones. Funct. Ecol. 26, 20–28 (2012).
    Article  Google Scholar 

    51.
    Worden, B. D., Parker, P. G. & Pappas, P. W. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59, 543–550 (2000).
    CAS  Article  PubMed  Google Scholar 

    52.
    Worden, B. D. & Parker, P. G. Females prefer noninfected males as mates in the grain beetle Tenebrio molitor: Evidence in pre-and postcopulatory behaviours. Anim. Behav. 70, 1047–1053 (2005).
    Article  Google Scholar 

    53.
    Sadd, B. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).
    CAS  Article  PubMed  Google Scholar 

    54.
    Krams, I. A. et al. Male mealworm beetles increase resting metabolic rate under terminal investment. J. Evol. Biol. 27, 541–550 (2014).
    CAS  Article  PubMed  Google Scholar 

    55.
    Kivleniece, I., Krams, I., Daukšte, J., Krama, T. & Rantala, M. J. Sexual attractiveness of immune-challenged male mealworm beetles suggests terminal investment in reproduction. Anim. Behav. 80, 1015–1021 (2010).
    Article  Google Scholar 

    56.
    Reyes-Ramírez, A., Enríquez-Vara, J. N., Rocha-Ortega, M., Téllez-García, A. & Córdoba-Aguilar, A. Female choice for sick males over healthy males: Consequences for offspring. Ethology 125, 241–249 (2019).
    Article  Google Scholar 

    57.
    Oliveira, A. S., Braga, G. U. L. & Rangel, D. E. N. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biol. 122, 555–562 (2018).
    Article  PubMed  Google Scholar 

    58.
    Sasan, R. K. & Bidochka, M. J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am. J. Bot. 99, 101–107 (2012).
    Article  PubMed  Google Scholar 

    59.
    Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–664 (2016).
    CAS  Article  PubMed  Google Scholar 

    60.
    Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, e1007831 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Keyser, C. A., Thorup-Kristensen, K. & Meyling, N. V. Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal. Ecol. 11, 122–131 (2014).
    Article  Google Scholar 

    62.
    Castro, T. et al. Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric. Ecosyst. Environ. 233, 361–369 (2016).
    Article  Google Scholar 

    63.
    Härdling, R. & Kokko, H. The evolution of prudent choice. Evol. Ecol. Res. 7, 697–715 (2005).
    Google Scholar 

    64.
    Venner, S., Bernstein, C., Dray, S. & Bel-Venner, M.-C. Make love not war: When should less competitive males choose low-quality but defendable females?. Am. Nat. 175, 650–661 (2010).
    Article  PubMed  Google Scholar 

    65.
    Bhattacharya, A. K., Ameel, J. J. & Waldbauer, G. P. A method for sexing living pupal and adult yellow mealworms. Ann. Entomol. Soc. Am. 63, 1783 (1970).
    Article  Google Scholar 

    66.
    Silva, W. O. B., Mitidieri, S., Schrank, A. & Vainstein, M. H. Production and extraction of an extracellular lipase from the entomopathogenic fungus, Metarhizium anisopliae. Process Biochem. 40, 321–326 (2005).
    Article  CAS  Google Scholar 

    67.
    Zhou, J., Jiang, W., Ding, J., Zhang, X. & Gao, S. Effect of Tween 80 and β-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70, 172–177 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    68.
    Liu, Y.-S. & Wu, J.-Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. J. Ind. Microbiol. Biotechnol. 39, 623–628 (2012).
    CAS  Article  PubMed  Google Scholar 

    69.
    Gerber, G. H. Reproductive behaviour and physiology of Tenebrio molitor (Coleoptera: Tenebrionidae). III. Histogenetic changes in the internal genitalia, mesenteron, and cuticle during sexual maturation. Can. J. Zool. 54, 990–1002 (1976).
    Article  Google Scholar 

    70.
    Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510 (2001).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Team, R. C. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org (2017).

    72.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv Prepr. arXiv1406.5823 (2014).

    73.
    Jaeger, B. Package ‘r2glmm’. R Found. Stat. Comput. Vienna Avail. CRAN R-Project org/package=R2glmm Stat https://doi.org/10.1002/sim.3429 (2017).
    Article  Google Scholar 

    74.
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).
    Article  Google Scholar 

    75.
    Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).
    Article  Google Scholar 

    76.
    Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    77.
    Jones, K. M., Monaghan, P. & Nager, R. G. Male mate choice and female fecundity in zebra finches. Anim. Behav. 62, 1021–1026 (2001).
    Article  Google Scholar 

    78.
    Griggio, M., Valera, F., Casas, A. & Pilastro, A. Males prefer ornamented females: A field experiment of male choice in the rock sparrow. Anim. Behav. 69, 1243–1250 (2005).
    Article  Google Scholar 

    79.
    Naud, M.-J., Curtis, J. M. R., Woodall, L. C. & Gaspar, M. B. Mate choice, operational sex ratio, and social promiscuity in a wild population of the long-snouted seahorse Hippocampus guttulatus. Behav. Ecol. 20, 160–164 (2008).
    Article  Google Scholar 

    80.
    Cutrera, A. P., Fanjul, M. S. & Zenuto, R. R. Females prefer good genes: MHC-associated mate choice in wild and captive tuco-tucos. Anim. Behav. 83, 847–856 (2012).
    Article  Google Scholar 

    81.
    Mobley, K. B., Chakra, M. A. & Jones, A. G. No evidence for size-assortative mating in the wild despite mutual mate choice in sex-role-reversed pipefishes. Ecol. Evol. 4, 67–78 (2014).
    Article  PubMed  Google Scholar 

    82.
    Tschinkel, W. R. & Willson, C. D. Inhibition of pupation due to crowding in some tenebrionid beetles. J. Exp. Zool. 176, 137–145 (1971).
    CAS  Article  PubMed  Google Scholar 

    83.
    Morales-Ramos, J. A. & Rojas, M. G. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Econ. Entomol. 108, 2259–2267 (2015).
    CAS  Article  PubMed  Google Scholar 

    84.
    Morales-Ramos, J. A., Rojas, M. G., Kay, S., Shapiro-Ilan, D. I. & Tedders, W. L. Impact of adult weight, density, and age on reproduction of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 47, 208–220 (2012).
    Article  Google Scholar 

    85.
    Kraak, S. B. M. & Bakker, T. C. M. Mutual mate choice in sticklebacks: Attractive males choose big females, which lay big eggs. Anim. Behav. 56, 859–866 (1998).
    CAS  Article  PubMed  Google Scholar 

    86.
    Sandvik, M., Rosenqvist, G. & Berglund, A. Male and female mate choice affects offspring quality in a sex–role–reversed pipefish. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2151–2155 (2000).
    CAS  Article  Google Scholar 

    87.
    Drickamer, L. C., Gowaty, P. A. & Wagner, D. M. Free mutual mate preferences in house mice affect reproductive success and offspring performance. Anim. Behav. 65, 105–114 (2003).
    Article  Google Scholar 

    88.
    Bertram, S. M. et al. Linking mating preferences to sexually selected traits and offspring viability: Good versus complementary genes hypotheses. Anim. Behav. 119, 75–86 (2016).
    Article  Google Scholar 

    89.
    Bowers, E. K. et al. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon). Proc. R. Soc. B Biol. Sci. 279, 2891–2898 (2012).
    Article  Google Scholar 

    90.
    Poulin, R. & Maure, F. Host manipulation by parasites: A look back before moving forward. Trends Parasitol. 31, 563–570 (2015).
    Article  PubMed  Google Scholar 

    91.
    August, C. J. The role of male and female pheromones in the mating behaviour of Tenebrio molitor. J. Insect Physiol. 17, 739–751 (1971).
    Article  Google Scholar 

    92.
    Font, E. & Desfilis, E. Courtship, mating, and sex pheromones in the mealworm beetle (Tenebrio molitor). In Exploring Animal Behavior in Laboratory and Field (eds. Ploger, B. J. & Yasukawa, K.) 43–58 (Elsevier, New York, 2003).

    93.
    Obata, S. & Hidaka, T. Experimental analysis of mating behavior in Tenebrio molitor L. (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 17, 60–66 (1982).
    Article  Google Scholar  More