Mismatch of thermal optima between performance measures, life stages and species of spiny lobster
1.
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
2.
Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).
Article Google Scholar
3.
Pitt, N. R., Poloczanska, E. S. & Hobday, A. J. Climate-driven range changes in Tasmanian intertidal fauna. Mar. Freshw. Res. 61, 963–970. https://doi.org/10.1071/MF09225 (2010).
CAS Article Google Scholar
4.
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925. https://doi.org/10.1038/nclimate1958 (2013).
ADS Article Google Scholar
5.
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).
ADS CAS Article PubMed Google Scholar
6.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242. https://doi.org/10.1126/science.1239352 (2013).
ADS CAS Article PubMed Google Scholar
7.
McLeod, D. J., Hobday, A. J., Lyle, J. M. & Welsford, D. C. A prey-related shift in the abundance of small pelagic fish in eastern Tasmania?. ICES J. Mar. Sci. 69, 953–960. https://doi.org/10.1093/icesjms/fss069 (2012).
Article Google Scholar
8.
Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32. https://doi.org/10.1016/j.jembe.2011.02.032 (2011).
Article Google Scholar
9.
Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894. https://doi.org/10.1007/s00442-008-1043-9 (2008).
ADS CAS Article PubMed Google Scholar
10.
Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).
Article Google Scholar
11.
Pecl, G. et al. The east coast Tasmanian rock lobster fishery—vulnerability to climate change impacts and adaptation response options. (Report to the Department of Climate Change, Australia, 2009).
12.
Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).
Google Scholar
13.
Fry, F. E. J. Effects of the Environment on Animal Activity (University of Toronto Press, Toronto, 1947).
Google Scholar
14.
Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385. https://doi.org/10.1111/ele.12686 (2016).
Article PubMed Google Scholar
15.
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692. https://doi.org/10.2307/20145158 (2008).
Article PubMed Google Scholar
16.
Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97. https://doi.org/10.1126/science.1135471 (2007).
ADS CAS Article PubMed Google Scholar
17.
Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702. https://doi.org/10.1093/icb/icr097 (2011).
Article PubMed Google Scholar
18.
Donelson, J. M., McCormick, M. I., Booth, D. J. & Munday, P. L. Reproductive acclimation to increased water temperature in a tropical reef fish. PLoS ONE 9, e97223. https://doi.org/10.1371/journal.pone.0097223 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
19.
Twiname, S., Fitzgibbon, Q. P., Hobday, A. J., Carter, C. G. & Pecl, G. T. Multiple measures of thermal performance of early stage eastern rock lobster in a fast-warming ocean region. Mar. Ecol. Prog. Ser. 624, 1–11 (2019).
ADS CAS Article Google Scholar
20.
Fitzgibbon, Q. P., Simon, C. J., Smith, G. G., Carter, C. G. & Battaglene, S. C. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster Sagmariasus verreauxi. Comp. Biochem. Phys. A 207, 13–20 (2017).
CAS Article Google Scholar
21.
Lord, J. P., Barry, J. P. & Graves, D. Impact of climate change on direct and indirect species interactions. Mar. Ecol. Prog. Ser. 571, 1–11 (2017).
ADS Article Google Scholar
22.
Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84. https://doi.org/10.1111/1365-2656.12081 (2014).
Article PubMed Google Scholar
23.
Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226. https://doi.org/10.1016/j.jembe.2011.02.029 (2011).
Article Google Scholar
24.
Marshak, A. R. & Heck, K. L. Interactions between range-expanding tropical fishes and the northern Gulf of Mexico red snapper Lutjanus campechanus. J. Fish Biol. 91, 1139–1165. https://doi.org/10.1111/jfb.13406 (2017).
CAS Article PubMed Google Scholar
25.
Milazzo, M., Mirto, S., Domenici, P. & Gristina, M. Climate change exacerbates interspecific interactions in sympatric coastal fishes. J. Anim. Ecol. 82, 468–477. https://doi.org/10.1111/j.1365-2656.2012.02034.x (2013).
Article PubMed Google Scholar
26.
Grigaltchik, V. S., Ward, A. J. W. & Seebacher, F. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship. Proc. R. Soc. B-Biol. Sci. 279, 4058–4064. https://doi.org/10.1098/rspb.2012.1277 (2012).
Article Google Scholar
27.
Johansen, J. L. & Jones, G. P. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Glob. Change Biol. 17, 2971–2979. https://doi.org/10.1111/j.1365-2486.2011.02436.x (2011).
ADS Article Google Scholar
28.
Batty, R. & Blaxter, J. The effect of temperature on the burst swimming performance of fish larvae. J. Exp. Biol. 170, 187–201 (1992).
Google Scholar
29.
Temple, G. K. & Johnston, I. A. Testing hypotheses concerning the phenotypic plasticity of escape performance in fish of the family Cottidae. J. Exp. Biol. 201, 317–331 (1998).
CAS PubMed Google Scholar
30.
Fry, F. E. J. & Hart, J. S. The relation of temperature to oxygen consumption in the goldfish. Biol. Bull. 94, 66–77. https://doi.org/10.2307/1538211 (1948).
CAS Article PubMed Google Scholar
31.
Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782. https://doi.org/10.1242/jeb.084251 (2013).
Article PubMed Google Scholar
32.
Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221, jeb169615 (2018).
33.
Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685 (2017).
Article Google Scholar
34.
Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251. https://doi.org/10.1242/jeb.089755 (2014).
Article PubMed Google Scholar
35.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000 (2004).
Article Google Scholar
36.
Domenici, P. & Blake, R. The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178 (1997).
CAS PubMed Google Scholar
37.
Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. USA 108, 10591–10596. https://doi.org/10.1073/pnas.1015178108 (2011).
ADS Article PubMed Google Scholar
38.
Ohlund, G., Hedstrom, P., Norman, S., Hein, C. L. & Englund, G. Temperature dependence of predation depends on the relative performance of predators and prey. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2014.2254 (2015).
Article Google Scholar
39.
England, W. R. & Baldwin, J. Anaerobic energy metabolism in the tail musculature of the Australian Yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): role of phosphagens and anaerobic glycolysis during escape behavior. Physiol. Zool. 56, 614–622 (1983).
CAS Article Google Scholar
40.
De Zwaan, A. & v.d. Thillart, G. in Circulation, Respiration, and Metabolism (ed Raymond Gilles) 166–192 (Springer, Berlin, 1985).
41.
Ellington, W. R. The recovery from anaerobic metabolism in invertebrates. J. Exp. Zool. 228, 431–444. https://doi.org/10.1002/jez.1402280305 (1983).
CAS Article Google Scholar
42.
Hobday, A. & Pecl, G. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fisher 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).
Article Google Scholar
43.
Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613. https://doi.org/10.1029/2007GL030393 (2007).
ADS Article Google Scholar
44.
Robinson, L. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Glob. Environ. Change 31, 28–37 (2015).
Article Google Scholar
45.
Redmap Australia. Institute for Marine and Antarctic Studies, University of Tasmania, (2020).
46.
Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731. https://doi.org/10.1111/j.1365-2486.2008.01734.x (2009).
ADS Article Google Scholar
47.
Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast Shelf Sci. 72, 102–114. https://doi.org/10.1016/j.ecss.2006.10.003 (2007).
ADS Article Google Scholar
48.
Figueira, W. F., Biro, P., Booth, D. J. & Valenzuela, V. C. Performance of tropical fish recruiting to temperate habitats: role of ambient temperature and implications of climate change. Mar. Ecol. Prog. Ser. 384, 231–239. https://doi.org/10.3354/meps08057 (2009).
ADS Article Google Scholar
49.
Cetina-Heredia, P., Roughan, M., Sebille, E., Feng, M. & Coleman, M. A. Strengthened currents override the effect of warming on lobster larval dispersal and survival. Glob. Change Biol. 21, 4377–4386. https://doi.org/10.1111/gcb.13063 (2015).
ADS Article Google Scholar
50.
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70. https://doi.org/10.1126/science.aaz3658 (2020).
ADS CAS Article PubMed Google Scholar
51.
Fitzgibbon, Q. P., Ruff, N., Tracey, S. R. & Battaglene, S. C. Thermal tolerance of the nektonic puerulus stage of spiny lobsters and implications of ocean warming. Mar. Ecol. Prog. Ser. 515, 173–186. https://doi.org/10.3354/meps10979 (2014).
ADS Article Google Scholar
52.
Storch, D., Fernández, M., Navarrete, S. A. & Pörtner, H. O. Thermal tolerance of larval stages of the Chilean kelp crab Taliepus dentatus. Mar. Ecol. Prog. Ser. 429, 157–167 (2011).
ADS Article Google Scholar
53.
Walther, K., Anger, K. & Pörtner, H. O. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar. Ecol. Prog. Ser. 417, 159–170 (2010).
ADS Article Google Scholar
54.
54Phillips, B. F., Booth, J. D., Cobb, J. S., Jeffs, A. G. & McWilliam, P. in Lobsters: Biology, Management, Aquaculture and Fisheries (ed Bruce F. Phillips) 231–262 (Blackwell Publishing Ltd, 2006).
55.
Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef Australia. Bull. Mar. Sci. 42, 459–479 (1988).
Google Scholar
56.
Emery, A. R. Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at alligator Reef Florida keys. Bull. Mar. Sci. 23, 649–770 (1973).
Google Scholar
57.
Hinkle, P. C. P/O ratios of mitochondrial oxidative phosphorylation. BBA-Bioenergetics 1706, 1–11. https://doi.org/10.1016/j.bbabio.2004.09.004 (2005).
CAS Article PubMed Google Scholar
58.
Pörtner, H. O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Phys. A 132, 739–761. https://doi.org/10.1016/S1095-6433(02)00045-4 (2002).
Article Google Scholar
59.
Speed, S. R., Baldwin, J., Wong, R. J. & Wells, R. M. G. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport. Comp. Biochem. Phys. B 128, 435–444. https://doi.org/10.1016/S1096-4959(00)00340-7 (2001).
CAS Article Google Scholar
60.
Morris, S. & Adamczewska, A. M. Utilisation of glycogen, ATP and arginine phosphate in exercise and recovery in terrestrial red crabs Gecarcoidea natalis. Comp. Biochem. Phys. A 133, 813–825. https://doi.org/10.1016/S1095-6433(02)00217-9 (2002).
Article Google Scholar
61.
Head, G. & Baldwin, J. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Mar. Freshw. Res. 37, 641–646. https://doi.org/10.1071/MF9860641 (1986).
CAS Article Google Scholar
62.
Clark, T. D., Messmer, V., Tobin, A. J., Hoey, A. S. & Pratchett, M. S. Rising temperatures may drive fishing-induced selection of low-performance phenotypes. Sci. Rep. 7, 40571. https://doi.org/10.1038/srep40571 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
63.
Foo, S. A. & Byrne, M. Acclimatization and Adaptive capacity of marine species in a changing ocean. Adv. Mar. Biol. 74, 69–116. https://doi.org/10.1016/bs.amb.2016.06.001 (2016).
CAS Article PubMed Google Scholar
64.
Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3, cov056. https://doi.org/10.1093/conphys/cov056 (2015).
Article PubMed PubMed Central Google Scholar
65.
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66. https://doi.org/10.1038/nclimate2457 (2015).
ADS Article Google Scholar
66.
Donelson, J. M., Munday, P. L., McCormick, M. I. & Nilsson, G. E. Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob. Change Biol. 17, 1712–1719. https://doi.org/10.1111/j.1365-2486.2010.02339.x (2011).
ADS Article Google Scholar
67.
Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101. https://doi.org/10.1038/ncomms16101 (2017).
ADS Article PubMed PubMed Central Google Scholar
68.
Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130. https://doi.org/10.1016/j.pocean.2018.02.007 (2018).
ADS Article Google Scholar
69.
Stobart, B., Mayfield, S., Mundy, C., Hobday, A. J. & Hartog, J. R. Comparison of in situ and satellite sea surface-temperature data from South Australia and Tasmania: how reliable are satellite data as a proxy for coastal temperatures in temperate southern Australia?. Mar. Freshw. Res. 67, 612–625. https://doi.org/10.1071/MF14340 (2016).
Article Google Scholar
70.
Grose, M. R. et al. Climate Futures for Tasmania: general climate impacts technical report. (Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania., 2010).
71.
Gilman, S. E. Predicting indirect effects of predator-prey interactions. Integr. Comp. Biol. 57, 148–158. https://doi.org/10.1093/icb/icx031 (2017).
Article PubMed Google Scholar
72.
Fitzgibbon, Q. P. & Battaglene, S. C. Effect of photoperiod on the culture of early-stage phyllosoma and metamorphosis of spiny lobster (Sagmariasus verreauxi). Aquaculture 368, 48–54. https://doi.org/10.1016/j.aquaculture.2012.09.018 (2012).
Article Google Scholar
73.
Fitzgibbon, Q. P., Battaglene, S. C. & Ritar, A. J. Effect of water temperature on the development and energetics of early, mid and late-stage phyllosoma larvae of spiny lobster Sagmariasus verreauxi. Aquaculture 344–349, 153–160. https://doi.org/10.1016/j.aquaculture.2012.03.008 (2012).
Article Google Scholar
74.
Jensen, M. A., Fitzgibbon, Q. P., Carter, C. G. & Adams, L. R. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny. Comp. Biochem. Phys. A 166, 191–198. https://doi.org/10.1016/j.cbpa.2013.06.003 (2013).
CAS Article Google Scholar
75.
Fitzgibbon, Q. P., Jeffs, A. G. & Battaglene, S. C. The Achilles heel for spiny lobsters: the energetics of the non-feeding post-larval stage. Fish Fish 15, 312–326. https://doi.org/10.1111/faf.12018 (2014).
Article Google Scholar
76.
Harvey, E., Shortis, M., Stadler, M. & Cappo, M. A Comparison of the accuracy and precision of measurements from single and stereo-video systems. Mar. Technol. Soc. J. 36, 38–49. https://doi.org/10.4031/002533202787914106 (2002).
Article Google Scholar
77.
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2017).
78.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
79.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2009).
Google Scholar More
