More stories

  • in

    Small-scale alpine topography at low latitudes and high altitudes: refuge areas of the genus Chrysanthemum and its allies

    1.
    Hirakawa, H. et al. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res. 26, 195–203 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Stevenson, T. Chrysanthemums. Nature 90, 248 (1912).
    Google Scholar 

    3.
    Ministry of Agriculture and Fisheries UK. Control of the Chrysanthemum midge. Nature 144, 280 (1939).

    4.
    Cockshull, K. E. & Hughes, A. P. Distribution of dry matter to flowers in Chrysanthemum morifolium. Nature 215, 780–781 (1976).
    Article  Google Scholar 

    5.
    Courtney-Gutterson, N. et al. Modification of flower color in florist’s Chrysanthemum: production of a white–flowering variety through molecular genetics. Nat. Biotechnol. 12, 268–271 (1994).
    CAS  Article  Google Scholar 

    6.
    Gamalero, E. Effects of Pseudomonas putida S1Pf1Rif against Chrysanthemum yellows phytoplasma infection. Phytopathology 100, 805–813 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Wei, Q. et al. Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8, 829 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    8.
    Yang, L., Wen, X., Fu, J. & Dai, S. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. Hortic. Res. 5, 58 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Su, J. et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic. Res. 6, 109 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    10.
    Kubitzki, K. The families and genera of vascular plants, Vol. VIII Flowering Plants・Eudicots (eds Kadereit, J. W. & Jeffrey, C.) Compositae (eds. Anderberg, A. A. et al.) (Springer-Verlag Berlin Heidelberg, 2007).

    11.
    Poljakov, P. P. Duo genere novae fam. Compositae. Not. Syst. Herb. Inst. Bot. Akad. Sci. URSS 17, 418–431 (1955).
    Google Scholar 

    12.
    Muldashev, A. A. A new genus Phaeostigma (Asteraceae) from the East Asia. Botanischeskii Zh . 66, 584–588 (1981).
    Google Scholar 

    13.
    Muldashev, A. A. A critical review of the genus Ajania (Asteraceae-Anthemideae). Botanischeskii Zh . 68, 207–214 (1983).
    Google Scholar 

    14.
    Bremer, K. & Humphries, C. J. The generic monograph of the Asteraceae-Anthemideae. Bull. Nat. Hist. Mus. Lond. 23, 71–177 (1993).
    Google Scholar 

    15.
    Huang, Y., An, Y. M., Meng, S. Y., Guo, Y. P. & Rao, G. Y. Taxonomic status and phylogenetic position of Phaeostigma in the subtribe Artemisiinae (Asteraceae). J. Syst. Evol. 55, 426–436 (2017).
    Article  Google Scholar 

    16.
    Zhao, H. B., Chen, F. D., Chen, S. M., Wu, G. S. & Guo, W. M. Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst. Evol. 284, 153–169 (2010).
    CAS  Article  Google Scholar 

    17.
    Liu, P. L., Wan, Q., Guo, Y. P., Yang, J. & Rao, G. Y. Phylogeny of the Genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7, e48970 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Ohashi, H. & Yonekura, K. New combinations in Chrysanthemum (Compositae-Anthemideae) of Asia with a list of Japanese Specie. J. Jpn. Bot. 79, 186–195 (2004).
    Google Scholar 

    19.
    Sanz, M. et al. Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57, 1–13 (2008).
    Google Scholar 

    20.
    An, Y. M. Studies on the Phylogeny and Biogeography of the Genus Ajania and Its Allies. Master’s thesis. Peking University (2012).

    21.
    Barreda, V. D. et al. Eocene Patagonia fossils of the daisy family. Science 329, 1621–1621 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Wefferling, K. M. & Hoot, S. B. Dated phylogeography of western North American subalpine marshmarigolds (Caltha spp. Ranunculaceae): Miocene-Pliocene divergence of hexaploids, multiple origins of allododecaploids during the Pleistocene, and repeated recolonization of Last Glacial Maxim. J. Biogeogr. 45, 1077–1089 (2018).
    Article  Google Scholar 

    23.
    Wiens, J. J. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Ricklefs, R. E. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87, S3–S13 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Li, J., Wan, Q., Guo, Y. P., Abbott, R. J. & Rao, G. Y. Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to Pleistocene climate change in China. N. Phytol. 201, 1031–1044 (2014).
    CAS  Article  Google Scholar 

    26.
    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Cosacov, A., Sérsic, A. N., Sosa, V., Johnson, L. A. & Cocucci, A. A. Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J. Biogeogr. 37, 1463–1477 (2010).
    Google Scholar 

    29.
    García-Aloy, S. et al. North-west Africa as a source and refuge area of plant biodiversity: a case study on Campanula kremeri and Campanula occidentalis. J. Biogeogr. 44, 2057–2068 (2017).
    Article  Google Scholar 

    30.
    Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. N. Phytol. 215, 891–905 (2017).
    Article  Google Scholar 

    31.
    Zhao, Y. P. et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 10, 4201 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    32.
    Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Sun, H. 2002. Evolution of arctic-tertiary flora in Himalayan-Hengduan mountains. Acta Bot. Yunnanica. 24, 671–688 (2002).
    Google Scholar 

    34.
    Sun, H. & Li, Z. M. Qinghai-Tibet Plateau uplift and its impact on Tethys flora. Adv. Earth. Sci. 18, 852–862 (2003).
    Google Scholar 

    35.
    Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).
    Article  Google Scholar 

    36.
    Royer, D. L., McElwain, J. C., Adams, J. M. & Wilf, P. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. N. Phytol. 179, 808–817 (2008).
    Article  Google Scholar 

    37.
    Opedal, Ø. H., Armbruster, W. S. & Graae, B. J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol. Divers. 8, 305–315 (2015).
    Article  Google Scholar 

    38.
    Tölgyesi, C. Tree-herb co-existence and community assembly in natural forest-steppe transitions. Plant Ecol. Divers. 11, 465–477 (2018).
    Article  Google Scholar 

    39.
    Rumpf, S. B. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Camarero, J. J., Gutiérrez, E. & Fortin, M. J. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Glob. Ecol. Biogeogr. 15, 182–191 (2006).
    Article  Google Scholar 

    41.
    Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Li, P. et al. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol. Genet. Genomics. 291, 1117–1125 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Zhang, F. et al. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol. Breed. 27, 11–23 (2011).
    CAS  Article  Google Scholar 

    45.
    Li, G. & Quiros, C. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461 (2001).
    CAS  Article  Google Scholar 

    46.
    Shen, J. et al. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China. Sci. China Ser. D. Earth Sci. 48, 353–363 (2005).
    CAS  Article  Google Scholar 

    47.
    Hoorn, C. et al. Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 344–345, 16–38 (2012).
    Article  Google Scholar 

    48.
    Cao, X., Ni, J., Herzschuh, U., Wang, Y. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: Set up and evaluation. Rev. Palaeobot. Palyno. 194, 21–37 (2013).
    Article  Google Scholar 

    49.
    Li, S. et al. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J. Geophys. Res-Sol. Ea. 118, 791–807 (2013).
    Article  Google Scholar 

    50.
    Gourbet, L. et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700–701, 162–179 (2017).
    Article  CAS  Google Scholar 

    51.
    Wu, J. et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 510, 93–108 (2018).
    Article  Google Scholar 

    52.
    Li, Q., Wu, H., Yu, Y., Sun, A. & Luo, Y. Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum. Quat. Int. 500, 108–119 (2019).
    Article  Google Scholar 

    53.
    Mutanga, O. et al. Explaining grass-nutrient patterns in a savanna rangeland of southern Africa. J. Biogeogr. 31, 819–829 (2004).
    Article  Google Scholar 

    54.
    Rowe, R. J. Elevational gradient analyses and the use of historical museum specimens:a cautionary tale. J. Biogeogr. 32, 1883–1897 (2005).
    Article  Google Scholar 

    55.
    Barbo, D. N., Chappelka, A. H., Somers, G. L., Miller-Goodman, M. S. & Stolte, K. Diversity of an early successional plant community as influenced by ozone. N. Phytol. 138, 653–662 (1998).
    CAS  Article  Google Scholar 

    56.
    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    57.
    Vermeer, J. & Peterson, R. L. Glandular trichomes on the inflorescence of Chrysanthemum morifolium cv. Dramatic (Compositae). II. Ultrastruct. Histochem. Can. J. Bot. 57, 705–713 (1979).
    Google Scholar 

    58.
    Ren, J. B. & Guo, Y. P. Behind the diversity: Ontogenies of radiate, disciform, and discoid capitula of Chrysanthemum and its allies. J. Syst. Evol. 53, 520–528 (2015).
    Article  Google Scholar 

    59.
    Li, J., Guo, Y. & Romane, F. Environmental heterogeneity and population variability of Sclerophyllous Oaks (Quercus Sec. suber) in East Himalayan region. Forestry Stud. China 2, 1–15 (2000).
    CAS  Google Scholar 

    60.
    Wright, A. J. et al. Plants are less negatively affected by flooding when growing in species-rich plant communities. N. Phytol. 213, 645–656 (2017).
    Article  Google Scholar 

    61.
    Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan mountains. N. Phytol. 207, 275–282 (2015).
    Article  Google Scholar 

    62.
    Pfister, C. A. & Hay, M. E. Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. Oecologia 77, I18–I129 (1988).
    Article  Google Scholar 

    63.
    Zhang, Y. C., Shi, G. R. & Shen, S. Z. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai–Tibet plateau. Gondwana Res. 24, 55–76 (2013).
    CAS  Article  Google Scholar 

    64.
    Zhou, X. et al. Vegetation change and evolutionary response of large mammal fauna during the mid-Pleistocene transition in temperate northern East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 287–294 (2018).
    Article  Google Scholar 

    65.
    Barreda, V. D. et al. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc. Natl Acad. Sci. USA 112, 10989–10994 (2105).
    Article  CAS  Google Scholar 

    66.
    Huang, C. H. et al. Multiple polyploidization events across asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33, 2820–2835 (2016).

    67.
    Credner, W. Geography Investigation Report in 1931. In: Report Collecton of Department of Geography, Vol. 1, 1–35 (National Sun Yat-sen University, 1931).

    68.
    Credner, W. Observation on geology and morphology of Yunnan. Geol. Surv. Kwangtung Kwangshi, Spec. Publ. No. X, 51 (1932).
    Google Scholar 

    69.
    Yang, J. Q., Cui, Z. J., Yi, C. L., Sun, J. M. & Yang, L. R. “Tali Glaciation” on Massif Diancang. Sci. China Ser. D 50, 1685–1692 (2007).
    Article  Google Scholar 

    70.
    Hoke, G. D., Zeng, J. L., Hren, M. T., Wissink, G. K. & Garzione, C. N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sc. Lett. 394, 270–278 (2014).
    CAS  Article  Google Scholar 

    71.
    Li, S., Currie, B. S., Rowley, D. B. & Ingalls, M. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet. Sc. Lett. 432, 415–424 (2015).
    CAS  Article  Google Scholar 

    72.
    Kuang, M. et al. Study on the Palaeovegation and Palaeoclimate Since Late Pleistocene in the Dianchang Mountain Area in Dali of YunNan Province. J. Southwest China Norm. Univ 27, 759–765 (2002).
    Google Scholar 

    73.
    Xiao, X. et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat. Sci. Rev. 86, 35–48 (2014).
    Article  Google Scholar 

    74.
    Mandela, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 14083–14088 (2019).
    Article  CAS  Google Scholar 

    75.
    Sheldon, N. D. Quaternary glacial-interglacial climate cycles in Hawaii. J. Geol. 114, 367–376 (2006).
    Article  Google Scholar 

    76.
    Milbau, A., Shevtsova, A., Osler, N., Mooshammer, M. & Graae, B. J. Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. N. Phytol. 197, 1002–1011 (2013).
    Article  Google Scholar 

    77.
    Wang, W. M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).
    Article  Google Scholar 

    78.
    Pellicer, J. et al. Palynological study of Ajania and related genera (Asteraceae, Anthemideae). Bot. J. Linn. Soc. 161, 171–189 (2009).
    Article  Google Scholar 

    79.
    Friedman, J. & Barrett, S. C. H. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot.-Lond. 103, 1515–1527 (2009).
    Article  Google Scholar 

    80.
    Watson, L. E., Bates, P. L., Evans, T. M., Unwin, M. M. & Estes, R. J. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol. Biol. 2, 17–28 (2002).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Decrease in social cohesion in a colonial seabird under a perturbation regime

    1.
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
    Article  Google Scholar 
    2.
    Dai, L., Korolev, K. S. & Gore, J. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers. Proc. Natl. Acad. Sci. 112, 10056–10061 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130263–20130263 (2014).
    Article  Google Scholar 

    4.
    Colchero, F. et al. The diversity of population responses to environmental change. Ecol. Lett. https://doi.org/10.1111/ele.13195 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Coulson, T. et al. Data from: Modeling adaptive and nonadaptive responses of populations to environmental change. Am. Nat. https://doi.org/10.5061/dryad.4c117 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Fernández-Chacón, A. et al. When to stay, when to disperse and where to go: Survival and dispersal patterns in a spatially structured seabird population. Ecography 36, 1117–1126 (2013).
    Article  Google Scholar 

    8.
    Sterk, M., van de Leemput, I. A. & Peeters, E. T. How to conceptualize and operationalize resilience in socio-ecological systems?. Curr. Opin. Environ. Sustain. 28, 108–113 (2017).
    Article  Google Scholar 

    9.
    Brand, F. S. & Jax, K. Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object. Ecol. Soc. 12, 23 (2007).
    Article  Google Scholar 

    10.
    Barrett, L., Henzi, S. P. & Lusseau, D. Taking sociality seriously: The structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc. B Biol. Sci. 367, 2108–2118 (2012).
    Article  Google Scholar 

    11.
    Centola, D. How Behavior Spreads: The Science of Complex Contagions. (2018).

    12.
    Firth, J. A. Considering complexity: Animal social networks and behavioural contagions. Trends Ecol. Evol. 35, 100–104 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proc. R. Soc. B Biol. Sci. 278, 2761–2767 (2011).
    Article  Google Scholar 

    14.
    Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. 112, 4690–4695 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32, 567–577 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Webber, Q. M. R. & Vander Wal, E. An evolutionary framework outlining the integration of individual social and spatial ecology. J. Anim. Ecol. 87, 113–127 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Sueur, C. & Mery, F. Social Interaction in Animals: Linking Experimental Approach and Social Network Analysis (Frontiers Media SA, Lausanne, 2017).
    Google Scholar 

    18.
    LaBarge, L. R., Allan, A. T. L., Berman, C. M., Margulis, S. W. & Hill, R. A. Reactive and pre-emptive spatial cohesion in a social primate. Anim. Behav. 163, 115–126 (2020).
    Article  Google Scholar 

    19.
    Firth, J. A. et al. Wild birds respond to flockmate loss by increasing their social network associations to others. Proc. R. Soc. B Biol. Sci. 284, 20170299 (2017).
    Article  Google Scholar 

    20.
    Farine, D. R. Structural trade-offs can predict rewiring in shrinking social networks. J. Anim. Ecol. 1365–2656, 13140. https://doi.org/10.1111/1365-2656.13140 (2019).
    Article  Google Scholar 

    21.
    Maldonado-Chaparro, A. A., Alarcón-Nieto, G., Klarevas-Irby, J. A. & Farine, D. R. Experimental disturbances reveal group-level costs of social instability. Proc. R. Soc. B Biol. Sci. 285, 20181577 (2018).
    Article  Google Scholar 

    22.
    Puga-Gonzalez, I., Sosa, S. & Sueur, C. Social style and resilience of macaques’ networks, a theoretical investigation. Primates 60, 233–246 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Williams, R. & Lusseau, D. A killer whale social network is vulnerable to targeted removals. Biol. Lett. 2, 497–500 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Oro, D. Perturbation, Social Feedbacks, and Population Dynamics in Social Animals (Oxford Univerity Press, Oxford, 2020).
    Google Scholar 

    25.
    Firth, J. A. & Sheldon, B. C. Experimental manipulation of avian social structure reveals segregation is carried over across contexts. Proc. R. Soc. B Biol. Sci. 282, 20142350–20142350 (2015).
    Article  Google Scholar 

    26.
    Genton, C. et al. How Ebola impacts social dynamics in gorillas: A multistate modelling approach. J. Anim. Ecol. 84, 166–176 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Leu, S. T., Farine, D. R., Wey, T. W., Sih, A. & Bull, C. M. Environment modulates population social structure: Experimental evidence from replicated social networks of wild lizards. Anim. Behav. 111, 23–31 (2016).
    Article  Google Scholar 

    28.
    Silk, J., Cheney, D. & Seyfarth, R. A practical guide to the study of social relationships: A practical guide to the study of social relationships. Evol. Anthropol. Issues News Rev. 22, 213–225 (2013).
    Article  Google Scholar 

    29.
    Brown, C. R. The ecology and evolution of colony-size variation. Behav. Ecol. Sociobiol. 70, 1613–1632 (2016).
    Article  Google Scholar 

    30.
    Rolland, C., Danchin, E. & de Fraipont, M. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: A comparative analysis. Am. Nat. 151, 514–529 (1998).
    CAS  PubMed  Article  Google Scholar 

    31.
    Shizuka, D. et al. Across-year social stability shapes network structure in wintering migrant sparrows. Ecol. Lett. 17, 998–1007 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Brandl, H. B., Griffith, S. C., Farine, D. R. & Schuett, W. Wild zebra finches that nest synchronously have long-term stable social ties. J. Anim. Ecol. 1365–2656, 13082. https://doi.org/10.1111/1365-2656.13082 (2019).
    Article  Google Scholar 

    33.
    Moreno, J. L. Who Shall Survive?: A New Approach to the Problem of Human Interrelations (Nervous and Mental Disease Publishing Co, New York, 1934). .

    34.
    Scott, J. Social network analysis. Sociology 22, 109–127 (1988).
    Article  Google Scholar 

    35.
    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, Princeton, 2008).
    Google Scholar 

    36.
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, New York, 2016).
    Google Scholar 

    38.
    Whitehead, H. Analyzing Animal Societies Quantitative Methods for Vertebrate Social Analysis. (2014).

    39.
    James, R., Croft, D. P. & Krause, J. Potential banana skins in animal social network analysis. Behav. Ecol. Sociobiol. 63, 989–997 (2009).
    Article  Google Scholar 

    40.
    Hasenjager, M. J. & Dugatkin, L. A. Chapter three—social network analysis in behavioral ecology. In Advances in the Study of Behavior (ed. Naguib, M.) 47, 39–114 (Academic Press, New York, 2015).
    Google Scholar 

    41.
    Payo-Payo, A. et al. Predator arrival elicits differential dispersal, change in age structure and reproductive performance in a prey population. Sci. Rep. 8, 1971 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Martínez-Abraín, A., Oro, D., Forero, M. G. & Conesa, D. Modeling temporal and spatial colony-site dynamics in a long-lived seabird. Popul. Ecol. 45, 133–139 (2003).
    Article  Google Scholar 

    43.
    Genovart, M., Oro, D. & Tenan, S. Immature survival, fertility, and density dependence drive global population dynamics in a long-lived species. Ecology 99, 2823–2832 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Almaraz, P. & Oro, D. Size-mediated non-trophic interactions and stochastic predation drive assembly and dynamics in a seabird community. Ecology 92, 1948–1958 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. https://doi.org/10.1093/beheco/arz083 (2019).
    Article  Google Scholar 

    46.
    Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial breeder with weak interannual breeding-site fidelity. Anim. Behav. 124, 125–133 (2017).
    Article  Google Scholar 

    47.
    Cantor, M. & Farine, D. R. Simple foraging rules in competitive environments can generate socially structured populations. Ecol. Evol. 8, 4978–4991 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Cantor, M. et al. Animal social networks: Revealing the causes and implications of social structure in ecology and evolution. https://osf.io/m62gb (2019). https://doi.org/10.32942/osf.io/m62gb.

    49.
    Anderson, D. J. & Hodum, P. J. Predator behavior favors clumped nesting in an oceanic seabird. Ecology 74, 2462–2464 (1993).
    Article  Google Scholar 

    50.
    Oro, D. Colonial seabird nesting in dense and small sub-colonies: An advantage against aerial predation. Condor 98, 848–850 (1996).
    Article  Google Scholar 

    51.
    Gil, M. A., Hein, A. M., Spiegel, O., Baskett, M. L. & Sih, A. Social information links individual behavior to population and community dynamics. Trends Ecol. Evol. 33, 535–548 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Lewanzik, D., Sundaramurthy, A. K. & Goerlitz, H. R. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost–benefit ratio of interactions. J. Anim. Ecol. 88, 1462–1473 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Doligez, B. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 20 (2017).
    ADS  Article  CAS  Google Scholar 

    55.
    Arganda, S., Pérez-Escudero, A. & de Polavieja, G. G. A common rule for decision making in animal collectives across species. Proc. Natl. Acad. Sci. 109, 20508–20513 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pérez-Escudero, A. & de Polavieja, G. G. Adversity magnifies the importance of social information in decision-making. J. R. Soc. Interface 14, 20170748 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Maldonado-Chaparro, A. A., Blumstein, D. T., Armitage, K. B. & Childs, D. Z. Transient LTRE analysis reveals the demographic and trait-mediated processes that buffer population growth. Ecol. Lett. 21, 1693–1703 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Pruitt, J. N. et al. Social tipping points in animal societies. Proc. R. Soc. B 285, 20181282 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).
    Article  Google Scholar 

    60.
    Doering, G. N., Scharf, I., Moeller, H. V. & Pruitt, J. N. Social tipping points in animal societies in response to heat stress. Nat. Ecol. Evol. 2, 1298–1305 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Cote, J., Clobert, J., Brodin, T., Fogarty, S. & Sih, A. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations. Philos. Trans. R. Soc. B Biol. Sci. 365, 4065–4076 (2010).
    CAS  Article  Google Scholar 

    64.
    Fogarty, S., Cote, J. & Sih, A. Social personality polymorphism and the spread of invasive species: A model. Am. Nat. 177, 273–287 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    O’Shea-Wheller, T. A., Masuda, N., Sendova-Franks, A. B. & Franks, N. R. Variability in individual assessment behaviour and its implications for collective decision-making. Proc. R. Soc. B Biol. Sci. 284, 20162237 (2017).
    Article  Google Scholar 

    66.
    Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F. Vive la résistance: Reviving resistance for 21st century conservation. Trends Ecol. Evol. 30, 516–523 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    IUCN. Larus audouinii: BirdLife International: The IUCN Red List of Threatened Species 2018: e.T22694313A132541241. (2018). https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694313A132541241.en.

    68.
    Martínez-Abraín, A., Jiménez, J. & Oro, D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 22, 3–13 (2019).
    Article  Google Scholar 

    69.
    Genovart, M., Jover, L., Ruiz, X. & Oro, D. Offspring sex ratios in subcolonies of Audouin’s gull, Larus audouinii, with differential breeding performance. Can. J. Zool. 81, 905–910 (2003).
    Article  Google Scholar 

    70.
    Oro, D. Audouin’s gull account. In The Birds of Western Palearctic (ed. Ogilvie, M. A.) 47–61 (Oxford University Press, Oxford, 1998).
    Google Scholar 

    71.
    Genovart, M., Pradel, R. & Oro, D. Exploiting uncertain ecological fieldwork data with multi-event capture-recapture modelling: An example with bird sex assignment. J. Anim. Ecol. 81, 970–977 (2012).
    PubMed  Article  Google Scholar 

    72.
    Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for philopatric and immigrant individuals in a long-lived bird adapted to unstable habitats. Oecologia 165, 935–945 (2010).
    ADS  PubMed  Article  Google Scholar 

    73.
    Hoff, P. D. Additive and multiplicative effects network models. arXiv:180708038 Stat (2018).

    74.
    Minhas, S., Hoff, P. D. & Ward, M. D. Inferential approaches for network analyses: AMEN for latent factor models. arXiv:161100460 Stat (2016).

    75.
    Warner, R. M., Kenny, D. A. & Stoto, M. A new round robin analysis of variance for social interaction data. J. Pers. Soc. Psychol. 37, 1742–1757 (1979).
    Article  Google Scholar 

    76.
    Gimenez, O. et al. Inferring animal social networks with imperfect detection. Ecol. Model. 401, 69–74 (2019).
    Article  Google Scholar 

    77.
    Hoppitt, W. J. E. & Farine, D. R. Association indices for quantifying social relationships: How to deal with missing observations of individuals or groups. Anim. Behav. 136, 227–238 (2018).
    Article  Google Scholar 

    78.
    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).
    Article  Google Scholar 

    79.
    Warnes,GR, Bolker, G, Gorjanc, G & Grothendieck, G. gdata: Various R programming tools for data manipulation. R package version (2014).

    80.
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 20, 20 (2006).
    Google Scholar 

    81.
    Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Ginsberg, J. R. & Young, T. P. Measuring association between individuals or groups in behavioural studies. Anim. Behav. 44, 377–379 (1992).
    Article  Google Scholar 

    83.
    Cairns, S. J. & Schwager, S. J. A comparison of association indices. Anim. Behav. 35, 1454–1469 (1987).
    Article  Google Scholar  More