More stories

  • in

    Soil bacterial community structures in relation to different oil palm management practices

    Site description and soil sampling
    The experiment was established as part of the EFForTS project (Ecological and socioeconomic Functions of tropical lowland rainForest Transformation Systems) in the Jambi province, located in Sumatra, Indonesia8.
    The experimental sites are located in the state-owned oil palm plantation PTPNVI, which was planted in 2002 (Fig. 1). All planted palms were derived from Tenera seedlings, which are a crossing between Dura and Psifera palms, supplied by Marihat (Medan, Indonesia). Four different locations (referred to as OM1-4) harbor four treatments, which were established in November 2016. In each of these 16 plots (50 × 50 m), five subplots were randomly established, resulting in 80 samples total.
    Fertilizer treatment was conducted in two intensities: for one application the conventional treatment usually used in the entire plantation with 130 kg nitrogen, 25 kg phosphorus and 110 kg potassium ha−1 and reduced fertilization with 68 kg nitrogen, 8.5 kg phosphorous and 93.5 kg potassium ha−1. Additionally, liming was conducted in all plots with equal amounts (213 kg dolomite and 71 kg micromag (micronutrients) ha−1). Fertilizer application and liming was done twice per year. The herbicide treatment used 375 cm3 glyphosate ha−1 sprayed within the palm circle four times per year and 375 cm3 glyphosate ha−1 in inter-rows applied twice per year15. The last application before sampling was done in April 2017. Mechanical weeding was done by cutting vegetation four times per year within the palm circle and two times per year in interrows with a brush cutter. The combination of these applications resulted in four different treatments: conventional fertilization with herbicide spraying (ch), conventional fertilization with mechanical weeding (cw), reduced fertilization with herbicide spraying (rh) and reduced fertilization with mechanical weeding (rw) (Table 1).
    Topsoil was sampled in May 2017 with a soil corer from the upper seven centimeters in each subplot with a diameter of five cm. A soil corer was used to take three cores in each subplot with a distance of 1 m to each other and at least 1 m distance to trees. The three bulk soil samples per subplot were homogenized and coarse roots and stones were removed. To prevent nucleic acids, especially RNA, from degradation RNAprotect Bacteria Reagent (Qiagen, Hilden, Germany) was applied in a ratio of 1:1. For measurements of soil parameters, we collected an additional sample, which was not supplemented with RNAprotect solution. All samples were transported in cooling boxes and stored at −80 °C until further use.
    Nucleic acid extraction
    Frozen samples were thawed on ice. RNAprotect was removed from all samples by centrifuging for 20 min at 804.96 g and 4 °C and discarding the resulting supernatant. DNA and RNA were co-extracted from 1 g of soil by using the Qiagen RNeasy PowerSoil Total RNA kit and the RNeasy PowerSoil DNA Elution kit as recommended by the manufacturer (Qiagen), except that RNA was eluted with 50 µl elution buffer instead of 100 µl. DNA contamination was removed from RNA preparations by using the TurboDNAfree kit (Applied Biosystems, Darmstadt, Germany). For this purpose, 0.1 volume DNAse buffer and 1 µl DNAse were added and incubated for 30 min at 37 °C. Subsequently, a second digestion cycle was performed with 0.5 µl DNAse at 37 °C for 15 min. RNA was then purified with the RNeasy MiniElute Cleanup kit (Qiagen). In order to verify complete DNA removal, a control amplification of the 16 S rRNA gene was performed as described below for 16 S rRNA gene amplification. Purified RNA was then reverse-transcribed into cDNA with the Superscript IV reverse transcriptase and a specific primer (5′-CCGTCAATTCMTTTGAGT-′3) as recommended by the manufacturer (Thermo Fisher Scientific, Schwerte, Germany). After cDNA synthesis, we removed residual RNA by adding 1 µl RNase H (New England Biolabs, Frankfurt am Main, Germany) to each reaction and incubation for 20 min at 37 °C. Obtained DNA and cDNA were stored at −20 °C until further use.
    16 S rRNA gene amplification and sequencing
    For amplification of 16 S rRNA sequences, we used 16 S rRNA gene primers targeting the V3-V4 region (forward primer: S-D-Bact-0341-b-S-17 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-CCTACGGGNGGCWGCAG-3′, reverse primer: S-D-Bact-0785-a-A-21 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-GACTACHVGGGTATCTAATCC-3′) as described by Klindworth22 and Herlemann23 and added adapters for MiSeq sequencing (underlined). PCR reactions were performed in a total volume 50 µl containing 10 µl of 5-fold Phusion GC buffer, 0.2 µl 50 mM MgCl2 solution, 2.5 µl DMSO, 200 µM of each of the four deoxynucleoside triphosphates and 1 U of Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific). We used 20 to 30 ng of DNA and 1 µl cDNA per reaction. The PCR reaction was started by an initial denaturation at 98 °C for 1 min, followed by 25 cycles of denaturation at 98 °C for 45 s, annealing at 60 °C for 45 s and elongation at 72 °C for 30 s. The final elongation was at 72 °C for 5 minutes. Amplicons were then purified by using MagSi-NGS PREP Plus magnetic beads following the procedure recommended by the manufacturer (Steinbrenner Laborsysteme GmbH, Wiesenbach, Germany) with the Janus Automated Workstation from Perkin Elmer (Perkin Elmer, Waltham Massachusetts, USA). Illumina MiSeq sequencing adapters were attached to the purified amplicons with the Nextera XT Index kit (Illumina, San Diego, USA). The Index PCR was done by using 5 µl of template PCR product, 2.5 µl of each index primer, 12.5 µl of 2x KAPA HiFi HotStart ReadyMix and 2.5 µl PCR grade water. Thermal cycling scheme was as follows: 95 °C for 3 min, 8 cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C and a final extension at 72 °C for 5 min. The indexed products were purified as described before. Products were quantified by using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer following the instructions of the manufacturer (Invitrogen GmbH, Karlsruhe, Germany). Purified amplicons were sequenced by the Göttingen Genomics Laboratory with a MiSeq instrument with a read length of 2 × 300 bp using dual indexing and reagent kit v3 (600 cycles) as recommended by the manufacturer (Illumina).
    Sequence processing
    We obtained 6,817,019 amplicon sequences with 5,183,993 remaining sequences after quality-filtering from DNA samples. At RNA level 6,412,838 raw sequences with 3,601,637 remaining sequences after quality-filtering were obtained24.
    Obtained paired-end sequences were first quality-filtered with fastp version 0.2025 using a minimum phred score of 20, a minimum length of 50 bases, the default sliding window size (–cut_window_size = 4), read correction by overlap (option “correction”), adapter removal of the sequencing primers (option “adapter_fasta”), and the provided index sequences of Illumina. Quality-filtered paired-end reads were merged with PEAR version 0.9.11 and default settings26. Primer sequences were clipped with cutadapt version 2.5 and default settings27. All further steps, except mapping of sequences to ASVs (Amplicon Sequence Variant) were performed with functions implemented in vsearch version 2.1.4.128. Sequences were filtered by size with “sortbylength” with a set minimum length of 300 bp. Dereplication of identical sequences was done by “derep_fulllength”. Denoising and removal of low abundant sequences with less than eight replicates were done with the vsearch UNOISE3 module “cluster_unoise”. Chimeric sequences were removed by employing the UCHIME module of vsearch. This included a de novo chimera removal (“uchime3_denovo”) and a reference-based chimera removal (“uchime_ref”) against the SILVA SSU 138 NR database29. Sequences were mapped to ASVs by vsearch (“usearch_global”) with a set sequence identity threshold of 0.97. Taxonomy assignments were performed with BLASTN30 (version 2.9.0) against the SILVA SSU 138 NR database29 with an minimum identity threshold of 90%31. In addition to the taxonomy identity, we added the taxonomy id of the database, length of fragment, query percentage identity, query coverage and e-value in the taxonomy string of the table. We used identity (pident) and query coverage (qcovs) per ASV of the blast output to exclude uncertain blast hits. As recommended by the SILVA ribosomal RNA database project32, we removed the taxonomic assignment for blast hits if dividing the sum of percent identity and percent query coverage by 2 resulted in ≤93%. In total, 31,987 ASVs were used for downstream analysis.
    Bacterial community analysis
    The bacterial community composition was further analysed in R33 (version 3.6.1) and RStudio34 (version 1.1.463). ASV counts were normalized by using the Geometric Mean of Pairwise Ratios (GMPR) of the GMPR package version 0.1.335. Community compositions were then analysed by the ampvis2 package version 2.4.11 and “amp_heatmap” at genus level36. The fifteen most abundant genera were displayed as relative abundance and clustered at treatment level. Heat-trees were displayed by the metacoder37 package (version 0.3.2.9001).
    For heat-tree calculation all counts were summed at order level and all taxa with a relative abundance of More

  • in

    Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported

    1.
    Nazni, W. A. et al. Establishment of Wolbachia Strain wAlbB in Malaysian populations of Aedes aegypti for Dengue control. Curr. Biol. 29, 4241–4248 (2019). e4245.
    CAS  Article  Google Scholar 
    2.
    Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2019).
    Article  Google Scholar 

    3.
    King, J. G., Souto-Maior, C., Sartori, L. M., Maciel-de-Freitas, R. & Gomes, M. G. M. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nat. Commun. 9, 1483 (2018).
    ADS  Article  Google Scholar 

    4.
    Souto-Maior, C., Sylvestre, G., Braga Stehling Dias, F., Gomes, M. G. M. & Maciel-de-Freitas, R. Model-based inference from multiple dose, time course data reveals Wolbachia effects on infection profiles of type 1 dengue virus in Aedes aegypti. PLoS Negl. Trop. Dis. 12, e0006339 (2018).
    Article  Google Scholar 

    5.
    Ferguson, N. M. et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Transl. Med. 7, 279ra237 (2015).
    Article  Google Scholar 

    6.
    Ant, T. H., Herd, C. S., Geoghegan, V., Hoffmann, A. A. & Sinkins, S. P. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 14, e1006815 (2018).
    Article  Google Scholar 

    7.
    Walker, T. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011).
    ADS  CAS  Article  Google Scholar 

    8.
    Frentiu, F. D. et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 8, e2688 (2014).
    Article  Google Scholar 

    9.
    Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).
    Article  Google Scholar 

    10.
    Fraser, J. E. et al. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog. 13, e1006751 (2017).
    Article  Google Scholar 

    11.
    Joubert, D. A. et al. Establishment of a Wolbachia superinfection in Aedes aegypti Mosquitoes as a potential approach for future resistance management. PLoS Pathog. 12, e1005434 (2016).
    Article  Google Scholar 

    12.
    Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 6, e1000833 (2010).
    Article  Google Scholar 

    13.
    Chouin-Carneiro, T. et al. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. Med. Vet. Entomol. https://doi.org/10.1111/mve.12384 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Pacidonio, E. C., Caragata, E. P., Alves, D. M., Marques, J. T. & Moreira, L. A. The impact of Wolbachia infection on the rate of vertical transmission of dengue virus in Brazilian Aedes aegypti. Parasit. Vectors 10, 296 (2017).
    Article  Google Scholar 

    15.
    Duong, V. et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc. Natl Acad. Sci. USA 112, 14688–14693 (2015).
    ADS  CAS  Article  Google Scholar  More

  • in

    Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations

    1.
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
    Google Scholar 
    2.
    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).
    Google Scholar 

    3.
    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).
    Google Scholar 

    4.
    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 

    5.
    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philos. Trans. R. Soc. A 373, 20140423 (2015).
    Google Scholar 

    6.
    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 68, 12–26 (2003).
    Google Scholar 

    7.
    Harding, T., Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Microbes in High Arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 77, 3234–3243 (2011).
    Google Scholar 

    8.
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
    Google Scholar 

    9.
    Bier, R. L. et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol. Ecol. 91, fiv113 (2015).
    Google Scholar 

    10.
    Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V. & Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).
    Google Scholar 

    11.
    Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).
    Google Scholar 

    12.
    Schimel, J. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. & Körner, C.) 239–254 (Springer, 1995).

    13.
    Schimel, J. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).
    Google Scholar 

    14.
    Bottos, E. M. et al. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110 (2018).
    Google Scholar 

    15.
    Jansson, J. K. & Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).
    Google Scholar 

    16.
    Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).
    Google Scholar 

    17.
    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).
    Google Scholar 

    18.
    Monteux, S. et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141 (2018).
    Google Scholar 

    19.
    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).
    Google Scholar 

    20.
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).
    Google Scholar 

    21.
    Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: a potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7, 699 (2019).
    Google Scholar 

    22.
    Hill, K. A. et al. Processing of atmospheric nitrogen by clouds above a forest environment. J. Geophys. Res. Atmos. 112, D11301 (2007).
    Google Scholar 

    23.
    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 1160–1172 (2013).
    Google Scholar 

    24.
    Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in Arctic permafrost soils. Sci. Rep. 6, 25607 (2016).
    Google Scholar 

    25.
    Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172, 75–86 (2017).
    Google Scholar 

    26.
    Wertz, S. et al. Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169 (2006).
    Google Scholar 

    27.
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).
    Google Scholar 

    28.
    Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).
    Google Scholar 

    29.
    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    Google Scholar 

    30.
    Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 

    31.
    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nat. Geosci. 3, 332–335 (2010).
    Google Scholar 

    32.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    Google Scholar 

    33.
    Gittel, A. et al. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853 (2014).
    Google Scholar 

    34.
    Weiss, N. et al. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region. Sediment. Geol. 340, 38–48 (2016).
    Google Scholar 

    35.
    Inglese, C. N. et al. Examination of soil microbial communities after permafrost thaw subsequent to an active layer detachment in the High Arctic. Arct. Antarct. Alp. Res. 49, 455–472 (2017).
    Google Scholar 

    36.
    Wild, B. et al. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in Western Siberia. Glob. Biogeochem. Cycles 29, 567–582 (2015).
    Google Scholar 

    37.
    Voigt, C. et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc. Natl Acad. Sci. USA 114, 6238–6243 (2017).
    Google Scholar 

    38.
    Wrage-Mönnig, N. et al. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123, A3–A16 (2018).
    Google Scholar 

    39.
    Siljanen, H. M. P. et al. Archaeal nitrification is a key driver of high nitrous oxide emissions from Arctic peatlands. Soil Biol. Biochem. 137, 107539 (2019).
    Google Scholar 

    40.
    Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).
    Google Scholar 

    41.
    Keuper, F. et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 23, 4257–4266 (2017).
    Google Scholar 

    42.
    Liu, X.-Y. et al. Nitrate is an important nitrogen source for Arctic tundra plants. Proc. Natl Acad. Sci. USA 115, 3398–3403 (2018).
    Google Scholar 

    43.
    Myrstener, M. et al. Persistent nitrogen limitation of stream biofilm communities along climate gradients in the Arctic. Glob. Change Biol. 24, 3680–3691 (2018).
    Google Scholar 

    44.
    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).
    Google Scholar 

    45.
    Holm, S. et al. Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiol. Ecol. 96, fiaa021 (2020).
    Google Scholar 

    46.
    Douglas, T. A. et al. Biogeochemical and geocryological characteristics of wedge and thermokarst-cave ice in the CRREL permafrost tunnel, Alaska. Permafr. Periglac. Process. 22, 120–128 (2011).
    Google Scholar 

    47.
    Long, A. & Péwé, T. L. Radiocarbon dating by high-sensitivity liquid scintillation counting of wood from the Fox permafrost tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 7, 281–285 (1996).
    Google Scholar 

    48.
    Hamilton, T. D., Craig, J. L. & Sellmann, P. V. The Fox permafrost tunnel: a late Quaternary geologic record in central Alaska. GSA Bull. 100, 948–969 (1988).
    Google Scholar 

    49.
    Shur, Y., French, H. M., Bray, M. T. & Anderson, D. A. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 15, 339–347 (2004).
    Google Scholar 

    50.
    Howard, M. M., Bell, T. H. & Kao-Kniffin, J. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment. FEMS Microbiol. Lett. 364, fnx092 (2017).
    Google Scholar 

    51.
    Patra, A. K. et al. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecol. Monogr. 75, 65–80 (2005).
    Google Scholar 

    52.
    Fontaine, S. et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 43, 86–96 (2011).
    Google Scholar 

    53.
    Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894 (2013).
    Google Scholar 

    54.
    Walz, J., Knoblauch, C., Böhme, L. & Pfeiffer, E.-M. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils—impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol. Biochem. 110, 34–43 (2017).
    Google Scholar 

    55.
    Weedon, J. T. et al. Temperature sensitivity of peatland C and N cycling: does substrate supply play a role? Soil Biol. Biochem. 61, 109–120 (2013).
    Google Scholar 

    56.
    Ping, C. L. Soil temperature profiles of two Alaskan soils. Soil Sci. Soc. Am. J. 51, 1010–1018 (1987).
    Google Scholar 

    57.
    D’Amico, S. et al. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385–389 (2006).
    Google Scholar 

    58.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
    Google Scholar 

    59.
    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation–extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).
    Google Scholar 

    60.
    Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
    Google Scholar 

    61.
    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).
    Google Scholar 

    62.
    Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).
    Google Scholar 

    63.
    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).
    Google Scholar 

    64.
    Muyzer, G., Waal, E. Cde & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
    Google Scholar 

    65.
    Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).
    Google Scholar 

    66.
    Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).
    Google Scholar 

    67.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    Google Scholar 

    68.
    Morgan, M. et al. ShortRead: a Bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).
    Google Scholar 

    69.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    Google Scholar 

    70.
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).
    Google Scholar 

    71.
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).
    Google Scholar 

    72.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    Google Scholar 

    73.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    Google Scholar 

    74.
    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).
    Google Scholar 

    75.
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
    Google Scholar 

    76.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    Google Scholar 

    77.
    Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5, e2836 (2017).
    Google Scholar 

    78.
    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).
    Google Scholar 

    79.
    Olsson, P. A., Bååth, E., Jakobsen, I. & Söderström, B. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).
    Google Scholar 

    80.
    Ruess, L. & Chamberlain, P. M. The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910 (2010).
    Google Scholar 

    81.
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29, 111–129 (1999).
    Google Scholar 

    82.
    Frostegård, A. & Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).
    Google Scholar 

    83.
    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Google Scholar 

    84.
    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).
    Google Scholar 

    85.
    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
    Google Scholar 

    86.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Google Scholar 

    87.
    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 10, e1003531 (2014).
    Google Scholar 

    88.
    Pinto, A. J. et al. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. mSphere 1, e00054-15 (2016).
    Google Scholar 

    89.
    Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).
    Google Scholar 

    90.
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
    Google Scholar 

    91.
    Kuhn, M. caret: Classification and Regression Training v.6.0-86 (2020); https://CRAN.R-project.org/package=caret

    92.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 

    93.
    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).

    94.
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7, 19–33 (2015).
    Google Scholar 

    95.
    R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants

    1.
    Croft, B. A. Arthropod Biological Control Agents and Pesticides (Wiley, New York, 1990).
    Google Scholar 
    2.
    Stark, J. D., Vargas, R. & Banks, J. E. Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J. Econ. Entomol. 100, 1027–1032 (2007).
    Article  Google Scholar 

    3.
    Roubos, C. R., Rodriguez-Saona, C. & Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75, 28–38 (2014).
    CAS  Article  Google Scholar 

    4.
    Stark, J. D., Banks, J. E. & Vargas, R. I. How risky is risk assessment? The role that life history strategies play in susceptibility of species to pesticides and other toxicants. Proc. Nat. Acad. Sci. 101, 732–736 (2004).
    ADS  CAS  Article  Google Scholar 

    5.
    Macfadyen, S., Banks, J. E., Stark, J. D. & Davies, A. P. Using semifield studies to examine the effect of pesticides on mobile terrestrial invertebrates. Annu. Rev. Entomol. 59, 383–404 (2014).
    CAS  Article  Google Scholar 

    6.
    Hill, M. P., Macfadyen, S. & Nash, M. A. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ 5, e4179 (2017).
    Article  Google Scholar 

    7.
    Main, A. R., Webb, E. B., Goyne, K. W. & Mengel, D. Neonicotinoid insecticides negatively affect performance measures of non-target terrestrial arthropods: A meta-analysis. Ecol. Appl. 28, 1232–1244 (2018).
    Article  Google Scholar 

    8.
    Stark, J. D., Banks, J. E. & Acheampong, S. Estimating susceptibility of biological control agents to pesticides: Influence of life history strategies and population structure. Biol. Control 29, 392–398 (2004).
    Article  Google Scholar 

    9.
    Zehnder, G. W. Timing of insecticides for control of Colorado Potato Beetle (Coleoptera: Chrysomelidae) in eastern Virginia based on differential susceptibility of life stages. J. Econ. Entomol. 79, 851–856 (1986).
    CAS  Article  Google Scholar 

    10.
    Banken, J. A. O. & Stark, J. D. Stage and age influence on the susceptibility of Coccinella septempunctata L. (Coleoptera: Cocinellidae) after direct exposure to the neem insecticide. Neemix. J. Econ. Entomol. 90, 1102–1105 (1997).
    Article  Google Scholar 

    11.
    Suh, C.P.-C., Orr, D. B. & Van Duyn, J. W. Effect of insecticides on Trichogramma exiguum (Trichogrammatidae: Hymenoptera) preimaginal development and adult survival. J. Econ. Entomol. 93, 577–583 (2000).
    CAS  Article  Google Scholar 

    12.
    Medina, P., Budia, F., Tirry, L., Smagghe, G. & Vinuela, E. Compatibility of spinosad, tebufenozide and azadirachtin with eggs and pupae of the predator Chrysoperla carnea (Stephens) under laboratory conditions. Biocontrol Sci. Technol. 11, 597–610 (2001).
    Article  Google Scholar 

    13.
    Greulich, K. & Pflugmacher, S. Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquat. Toxicol. 65, 329–336 (2003).
    CAS  Article  Google Scholar 

    14.
    Saber, M., Hejazi, M. J. & Hassan, S. A. Effects of Azadirachtin/Neemazal on different stages and adult life table parameters of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). J. Econ. Entomol. 97, 905–910 (2004).
    CAS  Article  Google Scholar 

    15.
    Stark, J. D. & Acheampong, S. A. A demographic and modeling approach to determine the suitability of two hosts, Brevicoryne brassicae (Linnaeus) (Aphididae) and Myzus persicae (Sulzer) (Aphididae) of the aphid parasitoid, Diaeretiella rapae (McIntosh) (Aphidiidae). Pan. Pac. Entomol. 83, 1–8 (2007).
    Article  Google Scholar 

    16.
    Madour, N. S. Influence of spinosad on immature and adult stages of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Biocontrol 54, 93–102 (2009).
    Article  Google Scholar 

    17.
    Brühl, C. et al. Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline?. Sci. Rep. 3, 1135 (2013).
    Article  Google Scholar 

    18.
    Buck, J. C. et al. Effects of pesticide mixtures on host-pathogen dynamics of the amphibian chytrid fungus. PLoS ONE 10(e0132832), 2015. https://doi.org/10.1371/journal.pone.0132832 (2015).
    CAS  Article  Google Scholar 

    19.
    Svartz, G., Aronzon, C. & Perez Coll, C. Comparative sensitivity among early life stages of the South American toad to cypermethrin-based pesticide. Environ. Sci. Poll. Res. 23, 2906–2913 (2016).
    CAS  Article  Google Scholar 

    20.
    Liu, A. Z., Ru, T. Q., Wang, X. J. & Li, S. G. Susceptibility of both aphid species to some insecticides. Plant Prot. 39, 20–21 (2001).
    Google Scholar 

    21.
    Lu, Y. & Gao, X. Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull. Entomol. Res. 99, 611–617 (2009).
    CAS  Article  Google Scholar 

    22.
    Hilton, S. A., Tolman, J. H., MacArthur, D. C. & Harris, C. R. Toxicity of selected insecticides to several life stages of Colorado potato beetle, Leptinotarsa decemlineata (Say). Can. Entomol. 130, 187–194 (1998).
    Article  Google Scholar 

    23.
    Stark, J. D. & Banken, J. A. O. Importance of population structure at the time of toxicant exposure. Ecotoxicol. Environ. Saf. 42, 282–287 (1999).
    CAS  Article  Google Scholar 

    24.
    Pourmirza, A. A. Local variation in susceptibility of Colorado potato beetle (Coleoptera: Chrysomelidae) to insecticide. J. Econ. Entomol. 98, 2176–2180 (2005).
    CAS  Article  Google Scholar 

    25.
    Forbes, V. E. & Calow, P. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology?. Environ. Toxicol. Chem. 18, 1544–1556 (1999).
    CAS  Article  Google Scholar 

    26.
    Stark, J. D. & Banks, J. E. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 48, 505–519 (2003).
    CAS  Article  Google Scholar 

    27.
    Banks, H. T., Banks, J. E., Everett, R. A. & Stark, J. D. An adaptive feedback methodology for determining information content in stable population studies. Math. Biosci. Eng. 13, 653–671 (2016).
    MathSciNet  CAS  Article  Google Scholar 

    28.
    Stark, J. D. & Banks, J. E. Developing demographic toxicity data: Optimizing effort for predicting population outcomes. PeerJ 4, e2067 (2016).
    Article  Google Scholar 

    29.
    Stark, J. D. & Wennergren, U. Can population effects of pesticides be predicted from demographic toxicological studies?. J. Econ. Entomol. 88, 1089–1096 (1995).
    Article  Google Scholar 

    30.
    Wennergren, U. & Stark, J. D. Modeling long-term effects of pesticides on populations: Beyond just counting dead animals. Ecol. Appl. 10, 295–302 (2000).
    Article  Google Scholar 

    31.
    Veprauskas, A., Ackleh, A. S., Banks, J. E. & Stark, J. D. The evolution of toxicant resistance in daphniids and its role on surrogate species. Theor. Pop. Biol. 119, 15–25 (2018).
    Article  Google Scholar 

    32.
    Ackleh, A. S., Hossain, M. I., Veprauskas, A. & Zhang, A. Persistence and stability analysis of discrete-time predator–prey models: a study of population and evolutionary dynamics. J. Differ. Eq Appl. 25, 1568–1603 (2019).
    MathSciNet  Article  Google Scholar 

    33.
    Acheampong, S. & Stark, J. D. Effects of the agricultural adjuvant Sylgard 309 and the insecticide pymetrozine on demographic parameters of the aphid parasitoid, Diaeretiella rapae. Biol. Control 31, 133–137 (2004).
    CAS  Article  Google Scholar 

    34.
    Lefkovitch, L. P. The study of population growth in organisms grouped by stages. Biometrics 21, 1–18 (1965).
    Article  Google Scholar 

    35.
    Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation 2nd edn. (Sinauer, Sunderland, MA, 2001).
    Google Scholar 

    36.
    Carey, J. R. Applied Demography for Biologists: With Special Emphasis on Insects (Oxford University Press, Oxford, 1993).
    Google Scholar 

    37.
    Banks, J. E., Stark, J. D., Vargas, R. I. & Ackleh, A. Parasitoids and ecological risk assessment: Can toxicity data developed for one species be used to protect an entire guild?. Biol. Control 59, 336–339 (2011).
    Article  Google Scholar 

    38.
    Banks, J. E., Stark, J. D., Vargas, R. I. & Ackleh, A. S. Deconstructing the surrogate species concept: A life history approach to the protection of ecosystem services. Ecol. Appl. 24, 770–778 (2014).
    Article  Google Scholar 

    39.
    Institute, S. A. S. SAS User’s Guide: Statistics (SAS Institute, Cary, 2013).
    Google Scholar  More

  • in

    The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations

    1.
    Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Reich, P. B. & Karolewski, P. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. ecol. 12(4), 573–590 (1998).
    Article  Google Scholar 
    2.
    Jansson, G. et al. Norway spruce (Picea abies (L.) H. Karst.) Pâques L. (ed.) forest tree breeding in Europe. Manag. Ecosyst. 25, 123–176 (2013).
    Google Scholar 

    3.
    Müller-Starck, G., Baradat, Ph. & Bergmann, F. Genetic variation within European tree species. New For. 6(1–4), 23–47 (1992).
    Article  Google Scholar 

    4.
    Morgenstern, E. K. of tree ecotypes in Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture 109–115 (Vancouver, Amsterdam, 1996).

    5.
    Androsiuk, P. et al. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 62(1–6), 127–136 (2013).
    Article  Google Scholar 

    6.
    Farjon, A. & Filer, D. Specific Adaptations in An atlas of the world’s conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status (Springer, The Netherlands, 2013).
    Google Scholar 

    7.
    Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe. PLoS ONE 10(8), e0136357 (2015).
    Article  Google Scholar 

    8.
    van der Maaten-Theunissen, M., Kahle, H. P., & van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. Sci. 70(2), 185–193 (2013).

    9.
    Trujillo-Moya, C. et al. Drought sensitivity of norway spruce at the species’ warmest fringe: Quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 Genes Genom. Genet. g3, 300524 (2018).
    Google Scholar 

    10.
    Close, T. J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plantarum. 97(4), 795–803 (1996).
    ADS  CAS  Article  Google Scholar 

    11.
    Campbell, S. A. & Close, T. J. Dehydrins: Genes, proteins, and associations with phenotypic traits. New Phytol. 137(1), 61–74 (1997).
    CAS  Article  Google Scholar 

    12.
    Yakovlev, I. A. et al. Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228(3), 459–472 (2008).
    MathSciNet  CAS  Article  Google Scholar 

    13.
    Eldhuset, T. D. et al. Drought affects tracheid structure, dehydrin expression, and above-and below ground growth in 5-year-old Norway spruce. Plant Soil 366(1–2), 305–320 (2013).
    CAS  Article  Google Scholar 

    14.
    Hara, M. The multifunctionality of dehydrins: An overview. Plant Signal. Behav. 5(5), 503–508 (2010).
    CAS  Article  Google Scholar 

    15.
    Graether, S. P. & Boddington, K. F. Disorder and function: A review of the dehydrin protein family. Front. Plant Sci. 5, 576 (2014).
    Article  Google Scholar 

    16.
    Hanin, M. et al. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signal. Behav. 6(10), 1503–1509 (2011).
    CAS  Article  Google Scholar 

    17.
    Kosová, K. et al. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). J. Plant Physiol. 165(11), 1142–1151 (2008).
    Article  Google Scholar 

    18.
    Yamasaki, Y., Koehler, G., Blacklock, B. J. & Randall, S. K. Dehydrin expression in soybean. Plant Physiol. Biochem. 70, 213–220 (2013).
    CAS  Article  Google Scholar 

    19.
    Liu, H. et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 231, 198–211 (2015).
    CAS  Article  Google Scholar 

    20.
    Velasco-Conde, T., Yakovlev, I., Majada, J. P., Aranda, I. & Johnsen, Ø. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet. Genomes. 8(5), 957–973 (2012).
    Article  Google Scholar 

    21.
    Stival Sena, J., Giguère, I., Rigault, P., Bousquet, J. & Mackay, J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiol. 38(3), 442–456 (2018).
    Article  Google Scholar 

    22.
    Šindelář J. of experimental plot in Klonové Archivy Smrku Ztepilého Picea abies Karst. na PLO Zbraslav-Strnady—Polesí Jíloviště (VÚLHM, 1975).

    23.
    Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5), e19379 (2011).
    ADS  CAS  Article  Google Scholar 

    24.
    Yakovlev, I. A., Fossdal, C. G., Johnsen, O., Junttila, O. & Skrøppa, T. Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes. 2(1), 39–52 (2006).
    Article  Google Scholar 

    25.
    Kjellsen, T. D., Yakovlev, I. A., Fossdal, C. G. & Strimbeck, G. R. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata). Tree Physiol. 33(12), 1354–1366 (2013).
    CAS  Article  Google Scholar 

    26.
    R Core Team. R. A language and environment for statistical computing. Preprint at https://www.R-project.org/ (2018).

    27.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).
    CAS  Article  Google Scholar 

    28.
    Jombart, T. & Ahmed, I. New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).
    CAS  Article  Google Scholar 

    29.
    Gömöry, D., Foffová, E., Kmeť, J., Longauer, R. & Romšáková, I. Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation?. Acta Biol. Cracov. Bot. 52(2), 42–49 (2010).
    Google Scholar 

    30.
    Cortleven, A. et al. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998–1018 (2019).
    CAS  Article  Google Scholar 

    31.
    Szabados, L. & Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2010).
    CAS  Article  Google Scholar 

    32.
    Zulfiqar, F., Akram, N. A. & Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251, 3 (2020).
    CAS  Article  Google Scholar 

    33.
    Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 87(2), 66 (2018).
    Article  Google Scholar 

    34.
    Rowland, L. J. & Arora, R. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 126(2), 119–144 (1997).
    CAS  Article  Google Scholar 

    35.
    Erez, A., Faust, M. & Line, M. J. Changes in water status in peach buds on induction, development and release from dormancy. Sci. Hortic. 73(2–3), 111–123 (1998).
    Article  Google Scholar 

    36.
    Kalberer, S. R., Wisniewski, M. & Arora, R. Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci. 171(1), 3–16 (2006).
    CAS  Article  Google Scholar 

    37.
    Welling, A., Moritz, T., Palva, E. T. & Junttila, O. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol. 129(4), 1633–1641 (2002).
    CAS  Article  Google Scholar 

    38.
    Welling, A. et al. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J. Exp. Bot. 55(396), 507–516 (2004).
    CAS  Article  Google Scholar 

    39.
    Karlson, D. T., Zeng, Y., Stirm, V. E., Joly, R. J. & Ashworth, E. N. Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance. Plant Cell Physiol. 44(1), 25–34 (2003).
    CAS  Article  Google Scholar 

    40.
    Carneros, E., Yakovlev, I., Viejo, M., Olsen, J. E. & Fossdal, C. G. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta 246(3), 553–566 (2017).
    CAS  Article  Google Scholar 

    41.
    Asante, D. K. et al. Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant Cell Environ. 34(2), 332–346 (2011).
    CAS  Article  Google Scholar 

    42.
    Asante, D. K. et al. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn. Plant Physiol. Bioch. 47(8), 681–689 (2009).
    CAS  Article  Google Scholar 

    43.
    Ruttink, T. et al. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8), 2370–2390 (2007).
    CAS  Article  Google Scholar  More

  • in

    Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird

    1.
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
    CAS  PubMed  Article  Google Scholar 
    2.
    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science (80-) 366, eaar2016 (2019).
    CAS  Article  Google Scholar 

    3.
    Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. 108, 3047–3052 (2011).
    ADS  CAS  Article  Google Scholar 

    4.
    Foster, J. A. & McVey Neufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).
    CAS  PubMed  Article  Google Scholar 

    5.
    Clarke, G. et al. The microbiome-gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).
    CAS  PubMed  Article  Google Scholar 

    6.
    Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).
    CAS  PubMed  Article  Google Scholar 

    7.
    Hoban, A. E. et al. The microbiome regulates amygdala-dependent fear recall. Mol. Psychiatry 23, 1134–1144 (2018).
    CAS  PubMed  Article  Google Scholar 

    8.
    Magnusson, K. R. et al. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140 (2015).
    CAS  PubMed  Article  Google Scholar 

    9.
    Ogbonnaya, E. S. et al. Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol. Psychiat. 78, e7–e9 (2015).
    PubMed  Article  Google Scholar 

    10.
    Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317 (2011).
    PubMed  Article  Google Scholar 

    11.
    Stilling, R. M. et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut–brain axis?. Neurochem. Int. 99, 110–132 (2016).
    CAS  PubMed  Article  Google Scholar 

    12.
    Davidson, G. L., Raulo, A. & Knowles, S. C. L. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.06.014 (2020).
    Article  PubMed  Google Scholar 

    13.
    Davidson, G. L., Cooke, A. C., Johnson, C. N. & Quinn, J. L. The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philos. Trans. R. Soc. B Biol. https://doi.org/10.1098/rstb.2017.0286 (2018).
    Article  Google Scholar 

    14.
    Morand-Ferron, J., Cole, E. F. & Quinn, J. L. Studying the evolutionary ecology of cognition in the wild: a review of practical and conceptual challenges. Biol. Rev. 91, 367–389 (2016).
    PubMed  Article  Google Scholar 

    15.
    Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, Princeton, 2019).https://doi.org/10.2307/j.ctvs32s6b
    Google Scholar 

    16.
    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 107, 14691–14696 (2010).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Gillingham, M. A. F. et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00035 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Costa, S., Lopes, I., Proença, D. N., Ribeiro, R. & Morais, P. V. Diversity of cutaneous microbiome of Pelophylax perezi populations inhabiting different environments. Sci. Total Environ. 572, 995–1004 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Knutie, S. A., Chaves, J. A. & Gotanda, K. M. Human activity can influence the gut microbiota of Darwin’s finches in the Galapagos Islands. Mol. Ecol. 28, 2441–2450 (2019).
    PubMed  Article  Google Scholar 

    20.
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the Wild Black Howler Monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Pan, D. & Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5, 108–119 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2182 (2020).
    Article  Google Scholar 

    26.
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).
    CAS  PubMed  Article  Google Scholar 

    28.
    Fava, F. et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int. J. Obes. 37, 216–223 (2013).
    CAS  Article  Google Scholar 

    29.
    Wu, G. D. et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65, 63–72 (2016).
    CAS  PubMed  Article  Google Scholar 

    30.
    Zimmer, J. et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 66, 53–60 (2012).
    CAS  PubMed  Article  Google Scholar 

    31.
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. U. S. A. 116, 23588–23593 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Bolnick, et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
    MathSciNet  PubMed  Article  Google Scholar 

    35.
    Li, W., Dowd, S. E., Scurlock, B., Acosta-Martinez, V. & Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 96, 557–567 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Ezra-Nevo, G., Henriques, S. F. & Ribeiro, C. The diet-microbiome tango: how nutrients lead the gut brain axis. Curr. Opin. Neurobiol. 62, 122–132 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Psaltopoulou, T. et al. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann. Neurol. 74, 580–591 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Carlson, A. L. et al. Infant gut microbiome associated with cognitive development. Biol. Psychiatry 83, 148–159 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Dunn, J. C., Cole, E. F. & Quinn, J. L. Personality and parasites: Sex-dependent associations between avian malaria infection and multiple behavioural traits. Behav. Ecol. Sociobiol. 65, 1459–1471 (2011).
    Article  Google Scholar 

    40.
    Cole, E. F., Morand-Ferron, J., Hinks, A. E. & Quinn, J. L. Cognitive ability influences reproductive life history variation in the wild. Curr. Biol. 22, 1808–1812 (2012).
    CAS  PubMed  Article  Google Scholar 

    41.
    Seed, A. & Mayer, C. Problem Solving. in APA handbook of comparative psychology: Perception, learning, and cognition, Vol. 2 601–625 (American Psychological Association, 2017).

    42.
    Cole, E. F., Cram, D. L. & Quinn, J. L. Individual variation in spontaneous problem-solving performance among wild great tits. Anim. Behav. 81, 491–498 (2011).
    Article  Google Scholar 

    43.
    Morand-Ferron, J., Cole, E. F., Rawles, J. E. C. & Quinn, J. L. Who are the innovators? A field experiment with 2 passerine species. Behav. Ecol. 22, 1241–1248 (2011).
    Article  Google Scholar 

    44.
    Quinn, J. L., Cole, E. F., Reed, T. E. & Morand-Ferron, J. Environmental and genetic determinants of innovativeness in a natural population of birds. Philos. Trans. R. Soc. Biol. B Sci. 371, 20150184 (2016).
    Article  CAS  Google Scholar 

    45.
    Ducatez, S., Clavel, J. & Lefebvre, L. Ecological generalism and behavioural innovation in birds: technical intelligence or the simple incorporation of new foods?. J. Anim. Ecol. 84, 79–89 (2015).
    PubMed  Article  Google Scholar 

    46.
    Reader, S. M. & MacDonald, K. Environmental variability and primate behavioural flexibility. Anim. Innov. https://doi.org/10.1093/acprof:oso/9780198526223.003.0004 (2012).
    Article  Google Scholar 

    47.
    Biard, C. et al. Growing in cities: an urban penalty for wild birds? A study of phenotypic differences between urban and rural great tit chicks (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00079 (2017).
    Article  Google Scholar 

    48.
    Teyssier, A. et al. Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Escallón, C., Belden, L. K. & Moore, I. T. The cloacal microbiome changes with the breeding season in a wild bird. Integr. Org. Biol. https://doi.org/10.1093/iob/oby009 (2019).
    Article  Google Scholar 

    50.
    Waite, D. W. & Taylor, M. W. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00223 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Knutie, S. A. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J. Appl. Ecol. 57, 536–547 (2020).
    CAS  Article  Google Scholar 

    53.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Veľký, M., Kaňuch, P. & Krištín, A. Food composition of wintering great tits (Parus major): habitat and seasonal aspects. Folia Zool. 60, 228–236 (2011).
    Article  Google Scholar 

    55.
    Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural white-crowned Sparrows. Front. Ecol. Evol. 6, 148 (2018).
    Article  Google Scholar 

    56.
    Rosshart, S. P. et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171, 1015–1028 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Griffin, A. S. & Guez, D. Innovation and problem solving: a review of common mechanisms. Behav. Process. 109, 121–134 (2014).
    Article  Google Scholar 

    58.
    Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Maniscalco, J. W. & Rinaman, L. Vagal interoceptive modulation of motivated behavior. Physiology 33, 151–167 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Bruce-Keller, A. J. et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77, 607–615 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Greyson-Gaito, C. J. et al. Into the wild: microbiome transplant studies need broader ecological reality. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2834 (2020).
    Article  Google Scholar 

    62.
    Roager, H. M. & Dragsted, L. O. Diet-derived microbial metabolites in health and disease. Nutr. Bull. 44, 216–227 (2019).
    Article  Google Scholar 

    63.
    Möhle, L. et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15, 1945–1956 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    64.
    Cryan, J. F. et al. The microbiota-gut-dbrain axis. Physiol. Rev. 99, 1877–2013 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    O’Connor, R. J. Identification guide to European Passerines L. Svensson. Auk 102, (1985).

    67.
    Khan, G., Kangro, H. O., Coates, P. J. & Heath, R. B. Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J. Clin. Pathol. 44, 360–365 (1991).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).
    CAS  PubMed  Article  Google Scholar 

    69.
    Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859) 133, 49–54 (1991).
    Article  Google Scholar 

    70.
    Serrano-Davies, E., O’Shea, W. & Quinn, J. L. Individual foraging preferences are linked to innovativeness and personality in the great tit. Behav. Ecol. Sociobiol. 71, 161 (2017).
    Article  Google Scholar 

    71.
    Aplin, L. M., Sheldon, B. C. & McElreath, R. Conformity does not perpetuate suboptimal traditions in a wild population of songbirds. Proc. Natl. Acad. Sci. U. S. A. 114, 7830–7837 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    O’Shea, W., Serrano-Davies, E. & Quinn, J. L. Do personality and innovativeness influence competitive ability? An experimental test in the great tit. Behav. Ecol. 28, 1435–1444 (2017).
    Article  Google Scholar 

    73.
    Shutt, J. D. et al. Gradients in richness and turnover of a forest passerine’s diet prior to breeding: a mixed model approach applied to faecal metabarcoding data. Mol. Ecol. 29, 1199–1213 (2020).
    PubMed  Article  Google Scholar 

    74.
    Crouch, N. M. A., Lynch, V. M. & Clarke, J. A. A re-evaluation of the chemical composition of avian urinary excreta. J. Ornithol. 161, 17–24 (2020).
    Article  Google Scholar 

    75.
    Fouhy, F. et al. Perinatal factors affect the gut microbiota up to four years after birth. Nat. Commun. 10, 1517 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U. S. A. 102, 2567–2572 (2005).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org/ (2014).

    79.
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
    CAS  PubMed  Article  Google Scholar 

    80.
    Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife https://doi.org/10.7554/eLife.01102 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7, https://CRAN.R-project.org/package=lme4. R Packag. version (2014).

    82.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).
    Article  Google Scholar 

    83.
    Zakrzewski, M. et al. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics https://doi.org/10.1093/bioinformatics/btw725 (2017).
    Article  PubMed  Google Scholar  More