Philippa Kaur
More stories
225 Shares179 Views
in EcologySmall-scale alpine topography at low latitudes and high altitudes: refuge areas of the genus Chrysanthemum and its allies
1.
Hirakawa, H. et al. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res. 26, 195–203 (2019).
CAS PubMed Article PubMed Central Google Scholar
2.
Stevenson, T. Chrysanthemums. Nature 90, 248 (1912).
Google Scholar3.
Ministry of Agriculture and Fisheries UK. Control of the Chrysanthemum midge. Nature 144, 280 (1939).4.
Cockshull, K. E. & Hughes, A. P. Distribution of dry matter to flowers in Chrysanthemum morifolium. Nature 215, 780–781 (1976).
Article Google Scholar5.
Courtney-Gutterson, N. et al. Modification of flower color in florist’s Chrysanthemum: production of a white–flowering variety through molecular genetics. Nat. Biotechnol. 12, 268–271 (1994).
CAS Article Google Scholar6.
Gamalero, E. Effects of Pseudomonas putida S1Pf1Rif against Chrysanthemum yellows phytoplasma infection. Phytopathology 100, 805–813 (2010).
PubMed Article PubMed Central Google Scholar7.
Wei, Q. et al. Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8, 829 (2017).
PubMed Article CAS PubMed Central Google Scholar8.
Yang, L., Wen, X., Fu, J. & Dai, S. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. Hortic. Res. 5, 58 (2018).
PubMed Article CAS PubMed Central Google Scholar9.
Su, J. et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic. Res. 6, 109 (2019).
PubMed Article CAS PubMed Central Google Scholar10.
Kubitzki, K. The families and genera of vascular plants, Vol. VIII Flowering Plants・Eudicots (eds Kadereit, J. W. & Jeffrey, C.) Compositae (eds. Anderberg, A. A. et al.) (Springer-Verlag Berlin Heidelberg, 2007).11.
Poljakov, P. P. Duo genere novae fam. Compositae. Not. Syst. Herb. Inst. Bot. Akad. Sci. URSS 17, 418–431 (1955).
Google Scholar12.
Muldashev, A. A. A new genus Phaeostigma (Asteraceae) from the East Asia. Botanischeskii Zh . 66, 584–588 (1981).
Google Scholar13.
Muldashev, A. A. A critical review of the genus Ajania (Asteraceae-Anthemideae). Botanischeskii Zh . 68, 207–214 (1983).
Google Scholar14.
Bremer, K. & Humphries, C. J. The generic monograph of the Asteraceae-Anthemideae. Bull. Nat. Hist. Mus. Lond. 23, 71–177 (1993).
Google Scholar15.
Huang, Y., An, Y. M., Meng, S. Y., Guo, Y. P. & Rao, G. Y. Taxonomic status and phylogenetic position of Phaeostigma in the subtribe Artemisiinae (Asteraceae). J. Syst. Evol. 55, 426–436 (2017).
Article Google Scholar16.
Zhao, H. B., Chen, F. D., Chen, S. M., Wu, G. S. & Guo, W. M. Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst. Evol. 284, 153–169 (2010).
CAS Article Google Scholar17.
Liu, P. L., Wan, Q., Guo, Y. P., Yang, J. & Rao, G. Y. Phylogeny of the Genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7, e48970 (2012).
CAS PubMed Article PubMed Central Google Scholar18.
Ohashi, H. & Yonekura, K. New combinations in Chrysanthemum (Compositae-Anthemideae) of Asia with a list of Japanese Specie. J. Jpn. Bot. 79, 186–195 (2004).
Google Scholar19.
Sanz, M. et al. Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57, 1–13 (2008).
Google Scholar20.
An, Y. M. Studies on the Phylogeny and Biogeography of the Genus Ajania and Its Allies. Master’s thesis. Peking University (2012).21.
Barreda, V. D. et al. Eocene Patagonia fossils of the daisy family. Science 329, 1621–1621 (2010).
CAS PubMed Article PubMed Central Google Scholar22.
Wefferling, K. M. & Hoot, S. B. Dated phylogeography of western North American subalpine marshmarigolds (Caltha spp. Ranunculaceae): Miocene-Pliocene divergence of hexaploids, multiple origins of allododecaploids during the Pleistocene, and repeated recolonization of Last Glacial Maxim. J. Biogeogr. 45, 1077–1089 (2018).
Article Google Scholar23.
Wiens, J. J. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
PubMed Article PubMed Central Google Scholar24.
Ricklefs, R. E. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87, S3–S13 (2006).
PubMed Article PubMed Central Google Scholar25.
Li, J., Wan, Q., Guo, Y. P., Abbott, R. J. & Rao, G. Y. Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to Pleistocene climate change in China. N. Phytol. 201, 1031–1044 (2014).
CAS Article Google Scholar26.
Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).
CAS PubMed Article PubMed Central Google Scholar27.
Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119 (2019).
CAS PubMed Article PubMed Central Google Scholar28.
Cosacov, A., Sérsic, A. N., Sosa, V., Johnson, L. A. & Cocucci, A. A. Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J. Biogeogr. 37, 1463–1477 (2010).
Google Scholar29.
García-Aloy, S. et al. North-west Africa as a source and refuge area of plant biodiversity: a case study on Campanula kremeri and Campanula occidentalis. J. Biogeogr. 44, 2057–2068 (2017).
Article Google Scholar30.
Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. N. Phytol. 215, 891–905 (2017).
Article Google Scholar31.
Zhao, Y. P. et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 10, 4201 (2019).
PubMed Article CAS PubMed Central Google Scholar32.
Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444 (2017).
CAS PubMed Article PubMed Central Google Scholar33.
Sun, H. 2002. Evolution of arctic-tertiary flora in Himalayan-Hengduan mountains. Acta Bot. Yunnanica. 24, 671–688 (2002).
Google Scholar34.
Sun, H. & Li, Z. M. Qinghai-Tibet Plateau uplift and its impact on Tethys flora. Adv. Earth. Sci. 18, 852–862 (2003).
Google Scholar35.
Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).
Article Google Scholar36.
Royer, D. L., McElwain, J. C., Adams, J. M. & Wilf, P. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. N. Phytol. 179, 808–817 (2008).
Article Google Scholar37.
Opedal, Ø. H., Armbruster, W. S. & Graae, B. J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol. Divers. 8, 305–315 (2015).
Article Google Scholar38.
Tölgyesi, C. Tree-herb co-existence and community assembly in natural forest-steppe transitions. Plant Ecol. Divers. 11, 465–477 (2018).
Article Google Scholar39.
Rumpf, S. B. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).
CAS PubMed Article PubMed Central Google Scholar40.
Camarero, J. J., Gutiérrez, E. & Fortin, M. J. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Glob. Ecol. Biogeogr. 15, 182–191 (2006).
Article Google Scholar41.
Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).
CAS PubMed Article PubMed Central Google Scholar42.
Li, P. et al. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol. Genet. Genomics. 291, 1117–1125 (2016).
CAS PubMed Article PubMed Central Google Scholar43.
Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).
CAS PubMed Article PubMed Central Google Scholar44.
Zhang, F. et al. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol. Breed. 27, 11–23 (2011).
CAS Article Google Scholar45.
Li, G. & Quiros, C. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461 (2001).
CAS Article Google Scholar46.
Shen, J. et al. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China. Sci. China Ser. D. Earth Sci. 48, 353–363 (2005).
CAS Article Google Scholar47.
Hoorn, C. et al. Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 344–345, 16–38 (2012).
Article Google Scholar48.
Cao, X., Ni, J., Herzschuh, U., Wang, Y. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: Set up and evaluation. Rev. Palaeobot. Palyno. 194, 21–37 (2013).
Article Google Scholar49.
Li, S. et al. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J. Geophys. Res-Sol. Ea. 118, 791–807 (2013).
Article Google Scholar50.
Gourbet, L. et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700–701, 162–179 (2017).
Article CAS Google Scholar51.
Wu, J. et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 510, 93–108 (2018).
Article Google Scholar52.
Li, Q., Wu, H., Yu, Y., Sun, A. & Luo, Y. Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum. Quat. Int. 500, 108–119 (2019).
Article Google Scholar53.
Mutanga, O. et al. Explaining grass-nutrient patterns in a savanna rangeland of southern Africa. J. Biogeogr. 31, 819–829 (2004).
Article Google Scholar54.
Rowe, R. J. Elevational gradient analyses and the use of historical museum specimens:a cautionary tale. J. Biogeogr. 32, 1883–1897 (2005).
Article Google Scholar55.
Barbo, D. N., Chappelka, A. H., Somers, G. L., Miller-Goodman, M. S. & Stolte, K. Diversity of an early successional plant community as influenced by ozone. N. Phytol. 138, 653–662 (1998).
CAS Article Google Scholar56.
Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).
PubMed Article CAS PubMed Central Google Scholar57.
Vermeer, J. & Peterson, R. L. Glandular trichomes on the inflorescence of Chrysanthemum morifolium cv. Dramatic (Compositae). II. Ultrastruct. Histochem. Can. J. Bot. 57, 705–713 (1979).
Google Scholar58.
Ren, J. B. & Guo, Y. P. Behind the diversity: Ontogenies of radiate, disciform, and discoid capitula of Chrysanthemum and its allies. J. Syst. Evol. 53, 520–528 (2015).
Article Google Scholar59.
Li, J., Guo, Y. & Romane, F. Environmental heterogeneity and population variability of Sclerophyllous Oaks (Quercus Sec. suber) in East Himalayan region. Forestry Stud. China 2, 1–15 (2000).
CAS Google Scholar60.
Wright, A. J. et al. Plants are less negatively affected by flooding when growing in species-rich plant communities. N. Phytol. 213, 645–656 (2017).
Article Google Scholar61.
Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan mountains. N. Phytol. 207, 275–282 (2015).
Article Google Scholar62.
Pfister, C. A. & Hay, M. E. Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. Oecologia 77, I18–I129 (1988).
Article Google Scholar63.
Zhang, Y. C., Shi, G. R. & Shen, S. Z. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai–Tibet plateau. Gondwana Res. 24, 55–76 (2013).
CAS Article Google Scholar64.
Zhou, X. et al. Vegetation change and evolutionary response of large mammal fauna during the mid-Pleistocene transition in temperate northern East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 287–294 (2018).
Article Google Scholar65.
Barreda, V. D. et al. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc. Natl Acad. Sci. USA 112, 10989–10994 (2105).
Article CAS Google Scholar66.
Huang, C. H. et al. Multiple polyploidization events across asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33, 2820–2835 (2016).67.
Credner, W. Geography Investigation Report in 1931. In: Report Collecton of Department of Geography, Vol. 1, 1–35 (National Sun Yat-sen University, 1931).68.
Credner, W. Observation on geology and morphology of Yunnan. Geol. Surv. Kwangtung Kwangshi, Spec. Publ. No. X, 51 (1932).
Google Scholar69.
Yang, J. Q., Cui, Z. J., Yi, C. L., Sun, J. M. & Yang, L. R. “Tali Glaciation” on Massif Diancang. Sci. China Ser. D 50, 1685–1692 (2007).
Article Google Scholar70.
Hoke, G. D., Zeng, J. L., Hren, M. T., Wissink, G. K. & Garzione, C. N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sc. Lett. 394, 270–278 (2014).
CAS Article Google Scholar71.
Li, S., Currie, B. S., Rowley, D. B. & Ingalls, M. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet. Sc. Lett. 432, 415–424 (2015).
CAS Article Google Scholar72.
Kuang, M. et al. Study on the Palaeovegation and Palaeoclimate Since Late Pleistocene in the Dianchang Mountain Area in Dali of YunNan Province. J. Southwest China Norm. Univ 27, 759–765 (2002).
Google Scholar73.
Xiao, X. et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat. Sci. Rev. 86, 35–48 (2014).
Article Google Scholar74.
Mandela, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 14083–14088 (2019).
Article CAS Google Scholar75.
Sheldon, N. D. Quaternary glacial-interglacial climate cycles in Hawaii. J. Geol. 114, 367–376 (2006).
Article Google Scholar76.
Milbau, A., Shevtsova, A., Osler, N., Mooshammer, M. & Graae, B. J. Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. N. Phytol. 197, 1002–1011 (2013).
Article Google Scholar77.
Wang, W. M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).
Article Google Scholar78.
Pellicer, J. et al. Palynological study of Ajania and related genera (Asteraceae, Anthemideae). Bot. J. Linn. Soc. 161, 171–189 (2009).
Article Google Scholar79.
Friedman, J. & Barrett, S. C. H. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot.-Lond. 103, 1515–1527 (2009).
Article Google Scholar80.
Watson, L. E., Bates, P. L., Evans, T. M., Unwin, M. M. & Estes, R. J. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol. Biol. 2, 17–28 (2002).
PubMed Article PubMed Central Google Scholar More150 Shares169 Views
in EcologyDecrease in social cohesion in a colonial seabird under a perturbation regime
1.
Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
Article Google Scholar
2.
Dai, L., Korolev, K. S. & Gore, J. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers. Proc. Natl. Acad. Sci. 112, 10056–10061 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar3.
Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130263–20130263 (2014).
Article Google Scholar4.
Colchero, F. et al. The diversity of population responses to environmental change. Ecol. Lett. https://doi.org/10.1111/ele.13195 (2018).
Article PubMed PubMed Central Google Scholar5.
Coulson, T. et al. Data from: Modeling adaptive and nonadaptive responses of populations to environmental change. Am. Nat. https://doi.org/10.5061/dryad.4c117 (2017).
Article PubMed PubMed Central Google Scholar6.
Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).
PubMed Article PubMed Central Google Scholar7.
Fernández-Chacón, A. et al. When to stay, when to disperse and where to go: Survival and dispersal patterns in a spatially structured seabird population. Ecography 36, 1117–1126 (2013).
Article Google Scholar8.
Sterk, M., van de Leemput, I. A. & Peeters, E. T. How to conceptualize and operationalize resilience in socio-ecological systems?. Curr. Opin. Environ. Sustain. 28, 108–113 (2017).
Article Google Scholar9.
Brand, F. S. & Jax, K. Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object. Ecol. Soc. 12, 23 (2007).
Article Google Scholar10.
Barrett, L., Henzi, S. P. & Lusseau, D. Taking sociality seriously: The structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc. B Biol. Sci. 367, 2108–2118 (2012).
Article Google Scholar11.
Centola, D. How Behavior Spreads: The Science of Complex Contagions. (2018).12.
Firth, J. A. Considering complexity: Animal social networks and behavioural contagions. Trends Ecol. Evol. 35, 100–104 (2020).
PubMed Article PubMed Central Google Scholar13.
Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proc. R. Soc. B Biol. Sci. 278, 2761–2767 (2011).
Article Google Scholar14.
Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. 112, 4690–4695 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar15.
Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32, 567–577 (2017).
PubMed Article PubMed Central Google Scholar16.
Webber, Q. M. R. & Vander Wal, E. An evolutionary framework outlining the integration of individual social and spatial ecology. J. Anim. Ecol. 87, 113–127 (2018).
PubMed Article PubMed Central Google Scholar17.
Sueur, C. & Mery, F. Social Interaction in Animals: Linking Experimental Approach and Social Network Analysis (Frontiers Media SA, Lausanne, 2017).
Google Scholar18.
LaBarge, L. R., Allan, A. T. L., Berman, C. M., Margulis, S. W. & Hill, R. A. Reactive and pre-emptive spatial cohesion in a social primate. Anim. Behav. 163, 115–126 (2020).
Article Google Scholar19.
Firth, J. A. et al. Wild birds respond to flockmate loss by increasing their social network associations to others. Proc. R. Soc. B Biol. Sci. 284, 20170299 (2017).
Article Google Scholar20.
Farine, D. R. Structural trade-offs can predict rewiring in shrinking social networks. J. Anim. Ecol. 1365–2656, 13140. https://doi.org/10.1111/1365-2656.13140 (2019).
Article Google Scholar21.
Maldonado-Chaparro, A. A., Alarcón-Nieto, G., Klarevas-Irby, J. A. & Farine, D. R. Experimental disturbances reveal group-level costs of social instability. Proc. R. Soc. B Biol. Sci. 285, 20181577 (2018).
Article Google Scholar22.
Puga-Gonzalez, I., Sosa, S. & Sueur, C. Social style and resilience of macaques’ networks, a theoretical investigation. Primates 60, 233–246 (2019).
PubMed Article PubMed Central Google Scholar23.
Williams, R. & Lusseau, D. A killer whale social network is vulnerable to targeted removals. Biol. Lett. 2, 497–500 (2006).
PubMed PubMed Central Article Google Scholar24.
Oro, D. Perturbation, Social Feedbacks, and Population Dynamics in Social Animals (Oxford Univerity Press, Oxford, 2020).
Google Scholar25.
Firth, J. A. & Sheldon, B. C. Experimental manipulation of avian social structure reveals segregation is carried over across contexts. Proc. R. Soc. B Biol. Sci. 282, 20142350–20142350 (2015).
Article Google Scholar26.
Genton, C. et al. How Ebola impacts social dynamics in gorillas: A multistate modelling approach. J. Anim. Ecol. 84, 166–176 (2015).
PubMed Article PubMed Central Google Scholar27.
Leu, S. T., Farine, D. R., Wey, T. W., Sih, A. & Bull, C. M. Environment modulates population social structure: Experimental evidence from replicated social networks of wild lizards. Anim. Behav. 111, 23–31 (2016).
Article Google Scholar28.
Silk, J., Cheney, D. & Seyfarth, R. A practical guide to the study of social relationships: A practical guide to the study of social relationships. Evol. Anthropol. Issues News Rev. 22, 213–225 (2013).
Article Google Scholar29.
Brown, C. R. The ecology and evolution of colony-size variation. Behav. Ecol. Sociobiol. 70, 1613–1632 (2016).
Article Google Scholar30.
Rolland, C., Danchin, E. & de Fraipont, M. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: A comparative analysis. Am. Nat. 151, 514–529 (1998).
CAS PubMed Article Google Scholar31.
Shizuka, D. et al. Across-year social stability shapes network structure in wintering migrant sparrows. Ecol. Lett. 17, 998–1007 (2014).
PubMed Article PubMed Central Google Scholar32.
Brandl, H. B., Griffith, S. C., Farine, D. R. & Schuett, W. Wild zebra finches that nest synchronously have long-term stable social ties. J. Anim. Ecol. 1365–2656, 13082. https://doi.org/10.1111/1365-2656.13082 (2019).
Article Google Scholar33.
Moreno, J. L. Who Shall Survive?: A New Approach to the Problem of Human Interrelations (Nervous and Mental Disease Publishing Co, New York, 1934). .34.
Scott, J. Social network analysis. Sociology 22, 109–127 (1988).
Article Google Scholar35.
Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, Princeton, 2008).
Google Scholar36.
Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
PubMed PubMed Central Article Google Scholar37.
Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, New York, 2016).
Google Scholar38.
Whitehead, H. Analyzing Animal Societies Quantitative Methods for Vertebrate Social Analysis. (2014).39.
James, R., Croft, D. P. & Krause, J. Potential banana skins in animal social network analysis. Behav. Ecol. Sociobiol. 63, 989–997 (2009).
Article Google Scholar40.
Hasenjager, M. J. & Dugatkin, L. A. Chapter three—social network analysis in behavioral ecology. In Advances in the Study of Behavior (ed. Naguib, M.) 47, 39–114 (Academic Press, New York, 2015).
Google Scholar41.
Payo-Payo, A. et al. Predator arrival elicits differential dispersal, change in age structure and reproductive performance in a prey population. Sci. Rep. 8, 1971 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar42.
Martínez-Abraín, A., Oro, D., Forero, M. G. & Conesa, D. Modeling temporal and spatial colony-site dynamics in a long-lived seabird. Popul. Ecol. 45, 133–139 (2003).
Article Google Scholar43.
Genovart, M., Oro, D. & Tenan, S. Immature survival, fertility, and density dependence drive global population dynamics in a long-lived species. Ecology 99, 2823–2832 (2018).
CAS PubMed Article PubMed Central Google Scholar44.
Almaraz, P. & Oro, D. Size-mediated non-trophic interactions and stochastic predation drive assembly and dynamics in a seabird community. Ecology 92, 1948–1958 (2011).
PubMed Article PubMed Central Google Scholar45.
Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. https://doi.org/10.1093/beheco/arz083 (2019).
Article Google Scholar46.
Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial breeder with weak interannual breeding-site fidelity. Anim. Behav. 124, 125–133 (2017).
Article Google Scholar47.
Cantor, M. & Farine, D. R. Simple foraging rules in competitive environments can generate socially structured populations. Ecol. Evol. 8, 4978–4991 (2018).
PubMed PubMed Central Article Google Scholar48.
Cantor, M. et al. Animal social networks: Revealing the causes and implications of social structure in ecology and evolution. https://osf.io/m62gb (2019). https://doi.org/10.32942/osf.io/m62gb.49.
Anderson, D. J. & Hodum, P. J. Predator behavior favors clumped nesting in an oceanic seabird. Ecology 74, 2462–2464 (1993).
Article Google Scholar50.
Oro, D. Colonial seabird nesting in dense and small sub-colonies: An advantage against aerial predation. Condor 98, 848–850 (1996).
Article Google Scholar51.
Gil, M. A., Hein, A. M., Spiegel, O., Baskett, M. L. & Sih, A. Social information links individual behavior to population and community dynamics. Trends Ecol. Evol. 33, 535–548 (2018).
PubMed Article PubMed Central Google Scholar52.
Lewanzik, D., Sundaramurthy, A. K. & Goerlitz, H. R. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost–benefit ratio of interactions. J. Anim. Ecol. 88, 1462–1473 (2019).
PubMed PubMed Central Article Google Scholar53.
Doligez, B. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar54.
Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 20 (2017).
ADS Article CAS Google Scholar55.
Arganda, S., Pérez-Escudero, A. & de Polavieja, G. G. A common rule for decision making in animal collectives across species. Proc. Natl. Acad. Sci. 109, 20508–20513 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar56.
Pérez-Escudero, A. & de Polavieja, G. G. Adversity magnifies the importance of social information in decision-making. J. R. Soc. Interface 14, 20170748 (2017).
PubMed PubMed Central Article Google Scholar57.
Maldonado-Chaparro, A. A., Blumstein, D. T., Armitage, K. B. & Childs, D. Z. Transient LTRE analysis reveals the demographic and trait-mediated processes that buffer population growth. Ecol. Lett. 21, 1693–1703 (2018).
PubMed PubMed Central Article Google Scholar58.
Pruitt, J. N. et al. Social tipping points in animal societies. Proc. R. Soc. B 285, 20181282 (2018).
PubMed Article PubMed Central Google Scholar59.
Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).
Article Google Scholar60.
Doering, G. N., Scharf, I., Moeller, H. V. & Pruitt, J. N. Social tipping points in animal societies in response to heat stress. Nat. Ecol. Evol. 2, 1298–1305 (2018).
PubMed Article PubMed Central Google Scholar61.
Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar62.
Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
PubMed Article PubMed Central Google Scholar63.
Cote, J., Clobert, J., Brodin, T., Fogarty, S. & Sih, A. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations. Philos. Trans. R. Soc. B Biol. Sci. 365, 4065–4076 (2010).
CAS Article Google Scholar64.
Fogarty, S., Cote, J. & Sih, A. Social personality polymorphism and the spread of invasive species: A model. Am. Nat. 177, 273–287 (2011).
PubMed Article PubMed Central Google Scholar65.
O’Shea-Wheller, T. A., Masuda, N., Sendova-Franks, A. B. & Franks, N. R. Variability in individual assessment behaviour and its implications for collective decision-making. Proc. R. Soc. B Biol. Sci. 284, 20162237 (2017).
Article Google Scholar66.
Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F. Vive la résistance: Reviving resistance for 21st century conservation. Trends Ecol. Evol. 30, 516–523 (2015).
CAS PubMed Article PubMed Central Google Scholar67.
IUCN. Larus audouinii: BirdLife International: The IUCN Red List of Threatened Species 2018: e.T22694313A132541241. (2018). https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694313A132541241.en.68.
Martínez-Abraín, A., Jiménez, J. & Oro, D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 22, 3–13 (2019).
Article Google Scholar69.
Genovart, M., Jover, L., Ruiz, X. & Oro, D. Offspring sex ratios in subcolonies of Audouin’s gull, Larus audouinii, with differential breeding performance. Can. J. Zool. 81, 905–910 (2003).
Article Google Scholar70.
Oro, D. Audouin’s gull account. In The Birds of Western Palearctic (ed. Ogilvie, M. A.) 47–61 (Oxford University Press, Oxford, 1998).
Google Scholar71.
Genovart, M., Pradel, R. & Oro, D. Exploiting uncertain ecological fieldwork data with multi-event capture-recapture modelling: An example with bird sex assignment. J. Anim. Ecol. 81, 970–977 (2012).
PubMed Article Google Scholar72.
Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for philopatric and immigrant individuals in a long-lived bird adapted to unstable habitats. Oecologia 165, 935–945 (2010).
ADS PubMed Article Google Scholar73.
Hoff, P. D. Additive and multiplicative effects network models. arXiv:180708038 Stat (2018).74.
Minhas, S., Hoff, P. D. & Ward, M. D. Inferential approaches for network analyses: AMEN for latent factor models. arXiv:161100460 Stat (2016).75.
Warner, R. M., Kenny, D. A. & Stoto, M. A new round robin analysis of variance for social interaction data. J. Pers. Soc. Psychol. 37, 1742–1757 (1979).
Article Google Scholar76.
Gimenez, O. et al. Inferring animal social networks with imperfect detection. Ecol. Model. 401, 69–74 (2019).
Article Google Scholar77.
Hoppitt, W. J. E. & Farine, D. R. Association indices for quantifying social relationships: How to deal with missing observations of individuals or groups. Anim. Behav. 136, 227–238 (2018).
Article Google Scholar78.
Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).
Article Google Scholar79.
Warnes,GR, Bolker, G, Gorjanc, G & Grothendieck, G. gdata: Various R programming tools for data manipulation. R package version (2014).80.
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 20, 20 (2006).
Google Scholar81.
Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).
PubMed PubMed Central Article Google Scholar82.
Ginsberg, J. R. & Young, T. P. Measuring association between individuals or groups in behavioural studies. Anim. Behav. 44, 377–379 (1992).
Article Google Scholar83.
Cairns, S. J. & Schwager, S. J. A comparison of association indices. Anim. Behav. 35, 1454–1469 (1987).
Article Google Scholar More