Wild black bears harbor simple gut microbial communities with little difference between the jejunum and colon
1.
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484–1241484 (2014).
PubMed Article CAS Google Scholar
2.
Loucks, C. J. et al. Giant Pandas in a Changing Landscape (American Association for the Advancement of Science, Washington, 2001).
Google Scholar
3.
Derocher, A. E. et al. Rapid ecosystem change and polar bear conservation. Conserv. Lett. 6, 368–375 (2013).
Google Scholar
4.
Liu, F. et al. Human–wildlife conflicts influence attitudes but not necessarily behaviors: factors driving the poaching of bears in China. Biol. Conserv. 144, 538–547 (2011).
Article Google Scholar
5.
McKenney, E. A., Koelle, K., Dunn, R. R. & Yoder, A. D. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).
CAS PubMed Article Google Scholar
6.
Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
7.
Hill, M. J. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 6, S43–S45 (1997).
Article Google Scholar
8.
Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336(6086), 1268–1273 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
9.
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
ADS CAS PubMed Article Google Scholar
10.
Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27 (2019).
Article Google Scholar
11.
Dominianni, C. et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE 10, e0124599 (2015).
PubMed PubMed Central Article CAS Google Scholar
12.
McKenney, E. A., Rodrigo, A. & Yoder, A. D. Patterns of gut bacterial colonization in three primate species. PLoS ONE 10, e0124618 (2015).
PubMed PubMed Central Article CAS Google Scholar
13.
Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
14.
Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography: microbiome analysis among bats. Mol. Ecol. 21, 2617–2627 (2012).
PubMed Article Google Scholar
15.
Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).
CAS PubMed Article Google Scholar
16.
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nat. Lond. 444, 1027–1031 (2006).
ADS Article Google Scholar
17.
Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).
CAS PubMed Article Google Scholar
18.
Cheng, Y. et al. The Tasmanian devil microbiome: implications for conservation and management. Microbiome 3, 76 (2015).
PubMed PubMed Central Article Google Scholar
19.
McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).
PubMed PubMed Central Article Google Scholar
20.
Borgström, B., Dahlqvist, A., Lundh, G. & Sjövall, J. Studies of intestinal digestion and absorption in the human1. J. Clin. Invest. 36, 1521–1536 (1957).
PubMed PubMed Central Article Google Scholar
21.
Thomson, A. B. R. et al. Normal physiology, part 1. Dig. Dis. Sci. 48, 19 (2003).
Google Scholar
22.
Amato, K. R. Co-evolution in context: the importance of studying gut microbiomes in wild animals. Microbiome Sci. Med. 1, 10–29 (2013).
Article Google Scholar
23.
Stevens, C. E. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System (Cambridge University Press, Cambridge, 1995).
Google Scholar
24.
Lafferty, D. J. R., Belant, J. L. & Phillips, D. L. Testing the niche variation hypothesis with a measure of body condition. Oikos 124, 732–740 (2015).
Article Google Scholar
25.
Baruch-Mordo, S. et al. Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human-bear conflicts. PLoS ONE 9, e85122 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
26.
Ayres, L. A., Chow, L. S. & Graber, D. M. Black bear activity patterns and human induced modifications in sequoia national park. Bears Biol. Manag. 6, 151–154 (1986).
Google Scholar
27.
Enders, M. S. & Vander Wall, S. B. Black bears Ursus americanus are effective seed dispersers, with a little help from their friends. Oikos 121, 589–596 (2012).
Article Google Scholar
28.
Pritchard, G. T. & Robbins, C. T. Digestive and metabolic efficiencies of grizzly and black bears. Can. J. Zool. 68, 1645–1651 (1990).
Article Google Scholar
29.
Nelson, R. A. et al. Behavior, biochemistry, and hibernation in black, grizzly, and polar bears. Bears Biol. Manag. 5, 284–290 (1983).
Google Scholar
30.
Brody, A. J. & Pelton, M. R. Seasonal changes in digestion in black bears. Can. J. Zool. 66, 1482–1484 (1988).
Article Google Scholar
31.
Hellgren, E. C. Ecology and Physiology of a Black Bear (Ursus americanus) Population in the Great Dismal Swamp and Reproduction Physiology in the Captive Female Black Bear (Virginia Polytechnic Institute and State University, Blacksburg, 1988).
Google Scholar
32.
Fowler, N. L., Belant, J. L., Wang, G. & Leopold, B. D. Ecological plasticity of denning chronology by American black bears and brown bears. Glob. Ecol. Conserv. 20, e00750 (2019).
Article Google Scholar
33.
Samson, C. & Huot, J. Reproductive biology of female black bears in relation to body mass in early winter. J. Mammal. 76, 68–77 (1995).
Article Google Scholar
34.
Garshelis, D. L., Scheick, B. K., Doan-Crider, D. L., Beecham, J. J. & Obbard, M. E. Ursus americanus. The IUCN Red List of Threatened Species 2016: e.T41687A114251609 (2016).
35.
Sundin, O. H. et al. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol. 17, 160 (2017).
PubMed PubMed Central Article CAS Google Scholar
36.
Hayashi, H. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol. 54, 1093–1101 (2005).
CAS PubMed Article PubMed Central Google Scholar
37.
Xiao, Y. et al. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs. Sci. Rep. 8, 1–10 (2018).
Article CAS Google Scholar
38.
Xue, Z. et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio 6, e00022-e115 (2015).
CAS PubMed PubMed Central Google Scholar
39.
Rojas, C. A., Holekamp, K. E., Winters, A. D. & Theis, K. R. Body-site specific microbiota reflect sex and age-class among wild spotted hyenas. FEMS Microbiol. Ecol. 96(2), fiaa007 (2020).
PubMed Article Google Scholar
40.
Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).
CAS PubMed Article Google Scholar
41.
Schwab, C. & Gänzle, M. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears. Can. J. Microbiol. 57, 177–185 (2011).
CAS PubMed Article Google Scholar
42.
Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. 108, 17714–17719 (2011).
ADS CAS PubMed Article Google Scholar
43.
Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: insights into health surveillance. Front. Microbiol. 8, 13–16 (2017).
Article Google Scholar
44.
Song, C. et al. Comparative analysis of the gut microbiota of black bears in China using high-throughput sequencing. Mol. Genet. Genomics 292, 407–414 (2017).
CAS PubMed Article Google Scholar
45.
McKenney, E. A., Maslanka, M., Rodrigo, A. & Yoder, A. D. Bamboo specialists from two mammalian orders (primates, carnivora) share a high number of low-abundance gut microbes. Microb. Ecol. 76, 272–284 (2018).
PubMed Article Google Scholar
46.
Bollinger, R. R., Barbas, A. S., Bush, E. L., Lin, S. S. & Parker, W. Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. J. Theor. Biol. 249, 826–831 (2007).
CAS Article Google Scholar
47.
Smith, H. F. et al. Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. J. Evol. Biol. 22, 1984–1999 (2009).
CAS PubMed Article Google Scholar
48.
Sanders, N. L., Bollinger, R. R., Lee, R., Thomas, S. & Parker, W. Appendectomy and clostridium difficile colitis: relationships revealed by clinical observations and immunology. World J. Gastroenterol. WJG 19, 5607–5614 (2013).
PubMed Article Google Scholar
49.
Merchant, R. et al. Association between appendectomy and clostridium difficile infection. J. Clin. Med. Res. 4, 17–19 (2012).
PubMed PubMed Central Google Scholar
50.
Greene, L. K. & McKenney, E. A. The inside tract: the appendicular, cecal, and colonic microbiome of captive aye-ayes. Am. J. Phys. Anthropol. 166, 960–967 (2018).
PubMed Article Google Scholar
51.
Tilg, H. & Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).
CAS PubMed PubMed Central Article Google Scholar
52.
Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).
PubMed Article Google Scholar
53.
Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).
CAS PubMed Article Google Scholar
54.
Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139 (2015).
CAS PubMed PubMed Central Article Google Scholar
55.
Dietz, R. et al. Ursidibacter maritimus gen. nov., sp. nov. and Ursidibacter arcticus sp. nov., two new members of the family Pasteurellaceae isolated from the oral cavity of bears. Int. J. Syst. Evol. Microbiol. 65, 3683–3689 (2015).
PubMed Article CAS Google Scholar
56.
Christensen, H. & Bisgaard, M. Taxonomy and biodiversity of members of Pasteurellaceae. In Pasteurellaceae: Biology, Genomics and Molecular Aspects (eds Kuhnert, P. & Christensen, H.) 1–26 (Caister Academic Press, Norfolk, 2008).
Google Scholar
57.
Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).
ADS CAS PubMed PubMed Central Article Google Scholar
58.
Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).
CAS PubMed PubMed Central Article Google Scholar
59.
Carthey, A. J. R., Blumstein, D. T., Gallagher, R. V., Tetu, S. G. & Gillings, M. R. Conserving the holobiont. Funct. Ecol. https://doi.org/10.1111/1365-2435.13504 (2020).
Article Google Scholar
60.
Cappa, F., Laut, J., Nov, O., Giustiniano, L. & Porfiri, M. Activating social strategies: face-to-face interaction in technology-mediated citizen science. J. Environ. Manag. 182, 374–384 (2016).
Article Google Scholar
61.
Budde, M. et al. Participatory sensing or participatory nonsense? Mitigating the effect of human error on data quality in citizen science. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 1–23 (2017).
Article Google Scholar
62.
McKenney, E. A., Greene, L. K., Drea, C. M. & Yoder, A. D. Down for the count: cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas. Microb. Ecol. Health Dis. 28, 1335165 (2017).
PubMed PubMed Central Google Scholar
63.
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
CAS PubMed PubMed Central Article Google Scholar
64.
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0209-9 (2019).
Article PubMed PubMed Central Google Scholar
65.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
CAS PubMed PubMed Central Article Google Scholar
66.
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
PubMed PubMed Central Article CAS Google Scholar
67.
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
PubMed PubMed Central Article Google Scholar
68.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
CAS PubMed PubMed Central Article Google Scholar
69.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).
Google Scholar
70.
Allaire, J. RStudio: Integrated Development Environment for R 770 (RStudio, Boston, 2012).
Google Scholar
71.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Google Scholar
72.
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
MathSciNet PubMed MATH Article Google Scholar
73.
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
PubMed PubMed Central Article Google Scholar More
