1.
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9, 323–329 (2019).
ADS Article Google Scholar
2.
Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, Cambridge, 2010).
Google Scholar
3.
Zanin, M. & dos Neves, B. S. Current felid (Carnivora: Felidae) distribution, spatial bias, and occurrence predictability: testing the reliability of a global dataset for macroecological studies. Acta Oecol. 101, 103–488 (2019).
Article Google Scholar
4.
Lomolino, M. V. & Heaney, L. R. Frontiers of Biogeography: New Directions in the Geography of Nature. (sidalc.net, 2004).
5.
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 1–8 (2015).
Google Scholar
6.
Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).
CAS PubMed Article PubMed Central Google Scholar
7.
Raxworthy, C. J. et al. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar
8.
Hu, J. et al. Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau. Sci. Rep. 6, 32624 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
9.
Morinière, J. et al. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Sci. Rep. 6, 26340 (2016).
ADS PubMed Article CAS PubMed Central Google Scholar
10.
Liu, H. et al. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Sci. Rep. 5, 12246 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
11.
Liu, H., Edwards, E. J., Freckleton, R. P. & Osborne, C. P. Phylogenetic niche conservatism in C4 grasses. Oecologia 170, 835–845 (2012).
ADS PubMed Article PubMed Central Google Scholar
12.
Crisp, M. D. et al. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
13.
Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
14.
Aguirre-Gutiérrez, J., Serna-Chavez, H. M., Villalobos-Arambula, A. R., de la Rosa, J. A. P. & Raes, N. Similar but not equivalent: ecological niche comparison across closely-related Mexican white pines. Div. Dist. 21, 245–257 (2014).
Article Google Scholar
15.
Perret, D. L., Leslie, A. B. & Sax, D. F. Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.). Glob. Ecol. Biogeogr. 28, 429–441 (2018).
Google Scholar
16.
Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).
PubMed Article PubMed Central Google Scholar
17.
Kozak, K. H. & Wiens, J. J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. Biol. Sci. 274, 2995–3003 (2007).
PubMed PubMed Central Google Scholar
18.
Moussalli, A., Moritz, C., Williams, S. E. & Carnaval, A. C. Variable responses of skinks to a common history of rainforest fluctuation: concordance between phylogeography and palaeo-distribution models. Mol. Ecol. 18, 483–499 (2009).
PubMed Article PubMed Central Google Scholar
19.
Afonso Silva, A. C. et al. Tropical specialist vs. climate generalist: Diversification and demographic history of sister species of Carlia skinks from northwestern Australia. Mol. Ecol. 26, 4045–4058 (2017).
CAS PubMed Article PubMed Central Google Scholar
20.
Logan, M. L., Huynh, R. K., Precious, R. A. & Calsbeek, R. G. The impact of climate change measured at relevant spatial scales: new hope for tropical lizards. Glob. Chang. Biol. 19, 3093–3102 (2013).
ADS PubMed Article PubMed Central Google Scholar
21.
Moritz, C. et al. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261–264 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
22.
Kamilar, J. M. & Muldoon, K. M. The climatic niche diversity of malagasy primates: a phylogenetic perspective. PLoS ONE 5, e11073 (2010).
ADS PubMed Article CAS PubMed Central Google Scholar
23.
Braz, A. G., Lorini, M. L. & Vale, M. M. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Div. Dist. 25, 536–550 (2018).
Article Google Scholar
24.
Cooper, N., Freckleton, R. P. & Jetz, W. Phylogenetic conservatism of environmental niches in mammals. Proc. Biol. Sci. 278, 2384–2391 (2011).
PubMed PubMed Central Google Scholar
25.
Lyu, Y., Wang, X. & Luo, J. Geographic patterns of insect diversity across China’s nature reserves: the roles of niche conservatism and range overlapping. Ecol. Evol. 10, 3305–3317 (2020).
PubMed Article PubMed Central Google Scholar
26.
Hiller, A. E. et al. Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawaiian arthropods using ecological niche modelling. Biol. J. Linn. Soc. Lond. 127, 479–492 (2019).
Article Google Scholar
27.
Kabir, M. et al. Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLoS ONE 12, e0187027 (2017).
PubMed Article CAS PubMed Central Google Scholar
28.
Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. Biol. Sci. 280, 20122649 (2013).
PubMed PubMed Central Google Scholar
29.
Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).
Article Google Scholar
30.
Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Chang. Biol. 24, 5895–5908 (2018).
PubMed Article PubMed Central Google Scholar
31.
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global biodiversity conservation: the critical role of hotspots. Biodivers. Hotspots https://doi.org/10.1007/978-3-642-20992-5_1 (2011).
Article Google Scholar
32.
Johnson, W. E. et al. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311, 73–77 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
33.
Tamma, K., Marathe, A. & Ramakrishnan, U. Past influences present: mammalian species from different biogeographic pools sort environmentally in the Indian subcontinent. Front. Biogeogr. 8 (2016).
34.
Mukherjee, S., Duckworth, J. W., Silva, A., Appel, A. & Kittle, A. Prionailurus rubiginosus. IUCN Red List Threat. Species https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T18149A50662471.en (2016).
Article Google Scholar
35.
Mukherjee, S. et al. Prionailurus viverrinus. IUCN Red List Threat. Species https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T18150A50662615.en (2016).
Article Google Scholar
36.
Ross, J. et al. Prionailurus bengalensis. IUCN Red List Threat. Species https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T18146A50661611.en (2015).
Article Google Scholar
37.
Nowell, K. & Jackson, P. Wild cats: status survey and conservation action plan ((IUCN, Gland, Switzerland, 1996).
38.
Sunquist, M. & Sunquist, F. Wild Cats of the World (University of Chicago Press, Chicago, 2012).
Google Scholar
39.
Pocock, R. I. The Fauna of British India Including Ceylon and Burma Vol. 1 (Taylor And Francis Ltd, London, 1939).
Google Scholar
40.
Mukherjee, S. et al. Ecology driving genetic variation: a comparative phylogeography of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis) in India. PLoS ONE 5, e13724 (2010).
ADS PubMed Article CAS PubMed Central Google Scholar
41.
Gray, T. N. E. et al. Felis chaus. IUCN Red List Threat. Species https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T8540A50651463.en (2016).
Article Google Scholar
42.
Boitani, L. et al. What spatial data do we need to develop global mammal conservation strategies?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2623–2632 (2011).
PubMed Article PubMed Central Google Scholar
43.
Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).
ADS Article Google Scholar
44.
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling (2011).
45.
Grassman, L. I. Jr., Tewes, M. E., Silvy, N. J. & Kreetiyutanont, K. Spatial organization and diet of the leopard cat (Prionailurus bengalensis) in north-central Thailand. J. Zool. 266, 45–54 (2005).
Article Google Scholar
46.
Thatte, P. et al. Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers. Distrib. 7, 247 (2019).
Google Scholar
47.
Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLoS ONE 8, e79295 (2013).
ADS PubMed Article CAS PubMed Central Google Scholar
48.
Wilting, A. et al. Modelling the species distribution of flat-headed cats (Prionailurus planiceps), an endangered South-East Asian small felid. PLoS ONE 5, e9612 (2010).
ADS PubMed Article CAS PubMed Central Google Scholar
49.
Srivathsa, A., Parameshwaran, R., Sharma, S. & Ullas Karanth, K. Estimating population sizes of leopard cats in the Western Ghats using camera surveys. J. Mammal. 96, 742–750 (2015).
Article Google Scholar
50.
Bashir, T., Bhattacharya, T., Poudyal, K., Sathyakumar, S. & Qureshi, Q. Integrating aspects of ecology and predictive modelling: implications for the conservation of the leopard cat (Prionailurus bengalensis) in the Eastern Himalaya. Acta Theriol. 59, 35–47 (2014).
Article Google Scholar
51.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
52.
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Article Google Scholar
53.
Mayaux, P. et al. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 44, 1728–1739 (2006).
ADS Article Google Scholar
54.
Hijmans, R. J. raster: geographic data analysis and modelling (2014).
55.
Mukherjee, S., Goyal, S. P., Johnsingh, A. J. T. & Leite, M. R. The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska Tiger Reserve, Rajasthan, India. J. Zool. 262, 405–411 (2004).
Article Google Scholar
56.
Shehzad, W. et al. Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 21, 1951–1965 (2012).
CAS PubMed Article PubMed Central Google Scholar
57.
Rajaratnam, R., Sunquist, M., Rajaratnam, L. & Ambu, L. Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J. Trop. Ecol. 23, 209–217 (2007).
Article Google Scholar
58.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
Article Google Scholar
59.
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
PubMed Article PubMed Central Google Scholar
60.
Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Modell. 222, 2796–2811 (2011).
Article Google Scholar
61.
Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).
Article Google Scholar
62.
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Article Google Scholar
63.
Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).
Article Google Scholar
64.
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
Article Google Scholar
65.
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling?. Methods Ecol. Evol. 3, 327–338 (2012).
Article Google Scholar
66.
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Div. Dist. 17, 43–57 (2011).
Article Google Scholar
67.
Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Article Google Scholar
68.
Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2017).
Article Google Scholar
69.
Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225–245 (2000).
Article Google Scholar
70.
Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).
PubMed Article Google Scholar
71.
Schoener, T. W. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
Article Google Scholar
72.
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
PubMed Article Google Scholar
73.
Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
Article Google Scholar
74.
Swets, J. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
ADS MathSciNet CAS PubMed MATH Article PubMed Central Google Scholar
75.
Ferro, C. A. T. & Stephenson, D. B. Extremal dependence indices: improved verification measures for deterministic forecasts of rare binary events. Weather Forecast. 26, 699–713 (2011).
ADS Article Google Scholar
76.
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2011).
Article Google Scholar
77.
Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
Article Google Scholar
78.
UNEP-WCMC & IUCN. Protected Planet:The World Database on Protected Areas. Protected Planethttps://www.protectedplanet.net (2018).
79.
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2018).
Google Scholar
80.
Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
81.
Wilting, A. et al. Evolutionary history and conservation significance of the Javan leopard Panthera pardus melas. J. Zool. 299, 239–250 (2016).
Article Google Scholar
82.
Cooper, D. M. et al. Predicted pleistocene-holocene range shifts of the tiger (Panthera tigris). Divers. Distrib. 22, 1199–1211 (2016).
Article Google Scholar
83.
McSweeney, C. F., Jones, R. G., Lee, R. W. & Rowell, D. P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237–3260 (2014).
Article Google Scholar
84.
Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).
Article Google Scholar
85.
Rowan, J. et al. Geographically divergent evolutionary and ecological legacies shape mammal biodiversity in the global tropics and subtropics. Proc. Natl. Acad. Sci. USA 117, 1559–1565 (2020).
ADS CAS PubMed Article PubMed Central Google Scholar
86.
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).
Article Google Scholar
87.
Hof, A. R., Jansson, R. & Nilsson, C. Future climate change will favour non-specialist mammals in the (sub)arctics. PLoS ONE 7, e52574 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
88.
Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2011).
Article Google Scholar
89.
Pradervand, J.-N., Pellissier, L., Randin, C. F. & Guisan, A. Functional homogenization of bumblebee communities in alpine landscapes under projected climate change. Clim. Change Responses 1, 1 (2014).
Article Google Scholar
90.
Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Ecology. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).
CAS PubMed Article PubMed Central Google Scholar
91.
Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. Biol. Sci. 276, 1939–1948 (2009).
PubMed PubMed Central Google Scholar
92.
Araújo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15 (2008).
Article Google Scholar
93.
Fordham, D. A., Saltré, F., Brown, S. C., Mellin, C. & Wigley, T. M. L. Why decadal to century timescale palaeoclimate data are needed to explain present-day patterns of biological diversity and change. Glob. Chang. Biol. 24, 1371–1381 (2018).
ADS PubMed Article PubMed Central Google Scholar
94.
Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).
Article Google Scholar
95.
Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 105, 16089–16094 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
96.
Pressey, R. L. et al. How well protected are the forests of north-eastern New South Wales? Analyses of forest environments in relation to formal protection measures, land tenure, and vulnerability to clearing. For. Ecol. Manag. 85, 311–333 (1996).
Article Google Scholar
97.
Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).
ADS PubMed Article CAS PubMed Central Google Scholar
98.
Connor, T. et al. Effects of grain size and niche breadth on species distribution modeling. Ecography 41, 1270–1282 (2017).
Article Google Scholar
99.
Seo, C., Thorne, J. H., Hannah, L. & Thuiller, W. Scale effects in species distribution models: implications for conservation planning under climate change. Biol. Lett. 5, 39–43 (2009).
PubMed Article PubMed Central Google Scholar
100.
Latinne, A. et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. J. Biogeogr. 42, 1714–1726 (2015).
Article Google Scholar
101.
Radchuk, V., Kramer-Schadt, S., Fickel, J. & Wilting, A. Distributions of mammals in Southeast Asia: the role of the legacy of climate and species body mass. J. Biogeogr. https://doi.org/10.1111/jbi.13675 (2019).
Article Google Scholar
102.
Patel, R. P. et al. Genetic structure and phylogeography of the leopard cat (Prionailurus bengalensis) inferred from mitochondrial genomes. J. Hered. 108, 349–360 (2017).
PubMed Article PubMed Central Google Scholar
103.
Sreehari, R. & Nameer, P. O. Small carnivores of Parambikulam Tiger Reserve, southern Western Ghats, India. J. Threat. Taxa 8, 9306 (2016).
Article Google Scholar
104.
Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys. 54, 162–219 (2016).
ADS Article Google Scholar
105.
Luo, S.-J. et al. Sympatric Asian felid phylogeography reveals a major Indochinese-Sundaic divergence. Mol. Ecol. 23, 2072–2092 (2014).
CAS PubMed Article PubMed Central Google Scholar
106.
Mukherjee, S., Adhya, T., Thatte, P. & Ramakrishnan, U. Survey of the fishing cat prionailurus viverrinus Bennett, 1833 (Carnivora: Felidae) and some aspects impacting its conservation in India. J. Threat. Taxa 04, 3355–3361 (2012).
Article Google Scholar
107.
Shekhar Palei, H., Palei, H. S., Das, U. P. & Debata, S. The vulnerable fishing cat Prionailurus viverrinus in Odisha, eastern India: status and conservation implications. Zool. Ecol. 28, 69–74 (2018).
Article Google Scholar
108.
Nayak, S., Shah, S. & Borah, J. First record of rusty-spotted cat Prionailurus rubiginosus (Mammalia: Carnivora: Felidae) from Ramgarh-Vishdhari Wildlife Sanctuary in semi-arid landscape of Rajasthan, India. J. Threat. Taxa 9, 9761 (2017).
Article Google Scholar
109.
Lamichhane, B. R. et al. Rusty-spotted cat: 12th cat species discovered in Western Terai of Nepal. Cat News 64, 30–32 (2016).
Google Scholar
110.
Anwar, M. & Vattakavan, J. Rusty spotted cat in Katerniaghat Wildlife Sanctuary, Uttar Pradesh State, India. Cat News 56, 12–13 (2012).
Google Scholar
111.
Harihar, A., Chanchani, P., Pariwakam, M., Noon, B. R. & Goodrich, J. Defensible inference: questioning global trends in tiger populations. Conserv. Lett. 10, 502–505 (2017).
Article Google Scholar
112.
Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
Article Google Scholar
113.
Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. Biol. Sci.285 (2018).
114.
Prestele, R. et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob. Chang. Biol. 22, 3967–3983 (2016).
ADS PubMed Article PubMed Central Google Scholar More