Anemonefish facilitate bleaching recovery in a host sea anemone
1.
Muscatine, L. & Porter, J. W. Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
Google Scholar
2.
Smith, D. C. & Douglas, A. E. The Biology of Symbiosis (Edward Arnold Ltd., London, 1987).
Google Scholar
3.
Rao, H. Interorganizational Ecology: Haygreeva. In The Blackwell Companion to Organisations (ed. Baum, J. A.) 541–556 (Backwell, Oxford, 2017).
Google Scholar
4.
Martínez-García, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D. & van der Heijden, M. G. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob. Chang. Biol. 23, 5228–5236 (2017).
ADS PubMed PubMed Central Google Scholar
5.
Compant, S., Van Der Heijden, M. G. & Sessitsch, A. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol. Ecol. 73, 197–214 (2010).
CAS PubMed Google Scholar
6.
Chase, T., Pratchett, M., Frank, G. & Hoogenboom, M. Coral-dwelling fish moderate bleaching susceptibility of coral hosts. PLoS ONE 13, e0208545 (2018).
CAS PubMed PubMed Central Google Scholar
7.
Redman, R. S. et al. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change. PLoS ONE 6, e14823 (2011).
ADS CAS PubMed PubMed Central Google Scholar
8.
Stewart, H. L., Holbrook, S. J., Schmitt, R. J. & Brooks, A. J. Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs 25, 609–615 (2006).
ADS Google Scholar
9.
Pachauri, R. K. et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. (IPCC, Switzerland, 2014).
10.
Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
Google Scholar
11.
Mieog, J. C. et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4(7), e6364 (2009).
ADS PubMed PubMed Central Google Scholar
12.
Davies, P. S. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2, 181–186 (1984).
ADS Google Scholar
13.
Cook, C., D’Elia, C. & Muller-Parker, G. Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Mar. Biol. 98, 253–262 (1988).
CAS Google Scholar
14.
Roopin, M., Henry, R. P. & Chadwick, N. E. Nutrient transfer in a marine mutualism: Patterns of ammonia excretion by anemonefish and uptake by giant sea anemones. Mar. Biol. 154, 547–556 (2008).
CAS Google Scholar
15.
Delia, C., Domotor, S. & Webb, K. Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar. Biol. 75, 157–167 (1983).
CAS Google Scholar
16.
Steen, R. G. & Muscatine, L. Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone. Biol. Bull. 172, 246–263 (1987).
Google Scholar
17.
Roopin, M. & Chadwick, N. E. Benefits to host sea anemones from ammonia contributions of resident anemonefish. J. Exp. Mar. Biol. Ecol. 370, 27–34 (2009).
CAS Google Scholar
18.
Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).
Google Scholar
19.
Glynn, P. W. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11, 133–146 (1984).
Google Scholar
20.
McClanahan, T. R., Ateweberhan, M., Muhando, C. A., Maina, J. & Mohammed, M. S. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol. Monogr. 77, 503–525 (2007).
Google Scholar
21.
Vinoth, R., Gopi, M., Kumar, T. T. A., Thangaradjou, T. & Balasubramanian, T. Coral reef bleaching at Agatti Island of Lakshadweep Atolls India. J. Ocean Univ. China 11, 105–110 (2012).
ADS Google Scholar
22.
Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nat. 556, 492–496 (2018).
ADS CAS Google Scholar
23.
Death, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995–17999 (2012).
ADS CAS Google Scholar
24.
Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).
ADS CAS PubMed Google Scholar
25.
McManus, J. W. & Polsenberg, J. F. Coral–algal phase shifts on coral reefs: Ecological and environmental aspects. Prog. Oceanogr. 60, 263–279 (2004).
ADS Google Scholar
26.
Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).
PubMed Google Scholar
27.
Garpe, K. C., Yahya, S. A., Lindahl, U. & Öhman, M. C. Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar. Ecol. Prog. Ser. 315, 237–247 (2006).
ADS Google Scholar
28.
Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes—ecological and economic consequences. Oceanogr. Mar. Biol. 46, 257–302 (2008).
Google Scholar
29.
Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Divers. 3, 424–452 (2011).
Google Scholar
30.
Dunn, D. F. The clownfish sea anemones: Stichodactylidae (Coelenterata: Actiniaria) and other sea anemones symbiotic with pomacentrid fishes. Trans. Am. Philos. Soc. 71, 3–115 (1981).
Google Scholar
31.
Jones, A., Gardner, S. & Sinclair, W. Losing “Nemo”: Bleaching and collection appear to reduce inshore populations of anemonefishes. J. Fish Biol. 73, 753–761 (2008).
Google Scholar
32.
Scott, A. & Hoey, A. S. Severe consequences for anemonefishes and their host sea anemones during the 2016 bleaching event at Lizard Island, Great Barrier Reef. Coral Reefs 36, 873–873 (2017).
ADS Google Scholar
33.
Hobbs, J. P. A. et al. Taxonomic, spatial and temporal patterns of bleaching in anemones inhabited by anemonefishes. PLoS ONE 8, e70966 (2013).
ADS CAS PubMed PubMed Central Google Scholar
34.
Hattori, A. Small and large anemonefishes can coexist using the same patchy resources on a coral reef, before habitat destruction. J. Anim. Ecol. 71, 824–831 (2002).
Google Scholar
35.
Weis, V. M. Cellular mechanisms of Cnidarian bleaching: Stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).
CAS PubMed Google Scholar
36.
Saenz-Agudelo, P., Jones, G., Thorrold, S. & Planes, S. Detrimental effects of host anemone bleaching on anemonefish populations. Coral Reefs 30, 497–506 (2011).
ADS Google Scholar
37.
Lönnstedt, O. M. & Frisch, A. J. Habitat bleaching disrupts threat responses and persistence in anemonefish. Mar. Ecol. Prog. Ser. 517, 265–270 (2014).
ADS Google Scholar
38.
Beldade, R., Blandin, A., O’Donnell, R. & Mills, S. C. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nat. Commun. 8, 716 (2017).
ADS PubMed PubMed Central Google Scholar
39.
Hoegh-Guldberg, O. & Smith, G. J. Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar. Ecol. Prog. Ser. 2, 173–186 (1989).
ADS Google Scholar
40.
Holbrook, S. J. & Schmitt, R. J. Growth, reproduction and survival of a tropical sea anemone (Actiniaria): Benefits of hosting anemonefish. Coral Reefs 24, 67–73 (2005).
Google Scholar
41.
Porat, D. & Chadwick-Furman, N. Effects of anemonefish on giant sea anemones: Expansion behavior, growth, and survival. Hydrobiologia 530, 513–520 (2004).
Google Scholar
42.
Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).
Google Scholar
43.
Fautin, D. G. & Allen, G. R. Field Guide to Anemonefishes and Their Host Sea Anemones (Western Australian Museum, Perth, 1992).
Google Scholar
44.
Hill, R. & Scott, A. The influence of irradiance on the severity of thermal bleaching in sea anemones that host anemonefish. Coral Reefs 31, 273–284 (2012).
ADS Google Scholar
45.
Roughgarden, J. Evolution of marine symbiosis—a simple cost-benefit model. Ecology 56, 1201–1208 (1975).
Google Scholar
46.
Hobbs, J., Neilson, J. & Gilligan, J. Distribution, abundance, habitat association and extinction risk of marine fishes endemic to the Lord Howe Island region (Report to Lord Howe Island Marine Park (James Cook University, Townsville, 2009).
Google Scholar
47.
Porat, D. & Chadwick-Furman, N. Effects of anemonefish on giant sea anemones: Ammonium uptake, zooxanthella content and tissue regeneration. Mar. Freshw. Behav. Physiol. 38, 43–51 (2005).
CAS Google Scholar
48.
Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).
ADS CAS Google Scholar
49.
Borell, E. M. & Bischof, K. Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia 157, 593 (2008).
ADS PubMed Google Scholar
50.
Borell, E. M., Yuliantri, A. R., Bischof, K. & Richter, C. The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. J. Exp. Mar. Biol. Ecol. 364, 116–123 (2008).
Google Scholar
51.
Nakamura, T. & Van Woesik, R. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar. Ecol. Prog. Ser. 212, 301–304 (2001).
ADS Google Scholar
52.
Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836 (1993).
ADS Google Scholar
53.
Zepp, R. G. et al. Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter. Limnol. Oceanogr. 53, 1909–1922 (2008).
ADS CAS Google Scholar
54.
Minasian, L. L. Jr. The relationship of size and biomass to fission rate in a clone of the sea anemone, Haliplanella luciae (Verrill). J. Exp. Mar. Biol. Ecol. 58, 151–162 (1982).
Google Scholar
55.
Miyawaki, M. Temperature as a factor influencing upon the fission of the orange-striped sea-anemone, Diadumene luciae. Zool. 11, 77–80 (1952).
Google Scholar
56.
Atoda, K. Pedal laceration of the sea anemone, Haliplanella luciae. Pub. Seto Mar. Biol. Lab. 20, 299–313 (1973).
Google Scholar
57.
Minasian, L. L. Jr. & Mariscal, R. N. Characteristics and regulation of fission activity in clonal cultures of the cosmopolitan sea anemone, Haliplanella luciae (Verrill). Biol. Bull. 157, 478–493 (1979).
PubMed Google Scholar
58.
Holbrook, S. J., Brooks, A. J., Schmitt, R. J. & Stewart, H. L. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155, 521–530 (2008).
Google Scholar
59.
Johnson, L. L. & Shick, J. M. Effects of fluctuating temperature and immersion on asexual reproduction in the intertidal sea anemone Hauplanella luciae (Verrill) in laboratory culture. J. Exp. Mar. Biol. Ecol. 28, 141–149 (1977).
Google Scholar
60.
Hand, C. & Uhlinger, K. R. Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invertebr. Biol. 2, 9–18 (1995).
Google Scholar
61.
Tsuchida, C. B. & Potts, D. C. The effects of illumination, food and symbionts on growth of the sea anemone Anthopleura elegantissima (Brandt, 1835). II. Clonal growth. J. Exp. Mar. Biol. Ecol. 183, 243–258 (1994).
Google Scholar
62.
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
ADS CAS PubMed Google Scholar
63.
Holbrook, S. J., Forrester, G. E. & Schmitt, R. J. Spatial patterns in abundance of a damselfish reflect availability of suitable habitat. Oecologia 122, 109–120 (2000).
ADS CAS PubMed Google Scholar
64.
Munday, P. L. Interactions between habitat use and patterns of abundance in coral-dwelling fishes of the genus Gobiodon. Environ. Biol. Fish. 58, 355–369 (2000).
Google Scholar
65.
Pontasch, S. et al. Photochemical efficiency and antioxidant capacity in relation to Symbiodinium genotype and host phenotype in a symbiotic cnidarian. Mar. Ecol. Prog. Ser. 516, 195–208 (2014).
ADS CAS Google Scholar
66.
IPCC. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspect (Cambridge University Press, Cambridge, 2014).
Google Scholar
67.
Siebeck, U., Marshall, N., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).
ADS Google Scholar
68.
Marshall, N. J., Kleine, D. A. & Dean, A. J. CoralWatch: Education, monitoring, and sustainability through citizen science. Front Ecol Environ 10, 332–334 (2012).
Google Scholar
69.
Association, A. P. H. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, 2005).
Google Scholar
70.
AOAC. Official Methods of Analysis of AOAC International (Association of Official Analytical Chemists, Rockville, 2000).
Google Scholar
71.
Jeffrey, S. T. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und physiologie der pflanzen 167, 191–194 (1974).
Google Scholar More