More stories

  • in

    Carbon isotope evidence for large methane emissions to the Proterozoic atmosphere

    1.
    Kasting, J. What caused the rise of atmospheric O2?. Chem. Geol. 362, 13–25 (2013).
    ADS  CAS  Article  Google Scholar 
    2.
    Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Org. Geochem. 27(5–6), 185–193 (1997).
    CAS  Article  Google Scholar 

    3.
    Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24(10), 867–870 (1996).
    ADS  CAS  Article  Google Scholar 

    4.
    Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106(1–2), 117–134 (2001).
    ADS  CAS  Article  Google Scholar 

    5.
    Aharon, P. Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidation events. Precambrian Res. 137, 207–222 (2005).
    CAS  Google Scholar 

    6.
    Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315(4), 275–316 (2015).
    ADS  CAS  Article  Google Scholar 

    7.
    Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event). Earth Sci. Rev. 127, 242–261 (2013).
    ADS  CAS  Article  Google Scholar 

    8.
    Bekker, A. et al. Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet. Sci. Lett. 271(1–4), 278–291 (2008).
    ADS  CAS  Article  Google Scholar 

    9.
    Maheshwari, A. et al. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay. Precambrian Res. 182(4), 274–299 (2010).
    ADS  CAS  Article  Google Scholar 

    10.
    Melezhik, V. A., Huhma, H., Condon, D. J., Fallick, A. E. & Whitehouse, M. J. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35(7), 655–658 (2007).
    ADS  CAS  Article  Google Scholar 

    11.
    Frauenstein, F., Veizer, J., Beukes, N., Van Niekerk, H. S. & Coetzee, L. L. Transvaal supergroup carbonates: implications for paleoproterozoic δ18O and δ13C records. Precambr. Res. 175, 149–160 (2009).
    ADS  CAS  Article  Google Scholar 

    12.
    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361, 931–950 (2006).
    CAS  Article  Google Scholar 

    13.
    Frimmel, H. E. On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation. Precambrian Res. 182, 239–253 (2010).
    ADS  CAS  Article  Google Scholar 

    14.
    Shields, G. A., Brasier, M. D., Stille, P. & Dorjnamjaa, D. I. Factors contributing to high δ13C values in Cryogenian limestones of western Mongolia. Earth Planet. Sci. Lett. 196(3–4), 99–111 (2002).
    ADS  CAS  Article  Google Scholar 

    15.
    De PaulaSantos, G. M., Caetano-filho, S., Babinski, M. & Enzweiler, J. Rare elements of carbonate rocks from the Bambui Group, southern Sao Francisco Basin, Brasil, and their significance as paleoenvironmental proxies. Precambrian Res. 305, 327–340 (2017).
    Article  CAS  Google Scholar 

    16.
    Klaebe, R. M., Kennedy, M. J., Jarrett, A. J. M. & Brocks, J. J. Local paleoenvironmental controls on the carbon-isotope record defining the Bitter Springs Anomaly. Geobiology 15(1), 65–80 (2017).
    CAS  PubMed  Article  Google Scholar 

    17.
    Melezhik, V. A., Fallick, A. E., Medvedev, P. V. & Makarikhin, V. V. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Sci. Rev. 48(1–2), 71–120 (1999).
    ADS  CAS  Article  Google Scholar 

    18.
    Blättler, C. L. et al. Two-billion-year-old evaporites capture Earth’s great oxidation. Science 360(6386), 320–323 (2018).
    PubMed  Article  CAS  Google Scholar 

    19.
    Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s Great Oxidation. Proc. Natl. Acad. Sci. 116(35), 17207–17212 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Partin, C. A. et al. Uranium in iron formations and the rise of atmospheric oxygen. Chem. Geol. 362, 82–90 (2013).
    ADS  CAS  Article  Google Scholar 

    21.
    Kanzaki, Y. & Murakami, T. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 174, 263–290 (2016).
    ADS  CAS  Article  Google Scholar 

    22.
    Sheen, A. I. et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227, 75–95 (2018).
    ADS  CAS  Article  Google Scholar 

    23.
    Galili, N. et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365(6452), 469–473 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Knauth, L. P. Temperature and salinity of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005).
    Article  Google Scholar 

    25.
    Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F. & Robert, F. Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem. Perspect. Lett. 3, 55–65 (2017).
    Article  Google Scholar 

    26.
    Kasting, J. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005).
    ADS  CAS  Article  Google Scholar 

    27.
    Kasting, J. Early Earth: faint young Sun redux. Nature 464(7289), 687 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Zinke, J., Reijmer, J. J. & Thomassin, B. Systems tracts sedimentology in the lagoon of Mayotte associated with the Holocene transgression. Sed. Geol. 160, 57–79 (2003).
    CAS  Article  Google Scholar 

    29.
    Feuillet, N. MAYOBS1 Cruise, RV Marion Dufresne (Institut de Physique du Globe de Paris, 2019), https://doi.org/https://doi.org/10.17600/18001217

    30.
    Leboulanger, C. et al. Microbial diversity and cyanobacterial production in Dziani Dzaha crater lake, a unique tropical thalassohaline environment. PLoS ONE 12, e0168879 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Milesi, V. et al. Formation of Mg-smectite during lacustrine carbonates early diagenesis: study case of the volcanic crater lake Dziani Dzaha (Mayotte – Indian Ocean). Sedimentology (2018).

    32.
    Gérard, E. et al. Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front. Microbiol. 9, 1–20 (2018).
    Article  Google Scholar 

    33.
    Cellamare, M. et al. Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). FEMS Microbiol. Ecol. 94(8), 1–25 (2018).
    Article  CAS  Google Scholar 

    34.
    Hugoni, M. et al. Spatiotemporal variations in microbial diversity across the three domains of life in a tropical thalassohaline lake (Dziani Dzaha, Mayotte Island). Molecular Ecology (2018).

    35.
    Marty, B., Avice, G., Bekaert, D. V. & Broadley, M. W. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. Compte Rendus Geosci. 350(4), 154–163 (2018).
    ADS  Article  Google Scholar 

    36.
    Hay, W. W. et al. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate ocean circulation and life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240(1–2), 3–46 (2006).
    Article  Google Scholar 

    37.
    Marin-Carbonne, J., Chaussidon, M. & Robert, F. Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochim. Cosmochim. Acta 92, 129–147 (2012).
    ADS  CAS  Article  Google Scholar 

    38.
    Marin-Carbonne, J., Robert, F. & Chaussidon, M. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures?. Precambr. Res. 247, 223–234 (2014).
    ADS  CAS  Article  Google Scholar 

    39.
    Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560(7719), 471–475 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    41.
    Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl. Acad. Sci. 115(16), 4105–4110 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Stüeken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015).
    ADS  Article  CAS  Google Scholar 

    43.
    Bartley, J. K. & Kah, L. C. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32(2), 129–132 (2004).
    ADS  CAS  Article  Google Scholar 

    44.
    Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10(2), 135–139 (2017).
    ADS  CAS  Article  Google Scholar 

    45.
    Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A. & Katsev, S. Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nat. Geosci. 12(5), 375–380 (2019).
    ADS  CAS  Article  Google Scholar 

    46.
    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7(2), 107–112 (2011).
    CAS  Article  Google Scholar 

    47.
    Reinhard, C. T., Lalonde, S. V. & Lyons, T. W. Oxidative sulfide dissolution on the early Earth. Chem. Geol. 362, 44–55 (2013).
    ADS  CAS  Article  Google Scholar 

    48.
    Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110(1–4), 25–57 (2012).
    ADS  Google Scholar 

    49.
    Planavsky, N. J., Bekker, A., Hofmann, A., Owens, J. D. & Lyons, T. W. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl. Acad. Sci. 109(45), 18300–18305 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Knoll, A. H., Bergmann, K. D. & Strauss, J. V. Life: the first two billion years. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–13 (2016).
    Article  Google Scholar 

    51.
    Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2014).
    Article  Google Scholar 

    52.
    Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7(1), 1–7 (2009).
    MathSciNet  CAS  PubMed  Article  Google Scholar 

    53.
    Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7(4), 257 (2014).
    ADS  CAS  Article  Google Scholar 

    54.
    Peters, S. E., Husson, J. M. & Wilcots, J. The rise and fall of stromatolites in shallow marine environments. Geology 45(6), 487–490 (2017).
    ADS  Article  Google Scholar 

    55.
    Gu, B., Schelske, C. L. & Hodell, D. A. Extreme 13C enrichments in a shallow hypereutrophic lake: implications for carbon cycling. Limnol. Oceanogr. 49, 1152–1159 (2004).
    ADS  CAS  Article  Google Scholar 

    56.
    Zhu, Z., Chen, J. A. & Zeng, Y. Abnormal positive δ13C values of carbonates in lake Caohai, southwest China, and their possible relation to lower temperature. Quatern. Int. 288, 85–93 (2013).
    Article  Google Scholar 

    57.
    Birgel, D. et al. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo- /Neoproterozoic stromatolites?. Geobiology 13, 245–266 (2015).
    CAS  PubMed  Article  Google Scholar 

    58.
    Valero-Garcés, B. L., Delgado-Huertas, A., Ratto, N. & Navas, A. Large 13C enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina. Earth Planet. Sci. Lett. 171(2), 253–266 (1999).
    ADS  Article  Google Scholar 

    59.
    Anoop, A. et al. Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India. J. Quat. Sci. 28(4), 349–359 (2013).
    Article  Google Scholar 

    60.
    Talbot, M. R. & Kelts, K. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14(11), 912–916 (1996).
    ADS  Article  Google Scholar 

    61.
    Saba, V. S., Friedrichs, M. A., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. & Ishizaka, J. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences. 2011, 489-503

    62.
    Lambrecht, N. et al. Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. Geobiology 18(1), 54–69 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18(4), (2004)

    64.
    Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6(3), eaax5343 (2020).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Caetano-Filho, S., Sansjofre, P., Ader, M., Paula-Santos, G.M., Guacaneme, C., Babinski, M., Bedoya-Rueda, C., Kuchenbecker, M., Reis, H. L. & Trindade R. I. A large epeiric methanogenic Bambuì sea in the core of Gondwana supercontinent? Geosci. Front. (2020)

    66.
    Karl, D. M. & Knauer, G. A. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep Sea Res. Part A Oceanogr. Res. Papers 38, S921–S942 (1991).
    ADS  Article  Google Scholar 

    67.
    Katsev, S. & Crowe, S. A. Organic carbon burial efficiencies in sediments: the power law of mineralization revisited. Geology 43(7), 607–610 (2015).
    ADS  CAS  Article  Google Scholar 

    68.
    Cowie, G. L., Hedges, J. I., Prahl, F. G. & De Lange, G. J. Elemental and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect. Geochim. Cosmochim. Acta 59(1), 33–46 (1995).
    ADS  CAS  Article  Google Scholar 

    69.
    Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376(6535), 53–56 (1995).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Kuntz, L. B., Laakso, T. A., Schrag, D. P. & Crowe, S. A. Modeling the carbon cycle in Lake Matano. Geobiology 13(5), 454–461 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Laakso, T. A. & Schrag, D. P. Methane in the Precambrian atmosphere. Earth Planet. Sci. Lett. 522, 48–54 (2019).
    ADS  CAS  Article  Google Scholar 

    72.
    Lambert, M. & Fréchette, J. L. Analytical techniques for measuring fluxes of CO2 and CH4 from hydroelectric reservoirs and natural water bodies. In Greenhouse Gas Emissions—Fluxes and Processes, Springer, Berlin, Heidelberg, 37–60 (2005).

    73.
    Abril, G. et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem. Cycles 19(4), 1–16 (2005).
    Article  CAS  Google Scholar 

    74.
    Assayag, N., Rivé, K., Ader, M., Jézéquel, D. & Agrinier, P. Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples. Rapid Commun. Mass Spectrom. 20(15), 2243–2251 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Lebeau, O., Busigny, V., Chaduteau, C. & Ader, M. Organic matter removal for the analysis of carbon and oxygen isotope compositions of siderite. Chem. Geol. 372, 54–61 (2014).
    ADS  CAS  Article  Google Scholar 

    76.
    Galès, A., Triplet, S., Geoffroy, T., Roques, C., Carré, C., Le Floc’h, E., Lanfranchi, M., Simier, M., d’Orbcastel, E. R., Przybyla, C. & Fouilland, E. Control of the pH for marine microalgae polycultures: A key point of CO2 fixation improvement in intensive cultures. J. CO2 Util. 38, 187–193 (2020)

    77.
    Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis (Blackwell Science, Oxford, 1997).
    Google Scholar 

    78.
    Silsbe, G. M. & Malkin, S. Y. Package “phytotools”: Phytoplankton Production Tools. CRAN library repository. https://cran.r-project.org/package=phytotools (2015).

    79.
    Eilers, P. H. C. & Peeters, J. C. H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42(3–4), 199–215 (1988).
    Article  Google Scholar 

    80.
    Kirk, J. T. O. Light and Photosynthesis in Aquatic Environments 3rd edn. (Cambridge University Press, UK, 2010).
    Google Scholar 

    81.
    Berner, R. A. Early Diagenesis: A Theoretical Approach (Princeton University Press, Princeton, 1980).
    Google Scholar 

    82.
    Milesi, V. P. et al. Early diagenesis of lacustrine carbonates in volcanic settings: the role of magmatic CO2 (Lake Dziani Dzaha, Mayotte, Indian Ocean). ACS Earth Space Chem. 4(3), 363–378 (2020).
    CAS  Article  Google Scholar  More

  • in

    Correction: NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton

    Affiliations

    Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
    Hugo Berthelot, Stéphane L’Helguen, Jean-Francois Maguer & Nicolas Cassar

    Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY, 10964, USA
    Solange Duhamel

    Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
    Seaver Wang & Nicolas Cassar

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Code 616, Greenbelt, MD, USA
    Ivona Cetinić

    GESTAR/Universities Space Research Association, Columbia, MD, USA
    Ivona Cetinić

    Authors
    Hugo Berthelot

    Solange Duhamel

    Stéphane L’Helguen

    Jean-Francois Maguer

    Seaver Wang

    Ivona Cetinić

    Nicolas Cassar

    Corresponding authors
    Correspondence to Hugo Berthelot or Nicolas Cassar. More

  • in

    Patterns of ties in problem-solving networks and their dynamic properties

    1.
    Braha, D. & Bar-Yam, Y. Topology of large-scale engineering problem-solving networks. Phys. Rev. E 69, 016113 (2004).
    ADS  Article  CAS  Google Scholar 
    2.
    Braha, D. & Bar-Yam, Y. The statistical mechanics of complex product development: Empirical and analytical results. Manag. Sci. 53, 1127–1145 (2007).
    MATH  Article  Google Scholar 

    3.
    Simon, H. The sciences of the Artificial 3rd edn. (MIT Press, Cambridge, 1996).
    Google Scholar 

    4.
    Braha, D. & Maimon, O. A Mathematical Theory of Design: Foundations. Algorithms and Applications (Kluwer Academic Publishers, Dordrecht, 1998).
    Google Scholar 

    5.
    Yassine, A. & Braha, D. Complex concurrent engineering and the design structure matrix method. Concurr. Eng. 11, 165–176 (2003).
    Article  Google Scholar 

    6.
    Lazer, D. & Friedman, A. The network structure of exploration and exploitation. Adm. Sci. Q. 52, 667–694 (2007).
    Article  Google Scholar 

    7.
    March, J. G. Exploration and exploitation in organizational learning. Organ Sci. 2, 71–87 (1991).
    ADS  Article  Google Scholar 

    8.
    Berger-Tal, O., Nathan, J., Meron, E. & Saltz, D. The exploration-exploitation dilemma: a multidisciplinary framework. PLoS ONE 9, 4 (2014).
    Article  CAS  Google Scholar 

    9.
    Schumpeter, J. A. The Theory of Economic Development (Harvard University Press, Cambridge, 1934).
    Google Scholar 

    10.
    Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998).
    Google Scholar 

    11.
    Azoulay-Schwartz, R., Kraus, S. & Wilkenfeld, J. Exploitation vs exploration: Choosing a supplier in an environment of incomplete information. Decis Support Syst. 38, 1–18 (2004).
    Article  Google Scholar 

    12.
    Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Eliassen, S., Jorgensen, C., Mangel, M. & Giske, J. Exploration or exploitation: Life expectancy changes the value of learning in foraging strategies. Oikos 116, 513–523 (2007).
    Article  Google Scholar 

    14.
    Uotila, J., Maula, M., Keil, T. & Zahra, S. A. Exploration, exploitation, and financial performance: Analysis of S&P 500 corporations. Strat. Mgmt. J. 30, 221–231 (2009).
    Article  Google Scholar 

    15.
    Molina-Castillo, F. J., Jimenez-Jimenez, D. & Munuera-Aleman, J. L. Product competence exploitation and exploration strategies: The impact on new product performance through quality and innovativeness. Ind. Market Manag. 40, 1172–1182 (2011).
    Article  Google Scholar 

    16.
    Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. B. 362, 933–942 (2007).
    Article  Google Scholar 

    17.
    Berger-Tal, O. & Avgar, T. The glass is half full: Overestimating the quality of a novel environment is advantageous. PLoS ONE 7, e34578 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Shore, J., Bernstein, E. & Lazer, D. Facts and figuring: An experimental investigation of network structure and performance in information and solution spaces. Organ. Sci. 26, 1432–1446 (2015).
    Article  Google Scholar 

    19.
    Subrahmanian, E. et al. Equations aren’t enough: Informal modeling in design. AI EDAM. 7, 257–274 (1993).
    Google Scholar 

    20.
    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    21.
    Banerjee, J., Layek, R. K., Sasmal, S. K. & Ghosh, D. Delayed evolutionary model for public goods competition with policing in phenotypically variant bacterial biofilms. Europhys. Lett. 126, 18002 (2019).
    CAS  Article  Google Scholar 

    22.
    Szabó, G. & Fath, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).
    ADS  MathSciNet  Article  Google Scholar 

    23.
    Nag Chowdhury, S., Kundu, S., Duh, M., Perc, M. & Ghosh, D. Cooperation on interdependent networks by means of migration and stochastic imitation. Entropy. 22, 485 (2020).
    ADS  Article  Google Scholar 

    24.
    Axelrod, R. The complexity of cooperation: Agent-based models of competition and collaboration (Princeton University Press, Princeton, 1997).
    Google Scholar 

    25.
    Steward, D. V. The design structure system: A method for managing the design of complex systems. IEEE Trans. Eng. Manage. 3, 71–74 (1981).
    Article  Google Scholar 

    26.
    Eppinger, S. D., Whitney, D. E., Smith, R. P. & Gebala, D. A. A model-based method for organizing tasks in product development. Res. Eng. Design 6, 1–13 (1994).
    Article  Google Scholar 

    27.
    Browning, T. R. Applying the design structure matrix to system decomposition and integration problems: A review and new directions. IEEE Trans. Eng. Manag. 48, 292–306 (2001).
    Article  Google Scholar 

    28.
    Eppinger, S. D. & Browning, T. R. Design structure Matrix Methods and Applications (MIT press, Cambridge, 2012).
    Google Scholar 

    29.
    Yassine, A., Joglekar, N., Braha, D., Eppinger, S. & Whitney, D. Information hiding in product development: The design churn effect. Res. Eng. Design 14, 145–161 (2003).
    Article  Google Scholar 

    30.
    Braha, D. & Bar-Yam, Y. Information flow structure in large-scale product development organizational networks. J. Inf. Technol. 19, 244–253 (2004).
    Article  Google Scholar 

    31.
    Braha, D. The complexity of design networks: Structure and dynamics. In Experimental Design Research (eds Cash, P. et al.) 129–151 (Springer, Berlin, 2016).
    Google Scholar 

    32.
    Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    33.
    Katz, N., Lazer, D., Arrow, H. & Contractor, N. The network perspective on teams. Small Group Res. 35, 307–332 (2004).
    Article  Google Scholar 

    34.
    Balkundi, P. & Harrison, D. A. Ties, leaders, and time in teams: Strong inference about the effects of network structure on team viability and performance. Acad. Manag. J. 49, 49–68 (2006).
    Article  Google Scholar 

    35.
    Leenders, R. T. A., Van Engelen, J. M. & Kratzer, J. Virtuality, communication, and new product team creativity: A social network perspective. J. Eng. Tech. Manag. 20, 69–92 (2003).
    Article  Google Scholar 

    36.
    Oh, H., Chung, M. H. & Labianca, G. Group social capital and group effectiveness: The role of informal socializing ties. Acad. Manag. J. 47, 860–875 (2004).
    Article  Google Scholar 

    37.
    Uzzi, B. & Spiro, J. Collaboration and creativity: The small world problem. Am. J. Sociol. 111, 447–504 (2005).
    Article  Google Scholar 

    38.
    Sparrowe, R. T., Liden, R. C., Wayne, S. J. & Kraimer, M. L. Social networks and the performance of individuals and groups. Acad. Manag. J. 44, 316–325 (2001).
    Google Scholar 

    39.
    Kearns, M., Suri, S. & Montfort, N. An experimental study of the coloring problem on human subject networks. Science 313, 824–827 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    McCubbins, M. D., Paturi, R. & Weller, N. Connected coordination network structure and group coordination. Am. Polit. Res. 37, 899–920 (2009).
    Article  Google Scholar 

    41.
    Enemark, D., McCubbins, M. D. & Weller, N. Knowledge and networks: An experimental test of how network knowledge affects coordination. Soc. Netw. 36, 122–133 (2014).
    Article  Google Scholar 

    42.
    Mason, W. A. & Watts, D. J. Collaborative learning in networks. Proc. Natl. Acad. Sci. USA 109, 764–769 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Mason, W. A., Jones, A. & Goldstone, R. L. Propagation of innovations in networked groups. J. Exp. Psychol. Gen. 137, 422–433 (2008).
    PubMed  Article  Google Scholar 

    44.
    Levinthal, D. A. Adaptation on rugged landscapes. Manag. Sci. 43, 934–950 (1997).
    MATH  Article  Google Scholar 

    45.
    Rivkin, J. W. & Siggelkow, N. Balancing search and stability: Interdependencies among elements of organizational design. Manag. Sci. 49, 290–312 (2003).
    Article  Google Scholar 

    46.
    Milo, R. et al. Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC Press, Boca Raton, 2019).
    Google Scholar 

    49.
    Prill, R. J., Iglesias, P. A. & Levchenko, A. Dynamic properties of network motifs contribute to biological network organization. PLoS Biol. 3, 11 (2005).
    Article  CAS  Google Scholar 

    50.
    Wasserman, S. & Faust, K. Social Network Analysis: Methods and applications (Cambridge University Press, Cambridge, 1994).
    Google Scholar 

    51.
    Stone, L., Simberloff, D. & Artzy-Randrup, Y. Network motifs and their origins. PloS Comput. Biol. 15, 2 (2019).
    Article  CAS  Google Scholar 

    52.
    Holland, P.W. & Leinhardt, S. The statistical analysis of local structure in social networks. National Bureau of Economic Research. No. w0044 (1974).

    53.
    Pimm, S. L. Food webs (Springer, Berlin, 1982).
    Google Scholar 

    54.
    Stone, L. & Roberts, A. Competitive exclusion, or species aggregation?—An aid in deciding. Oecologia 91, 419–424 (1992).
    ADS  PubMed  Article  Google Scholar 

    55.
    Connor, E. F. & Simberloff, D. The assembly of species communities: Chance or competition?. Ecology 60, 1132–1140 (1979).
    Article  Google Scholar 

    56.
    Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. Detecting early signs of the 2007–2008 crisis in the world trade. Sci Rep. 6, 1–11 (2016).
    Article  CAS  Google Scholar 

    57.
    Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. Randomizing bipartite networks: The case of the world trade web. Sci Rep. 5, 1–18 (2015).
    Article  CAS  Google Scholar 

    58.
    Sporns, O. & Kötter, R. Motifs in brain networks. PloS Biol. 2, 11 (2004).
    Article  CAS  Google Scholar 

    59.
    Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    May, R. M. Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, 2019).
    Google Scholar 

    61.
    Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784–784 (1970).
    ADS  CAS  PubMed  Article  Google Scholar 

    62.
    Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A. L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    63.
    Bulloch, B. & Sullivan, J. Information—the key to the real estate development process. Cornell Real Estate Rev. 8, 78–87 (2010).
    Google Scholar 

    64.
    Scheurmann, E. & Atkinson, L. Strategy Development Process for Meat & Livestock Australia. In Design Structure Matrix Methods and Applications (eds Eppinger, S. D. & Browning, T. R.) 164–168 (MIT press, Cambridge, 2012).
    Google Scholar 

    65.
    Osborne, S.M. Product Development Cycle Time Characterization Through Modeling of Process Iteration. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA. (1993).

    66.
    Scheurmann, E. & Samuel, D. Bioscience Facility at University of Melbourne. In Design Structure Matrix Methods and Applications (eds Eppinger, S. D. & Browning, T. R.) 155–159 (MIT press, Cambridge, 2012).
    Google Scholar 

    67.
    Yassine, A., Whitney, D. & Zambito, T. Assessment of rework probabilities for design structure matrix (DSM) simulation in product development management in 13thInternational Conference on Design Theory and Methodology (ASME, 2001).

    68.
    Tripathy, A. & Eppinger, S. Dover Motion Precision Systems Development Process. In Design structure matrix methods and applications (eds Eppinger, S. D. & Browning, T. R.) 192–195 (MIT press, Cambridge, 2012).
    Google Scholar 

    69.
    Tukey, J. W. Exploratory Data Analysis (Addison-Wesley, Boston, 1977).
    Google Scholar 

    70.
    Zar, J. H. Biostatistical Analysis (Prentice Hall, New Jersey, 2010).
    Google Scholar 

    71.
    Kleiner, B. & Graedel, T. E. Exploratory data analysis in the geophysical sciences. Rev. Geophys. 18, 699–717 (1980).
    ADS  Article  Google Scholar 

    72.
    Williamson, D. F., Parker, R. A. & Kendrick, J. S. The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110, 916–921 (1989).
    CAS  PubMed  Article  Google Scholar 

    73.
    Ray, A., Rakshit, S., Basak, G. K., Dana, S. K. & Ghosh, D. Understanding the origin of extreme events in El Niño southern oscillation. Phys. Rev. E 101, 062210 (2020).
    ADS  MathSciNet  PubMed  Article  Google Scholar 

    74.
    Törnqvist, L., Vartia, P. & Vartia, Y. O. How should relative changes be measured?. Am. Stat. 39, 43–46 (1985).
    Google Scholar 

    75.
    Braha, D. & Bar-Yam, Y. From centrality to temporary fame: Dynamic centrality in complex networks. Complexity. 12, 59–63 (2006).
    Article  Google Scholar 

    76.
    Braha, D. & Bar-Yam, Y. Time-dependent complex networks: Dynamic centrality, dynamic motifs, and cycles of social interactions. In Adaptive Networks (eds Gross, T. & Hiroki, S.) 39–50 (Springer, Berlin, 2009).
    Google Scholar 

    77.
    Bassok, M. & Novick, L. R. Problem Solving. In The Oxford Handbook of Thinking and Reasoning (eds Holyoak, K. J. & Morrison, R. G.) 413–429 (Oxford University Press, Oxford, 2012).
    Google Scholar 

    78.
    Nelson, R. R. & Winter, S. G. An Evolutionary Theory of Economic Change (Harvard University Press, Cambridge, 1982).
    Google Scholar 

    79.
    Becker, M. C. Organizational routines: A review of the literature. Ind. Corpor. Change. 13, 643–678 (2004).
    Article  Google Scholar 

    80.
    Pentland, B. T., Hærem, T. & Hillison, D. The (n)ever-changing world: Stability and change in organizational routines. Organ. Sci. 22, 1369–1383 (2011).
    Article  Google Scholar 

    81.
    Feldman, M. S. & Pentland, B. T. Reconceptualizing organizational routines as a source of flexibility and change. Adm. Sci. Q. 48, 94–118 (2003).
    Article  Google Scholar  More

  • in

    The fingerprints of climate warming on cereal crops phenology and adaptation options

    1.
    Sarwar, M. H., Sarwar, M. F., Sarwar, M., Qadri, N. A. & Moghal, S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J. Cereals Oilseeds 4, 32–35 (2013).
    Article  Google Scholar 
    2.
    Ranjan, R. & Yadav, R. Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 42, 1086–1113. https://doi.org/10.1080/01904167.2019.1589497 (2019).
    CAS  Article  Google Scholar 

    3.
    Sofi, F. et al. Health and nutrition studies related to cereal biodiversity: a participatory multi-actor literature review approach. Nutrients 10, 1207 (2018).
    Article  Google Scholar 

    4.
    Stewart, B. A. & Lal, R. In Advances in Agronomy Vol. 151 (ed Donald L. Sparks) 1–44 (Academic Press, 2018).

    5.
    Sadras, V. et al. In Advances in Agronomy Vol. 163 (ed Donald L. Sparks) 153–177 (Academic Press, 2020).

    6.
    Yu, S. & Tian, L. Breeding major cereal grains through the lens of nutrition sensitivity. Mol. Plant 11, 23–30. https://doi.org/10.1016/j.molp.2017.08.006 (2018).
    CAS  Article  PubMed  Google Scholar 

    7.
    Wang, J., Vanga, S., Saxena, R., Orsat, V. & Raghavan, V. Effect of climate change on the yield of cereal crops: a review. Climate 6, 41 (2018).
    Article  Google Scholar 

    8.
    Chmielewski, F.-M., Müller, A. & Bruns, E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric. For. Meteorol. 121, 69–78. https://doi.org/10.1016/S0168-1923(03)00161-8 (2004).
    ADS  Article  Google Scholar 

    9.
    Price, R. K. & Welch, R. W. In Encyclopedia of Human Nutrition (3rd Edn) (ed Benjamin Caballero) 307–316 (Academic Press, 2013).

    10.
    McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 29, 111–142. https://doi.org/10.1111/j.1467-3010.2004.00418.x (2004).
    Article  Google Scholar 

    11.
    Wang, H. L. et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric. For. Meteorol. 148, 1242–1251. https://doi.org/10.1016/j.agrformet.2008.03.003 (2008).
    ADS  Article  Google Scholar 

    12.
    Chen, X. et al. Does any phenological event defined by remote sensing deserve particular attention? An examination of spring phenology of winter wheat in Northern China. Ecol. Ind. 116, 106456. https://doi.org/10.1016/j.ecolind.2020.106456 (2020).
    Article  Google Scholar 

    13.
    Li, Y., Hou, R. & Tao, F. Interactive effects of different warming levels and tillage managements on winter wheat growth, physiological processes, grain yield and quality in the North China Plain. Agr. Ecosyst. Environ. 295, 106923. https://doi.org/10.1016/j.agee.2020.106923 (2020).
    CAS  Article  Google Scholar 

    14.
    Li, Z. et al. Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg. Environ. Change 14, 39–48. https://doi.org/10.1007/s10113-013-0503-x (2014).
    CAS  Article  Google Scholar 

    15.
    Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T. & Woznicki, S. A. Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manag. 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001 (2017).
    Article  Google Scholar 

    16.
    Akram, R. et al. In Advances in Rice Research for Abiotic Stress Tolerance (eds Hasanuzzaman, M. et al.) 69–85 (Woodhead Publishing, 2019).

    17.
    Farooq, M., Hussain, M., Wakeel, A. & Siddique, K. H. M. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35, 461–481. https://doi.org/10.1007/s13593-015-0287-0 (2015).
    CAS  Article  Google Scholar 

    18.
    Farooq, M., Hussain, M. & Siddique, K. H. M. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 33, 331–349. https://doi.org/10.1080/07352689.2014.875291 (2014).
    CAS  Article  Google Scholar 

    19.
    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212. https://doi.org/10.1051/agro:2008021 (2009).
    Article  Google Scholar 

    20.
    Hussain, J., Khaliq, T., Ahmad, A., Akhter, J. & Asseng, S. Wheat responses to climate change and its adaptations: a focus on arid and semi-arid environment. Int. J. Environ. Res. https://doi.org/10.1007/s41742-018-0074-2 (2018).
    Article  Google Scholar 

    21.
    Hussain, M. et al. In Advances in Agronomy Vol. 148 (ed Donald L. Sparks) 231–287 (Academic Press, 2018).

    22.
    Dyer, G. A., López-Feldman, A., Yúnez-Naude, A. & Taylor, J. E. Genetic erosion in maize’s center of origin. Proc. Natl. Acad. Sci. 111, 14094–14099. https://doi.org/10.1073/pnas.1407033111 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    23.
    Nicholson, S. E., Funk, C. & Fink, A. H. Rainfall over the African continent from the 19th through the 21st century. Global Planet. Change 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014 (2018).
    ADS  Article  Google Scholar 

    24.
    Pour, S. H., Wahab, A. K. A. & Shahid, S. Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos. Res. 233, 104704. https://doi.org/10.1016/j.atmosres.2019.104704 (2020).
    Article  Google Scholar 

    25.
    Sadras, V. O. & Monzon, J. P. Modelled wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crops Res. 99, 136–146. https://doi.org/10.1016/j.fcr.2006.04.003 (2006).
    Article  Google Scholar 

    26.
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x (2006).
    ADS  Article  Google Scholar 

    27.
    Liu, Y., Qin, Y., Ge, Q., Dai, J. & Chen, Q. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China. J. Geogr. Sci. 27, 1072–1084. https://doi.org/10.1007/s11442-017-1422-4 (2017).
    Article  Google Scholar 

    28.
    Liu, L. et al. Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming. Eur. J. Agron. 94, 46–53. https://doi.org/10.1016/j.eja.2017.12.001 (2018).
    Article  Google Scholar 

    29.
    Ye, Z. et al. Impacts of 1.5°C and 2.0°C global warming above pre-industrial on potential winter wheat production of China. Eur. J. Agron. 120, 126149. https://doi.org/10.1016/j.eja.2020.126149 (2020).
    Article  Google Scholar 

    30.
    Kawakita, S., Takahashi, H. & Moriya, K. Prediction and parameter uncertainty for winter wheat phenology models depend on model and parameterization method differences. Agric. For. Meteorol. 290, 107998. https://doi.org/10.1016/j.agrformet.2020.107998 (2020).
    ADS  Article  Google Scholar 

    31.
    Ahmed, K., Shabbir, G., Ahmed, M. & Shah, K. N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci. Total Environ. 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ahmed, M., Aslam, M. A., Fayyaz-Ul, H., Hayat, R. & Ahmad, S. Biochemical, physiological and agronomic response of wheat to changing climate of rainfed Pakistan. Pak. J. Bot 51, 535–551. https://doi.org/10.30848/PJB2019-2(10) (2019).
    CAS  Article  Google Scholar 

    33.
    Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Global Food Secur. 24, 100346. https://doi.org/10.1016/j.gfs.2019.100346 (2020).
    Article  Google Scholar 

    34.
    Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256. https://doi.org/10.1016/j.foodres.2020.109256 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Wreford, A. & Topp, C. F. E. Impacts of climate change on livestock and possible adaptations: a case study of the United Kingdom. Agric. Syst. 178, 102737. https://doi.org/10.1016/j.agsy.2019.102737 (2020).
    Article  Google Scholar 

    36.
    Hu, Q., Weiss, A., Feng, S. & Baenziger, P. S. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric. For. Meteorol. 135, 284–290. https://doi.org/10.1016/j.agrformet.2006.01.001 (2005).
    ADS  Article  Google Scholar 

    37.
    He, L., Jin, N. & Yu, Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Sci. Total Environ. 707, 135638. https://doi.org/10.1016/j.scitotenv.2019.135638 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Tao, F., Yokozawa, M., Liu, J. & Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Res. 38, 83–94 (2008).
    ADS  Article  Google Scholar 

    39.
    Estrella, N., Sparks, T. H. & Menzel, A. Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Climate Res. 39, 235–248 (2009).
    ADS  Article  Google Scholar 

    40.
    Ahmed, M., Fayyaz-ul-Hassan & Ahmad, S. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Claudio O. Stockle) 91–111 (Springer International Publishing, 2017).

    41.
    García-Mozo, H., Mestre, A. & Galán, C. Phenological trends in southern Spain: a response to climate change. Agric. For. Meteorol. 150, 575–580. https://doi.org/10.1016/j.agrformet.2010.01.023 (2010).
    ADS  Article  Google Scholar 

    42.
    Wu, D. et al. Measured phenology response of unchanged crop varieties to long-term historical climate change. Int. J. Plant Prod. 13, 47–58. https://doi.org/10.1007/s42106-018-0033-z (2019).
    Article  Google Scholar 

    43.
    Sujetovienė, G. et al. Climate-change-related long-term historical and projected changes to spring barley phenological development in Lithuania. J. Agric. Sci. 156, 1061–1069. https://doi.org/10.1017/S0021859618000904 (2019).
    Article  Google Scholar 

    44.
    Ahmad, A. et al. In Handbook of Climate Change and Agroecosystems Vol. 3 (eds Rosenzweig, C. & Hillel, D.) 219–258 (World Scientific 2015).

    45.
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155. https://doi.org/10.1016/j.fcr.2013.05.021 (2013).
    Article  Google Scholar 

    46.
    Bai, H., Tao, F., Xiao, D., Liu, F. & Zhang, H. Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Clim. Change 135, 539–553. https://doi.org/10.1007/s10584-015-1579-8 (2016).
    ADS  Article  Google Scholar 

    47.
    Shim, D., Lee, K.-J. & Lee, B.-W. Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region. Crop J. 5, 305–316. https://doi.org/10.1016/j.cj.2017.01.004 (2017).
    Article  Google Scholar 

    48.
    Yang, J. et al. Yield-maturity relationships of summer maize from 2003 to 2017 in the Huanghuaihai plain of China. Sci. Rep. 9, 11417. https://doi.org/10.1038/s41598-019-47561-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Teller, A. S. Moving the conversation on climate change and inequality to the local: socio-ecological vulnerability in agricultural Tanzania. Soc. Dev. 2, 25–50. https://doi.org/10.1525/sod.2016.2.1.25 (2016).
    Article  Google Scholar 

    50.
    Tao, F., Zhang, S. & Zhang, Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur. J. Agron. 43, 201–212. https://doi.org/10.1016/j.eja.2012.07.005 (2012).
    Article  Google Scholar 

    51.
    Shi, W., Wang, M. & Liu, Y. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 750, 141147. https://doi.org/10.1016/j.scitotenv.2020.141147 (2021).
    ADS  CAS  Article  Google Scholar 

    52.
    Siebert, S. & Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 44–57. https://doi.org/10.1016/j.agrformet.2011.08.007 (2012).
    ADS  Article  Google Scholar 

    53.
    Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36. https://doi.org/10.1016/S1161-0301(98)00047-1 (1999).
    Article  Google Scholar 

    54.
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0 (1997).
    ADS  Article  Google Scholar 

    55.
    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365. https://doi.org/10.1016/j.tree.2007.04.003 (2007).
    Article  PubMed  Google Scholar 

    56.
    Xiao, D. et al. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theor. Appl. Climatol. 124, 653–661. https://doi.org/10.1007/s00704-015-1450-x (2016).
    ADS  Article  Google Scholar 

    57.
    Craufurd, P. Q. & Wheeler, T. R. Climate change and the flowering time of annual crops. J. Exp. Bot. 60, 2529–2539. https://doi.org/10.1093/jxb/erp196 (2009).
    CAS  Article  PubMed  Google Scholar 

    58.
    van Bussel, L. G. J., Ewert, F. & Leffelaar, P. A. Effects of data aggregation on simulations of crop phenology. Agric. Ecosyst. Environ. 142, 75–84. https://doi.org/10.1016/j.agee.2010.03.019 (2011).
    Article  Google Scholar 

    59.
    van Oort, P. A. J., Zhang, T., de Vries, M. E., Heinemann, A. B. & Meinke, H. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agric. For. Meteorol. 151, 1545–1555. https://doi.org/10.1016/j.agrformet.2011.06.012 (2011).
    ADS  Article  Google Scholar 

    60.
    Rezaei, E. E., Siebert, S., Hüging, H. & Ewert, F. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 8, 4891. https://doi.org/10.1038/s41598-018-23101-2 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Croitoru, A.-E., Holobaca, I.-H., Lazar, C., Moldovan, F. & Imbroane, A. Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Change 111, 393–410. https://doi.org/10.1007/s10584-011-0133-6 (2012).
    ADS  Article  Google Scholar 

    62.
    Hussain, M., Shabir, G., Farooq, M., Jabran, K. & Farooq, S. Developmental and phenological responses of wheat to sowing dates. Pak. J. Agri. Sci 49, 459–468 (2012).
    Google Scholar 

    63.
    Zhang, S. & Tao, F. Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur. J. Agron. 45, 165–176. https://doi.org/10.1016/j.eja.2012.10.005 (2013).
    Article  Google Scholar 

    64.
    Yue, Y. et al. Prediction of maize growth stages based on deep learning. Comput. Electron. Agric. 172, 105351. https://doi.org/10.1016/j.compag.2020.105351 (2020).
    Article  Google Scholar 

    65.
    Luo, Q. Temperature thresholds and crop production: a review. Clim. Change 109, 583–598. https://doi.org/10.1007/s10584-011-0028-6 (2011).
    ADS  Article  Google Scholar 

    66.
    Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018. https://doi.org/10.1088/1748-9326/8/2/024018 (2013).
    ADS  Article  Google Scholar 

    67.
    Luo, Q., Bange, M. & Clancy, L. Cotton crop phenology in a new temperature regime. Ecol. Model. 285, 22–29. https://doi.org/10.1016/j.ecolmodel.2014.04.018 (2014).
    Article  Google Scholar 

    68.
    Pulatov, B., Linderson, M.-L., Hall, K. & Jönsson, A. M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214–215, 281–292. https://doi.org/10.1016/j.agrformet.2015.08.266 (2015).
    ADS  Article  Google Scholar 

    69.
    Hatfield, J. L. & Dold, C. Climate change impacts on corn phenology and productivity. Corn: Production and Human Health in Changing Climate, 95 (2018).

    70.
    Zhang, T., Huang, Y. & Yang, X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Change Biol. 19, 563–570. https://doi.org/10.1111/gcb.12057 (2013).
    ADS  Article  Google Scholar 

    71.
    Lin, Y. et al. Potential impacts of climate change and adaptation on maize in northeast China. Agron. J. 109, 1476–1490 (2017).
    Article  Google Scholar 

    72.
    Wang, N. et al. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric. For. Meteorol. 250–251, 319–329. https://doi.org/10.1016/j.agrformet.2018.01.005 (2018).
    ADS  Article  Google Scholar 

    73.
    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).
    ADS  Article  Google Scholar 

    74.
    Srivastava, R. K., Panda, R. K. & Chakraborty, A. Assessment of climate change impact on maize yield and yield attributes under different climate change scenarios in eastern India. Ecol. Ind. 120, 106881. https://doi.org/10.1016/j.ecolind.2020.106881 (2021).
    Article  Google Scholar 

    75.
    Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495. https://doi.org/10.1007/s00442-005-0240-z (2005).
    ADS  Article  PubMed  Google Scholar 

    76.
    Brown, M. E., de Beurs, K. M. & Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens. Environ. 126, 174–183. https://doi.org/10.1016/j.rse.2012.08.009 (2012).
    ADS  Article  Google Scholar 

    77.
    Kim, Y.-U. & Lee, B.-W. Earlier planting offsets the adverse effect of global warming on spring potato in South Korea. Sci. Total Environ. 742, 140667. https://doi.org/10.1016/j.scitotenv.2020.140667 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    78.
    Baum, M. E., Licht, M. A., Huber, I. & Archontoulis, S. V. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. Eur. J. Agron. 119, 126101. https://doi.org/10.1016/j.eja.2020.126101 (2020).
    Article  Google Scholar 

    79.
    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).
    ADS  Article  Google Scholar 

    80.
    Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 44, 76–81. https://doi.org/10.1007/s004840000054 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    81.
    Oteros, J., García-Mozo, H., Botey, R., Mestre, A. & Galán, C. Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012). Clim. Change 130, 545–558. https://doi.org/10.1007/s10584-015-1363-9 (2015).
    ADS  CAS  Article  Google Scholar 

    82.
    Wang, Y., Luo, Y. & Shafeeque, M. Interpretation of vegetation phenology changes using daytime and night-time temperatures across the Yellow River Basin, China. Sci. Total Environ. 693, 133553. https://doi.org/10.1016/j.scitotenv.2019.07.359 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    83.
    Moriondo, M. & Bindi, M. Impact of climate change on the phenology of typical Mediterranean crops. Italian J. Agrometeorol. 3, 5–12 (2007).
    Google Scholar 

    84.
    Anwar, M. R. et al. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric. Syst. 132, 133–144. https://doi.org/10.1016/j.agsy.2014.09.010 (2015).
    ADS  Article  Google Scholar 

    85.
    Jackson, R. B. et al. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 13, 120401. https://doi.org/10.1088/1748-9326/aaf303 (2018).
    ADS  CAS  Article  Google Scholar 

    86.
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018 (2018).
    ADS  Article  Google Scholar 

    87.
    Balch, J. K. et al. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philos. Trans. R. Soc. B Biol. Sci. 371, 20150177. https://doi.org/10.1098/rstb.2015.0177 (2016).
    Article  Google Scholar 

    88.
    Ahmad, S. et al. Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan. Field Crops Res. 230, 46–61. https://doi.org/10.1016/j.fcr.2018.10.008 (2019).
    Article  Google Scholar 

    89.
    Ahmad, S. et al. Application of DSSAT Model for sowing date management of C 4 summer cereals for fodder and grain crops under irrigated arid environment. Pakistan J. Life Soc. Sci. 14 (2016).

    90.
    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001 (2015).
    Article  Google Scholar 

    91.
    Aslam, M. A. et al. Can growing degree days and photoperiod predict spring wheat phenology?. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00057 (2017).
    Article  Google Scholar 

    92.
    Zhang, L., Zhang, Z., Luo, Y., Cao, J. & Li, Z. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Sci. Total Environ. 728, 138614. https://doi.org/10.1016/j.scitotenv.2020.138614 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    93.
    Tryjanowski, P. et al. Changing phenology of potato and of the treatment for its major pest (colorado potato beetle)—a long-term analysis. Am. J. Potato Res. https://doi.org/10.1007/s12230-017-9611-3 (2017).
    Article  Google Scholar 

    94.
    Ahmad, S. et al. Quantification of climate warming and crop management impacts on cotton phenology. Plants (Basel) 6, 7. https://doi.org/10.3390/plants6010007 (2017).
    Article  Google Scholar 

    95.
    Huang, J. & Ji, F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int. J. Biometeorol. 59, 877–888. https://doi.org/10.1007/s00484-014-0904-7 (2015).
    ADS  Article  PubMed  Google Scholar 

    96.
    Wang, Z. et al. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci. Rep. 7, 6628. https://doi.org/10.1038/s41598-017-07056-4 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    97.
    Srivastava, A., NareshKumar, S. & Aggarwal, P. K. Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosyst. Environ. 138, 160–169. https://doi.org/10.1016/j.agee.2010.04.012 (2010).
    Article  Google Scholar 

    98.
    Sultan, B. et al. Robust features of future climate change impacts on sorghum yields in West Africa. Environ. Res. Lett. 9, 104006. https://doi.org/10.1088/1748-9326/9/10/104006 (2014).
    ADS  CAS  Article  Google Scholar 

    99.
    Shew, A. M., Tack, J. B., Nalley, L. L. & Chaminuka, P. Yield reduction under climate warming varies among wheat cultivars in South Africa. Nat. Commun. 11, 4408. https://doi.org/10.1038/s41467-020-18317-8 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    100.
    Sonkar, G. et al. Vulnerability of Indian wheat against rising temperature and aerosols. Environ. Pollut. 254, 112946. https://doi.org/10.1016/j.envpol.2019.07.114 (2019).
    CAS  Article  PubMed  Google Scholar 

    101.
    Fatima, Z. et al. Quantification of climate warming and crop management impacts on phenology of pulses-based cropping systems. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00112-6 (2020).
    Article  Google Scholar 

    102.
    Liu, Y., Qin, Y., Wang, H., Lv, S. & Ge, Q. Trends in maize (Zea mays L.) phenology and sensitivity to climate factors in China from 1981 to 2010. Int J Biometeorol 64, 461–470. https://doi.org/10.1007/s00484-019-01832-9 (2020).
    Article  PubMed  Google Scholar 

    103.
    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845. https://doi.org/10.1016/j.agrformet.2019.107845 (2020).
    ADS  Article  Google Scholar 

    104.
    Das, S., Kumar, A., Barman, M., Pal, S. & Bandopadhyay, P. In Agronomic Crops: Volume 3: Stress Responses and Tolerance (ed. Hasanuzzaman, M.) 13–28 (Springer Singapore, 2020).

    105.
    Xiao, D., Liu, D. L., Wang, B., Feng, P. & Waters, C. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agric. Syst. 181, 102805. https://doi.org/10.1016/j.agsy.2020.102805 (2020).
    Article  Google Scholar 

    106.
    Liu, Y. et al. Impacts of 1.5 and 2.0°C global warming on rice production across China. Agric. For. Meteorol. 284, 107900. https://doi.org/10.1016/j.agrformet.2020.107900 (2020).
    ADS  Article  Google Scholar 

    107.
    Rani, B. A. & Maragatham, N. Effect of elevated temperature on rice phenology and yield. Indian J. Sci. Technol. 6, 5095–5097 (2013).
    Google Scholar 

    108.
    Shrestha, S. et al. Phenological responses of upland rice grown along an altitudinal gradient. Environ. Exp. Bot. 89, 1–10. https://doi.org/10.1016/j.envexpbot.2012.12.007 (2013).
    Article  Google Scholar 

    109.
    Abbas, G. et al. Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. For. Meteorol. 247, 42–55. https://doi.org/10.1016/j.agrformet.2017.07.012 (2017).
    ADS  Article  Google Scholar 

    110.
    Estrella, N., Sparks, T. H. & Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Change Biol. 13, 1737–1747. https://doi.org/10.1111/j.1365-2486.2007.01374.x (2007).
    ADS  Article  Google Scholar 

    111.
    Li, K. et al. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int. J. Biometeorol. 60, 21–32. https://doi.org/10.1007/s00484-015-1002-1 (2016).
    ADS  Article  PubMed  Google Scholar 

    112.
    He, D. et al. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agric. For. Meteorol. 232, 163–175. https://doi.org/10.1016/j.agrformet.2016.08.013 (2017).
    ADS  Article  Google Scholar 

    113.
    Wei, W., Wu, W., Li, Z., Yang, P. & Zhou, Q. Selecting the optimal ndvi time-series reconstruction technique for crop phenology detection. Intell. Autom. Soft Comput. 22, 237–247. https://doi.org/10.1080/10798587.2015.1095482 (2016).
    Article  Google Scholar 

    114.
    Chakraborty, A., Das, P. K., Sai, M. V. R. S. & Behera, G. Spatial pattern of temporal trend of crop phenology matrices over india using timeseries gimms NDVI data (19826ndash;2006). ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 3820, 113–118 (2012).
    Article  Google Scholar 

    115.
    Komal, C., Shi, W., Boori, M. S. & Corgne, S. Agriculture phenology monitoring using NDVI time series based on remote sensing satellites: a case study of Guangdong, China. Opt. Mem. Neural Netw. 28, 204–214. https://doi.org/10.3103/S1060992X19030093 (2019).
    Article  Google Scholar 

    116.
    Liu, Y., Chen, Q., Ge, Q. & Dai, J. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010. Sci. China Earth Sci. 61, 1088–1097. https://doi.org/10.1007/s11430-017-9149-0 (2018).
    ADS  Article  Google Scholar 

    117.
    Xiao, D. et al. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 57, 275–285. https://doi.org/10.1007/s00484-012-0552-8 (2013).
    ADS  Article  PubMed  Google Scholar 

    118.
    Hossain, A., da Silva Teixeira, J. A., Lozovskaya, M. V. & Zvolinsky, V. P. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J. Biol. Sci. 19, 473–487. https://doi.org/10.1016/j.sjbs.2012.07.005 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    119.
    Martínez-Núñez, M. et al. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. South African J. Bot. 124, 436–443. https://doi.org/10.1016/j.sajb.2019.05.035 (2019).
    Article  Google Scholar 

    120.
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. 114, 9326–9331. https://doi.org/10.1073/pnas.1701762114 (2017).
    CAS  Article  PubMed  Google Scholar 

    121.
    Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 1328–1341. https://doi.org/10.1111/gcb.12758 (2015).
    ADS  CAS  Article  Google Scholar 

    122.
    Subash, N. & Ram Mohan, H. S. Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agric. For. Meteorol. 164, 71–81. https://doi.org/10.1016/j.agrformet.2012.05.008 (2012).
    ADS  Article  Google Scholar 

    123.
    Tian, D. et al. Does decadal climate variation influence wheat and maize production in the southeast USA?. Agric. For. Meteorol. 204, 1–9. https://doi.org/10.1016/j.agrformet.2015.01.013 (2015).
    ADS  Article  Google Scholar 

    124.
    Quiring, S. M. & Legates, D. R. Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA. Agric. For. Meteorol. 148, 964–975. https://doi.org/10.1016/j.agrformet.2008.01.009 (2008).
    ADS  Article  Google Scholar 

    125.
    Blecharczyk, A., Sawinska, Z., Małecka, I., Sparks, T. H. & Tryjanowski, P. The phenology of winter rye in Poland: an analysis of long-term experimental data. Int. J. Biometeorol. 60, 1341–1346. https://doi.org/10.1007/s00484-015-1127-2 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    126.
    Luo, Q., O’Leary, G., Cleverly, J. & Eamus, D. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency. Int. J. Biometeorol. 62, 1049–1061. https://doi.org/10.1007/s00484-018-1508-4 (2018).
    ADS  Article  PubMed  Google Scholar 

    127.
    He, L. et al. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric. For. Meteorol. 200, 135–143. https://doi.org/10.1016/j.agrformet.2014.09.011 (2015).
    ADS  Article  Google Scholar 

    128.
    Wang, J., Wang, E., Feng, L., Yin, H. & Yu, W. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res. 144, 135–144. https://doi.org/10.1016/j.fcr.2012.12.020 (2013).
    CAS  Article  Google Scholar 

    129.
    Zheng, Z., Cai, H., Wang, Z. & Wang, X. Simulation of climate change impacts on phenology and production of winter wheat in Northwestern China using CERES-wheat model. Atmosphere 11, 681 (2020).
    ADS  Article  Google Scholar 

    130.
    Hyles, J., Bloomfield, M. T., Hunt, J. R., Trethowan, R. M. & Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity https://doi.org/10.1038/s41437-020-0320-1 (2020).
    Article  PubMed  Google Scholar 

    131.
    Li, Q.-Y. et al. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. J. Integr. Agric. 11, 405–415. https://doi.org/10.1016/S2095-3119(12)60025-2 (2012).
    Article  Google Scholar 

    132.
    Herndl, M., Shan, C.-G., Wang, P., Graeff, S. & Claupein, W. A model based ideotyping approach for wheat under different environmental conditions in North China Plain. Agric. Sci. China 6, 1426–1436. https://doi.org/10.1016/S1671-2927(08)60004-8 (2007).
    Article  Google Scholar 

    133.
    Asseng, S., Turner, N. C., Ray, J. D. & Keating, B. A. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. Eur. J. Agron. 17, 123–141. https://doi.org/10.1016/S1161-0301(01)00149-6 (2002).
    Article  Google Scholar 

    134.
    Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).
    ADS  Article  Google Scholar 

    135.
    Eyshi Rezaei, E., Siebert, S. & Ewert, F. Climate and management interaction cause diverse crop phenology trends. Agric. For. Meteorol. 233, 55–70. https://doi.org/10.1016/j.agrformet.2016.11.003 (2017).
    ADS  Article  Google Scholar 

    136.
    Wang, Y., Zhang, J., Song, G., Long, Z. & Chen, C. Impacts of recent temperatures rise on double-rice phenology across Southern China. Int. J. Plant Prod. 13, 1–10. https://doi.org/10.1007/s42106-018-0029-8 (2019).
    Article  Google Scholar 

    137.
    Hu, X., Huang, Y., Sun, W. & Yu, L. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric. For. Meteorol. 247, 34–41. https://doi.org/10.1016/j.agrformet.2017.07.014 (2017).
    ADS  Article  Google Scholar 

    138.
    Zhang, S., Tao, F. & Zhang, Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur. J. Agron. 54, 70–83. https://doi.org/10.1016/j.eja.2013.12.001 (2014).
    CAS  Article  Google Scholar 

    139.
    Bai, H. & Xiao, D. Spatiotemporal changes of rice phenology in China during 1981–2010. Theor Appl Climatol 140, 1483–1494. https://doi.org/10.1007/s00704-020-03182-8 (2020).
    ADS  Article  Google Scholar 

    140.
    Abbas, G. et al. Sowing date and hybrid choice matters production of maize-maize system. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00104-6 (2020).
    Article  Google Scholar 

    141.
    Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. 14, 309–320. https://doi.org/10.1007/s42106-020-00086-5 (2020).
    Article  Google Scholar 

    142.
    Xiao, D., Zhao, Y., Bai, H., Hu, Y. & Cao, J. Impacts of climate warming and crop management on maize phenology in northern China. J. Arid Land 11, 892–903. https://doi.org/10.1007/s40333-019-0028-3 (2019).
    Article  Google Scholar 

    143.
    Wang, Z. et al. Effects of climate change and cultivar on summer maize phenology. International Journal of Plant Production 10, 509–525 (2016).
    Google Scholar 

    144.
    Sacks, W. J. & Kucharik, C. J. Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology 151, 882–894. https://doi.org/10.1016/j.agrformet.2011.02.010 (2011).

    145.
    Mo, F. et al. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Research 196, 337–347. https://doi.org/10.1016/j.fcr.2016.06.024 (2016).
    Article  Google Scholar 

    146.
    Wang, P. et al. Summer maize growth under different precipitation years in the Huang-Huai-Hai Plain of China. Agric. For. Meteorol. 285–286, 107927. https://doi.org/10.1016/j.agrformet.2020.107927 (2020).
    ADS  Article  Google Scholar 

    147.
    Liu, Y., Qin, Y. & Ge, Q. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010. J. Geog. Sci. 29, 351–362. https://doi.org/10.1007/s11442-019-1602-5 (2019).
    Article  Google Scholar 

    148.
    Chen, C. et al. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security 24, 100359. https://doi.org/10.1016/j.gfs.2020.100359 (2020).
    Article  Google Scholar 

    149.
    Lv, Z., Li, F. & Lu, G. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitig Adapt Strat Glob Change 25, 87–106. https://doi.org/10.1007/s11027-019-09861-w (2020).
    Article  Google Scholar 

    150.
    Nahar, K., Ahamed, K. U. & Fujita, M. Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2, 51–56 (2010).

    151.
    Raoufi, R. S. & Soufizadeh, S. Simulation of the impacts of climate change on phenology, growth, and yield of various rice genotypes in humid sub-tropical environments using AquaCrop-Rice. Int J Biometeorol https://doi.org/10.1007/s00484-020-01946-5 (2020).
    Article  PubMed  Google Scholar 

    152.
    Karapinar, B. & Özertan, G. Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey. Climatic Change 158, 453–472. https://doi.org/10.1007/s10584-019-02532-4 (2020).
    ADS  CAS  Article  Google Scholar 

    153.
    Ahmad, M. J., Iqbal, M. A. & Choi, K. S. Climate-driven constraints in sustaining future wheat yield and water productivity. Agric. Water Manag. 231, 105991. https://doi.org/10.1016/j.agwat.2019.105991 (2020).
    Article  Google Scholar 

    154.
    Zacharias, M., Singh, S., Naresh Kumar, S., Harit, R. & Aggarwal, P. Impact of elevated temperature at different phenological stages on the growth and yield of wheat and rice. Ind J Plant Physiol. 15, 350 (2010).
    Google Scholar 

    155.
    Sadok, W. & Jagadish, S. V. K. The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci. 25, 644–651. https://doi.org/10.1016/j.tplants.2020.02.003 (2020).
    CAS  Article  PubMed  Google Scholar 

    156.
    Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. 116, 123–128. https://doi.org/10.1073/pnas.1804387115 (2019).
    CAS  Article  PubMed  Google Scholar 

    157.
    Lavee, H., Imeson, A. C. & Sarah, P. The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degrad. Dev. 9, 407–422. https://doi.org/10.1002/(sici)1099-145x(199809/10)9:5%3c407::aid-ldr302%3e3.0.co;2-6 (1998).
    Article  Google Scholar 

    158.
    Traill, L. W. et al. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17, 1225–1233. https://doi.org/10.1111/j.1472-4642.2011.00807.x (2011).
    Article  Google Scholar 

    159.
    Bellard, C., Leclerc, C. & Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 23, 203–212. https://doi.org/10.1111/geb.12093 (2014).
    Article  Google Scholar 

    160.
    Feng, Q., Ma, H., Jiang, X., Wang, X. & Cao, S. What Has Caused Desertification in China?. Scientific Reports 5, 15998. https://doi.org/10.1038/srep15998 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    161.
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166–171. https://doi.org/10.1038/nclimate2837 (2016).
    ADS  Article  Google Scholar 

    162.
    Liu, B. et al. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology 25, 1428–1444. https://doi.org/10.1111/gcb.14542 (2019).

    163.
    Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173. https://doi.org/10.1111/gcb.14481 (2019).
    ADS  Article  Google Scholar 

    164.
    Nayak, D. et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agr. Ecosyst. Environ. 209, 108–124. https://doi.org/10.1016/j.agee.2015.04.035 (2015).
    CAS  Article  Google Scholar 

    165.
    Kang, Y., Khan, S. & Ma, X. Climate change impacts on crop yield, crop water productivity and food security – A review. Prog. Nat. Sci. 19, 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001 (2009).
    Article  Google Scholar 

    166.
    Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: a review. Agron. Sustain. Dev. 36, 12. https://doi.org/10.1007/s13593-016-0350-5 (2016).
    Article  Google Scholar 

    167.
    167Ortiz., R. in Food Security and Climate Change145–158 (2018).

    168.
    Kumar, S. & Sidana, B. K. Farmers’ perceptions and adaptation strategies to climate change in Punjab agriculture. Indian J. Agric. Sci 88, 1573–1581 (2018).
    Google Scholar 

    169.
    Burke, M. & Emerick, K. Adaptation to climate change: Evidence from US agriculture. American Economic Journal: Economic Policy 8, 106–140 (2016).
    Google Scholar 

    170.
    Pradhan, A., Chan, C., Roul, P. K., Halbrendt, J. & Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 163, 27–35. https://doi.org/10.1016/j.agsy.2017.01.002 (2018).
    Article  Google Scholar 

    171.
    Bahri, H., Annabi, M., Cheikh M’Hamed, H. & Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Science of The Total Environment 692, 1223–1233. https://doi.org/10.1016/j.scitotenv.2019.07.307 (2019).

    172.
    Zampieri, M. et al. Estimating resilience of crop production systems: From theory to practice. Sci. Total Environ. 735, 139378. https://doi.org/10.1016/j.scitotenv.2020.139378 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    173.
    Wiebe, K., Robinson, S. & Cattaneo, A. in Sustainable Food and Agriculture (eds Clayton Campanhola & Shivaji Pandey) 55–74 (Academic Press, 2019).

    174.
    Abebe, T., Guenzi, A. C., Martin, B. & Cushman, J. C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131, 1748–1755 (2003).
    CAS  Article  Google Scholar 

    175.
    Lee, S.-H. et al. Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnology Letters 37, 881–890. https://doi.org/10.1007/s10529-014-1749-1 (2015).

    176.
    Yamakawa, H., Hirose, T., Kuroda, M. & Yamaguchi, T. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray. Plant Physiol. 144, 258–277. https://doi.org/10.1104/pp.107.098665 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    177.
    Lehmann, N., Finger, R., Klein, T., Calanca, P. & Walter, A. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agric. Syst. 117, 55–65. https://doi.org/10.1016/j.agsy.2012.12.011 (2013).
    Article  Google Scholar 

    178.
    Pimentel, A. J. B. et al. Characterization of heat tolerance in wheat cultivars and effects on production components. Revista Ceres 62, 191–198 (2015).
    Article  Google Scholar 

    179.
    Lin, B. B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. Bioscience 61, 183–193. https://doi.org/10.1525/bio.2011.61.3.4 (2011).
    Article  Google Scholar 

    180.
    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25, n/a-n/a. https://doi.org/10.1029/2009GB003765 (2011).

    181.
    Mase, A. S., Gramig, B. M. & Prokopy, L. S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management 15, 8–17. https://doi.org/10.1016/j.crm.2016.11.004 (2017).

    182.
    Hernandez-Ochoa, I. M. et al. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: Management, breeding options and land use change. Eur. J. Agron. 109, 125915. https://doi.org/10.1016/j.eja.2019.125915 (2019).
    Article  Google Scholar 

    183.
    Meza, F. J. & Silva, D. Dynamic adaptation of maize and wheat production to climate change. Climatic Change 94, 143–156. https://doi.org/10.1007/s10584-009-9544-z (2009).
    ADS  Article  Google Scholar 

    184.
    Luo, Q., Bellotti, W., Williams, M. & Wang, E. Adaptation to climate change of wheat growing in South Australia: Analysis of management and breeding strategies. Agr. Ecosyst. Environ. 129, 261–267. https://doi.org/10.1016/j.agee.2008.09.010 (2009).
    Article  Google Scholar 

    185.
    Wang, B. et al. Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agric. Syst. 170, 9–18. https://doi.org/10.1016/j.agsy.2018.12.005 (2019).
    Article  Google Scholar 

    186.
    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Change Biol. 26, 3065–3078. https://doi.org/10.1111/gcb.15002 (2020).
    ADS  Article  Google Scholar 

    187.
    Hampton, K. N. Persistent and pervasive community: New communication technologies and the future of community. Am. Behav. Sci. 60, 101–124 (2016).
    Article  Google Scholar 

    188.
    Asseng, S., Zhu, Y., Wang, E. & Zhang, W. in Crop Physiology (Second Edition) (ed Victor O. SadrasDaniel F. Calderini) 505–546 (Academic Press, 2015).

    189.
    Sadras, V. O., Vadez, V., Purushothaman, R., Lake, L. & Marrou, H. Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research 177, 1–8. https://doi.org/10.1016/j.fcr.2015.02.024 (2015).
    Article  Google Scholar 

    190.
    Rodriguez, D. & Sadras, V. Opportunities from integrative approaches in farming systems design. Field Crops Research 124, 131–141 (2011).
    Google Scholar 

    191.
    Cabezas, J. M. et al. Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agric. Syst. 185, 102937. https://doi.org/10.1016/j.agsy.2020.102937 (2020).
    Article  Google Scholar 

    192.
    Ahmad, I., Ahmad, B., Boote, K. & Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 115, 126040. https://doi.org/10.1016/j.eja.2020.126040 (2020).
    CAS  Article  Google Scholar 

    193.
    Abbas, G. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 429–445 (Springer Singapore, 2020).

    194.
    Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports 9, 7813. https://doi.org/10.1038/s41598-019-44251-x (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    195.
    Ahmed, M. & Ahmad, S. in Agronomic Crops: Volume 2: Management Practices (ed Mirza Hasanuzzaman) 31–46 (Springer Singapore, 2019).

    196.
    van Ogtrop, F., Ahmad, M. & Moeller, C. Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications 21, 431–443. https://doi.org/10.1002/met.1429 (2014).

    197.
    Abedinpour, M. et al. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 110, 55–66. https://doi.org/10.1016/j.agwat.2012.04.001 (2012).
    Article  Google Scholar 

    198.
    Sareen, S. et al. Molecular genetic diversity analysis for heat tolerance of indigenous and exotic wheat genotypes. J. Plant Biochem. Biotechnol. 29, 15–23. https://doi.org/10.1007/s13562-019-00501-7 (2020).
    CAS  Article  Google Scholar 

    199.
    Rezaei, E. E. et al. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Research 217, 93–103. https://doi.org/10.1016/j.fcr.2017.12.015 (2018).
    Article  Google Scholar 

    200.
    Mechanisms and modelling. Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J. & Ewert, F. Heat stress in cereals. Eur. J. Agron. 64, 98–113. https://doi.org/10.1016/j.eja.2014.10.003 (2015).
    Article  Google Scholar 

    201.
    Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00086-5 (2020).
    Article  Google Scholar 

    202.
    Jahan, M. A. H. S. et al. Optimizing sowing window for wheat cultivation in Bangladesh using CERES-wheat crop simulation model. Agr. Ecosyst. Environ. 258, 23–29. https://doi.org/10.1016/j.agee.2018.02.008 (2018).
    Article  Google Scholar 

    203.
    Ahmed, S., Humphreys, E. & Chauhan, B. S. Optimum sowing date and cultivar duration of dry-seeded boro on the High Ganges River Floodplain of Bangladesh. Field Crops Research 190, 91–102. https://doi.org/10.1016/j.fcr.2015.12.004 (2016).
    Article  Google Scholar 

    204.
    Basso, B., Liu, L. & Ritchie, J. T. in Advances in Agronomy Vol. 136 (ed Donald L. Sparks) 27–132 (Academic Press, 2016).

    205.
    Xiong, W. et al. A calibration procedure to improve global rice yield simulations with EPIC. Ecol. Model. 273, 128–139. https://doi.org/10.1016/j.ecolmodel.2013.10.026 (2014).
    Article  Google Scholar 

    206.
    Jalota, S. K., Vashisht, B. B., Kaur, H., Kaur, S. & Kaur, P. Location specific climate change scenario and its impact on rice and wheat in Central Indian Punjab. Agric. Syst. 131, 77–86. https://doi.org/10.1016/j.agsy.2014.07.009 (2014).
    Article  Google Scholar 

    207.
    Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101, 9971–9975. https://doi.org/10.1073/pnas.0403720101 (2004).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    208.
    Ritchie, J. T., Singh, U., Godwin, D. C. & Bowen, W. T. in Understanding Options for Agricultural Production Vol. 7 Systems Approaches for Sustainable Agricultural Development (eds GordonY Tsuji, Gerrit Hoogenboom, & PhilipK Thornton) Ch. 5, 79–98 (Springer Netherlands, 1998).

    209.
    Nissanka, S. P. et al. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software 70, 128–137. https://doi.org/10.1016/j.envsoft.2015.04.007 (2015).
    Article  Google Scholar 

    210.
    Weerakoon, W. M. W. et al. Direct-seeded rice culture in Sri Lanka: Lessons from farmers. Field Crops Research 121, 53–63. https://doi.org/10.1016/j.fcr.2010.11.009 (2011).
    Article  Google Scholar 

    211.
    Iftekharuddaula, K. M. et al. Development of early maturing submergence-tolerant rice varieties for Bangladesh. Field Crops Research 190, 44–53. https://doi.org/10.1016/j.fcr.2015.12.001 (2016).
    Article  Google Scholar 

    212.
    Haefele, S. M., Kato, Y. & Singh, S. Climate ready rice: Augmenting drought tolerance with best management practices. Field Crops Research 190, 60–69. https://doi.org/10.1016/j.fcr.2016.02.001 (2016).
    Article  Google Scholar 

    213.
    Latif, M. A., Islam, M. R., Ali, M. Y. & Saleque, M. A. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Research 93, 281–292. https://doi.org/10.1016/j.fcr.2004.10.005 (2005).
    Article  Google Scholar 

    214.
    Sarangi, S. K. et al. Using improved variety and management enhances rice productivity in stagnant flood -affected tropical coastal zones. Field Crops Research 190, 70–81. https://doi.org/10.1016/j.fcr.2015.10.024 (2016).
    Article  Google Scholar 

    215.
    Raza, M. A. et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports 9, 4947. https://doi.org/10.1038/s41598-019-41364-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    216.
    Paudel, B., Khanal, R. C., KC, A., Bhatta, K. & Chaudhary, P. Climate-smart agriculture in Nepal. Research program on Climate Change, Agriculture and food security (2017).

    217.
    Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J. & Jat, M. L. in Advances in Agronomy Vol. Volume 117 (ed L. Sparks Donald) 315–369 (Academic Press, 2012).

    218.
    Yadvinder, S., Kukal, S. S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. 127 (ed Donald Sparks) 157–258 (Academic Press, 2014).

    219.
    Jat, M. L. et al. in Advances in Agronomy Vol. 137 (ed Donald L. Sparks) 127–235 (Academic Press, 2016).

    220.
    Kukal, S. S., Yadvinder, S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. Volume 127 (ed Sparks Donald) 157–258 (Academic Press, 2014).

    221.
    Witt, C., Pasuquin, J. & Dobermann, A. Towards a site-specific nutrient management approach for maize in Asia. Better Crops 90, 28–31 (2006).
    Google Scholar 

    222.
    Ullah, A., Ahmad, A., Khaliq, T. & Akhtar, J. Recognizing production options for pearl millet in Pakistan under changing climate scenarios. Journal of Integrative Agriculture 16, 762–773. https://doi.org/10.1016/S2095-3119(16)61450-8 (2017).
    Article  Google Scholar 

    223.
    Ullah, A., Salehnia, N., Kolsoumi, S., Ahmad, A. & Khaliq, T. Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecological Indicators 90, 569–576. https://doi.org/10.1016/j.ecolind.2018.03.053 (2018).

    224.
    Ausiku, A. P., Annandale, J. G., Steyn, J. M. & Sanewe, A. J. Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water 12, 422 (2020).
    CAS  Article  Google Scholar 

    225.
    Alauddin, M., Rashid Sarker, M. A., Islam, Z. & Tisdell, C. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use Policy 91, 104430. https://doi.org/10.1016/j.landusepol.2019.104430 (2020).
    Article  Google Scholar 

    226.
    Rahman, M. H. u. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 447–484 (Springer Singapore, 2020).

    227.
    Ishfaq, M. et al. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 241, 106363. https://doi.org/10.1016/j.agwat.2020.106363 (2020).
    Article  Google Scholar 

    228.
    Rejesus, R. M., Palis, F. G., Rodriguez, D. G. P., Lampayan, R. M. & Bouman, B. A. M. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 36, 280–288. https://doi.org/10.1016/j.foodpol.2010.11.026 (2011).
    Article  Google Scholar 

    229.
    Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002 (2017).
    Article  Google Scholar 

    230.
    Stuart, D., Schewe, R. L. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36, 210–218. https://doi.org/10.1016/j.landusepol.2013.08.011 (2014).
    Article  Google Scholar 

    231.
    Zheng, W., Luo, B. & Hu, X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production 272, 123054. https://doi.org/10.1016/j.jclepro.2020.123054 (2020).
    Article  Google Scholar 

    232.
    Jiang, G. et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochem. Cycles 28, 319–333. https://doi.org/10.1002/2013gb004746 (2014).
    ADS  CAS  Article  Google Scholar 

    233.
    Omotesho, A., Fakayode, S. & Tariya, Y. Curtailing fertilizer scarcity and climate change; an appraisal of factors affecting organic materials use option in Nigeria’s agriculture. Ethiopian Journal of Environmental Studies and Management 5, 281–290 (2012).
    Article  Google Scholar 

    234.
    Raza, A. et al. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 8, 34 (2019).
    CAS  Article  Google Scholar 

    235.
    Sloan, K. et al. in The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future (eds Todd S. Rosenstock, Andreea Nowak, & Evan Girvetz) 227–233 (Springer International Publishing, 2019).

    236.
    Keith, W. et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 085010 (2015).
    Article  Google Scholar 

    237.
    Zhang, Z., Yu, K., Siddique, K. H. M. & Nan, Z. Phenology and sowing time affect water use in four warm-season annual grasses under a semi-arid environment. Agric. For. Meteorol. 269–270, 257–269. https://doi.org/10.1016/j.agrformet.2019.02.027 (2019).
    ADS  Article  Google Scholar 

    238.
    Dreccer, M. F., Fainges, J., Whish, J., Ogbonnaya, F. C. & Sadras, V. O. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agric. For. Meteorol. 248, 275–294. https://doi.org/10.1016/j.agrformet.2017.10.006 (2018).
    ADS  Article  Google Scholar 

    239.
    Abid, M. et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8, 4615. https://doi.org/10.1038/s41598-018-21441-7 (2018).

    240.
    Macabuhay, A. A. Physiological and biochemical responses of wheat to combined heat stress and elevated CO2 during grain-filling  (2016).

    241.
    Stratonovitch, P. & Semenov, M. A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. https://doi.org/10.1093/jxb/erv070 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    242.
    Hernández, F., Poverene, M., Mercer, K. L. & Presotto, A. Genetic variation for tolerance to extreme temperatures in wild and cultivated sunflower (Helianthus annuus) during early vegetative phases. Crop and Pasture Science 71, 578–591. https://doi.org/10.1071/CP20005 (2020).
    CAS  Article  Google Scholar 

    243.
    Acharjee, T. K., van Halsema, G., Ludwig, F., Hellegers, P. & Supit, I. Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agric. Syst. 168, 131–143. https://doi.org/10.1016/j.agsy.2018.11.006 (2019).
    Article  Google Scholar 

    244.
    Chibarabada, T. P., Modi, A. T. & Mabhaudhi, T. Options for improving water productivity: a case study of bambara groundnut and groundnut. Phys. Chem. Earth Parts A/B/C 115, 102806. https://doi.org/10.1016/j.pce.2019.10.003 (2020).
    Article  Google Scholar 

    245.
    Islam, A. R. M. T., Shen, S., Yang, S., Hu, Z. & Atiqur Rahman, M. Spatiotemporal rice yield variations and potential agro-adaptation strategies in Bangladesh: A biophysical modeling approach. Sustain. Prod. Consum. 24, 121–138. https://doi.org/10.1016/j.spc.2020.07.005 (2020).
    Article  Google Scholar 

    246.
    Tsegay, A. et al. Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia. Agric. Water Manag. 150, 81–91. https://doi.org/10.1016/j.agwat.2014.11.014 (2015).
    Article  Google Scholar 

    247.
    van Oort, P. A. J., Timmermans, B. G. H. & van Swaaij, A. C. P. M. Why farmers’ sowing dates hardly change when temperature rises. Eur. J. Agron. 40, 102–111. https://doi.org/10.1016/j.eja.2012.02.005 (2012).
    Article  Google Scholar 

    248.
    Bassu, S., Asseng, S., Motzo, R. & Giunta, F. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Res. 111, 109–118. https://doi.org/10.1016/j.fcr.2008.11.002 (2009).
    Article  Google Scholar 

    249.
    Aasen, H., Kirchgessner, N., Walter, A. & Liebisch, F. PhenoCams for field phenotyping: using very high temporal resolution digital repeated photography to investigate interactions of growth, phenology, and harvest traits. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00593 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    250.
    Singh, S., Sandhu, S., Dhaliwal, L. & Singh, I. Effect of planting geometry on microclimate, growth and yield of mung-bean (Vigna radiata L.). J. Agric. Phys. 12, 70–73 (2012).
    Google Scholar 

    251.
    van Etten, J. et al. Crop variety management for climate adaptation supported by citizen science. Proc. Natl. Acad. Sci. 116, 4194–4199. https://doi.org/10.1073/pnas.1813720116 (2019).
    CAS  Article  PubMed  Google Scholar 

    252.
    Mahato, M. & Adhikari, B. B. Effect of planting geometry on growth of rice varieties. Int. J. Appl. Sci. Biotechnol. 5, 423–429 (2017).
    CAS  Article  Google Scholar 

    253.
    Raza, M. A. et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 9, e199. https://doi.org/10.1002/fes3.199 (2020).
    Article  Google Scholar 

    254.
    Raza, M. A., van der Werf, W., Ahmed, M. & Yang, W. Removing top leaves increases yield and nutrient uptake in maize plants. Nutr. Cycl. Agroecosyst. 118, 57–73. https://doi.org/10.1007/s10705-020-10082-w (2020).
    CAS  Article  Google Scholar 

    255.
    Raza, M. A. et al. Effects of contrasting shade treatments on the carbon production and antioxidant activities of soybean plants. Funct. Plant Biol. FPB 47, 342–354. https://doi.org/10.1071/fp19213 (2020).
    CAS  Article  PubMed  Google Scholar 

    256.
    Raza, M. A. et al. Optimum leaf defoliation: a new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res. 244, 107647. https://doi.org/10.1016/j.fcr.2019.107647 (2019).
    Article  Google Scholar 

    257.
    Raza, M. A. et al. Growth and development of soybean under changing light environments in relay intercropping system. PeerJ 7, e7262. https://doi.org/10.7717/peerj.7262 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    258.
    Raza, M. A. et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 8, e170. https://doi.org/10.1002/fes3.170 (2019).
    Article  Google Scholar 

    259.
    Huang, F., Liu, Z., Zhang, P. & Jia, Z. Hydrothermal effects on maize productivity with different planting patterns in a rainfed farmland area. Soil Tillage Res. 205, 104794. https://doi.org/10.1016/j.still.2020.104794 (2021).
    Article  Google Scholar 

    260.
    Rio, M., Rey, D., Prudhomme, C. & Holman, I. P. Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change. Agric. Water Manag. 206, 200–208. https://doi.org/10.1016/j.agwat.2018.05.005 (2018).
    Article  Google Scholar 

    261.
    Muluneh, A., Stroosnijder, L., Keesstra, S. & Biazin, B. Adapting to climate change for food security in the Rift Valley dry lands of Ethiopia: supplemental irrigation, plant density and sowing date. J. Agric. Sci. 155, 703–724. https://doi.org/10.1017/S0021859616000897 (2016).
    CAS  Article  Google Scholar 

    262.
    Ndhleve, S., Nakin, M. & Longo-Mbenza, B. Impacts of supplemental irrigation as a climate change adaptation strategy for maize production: a case of the Eastern Cape Province of South Africa. Water SA 43, 222–228 (2017).
    Article  Google Scholar 

    263.
    Bigelow, D. P. & Zhang, H. Supplemental irrigation water rights and climate change adaptation. Ecol. Econ. 154, 156–167. https://doi.org/10.1016/j.ecolecon.2018.07.015 (2018).
    Article  Google Scholar 

    264.
    Trevaskis, B. Wheat gene for all seasons. Proc. Natl. Acad. Sci. 112, 11991–11992. https://doi.org/10.1073/pnas.1516398112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    265.
    Matthew, G., Pierre, M. & Ariel, O.-B. Negative impacts of climate change on cereal yields: statistical evidence from France. Environ. Res. Lett. 12, 054007 (2017).
    ADS  Article  Google Scholar 

    266.
    Ortiz, R. et al. Climate change: can wheat beat the heat?. Agric. Ecosyst. Environ. 126, 46–58. https://doi.org/10.1016/j.agee.2008.01.019 (2008).
    Article  Google Scholar 

    267.
    Lobell, D. B. et al. Analysis of wheat yield and climatic trends in Mexico. Field Crops Res. 94, 250–256. https://doi.org/10.1016/j.fcr.2005.01.007 (2005).
    Article  Google Scholar 

    268.
    Nazim Ud Dowla, M. A. N., Edwards, I., O’Hara, G., Islam, S. & Ma, W. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes. Engineering 4, 514–522. https://doi.org/10.1016/j.eng.2018.06.005 (2018).
    CAS  Article  Google Scholar 

    269.
    Mohammadi, R. The use of a combination scoring index to improve durum productivity under drought stress. Exp. Agric. 56, 161–170. https://doi.org/10.1017/S0014479719000231 (2019).
    Article  Google Scholar 

    270.
    Cui, L. et al. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering 4, 507–513. https://doi.org/10.1016/j.eng.2018.07.003 (2018).
    CAS  Article  Google Scholar 

    271.
    Zachariah, M., Mondal, A., Das, M., AchutaRao, K. M. & Ghosh, S. On the role of rainfall deficits and cropping choices in loss of agricultural yield in Marathwada, India. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab93fc (2020).
    Article  Google Scholar 

    272.
    Gahlaut, V., Samtani, H. & Khurana, P. Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 112, 4796–4807. https://doi.org/10.1016/j.ygeno.2020.08.031 (2020).
    CAS  Article  Google Scholar 

    273.
    Boote, K. J., Prasad, V., Allen, L. H., Singh, P. & Jones, J. W. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. Eur. J. Agron. 100, 99–109. https://doi.org/10.1016/j.eja.2017.09.002 (2018).
    Article  Google Scholar 

    274.
    Elbashir, A. A. E. et al. Genetic variation in heat tolerance-related traits in a population of wheat multiple synthetic derivatives. Breed Sci. 67, 483–492. https://doi.org/10.1270/jsbbs.17048 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    275.
    Reynolds, M. P. et al. An integrated approach to maintaining cereal productivity under climate change. Global Food Secur. 8, 9–18. https://doi.org/10.1016/j.gfs.2016.02.002 (2016).
    Article  Google Scholar 

    276.
    Asseng, S. et al. Model-driven multidisciplinary global research to meet future needs: the case for “improving radiation use efficiency to increase yield”. Crop Sci. https://doi.org/10.2135/cropsci2018.09.0562 (2019).
    Article  Google Scholar 

    277.
    Smit, B. & Skinner, M. W. Adaptation options in agriculture to climate change: a typology. Mitig. Adapt. Strat. Glob. Change 7, 85–114. https://doi.org/10.1023/A:1015862228270 (2002).
    Article  Google Scholar 

    278.
    Liu, Y., Chen, Q., Ge, Q., Dai, J. & Dou, Y. Effects of climate change and agronomic practice on changes in wheat phenology. Clim. Change 150, 273–287. https://doi.org/10.1007/s10584-018-2264-5 (2018).
    ADS  CAS  Article  Google Scholar 

    279.
    Loboguerrero, A. M. et al. Food and earth systems: priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability 11, 1372 (2019).
    Article  Google Scholar 

    280.
    Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691–19696. https://doi.org/10.1073/pnas.0701890104 (2007).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    281.
    Bryan, E., Deressa, T. T., Gbetibouo, G. A. & Ringler, C. Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environ. Sci. Policy 12, 413–426. https://doi.org/10.1016/j.envsci.2008.11.002 (2009).
    Article  Google Scholar 

    282.
    Wongnaa, C. A. & Babu, S. Building resilience to shocks of climate change in Ghana’s cocoa production and its effect on productivity and incomes. Technol. Soc. 62, 101288. https://doi.org/10.1016/j.techsoc.2020.101288 (2020).
    Article  Google Scholar 

    283.
    Kumar, S., Mishra, A. K., Pramanik, S., Mamidanna, S. & Whitbread, A. Climate risk, vulnerability and resilience: supporting livelihood of smallholders in semiarid India. Land Use Policy 97, 104729. https://doi.org/10.1016/j.landusepol.2020.104729 (2020).
    Article  Google Scholar 

    284.
    Morales-Castilla, I. et al. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. 117, 2864–2869. https://doi.org/10.1073/pnas.1906731117 (2020).
    CAS  Article  PubMed  Google Scholar 

    285.
    Nelson, G. C. et al. Climate change: Impact on agriculture and costs of adaptation. Vol. 21 (Intl Food Policy Res Inst, 2009).

    286.
    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).
    Article  Google Scholar 

    287.
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 200. https://doi.org/10.1038/s41467-020-15076-4 (2020).
    ADS  CAS  Article  Google Scholar 

    288.
    Mertz, O., Mbow, C., Reenberg, A. & Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in Rural Sahel. Environ. Manag. 43, 804–816. https://doi.org/10.1007/s00267-008-9197-0 (2009).
    ADS  Article  Google Scholar 

    289.
    Smit, B., Burton, I., Klein, R. J. T. & Wandel, J. An anatomy of adaptation to climate change and variability. Clim. Change 45, 223–251. https://doi.org/10.1023/A:1005661622966 (2000).
    Article  Google Scholar 

    290.
    Thamo, T. et al. Climate change impacts and farm-level adaptation: economic analysis of a mixed cropping–livestock system. Agric. Syst. 150, 99–108. https://doi.org/10.1016/j.agsy.2016.10.013 (2017).
    Article  Google Scholar 

    291.
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291. https://doi.org/10.1038/nclimate2153 (2014).
    ADS  Article  Google Scholar 

    292.
    Reidsma, P., Janssen, S., Jansen, J. & van Ittersum, M. K. On the development and use of farm models for policy impact assessment in the European Union—a review. Agric. Syst. 159, 111–125. https://doi.org/10.1016/j.agsy.2017.10.012 (2018).
    Article  Google Scholar 

    293.
    Reidsma, P. et al. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environ. Res. Lett. 10, 045004 (2015).
    ADS  Article  Google Scholar 

    294.
    Reidsma, P., Ewert, F., Lansink, A. O. & Leemans, R. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur. J. Agron. 32, 91–102. https://doi.org/10.1016/j.eja.2009.06.003 (2010).
    Article  Google Scholar 

    295.
    Shahzad, A. N. & Ahmad, S. In Agronomic Crops: Volume 2: Management Practices (ed Hasanuzzaman, M.) 111–126 (Springer Singapore, 2019).

    296.
    Ahmed, M. Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Science of The Total Environment734, 139397, 10.1016/j.scitotenv.2020.139397 (2020).

    297.
    Singh, S. Farmers’ perception of climate change and adaptation decisions: a micro-level evidence from Bundelkhand Region, India. Ecol. Ind. 116, 106475. https://doi.org/10.1016/j.ecolind.2020.106475 (2020).
    Article  Google Scholar 

    298.
    Wallach, D. et al. Multimodel ensembles improve predictions of crop–environment–management interactions. Glob. Change Biol. 24, 5072–5083. https://doi.org/10.1111/gcb.14411 (2018).
    ADS  Article  Google Scholar 

    299.
    Aslam, M. U. et al. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 113–136 (Springer International Publishing, 2017).

    300.
    Ijaz, W., Ahmed, M., Fayyaz-ul-Hassan, Asim, M. & Aslam, M. in Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 371–386 (Springer International Publishing, 2017).

    301.
    Jabeen, M., Gabriel, H. F., Ahmed, M., Mahboob, M. A. & Iqbal, J. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 387–411 (Springer International Publishing, 2017).

    302.
    Aslam, M. A., Ahmed, M., Fayyaz-ul-Hassan & Hayat, R. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 71–90 (Springer International Publishing, 2017).

    303.
    Ahmed, M. et al. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: models evaluation and application. Comput. Electron. Agric. 123, 384–401. https://doi.org/10.1016/j.compag.2016.03.015 (2016).
    Article  Google Scholar 

    304.
    Ahmed, M. & Stockle, C. O. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (Springer, Berlin, 2016).
    Google Scholar 

    305.
    Ahmed, M., Fayyaz Ul, H. & Van Ogtrop, F. F. Can models help to forecast rainwater dynamics for rainfed ecosystem?. Weather Clim. Extremes 5–6, 48–55. https://doi.org/10.1016/j.wace.2014.07.001 (2014).
    Article  Google Scholar 

    306.
    Ahmed, M., Hassan, F., Aslam, M. A., Akram, M. N. & Akmal, M. Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. Afr. J. Biotech. 10, 9114–9121 (2011).
    Article  Google Scholar 

    307.
    Ahmed, M. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 1–44 (Springer Singapore, 2020).

    308.
    Tariq, M., Ahmed, M., Iqbal, P., Fatima, Z. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 45–60 (Springer Singapore, 2020).

    309.
    Ahmed, M., Raza, M. A. & Hussain, T. In Systems Modeling (ed Ahmed, M.) 111–150 (Springer Singapore, 2020).

    310.
    Ahmed, M. et al. In Systems Modeling (ed Ahmed, M.) 151–178 (Springer Singapore, 2020).

    311.
    Kheir, A. M. S. et al. In Systems Modeling (ed Ahmed, M.) 179–202 (Springer Singapore, 2020).

    312.
    Ahmad, S., & Hasanuzzaman, M. Cotton Production and Uses. Springer Nature Singapore Pte Ltd. (https://link.springer.com/book/10.1007/978-981-15-1472-2); doi: 10.1007/978-981-15-1472-2 (2020) 

    313.
    Khan, A., Ahmad, M., Shah, M. K. N. & Ahmed, M. Performance of wheat genotypes for Morpho-Physiological traits using multivariate analysis under terminal heat stress. Pak. J. Bot. 52(6), 1981–1988. https://doi.org/10.30848/PJB2020-6(30)(2020).

    314.
    Khan, A., Ahmad, M., Shah, M. K. N., & Ahmed, M. Genetic manifestation of physio-morphic and yield related traits conferring thermotolerance in wheat. Pak. J. Bot. 52(5), 1545–1552. https://doi.org/10.30848/PJB2020-5(27) (2020). More

  • in

    Plastic, nutrition and pollution; relationships between ingested plastic and metal concentrations in the livers of two Pachyptila seabirds

    1.
    Law, K. L. et al. Distribution of surface plastic debris in the eastern pacific ocean from an 11-year data set. Environ. Sci. Technol. 48, 4732–4738. https://doi.org/10.1021/es4053076 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Naser, H. A. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar. Pollut. Bull. 72, 6–13. https://doi.org/10.1016/j.marpolbul.2013.04.030 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Meng, W., Qin, Y., Zheng, B. & Zhang, L. Heavy metal pollution in Tianjin Bohai Bay, China. J. Environ. Sci. 20, 814–819. https://doi.org/10.1016/S1001-0742(08)62131-2 (2008).
    CAS  Article  Google Scholar 

    4.
    Rainbow, P. S. Bioaccumulation of trace metals: biological significance. Oceanis 25, 547–561 (1999).
    CAS  Google Scholar 

    5.
    Reeder, R. J., Schoonen, M. A. & Lanzirotti, A. Metal speciation and its role in bioaccessibility and bioavailability. Rev. Mineral. Geochem. 64, 59–113 (2006).
    CAS  Article  Google Scholar 

    6.
    Kastury, F., Karna, R. R., Scheckel, K. G. & Juhasz, A. L. Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids. Environ. Pollut., 114609 (2020).

    7.
    Kastury, F. et al. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: Uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. Environ. Int. 131, 104967 (2019).
    CAS  Article  Google Scholar 

    8.
    Ryan, P. G. Handbook of Environmental Chemistry 78, 235–266 (2019).
    ADS  Google Scholar 

    9.
    Holmes, L. A., Turner, A. & Thompson, R. C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 160, 42–48. https://doi.org/10.1016/j.envpol.2011.08.052 (2012).
    CAS  Article  PubMed  Google Scholar 

    10.
    Holmes, L. A., Turner, A. & Thompson, R. C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 167, 25–32. https://doi.org/10.1016/j.marchem.2014.06.001 (2014).
    CAS  Article  Google Scholar 

    11.
    Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003 (2016).
    ADS  CAS  Article  Google Scholar 

    12.
    Vedolin, M. C., Teophilo, C. Y. S., Turra, A. & Figueira, R. C. L. Spatial variability in the concentrations of metals in beached microplastics. Mar. Pollut. Bull. 129, 487–493. https://doi.org/10.1016/j.marpolbul.2017.10.019 (2018).
    CAS  Article  PubMed  Google Scholar 

    13.
    Shen, K. K., Kochesfahani, S. & Jouffret, F. Zinc borates as multifunctional polymer additives. Polym. Adv. Technol. 19, 469–474. https://doi.org/10.1002/pat.1119 (2008).
    CAS  Article  Google Scholar 

    14.
    Lu, K., Qiao, R., An, H. & Zhang, Y. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 202, 514–520. https://doi.org/10.1016/j.chemosphere.2018.03.145 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Mallory, M. L., Robinson, S. A., Hebert, C. E. & Forbes, M. R. Seabirds as indicators of aquatic ecosystem conditions: a case for gathering multiple proxies of seabird health. Mar. Pollut. Bull. 60, 7–12. https://doi.org/10.1016/j.marpolbul.2009.08.024 (2010).
    CAS  Article  PubMed  Google Scholar 

    16.
    Furness, R. W. & Camphuysen, K. Seabirds as monitors of the marine environment. ICES J. Mar. Sci. 54, 726–737. https://doi.org/10.1006/jmsc.1997.0243 (1997).
    Article  Google Scholar 

    17.
    Elliott, J. E. Trace metals, stable isotope ratios, and trophic relations in seabirds from the North Pacific Ocean. Environ. Toxicol. Chem. 24, 3099–3105. https://doi.org/10.1897/04-474R.1 (2005).
    CAS  Article  PubMed  Google Scholar 

    18.
    Kim, E. Y., Goto, R., Tanabe, S., Tanaka, H. & Tatsukawa, R. Distribution of 14 elements in tissues and organs of oceanic seabirds. Arch. Environ. Contam. Toxicol. 35, 638–645. https://doi.org/10.1007/s002449900426 (1998).
    CAS  Article  PubMed  Google Scholar 

    19.
    Murphy, M. E. in Avian energetics and nutritional ecology 31–60 (Springer, 1996).

    20.
    McCue, M. D. Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 156, 1–18. https://doi.org/10.1016/j.cbpa.2010.01.002 (2010).
    CAS  Article  Google Scholar 

    21.
    Cherel, Y., Robin, J.-P. & Maho, Y. L. Physiology and biochemistry of long-term fasting in birds. Can. J. Zool. 66, 159–166 (1988).
    CAS  Article  Google Scholar 

    22.
    Richards, M. P., Rosebrough, R. W. & Steele, N. C. Effects of starvation and refeeding on tissue zinc, copper and iron in turkey poults. J. Nutr. 117, 481–489. https://doi.org/10.1093/jn/117.3.481 (1987).
    CAS  Article  PubMed  Google Scholar 

    23.
    Debacker, V., Rutten, A., Jauniaux, T., Daemers, C. & Bouquegneau, J. M. Combined effects of experimental heavy-metal contamination (Cu, Zn, and CH3Hg) and starvation on quail’s body condition: parallelism with a wild common guillemot (Uria aalge) population found stranded at the Belgian coast. Biol. Trace Elem. Res. 82, 87–107. https://doi.org/10.1385/bter:82:1-3:087 (2001).
    CAS  Article  PubMed  Google Scholar 

    24.
    Wenzel, C. & Adelung, D. The suitability of oiled guillemots (Uria aalge) as monitoring organisms for geographical comparisons of trace element contaminants. Arch. Environ. Contam. Toxicol. 31, 368–377. https://doi.org/10.1007/BF00212675 (1996).
    CAS  Article  PubMed  Google Scholar 

    25.
    Brady, L. J., Romsos, D. R., Brady, P. S., Bergen, W. G. & Leveille, G. A. The effects of fasting on body composition, glucose turnover, enzymes and metabolites in the chicken. J. Nutr. 108, 648–657 (1978).
    CAS  Article  Google Scholar 

    26.
    McCauley, S. J. & Bjorndal, K. A. Conservation implications of dietary dilution from debris ingestion: sublethal effects in post-hatchling loggerhead sea turtles. Conserv. Biol. 13, 925–929. https://doi.org/10.1046/j.1523-1739.1999.98264.x (1999).
    Article  Google Scholar 

    27.
    Raubenheimer, D. & Simpson, S. J. in Encyclopedia of Animal Behavior (Second Edition) (ed Jae Chun Choe) 127–138 (Academic Press, London, 2019).

    28.
    Santos, R. G. et al. Exploring plastic-induced satiety in foraging green turtles. Environ. Pollut., 114918 (2020).

    29.
    Lavers, J. L., Bond, A. L. & Hutton, I. Plastic ingestion by flesh-footed shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187, 124–129. https://doi.org/10.1016/j.envpol.2013.12.020 (2014).
    CAS  Article  PubMed  Google Scholar 

    30.
    Puskic, P. S., Lavers, J. L., Adams, L. R. & Bond, A. L. Ingested plastic and trace element concentrations in short-tailed shearwaters (Ardenna tenuirostris). Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111143 (2020).
    Article  PubMed  Google Scholar 

    31.
    Lavers, J. L. & Bond, A. L. Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Mar. Pollut. Bull. 110, 493–500. https://doi.org/10.1016/j.marpolbul.2016.06.001 (2016).
    CAS  Article  PubMed  Google Scholar 

    32.
    Ishii, C. et al. Contamination status and accumulation characteristics of heavy metals and arsenic in five seabird species from the central Bering Sea. J. Vet. Med. Sci. 79, 807–814. https://doi.org/10.1292/jvms.16-0441 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Ishii, C. et al. Heavy metal pollution in Japanese seabirds. Jpn. J. Vet. Res. 61, S75–S76 (2013).
    PubMed  Google Scholar 

    34.
    Burger, J. & Gochfeld, M. Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Sci. Total Environ. 257, 37–52. https://doi.org/10.1016/S0048-9697(00)00496-4 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    35.
    Ashton, K., Holmes, L. & Turner, A. Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 60, 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014 (2010).
    CAS  Article  PubMed  Google Scholar 

    36.
    Honda, K., Marcovecchio, J. E., Kan, S., Tatsukawa, R. & Ogi, H. Metal concentrations in pelagic seabirds from the North Pacific Ocean. Arch. Environ. Contam. Toxicol. 19, 704–711. https://doi.org/10.1007/BF01183988 (1990).
    CAS  Article  PubMed  Google Scholar 

    37.
    Muirhead, S. J. & Furness, R. W. Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Mar. Pollut. Bull. 19, 278–283. https://doi.org/10.1016/0025-326X(88)90599-1 (1988).
    CAS  Article  Google Scholar 

    38.
    Lock, J. W., Thompson, D. R., Furness, R. W. & Bartle, J. A. Metal concentrations in seabirds of the New Zealand region. Environ. Pollut. 75, 289–300. https://doi.org/10.1016/0269-7491(92)90129-X (1992).
    CAS  Article  PubMed  Google Scholar 

    39.
    Turner, A. Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar. Pollut. Bull. 111, 136–142. https://doi.org/10.1016/j.marpolbul.2016.07.020 (2016).
    CAS  Article  PubMed  Google Scholar 

    40.
    Davranche, M. et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 249, 940–948. https://doi.org/10.1016/j.envpol.2019.03.087 (2019).
    CAS  Article  PubMed  Google Scholar 

    41.
    Turner, A. Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test. Environ. Pollut. 236, 1020–1026. https://doi.org/10.1016/j.envpol.2018.01.023 (2018).
    CAS  Article  PubMed  Google Scholar 

    42.
    Burger, J. & Gochfeld, M. Mercury and other metals in feathers of common eider (Somateria mollissima) and tufted puffin (Fratercula cirrhata) from the Aleutian chain of Alaska. Arch. Environ. Contam. Toxicol. 56, 596–606. https://doi.org/10.1007/s00244-008-9207-5 (2009).
    CAS  Article  PubMed  Google Scholar 

    43.
    Roman, L., Hardesty, B. D., Hindell, M. A. & Wilcox, C. A quantitative analysis linking seabird mortality and marine debris ingestion. Sci. Rep. https://doi.org/10.1038/s41598-018-36585-9 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Pierce, K. E., Harris, R. J., Larned, L. S. & Pokras, M. A. Obstruction and starvation associated with plastic ingestion in a Northern Gannet Morus bassanus and a greater shearwater Puffinus gravis. Mar. Ornithol. 32, 187–189 (2004).
    Google Scholar 

    45.
    Rochman, C. M. et al. The ecological impacts of marine debris: Unraveling the demonstrated evidence from what is perceived. Ecology 97, 302–312. https://doi.org/10.1890/14-2070.1 (2016).
    Article  PubMed  Google Scholar 

    46.
    Tanaka, K. et al. (2013) Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. http://doi.org/https://doi.org/10.1016/j.marpolbul.2012.12.010 (2013).

    47.
    Marchant, S. & Higgins, P. J. Handbook of Australian, New Zealand and Antarctic Birds 1 Part A ( Oxford University Press, Ratites to Ducks, 1990).
    Google Scholar 

    48.
    Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiforme seabirds Sci. Rep. (2019).

    49.
    Powlesland, R. G. Seabirds found dead on New Zealand beaches in 1986 and a review of Pachyptila species recoveries since 1960. Notornis 36 (1989).

    50.
    Veitch, C. Seabirds found dead in New Zealand in 1979. Notornis 28, 41–47 (1981).
    Google Scholar 

    51.
    Post, P. W. Observations of prion (Pachyptila) wrecks on the west coast of South America. Notornis 54, 220–225 (2007).
    Google Scholar 

    52.
    Martuscelli, P. & Olmos, F. A large prion Pachyptila wreck in south-east Brazil. Cotinga 8, 55–57 (1997).
    Google Scholar 

    53.
    Davidson, N. & Evans, P. Mortality of Redshanks and Oystercatchers from starvation during severe weather. Bird Study 29, 183–188 (1982).
    Article  Google Scholar 

    54.
    van Franeker, J. Save the North Sea Fulmar-Litter-EcoQO Manual Part 1: Collection and dissection procedures. Vol. 672 (2004).

    55.
    Kastury, F. et al. In vitro, in vivo, and spectroscopic assessment of lead exposure reduction via ingestion and inhalation pathways using phosphate and iron amendments. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b02448 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Environmental Protection Agency, U. S. A. Method 6020A Inductively coupled plasma – mass spectrometry. (1998).

    57.
    R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org (2018).

    58.
    Naimi, B. Package ‘usdm’, R package version 1.1–18. (2017).

    59.
    Barton, K. Package ‘MuMIn’. R package version 1.43.17. (2019).

    60.
    Anderson, D. & Burnham, K. Model Selection and Multi-Model Inference 2nd edn, 63 (Springer, New York, 2004).
    Google Scholar 

    61.
    Burnham, K. & Anderson, D. A practical information-theoretic approach, in Model Selection and mUltimodel Inference, 2nd ed. (Springer, New York, 2002).

    62.
    Totzke, U. et al. The influence of fasting on blood and plasma composition of herring gulls (Larus argentatus). Physiol. Biochem. Zool. Ecol. Evol. Approac. 72, 426–437. https://doi.org/10.1086/316675 (1999).
    CAS  Article  Google Scholar 

    63.
    McKnight, G. S., Lee, D. C., Hemmaplardh, D., Finch, C. A. & Palmiter, R. D. Transferrin gene expression. effects of nutritional iron deficiency. J. Biol. Chem. 255, 144–147 (1980).
    CAS  PubMed  Google Scholar 

    64.
    Urien, N. et al. Subcellular partitioning of metals and metalloids (As, Cd, Cu, Se and Zn) in liver and gonads of wild white suckers (Catostomus commersonii) collected downstream from a mining operation. Aquat. Toxicol. 202, 105–116. https://doi.org/10.1016/j.aquatox.2018.07.001 (2018).
    CAS  Article  PubMed  Google Scholar 

    65.
    Krężel, A. & Maret, W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 18, 1237. https://doi.org/10.3390/ijms18061237 (2017).
    CAS  Article  PubMed Central  Google Scholar 

    66.
    Rainbow, P. S. Copper, cadmium and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. Mar. Biol. 103, 513–518. https://doi.org/10.1007/BF00399583 (1989).
    CAS  Article  Google Scholar 

    67.
    Cherel, Y., Robin, J.-P., Heitz, A., Calgari, C. & Le Maho, Y. Relationships between lipid availability and protein utilization during prolonged fasting. J. Comput. Physiol. B. 162, 305–313 (1992).
    CAS  Article  Google Scholar 

    68.
    Kojadinovic, J., Corre, M. L., Cosson, R. P. & Bustamante, P. Trace elements in three marine birds breeding on Reunion Island (Western Indian Ocean): part 1 – factors influencing their bioaccumulation. Arch. Environ. Contam. Toxicol. 52, 418–430. https://doi.org/10.1007/s00244-005-0225-2 (2007).
    CAS  Article  PubMed  Google Scholar 

    69.
    Stewart, F. M., Phillips, R. A., Bartle, J. A., Craig, J. & Shooter, D. Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar. Ecol. Prog. Ser. 178, 295–305. https://doi.org/10.3354/meps178295 (1999).
    ADS  CAS  Article  Google Scholar 

    70.
    Fromant, A. et al. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean. Sci. Total Environ. 544, 754–764. https://doi.org/10.1016/j.scitotenv.2015.11.114 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Van Franeker, J. A. & Law, K. L. Seabirds, gyres and global trends in plastic pollution. Environ. Pollut. 203, 89–96. https://doi.org/10.1016/j.envpol.2015.02.034 (2015).
    CAS  Article  PubMed  Google Scholar 

    72.
    Ryan, P. G. How quickly do albatrosses and petrels digest plastic particles?. Environ. Pollut. 207, 438–440. https://doi.org/10.1016/j.envpol.2015.08.005 (2015).
    CAS  Article  PubMed  Google Scholar 

    73.
    Thouzeau, C., Robin, J.-P., Le Maho, Y. & Handrich, Y. Body reserve dynamics and energetics of barn owls during fasting in the cold. J. Comput. Physiol. B. 169, 612–620 (1999).
    Article  Google Scholar 

    74.
    Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female common eiders nesting in the high arctic. Auk 107, 660–668 (1990).
    Article  Google Scholar 

    75.
    Esselink, H. et al. Biomonitoring heavy metals using the barn owl (Tyto alba guttata): sources of variation especially relating to body condition. Arch. Environ. Contam. Toxicol. 28, 471–486 (1995).
    CAS  Article  Google Scholar 

    76.
    Raiswell, R., Benning, L. G., Tranter, M. & Tulaczyk, S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem. Trans. 9, 7 (2008).
    Article  Google Scholar 

    77.
    Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).
    ADS  CAS  Article  Google Scholar 

    78.
    De Baar, H. J. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415 (1995).
    ADS  Article  Google Scholar 

    79.
    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Res. II 44, 209–227. https://doi.org/10.1016/S0967-0645(96)00074-4 (1997).
    ADS  CAS  Article  Google Scholar 

    80.
    Bannon, D. I., Abounader, R., Lees, P. S. J. & Bressler, J. P. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am. J. Physiol. Cell Physiol. 284, C44–C50 (2003).
    CAS  Article  Google Scholar 

    81.
    Bressler, J. P., Olivi, L., Cheong, J. H., Kim, Y. & Bannona, D. Divalent metal transporter 1 in lead and cadmium transport. Ann. N. Y. Acad. Sci. 1012, 142–152. https://doi.org/10.1196/annals.1306.011 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    82.
    Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiform Seabirds. Sci. Rep. http://doi.org/https://doi.org/10.1038/s41598-018-37324-w (2019).

    83.
    Ryan, P. G. The incidence and characteristics of plastic particles ingested by seabirds. Mar. Environ. Res. 23, 175–206. https://doi.org/10.1016/0141-1136(87)90028-6 (1987).
    Article  Google Scholar 

    84.
    Ainley, D. G., Fraser, W. R. & Spear, L. B. The incidence of plastic in the diets of Antarctic seabirds. Second International Conference on Marine Debris, 2–7 April 1989 (1990).

    85.
    Avery-Gomm, S. et al. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific. Mar. Pollut. Bull. 64, 1776–1781. https://doi.org/10.1016/j.marpolbul.2012.04.017 (2012).
    CAS  Article  PubMed  Google Scholar 

    86.
    Terepocki, A. K., Brush, A. T., Kleine, L. U., Shugart, G. W. & Hodum, P. Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea). Mar. Pollut. Bull. 116, 143–150. https://doi.org/10.1016/j.marpolbul.2016.12.064 (2017).
    CAS  Article  PubMed  Google Scholar 

    87.
    Youngren, S. M., Rapp, D. C. & Hyrenbach, K. D. Plastic ingestion by Tristram’s Storm-petrel (Oceanodroma tristrami) chicks from French frigate shoals, Northwestern Hawaiian Islands. Mar. Pollut. Bull. 128, 369–378. https://doi.org/10.1016/j.marpolbul.2018.01.053 (2018).
    CAS  Article  PubMed  Google Scholar 

    88.
    GIMP Development Team. GIMP 2.10.10, https://www.gimp.org/ (2019). More

  • in

    Ocean acidification disrupts the orientation of postlarval Caribbean spiny lobsters

    1.
    Yates, K. K., Dufore, C., Smiley, N., Jackson, C. & Halley, R. B. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Mar. Chem. 104(1–2), 110–124. https://doi.org/10.1016/j.marchem.2006.12.008 (2007).
    CAS  Article  Google Scholar 
    2.
    Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: The other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13. https://doi.org/10.1016/j.ecss.2014.05.027 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change. 5(3), 207–214. https://doi.org/10.1038/nclimate2508 (2015).
    ADS  Article  Google Scholar 

    4.
    Millero, F. J., Hiscock, W. T., Huang, F., Roche, M. & Zhang, J. Z. Seasonal variation of the carbonate system in Florida Bay. Bull. Mar. Sci. 68(1), 101–123 (2001).
    Google Scholar 

    5.
    Manzello, D. P., Enochs, I. C., Melo, N., Gledhill, D. K. & Johns, E. M. Ocean acidification refugia of the Florida Reef Tract. PLoS ONE 7(7), 41715. https://doi.org/10.1371/journal.pone.0041715 (2012).
    ADS  CAS  Article  Google Scholar 

    6.
    Enochs, I. C., Manzello, D. P., Jones, P. R., Stamates, S. J. & Carsey, T. P. Seasonal carbonate chemistry dynamics on southeast Florida coral reefs: Localized acidification hotspots from navigational inlets. Front. Mar. Sci. 6, 160. https://doi.org/10.3389/fmars.2019.00160 (2019).
    Article  Google Scholar 

    7.
    Cyronak, T. et al. Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnol. Oceanogr. Lett. 5(2), 193–203. https://doi.org/10.1002/lol2.10129 (2020).
    Article  Google Scholar 

    8.
    Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271. https://doi.org/10.3354/meps09185 (2011).
    ADS  CAS  Article  Google Scholar 

    9.
    Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504(7478), 61–70. https://doi.org/10.1038/nature12857 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    IPCC, IPOCC. Special report on global warming of 1.5 °C (SR15, 2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

    11.
    Munday, P. L., McCormick, M. I. & Nilsson, G. E. Impact of global warming and rising CO2 levels on coral reef fishes: What hope for the future?. J. Exp. Biol. 215(22), 3865–3873. https://doi.org/10.1242/jeb.074765 (2012).
    CAS  Article  PubMed  Google Scholar 

    12.
    Gravinese, P. M. Ocean acidification impacts the embryonic development and hatching success of the Florida stone crab, Menippe mercenaria. J. Exp. Mar. Biol. Ecol. 500, 140–146. https://doi.org/10.1016/j.jembe.2017.09.001 (2018).
    CAS  Article  Google Scholar 

    13.
    Gravinese, P. M. Vertical swimming behavior in larvae of the Florida stone crab, Menippe mercenaria. J. Plankton Res. 40(6), 643–654. https://doi.org/10.1093/plankt/fby040 (2018).
    Article  Google Scholar 

    14.
    Gravinese, P. M., Enochs, I. C., Manzello, D. P. & van Woesik, R. Ocean acidification changes the vertical movement of stone crab larvae. Biol. Lett. 15(12), 20190414. https://doi.org/10.1098/rsbl.2019.0414 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Paganini, A. W., Miller, N. A. & Stillman, J. H. Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 217(22), 3974–3980. https://doi.org/10.1242/jeb.109801 (2014).
    Article  PubMed  Google Scholar 

    16.
    Ceballos-Osuna, L., Carter, H. A., Miller, N. A. & Stillman, J. H. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216(8), 1405–1411. https://doi.org/10.1242/jeb.078154 (2013).
    CAS  Article  PubMed  Google Scholar 

    17.
    Giltz, S. M. & Taylor, C. M. Reduced growth and survival in the larval blue crab Callinectes sapidus under predicted ocean acidification. J. Shellfish Res. 36(2), 481–485. https://doi.org/10.2983/035.036.0219 (2017).
    Article  Google Scholar 

    18.
    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37(12), 1131–1134. https://doi.org/10.1130/G30210A.1 (2009).
    ADS  CAS  Article  Google Scholar 

    19.
    Wang, T. & Wang, Y. Behavioral responses to ocean acidification in marine invertebrates: New insights and future directions. J. Oceanol. Limnol. 38(3), 1–14. https://doi.org/10.1007/s00343-019-9118-5 (2019).
    MathSciNet  CAS  Article  Google Scholar 

    20.
    Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N. Sensory Biology of Aquatic Animals (Springer, Berlin, 1988).
    Google Scholar 

    21.
    Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70(1), 309–340 (2002).
    Google Scholar 

    22.
    Arvedlund, M. & Kavanagh, K. The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 135–185 (Springer, Berlin, 2009).
    Google Scholar 

    23.
    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. 106(6), 1848–1852. https://doi.org/10.1073/pnas.0809996106 (2009).
    ADS  Article  PubMed  Google Scholar 

    24.
    Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13(1), 68–75. https://doi.org/10.1111/j.1461-0248.2009.01400.x (2010).
    Article  PubMed  Google Scholar 

    25.
    Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Glob. Change Biol. 22(3), 974–989. https://doi.org/10.1111/gcb.13167 (2016).
    ADS  Article  Google Scholar 

    26.
    Ashur, M. M., Johnston, N. K. & Dixson, D. L. Impacts of ocean acidification on sensory function in marine organisms. Integr. Comp. Biol. 57(1), 63–80. https://doi.org/10.1093/icb/icx010 (2017).
    Article  PubMed  Google Scholar 

    27.
    Ross, E. & Behringer, D. Changes in temperature, pH, and salinity affect the sheltering responses of Caribbean spiny lobsters to chemosensory cues. Sci. Rep. 9(1), 4375. https://doi.org/10.1038/s41598-019-40832-y (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Brown, G. E., Adrian, J. C. Jr., Lewis, M. G. & Tower, J. M. The effects of reduced pH on chemical alarm signaling in ostariophysan fishes. Can. J. Fish. Aquat. Sci. 59(8), 1331–1338. https://doi.org/10.1139/f02-104 (2002).
    CAS  Article  Google Scholar 

    29.
    de la Haye, K. L., Spicer, J. I., Widdicombe, S. & Briffa, M. Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. J. Anim. Behav. 82(3), 495–501. https://doi.org/10.1016/j.anbehav.2011.05.030 (2011).
    Article  Google Scholar 

    30.
    Tierney, A. J. & Atema, J. Amino acid chemoreception: Effects of pH on receptors and stimuli. J. Chem. Ecol. 14(1), 135–141. https://doi.org/10.1007/BF01022537 (1988).
    CAS  Article  PubMed  Google Scholar 

    31.
    Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Mar. Poll. Bull. 64(8), 1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032 (2012).
    CAS  Article  Google Scholar 

    32.
    Goldstein, J. S. & Butler, M. J. IV. Behavioral enhancement of onshore transport by postlarval Caribbean spiny lobster (Panulirus argus). Limnol. Oceanogr. 54(5), 1669–1678. https://doi.org/10.4319/lo.2009.54.5.1669 (2009).
    ADS  Article  Google Scholar 

    33.
    Zito-Livingston, A. N. & Childress, M. J. Does conspecific density influence the settlement of Caribbean spiny lobster Panulirus argus postlarvae?. N. Z. J. Mar. Freshw. Res. 43(1), 313–325 (2009).
    Google Scholar 

    34.
    Ratchford, S. G. & Eggleston, D. B. Size- and scale-dependent chemical attraction contribute to an ontogenetic shift in sociality. Anim. Behav. 56(4), 1027–1034. https://doi.org/10.1006/anbe.1998.0869 (1998).
    CAS  Article  PubMed  Google Scholar 

    35.
    Nevitt, G., Pentcheff, N. D., Lohmann, K. J. & Den Zimmer, R. K. selection by the spiny lobster Panulirus argus: Testing attraction to conspecific odors in the field. Mar. Ecol. Prog. Ser. 203, 225–231. https://doi.org/10.3354/meps203225 (2000).
    ADS  Article  Google Scholar 

    36.
    Behringer, D. C., Butler, M. J. IV. & Shields, J. D. Avoidance of disease by social lobsters. Nature 441(7092), 421. https://doi.org/10.1038/441421a (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    37.
    Anderson, J. R. & Behringer, D. C. Spatial dynamics in the social lobster Panulirus argus in response to diseased conspecifics. Mar. Ecol. Prog. Ser. 474, 191–200. https://doi.org/10.3354/meps10091 (2013).
    ADS  Article  Google Scholar 

    38.
    Butler, M. J. IV. et al. Cascading disturbances in Florida Bay, USA: Cyanobacteria blooms, sponge mortality, and implications for juvenile spiny lobsters Panulirus argus. Mar. Ecol. Prog. Ser. 129, 119–125. https://doi.org/10.3354/meps129119 (1995).
    ADS  Article  Google Scholar 

    39.
    Ginsburg, R. N. & Shinn, E. A. Preferential distribution of reefs in the Florida reef tract: The past is the key to the present. Oceanogr. Lit. Rev. 8(42), 674 (1995).
    Google Scholar 

    40.
    Zhang, J. Z. & Fischer, C. J. Carbon dynamics of Florida Bay: Spatiotemporal patterns and biological control. Environ. Sci. Technol. 48(16), 9161–9169. https://doi.org/10.1021/es500510z (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    41.
    Toth, L. T., Kuffner, I. B., Stathakopoulos, A. & Shinn, E. A. A 3000-year lag between the geological and ecological shutdown of Florida’s coral reefs. Glob. Change Biol. 24(11), 5471–5483. https://doi.org/10.1111/gcb.14389 (2018).
    ADS  Article  Google Scholar 

    42.
    Marx, J. M. & Herrnkind, W. F. Macroalgae (Rhodophyta: Laurencia spp.) as habitat for young juvenile spiny lobsters, Panulirus argus. Bull. Mar. Sci. 36(3), 423–431 (1985).
    Google Scholar 

    43.
    Butler, M. J. IV. & Herrnkind, W. F. Effect of benthic microhabitat cues on the metamorphosis of postlarvae of the spiny lobster Panulirus argus. J. Crustac. Biol. 11(1), 23–28. https://doi.org/10.2307/1548541 (1991).
    Article  Google Scholar 

    44.
    Herrnkind, W. F. & Butler, M. J. Factors regulating postlarval settlement and juvenile microhabitat use by spiny lobsters Panulirus argus. Mar. Ecol. Progr. Ser. 34, 23–30 (1986).
    ADS  Article  Google Scholar 

    45.
    FAO. Food and Agriculture Organization Fisheries and aquaculture report (ISSN 2070–6987) 124 (FAO, 2015).

    46.
    Lapointe, B. E. & Matzie, W. R. Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries 19(2), 422–435. https://doi.org/10.2307/1352460 (1996).
    CAS  Article  Google Scholar 

    47.
    Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4(11), 766–770. https://doi.org/10.1038/ngeo1297 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    de la Haye, K. L., Spicer, J. I., Widdicombe, S. & Briffa, M. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J. Exp. Biol. Ecol. 412, 134–140. https://doi.org/10.1016/j.jembe.2011.11.013 (2012).
    CAS  Article  Google Scholar 

    49.
    Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J. Mar. Sci. 68(6), 1147–1154. https://doi.org/10.1093/icesjms/fsq188 (2011).
    Article  Google Scholar 

    50.
    Pörtner, H. O., Langenbuch, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60(4), 705–718. https://doi.org/10.1007/s10872-004-5763-0 (2004).
    Article  Google Scholar 

    51.
    Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9. https://doi.org/10.3354/meps334001 (2007).
    ADS  CAS  Article  Google Scholar 

    52.
    Small, D. P. et al. The effects of elevated temperature and pCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus. J. Exp. Biol. https://doi.org/10.1242/jeb.209221 (2020).
    Article  PubMed  Google Scholar 

    53.
    Morris, S., Greenaway, P. & McMahon, B. Air breathing by the purple shore crab, Hemigrapsus nudus (Dana). II. Respiratory gas and acid-base status in response to emersion. Physiol. Zool. 69(4), 806–838. https://doi.org/10.1086/physzool.69.4.30164231 (1996).
    CAS  Article  Google Scholar 

    54.
    Schmitt, B. C. & Ache, B. W. Olfaction: responses of a decapod crustacean are enhanced by flicking. Science 205(4402), 204–206. https://doi.org/10.1126/science.205.4402.204 (1979).
    ADS  CAS  Article  PubMed  Google Scholar 

    55.
    Goldman, J. A. & Koehl, M. A. R. Fluid dynamic design of lobster olfactory organs: High speed kinematic analysis of antennule flicking by Panulirus argus. Chem. Senses 26(4), 385–398. https://doi.org/10.1093/chemse/26.4.385 (2001).
    CAS  Article  PubMed  Google Scholar 

    56.
    Reidenbach, M. A., George, N. & Koehl, M. A. R. Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. J. Exp. Biol. 211(17), 2849–2858. https://doi.org/10.1242/jeb.016394 (2008).
    Article  PubMed  Google Scholar 

    57.
    Lürling, M. & Scheffer, M. Info-disruption: Pollution and the transfer of chemical information between organisms. Trends Ecol. Evol. 22(7), 374–379. https://doi.org/10.1016/j.tree.2007.04.002 (2007).
    Article  PubMed  Google Scholar 

    58.
    Bednaršek, N. et al. Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients. Sci. Total Environ. 716, 1346610. https://doi.org/10.1016/j.scitotenv.2020.136610 (2020).
    CAS  Article  Google Scholar 

    59.
    Baeza, J. A., Childress, M. J. & Ambrosio, L. J. Chemical sensing of microhabitat by pueruli of the reef-dwelling Caribbean spiny lobster Panulirus argus: testing the importance of red algae, juveniles, and their interactive effect. Bull. Mar. Sci. 94(3), 603–618. https://doi.org/10.5343/bms.2017.1132 (2018).
    Article  Google Scholar 

    60.
    Butler, M. J. IV. & Herrnkind, W. F. A test of the recruitment limitation and the potential for artificial enhancement of spiny lobster (Panulirus argus) populations in Florida. Can. J. Fish. Aquat. Sci. 54(2), 452–463. https://doi.org/10.1139/f2011-146 (1997).
    CAS  Article  Google Scholar 

    61.
    Sharp, W. C. et al. The use of coded microwire tags for mark–recapture studies of juvenile Caribbean spiny lobster, Panulirus argus. J. Crustac. Biol. 20(3), 510–521. https://doi.org/10.1163/20021975-99990067 (2000).
    Article  Google Scholar 

    62.
    Heatwole, D. W., Hunt, J. H. & Blonder, B. I. Offshore recruitment of postlarval spiny lobster (Panulirus argus) at Looe Key Reef, Florida. Proc. Gulf Carib. Fish. Inst. 40, 429–433 (1991).
    Google Scholar 

    63.
    Herrnkind, W. F. & Butler, M. J. IV. Settlement of spiny lobster, Panulirus argus (Latreille, 1804), in Florida: Pattern without predictability?. Crustaceana 67(1), 46–64. https://doi.org/10.1163/156854094X00288 (1994).
    Article  Google Scholar 

    64.
    Cook, G. S., Fletcher, P. J. & Kelble, C. R. Towards marine ecosystem based management in South Florida: Investigating the connections among ecosystem pressures, states, and services in a complex coastal system. Ecol. Indic. 44, 26–39. https://doi.org/10.1016/j.ecolind.2013.10.026 (2014).
    Article  Google Scholar 

    65.
    Kuffner, I. B., Lidz, B. H., Hudson, J. H. & Anderson, J. S. A century of ocean warming on Florida keys coral reefs: Historic in situ observations. Estuar. Coasts 38(3), 1085–1096. https://doi.org/10.1007/s12237-014-9875-5 (2014).
    Article  Google Scholar 

    66.
    Koch, M. S. et al. Climate change projected effects on coastal foundation communities of the greater Everglades using a 2060 scenario: Need for a new management paradigm. Environ. Manag. 55(4), 857–875. https://doi.org/10.1007/s00267-014-0375-y (2015).
    ADS  CAS  Article  Google Scholar 

    67.
    Obeysekera, J., Barnes, J. & Nungesser, M. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change. Environ. Manag. 55(4), 749–762. https://doi.org/10.1007/s00267-014-0315-x (2015).
    ADS  Article  Google Scholar 

    68.
    Okazaki, R. R., Swart, P. K. & Langdon, C. Stress tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs 32, 671–683 (2013).
    ADS  Article  Google Scholar 

    69.
    Challener, R. A., Robbins, L. L. & McClintock, J. B. Variability of the carbonate chemistry in a shallow, seagrass-dominated exosystem: Implications for ocean acidification experiments. Mar. Freshw. Res. 67, 163–172 (2016).
    CAS  Article  Google Scholar 

    70.
    Dickson, A. G., Sabine, C. L. & Christian, J. R. (Eds.) Guide to best practices for ocean CO2measurement. PICES Special Publication 3, 191. (PICES, 2007).

    71.
    Lavigne, H., Epitalon, J. M. & Gattuso, J. P. seacarb: seawater carbonate chemistry with R. R package version 3.0. https://CRAN.R-project.org/package=seacarb (2011).

    72.
    R Development Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2016).

    73.
    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70(1–3), 105–119. https://doi.org/10.1016/S0304-4203(00)00022-0 (2000).
    CAS  Article  Google Scholar 

    74.
    Forward, R. B. Jr. & Costlow, J. D. Jr. The ontogeny of phototaxis by larvae of the crab Rhithropanopeus harrisii. Mar. Biol. 26(1), 27–33. https://doi.org/10.1007/BF00389083 (1974).
    Article  Google Scholar  More

  • in

    The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae

    1.
    Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol. 2012;22:1845–50.
    CAS  PubMed  Article  Google Scholar 
    2.
    Gause GF. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science. 1934;79:16–7.
    CAS  PubMed  Article  Google Scholar 

    3.
    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.
    Article  Google Scholar 

    4.
    Lankau RA. Rapid evolutionary change and the coexistence of species. Annu Rev Ecol Evol Syst. 2011;42:335–54.
    Article  Google Scholar 

    5.
    Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.
    Article  Google Scholar 

    6.
    Hubbell SP. Neutral theory and the evolution of ecological equivalence. Ecology. 2006;87:1387–98.
    PubMed  Article  Google Scholar 

    7.
    MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. Am Nat. 1967;101:377–85.
    Article  Google Scholar 

    8.
    Bailey JK, Hendry AP, Kinnison MT, Post DM, Palkovacs EP, Pelletier F, et al. From genes to ecosystems: an emerging synthesis of eco-evolutionary dynamics. N Phytol. 2009;184:746–9.
    Article  Google Scholar 

    9.
    Baquero F, Blázquez J. Evolution of antibiotic resistance. Trends Ecol Evol. 1997;12:482–7.
    CAS  PubMed  Article  Google Scholar 

    10.
    Grant PR, Grant BR. Evolution of character displacement in Darwin’s finches. Science. 2006;313:224–6.
    CAS  PubMed  Article  Google Scholar 

    11.
    Koeppel AF, Wertheim JO, Barone L, Gentile N, Krizanc D, Cohan FM. Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME J. 2013;7:1080–91.
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Stuart YE, Campbell T, Hohenlohe P, Reynolds RG, Revell L, Losos J. Rapid evolution of a native species following invasion by a congener. Science. 2014;346:463–6.
    CAS  PubMed  Article  Google Scholar 

    13.
    Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci USA. 2010;107:7359–64.
    CAS  PubMed  Article  Google Scholar 

    14.
    Pimentel D, Feinberg EH, Wood PW, Hayes JT. Selection, spatial distribution, and the coexistence of competing fly species. Am Nat. 1965;99:97–109.
    Article  Google Scholar 

    15.
    Hart SP, Turcotte MM, Levine JM. Effects of rapid evolution on species coexistence. Proc Natl Acad Sci USA. 2019;116:2112–7.
    CAS  PubMed  Article  Google Scholar 

    16.
    Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS. Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections. Proc Natl Acad Sci USA. 2012;110:250–9.
    Article  Google Scholar 

    17.
    Turner CB, Marshall CW, Cooper VS. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evolution Lett. 2018;2:355–67.
    Article  Google Scholar 

    18.
    Elena SF, Lenski RE. Microbial genetics: evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457.
    CAS  PubMed  Article  Google Scholar 

    19.
    Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69.
    CAS  PubMed  Article  Google Scholar 

    20.
    Ferguson GC, Bertels F, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Genetics. 2013;195:1319–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Frenkel EM, McDonald MJ, Van Dyken JD, Kosheleva K, Lang GI, Desai MM. Crowded growth leads to the spontaneous evolution of semistable coexistence in laboratory yeast populations. Proc Natl Acad Sci USA. 2015;112:11306–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DF. Selection for niche differentiation in plant communities increases biodiversity effects. Nature. 2014;515:108.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Le Gac M, Plucain J, Hindré T, Lenski RE, Schneider D. Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA. 2012;109:9487–92.
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Rosenzweig RF, Sharp R, Treves DS, Adams J. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics. 1994;137:903–17.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Helling RB, Vargas CN, Adams J. Evolution of Escherichia coli during growth in a constant environment. Genetics. 1987;116:349–58.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    D’Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 2016;12:e1006364.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci USA. 2014;111:17941–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Kallus Y, Miller JH, Libby E. Paradoxes in leaky microbial trade. Nat Commun. 2017;8:1361.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Muller EE, Faust K, Widder S, Herold M, Arbas SM, Wilmes P. Using metabolic networks to resolve ecological properties of microbiomes. Curr Opin Syst Biol. 2018;8:73–80.
    Article  Google Scholar 

    30.
    Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol. 2017;1:0109.
    Article  Google Scholar 

    31.
    Harcombe WR, Betts A, Shapiro JW, Marx CJ. Adding biotic complexity alters the metabolic benefits of mutualism. Evolution. 2016;70:1871–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ. Evolution of bidirectional costly mutualism from byproduct consumption. Proc Natl Acad Sci USA. 2018;115:12000–4.
    CAS  PubMed  Article  Google Scholar 

    33.
    Farrell JM, Brown SP. Evolution of bacterial trade in a two-species community. Proc Natl Acad Sci USA. 2018;115:11874–5.
    CAS  PubMed  Article  Google Scholar 

    34.
    Morris JJ. Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genet. 2015;31:475–82.
    CAS  PubMed  Article  Google Scholar 

    35.
    Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Cordero OX, Ventouras L-A, DeLong EF, Polz MF. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci USA. 2012;109:20059–64.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Adler PB, HilleRisLambers J, Levine JM. A niche for neutrality. Ecol Lett. 2007;10:95–104.
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, et al. Antagonistic coevolution accelerates molecular evolution. Nature. 2010;464:275.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond Ser B: Biol Sci. 2002;269:931–6.
    Article  Google Scholar 

    41.
    Piccardi P, Vessman B, Mitri S. Toxicity drives facilitation between 4 bacterial species. Proc Natl Acad Sci USA. 2019;116:15979–84.
    CAS  PubMed  Article  Google Scholar 

    42.
    Goddard MR, Greig D. Saccharomyces cerevisiae: a nomadic yeast with no niche? FEMS Yeast Res. 2015;15:fov009.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Van Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 2011;5:173–83.
    PubMed  Article  Google Scholar 

    44.
    Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551:45.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Lang GI, Botstein D, Desai MM. Genetic variation and the fate of beneficial mutations in asexual populations. Genetics. 2011;188:647–61.
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol. 2020;4:376–83.
    PubMed  Article  Google Scholar 

    47.
    Braun V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev. 1995;16:295–307.
    CAS  PubMed  Article  Google Scholar 

    48.
    Branco P, Francisco D, Chambon C, Hebraud M, Arneborg N, Almeida MG, et al. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl Microbiol Biotechnol. 2014;98:843–53.
    CAS  PubMed  Article  Google Scholar 

    49.
    Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol. 2010;64:43–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Howard SP, Herrmann C, Stratilo CW, Braun V. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli. J Bacteriol. 2001;183:5885–95.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, et al. Functional discovery via a compendium of expression profiles. Cell. 2000;102:109–26.
    CAS  PubMed  Article  Google Scholar 

    52.
    Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015;33:377.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Barrick JE, Colburn G, Deatherage DE, Traverse CC, Strand MD, Borges JJ, et al. Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq. BMC Genom. 2014;15:1039.
    Article  CAS  Google Scholar 

    54.
    Hall BG, Acar H, Nandipati A, Barlow M. Growth rates made easy. Mol Biol Evol. 2014;31:232–8.
    CAS  PubMed  Article  Google Scholar 

    55.
    Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 2016;17:172.
    Article  Google Scholar 

    56.
    Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506–14.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE. 2015;10:e0124633.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Zhang H, Cheng Q-X, Liu A-M, Zhao G-P, Wang J. A novel and efficient method for bacteria genome editing employing both CRISPR/Cas9 and an antibiotic resistance cassette. Front Microbiol. 2017;8:812.
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc. 2009;4:206.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Biot-Pelletier D, Martin VJ. Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9. J Biol Eng. 2016;10:6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Quan J, Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE. 2009;4:e6441.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:31–34.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor

    1.
    Chippaux, J. P. Snake-bites: appraisal of the global situation. Bull. World Health Organ. 76, 515.9868843 (1998).
    Google Scholar 
    2.
    White, J. Bites and stings from venomous animals: a global overview. Ther. Drug Monit. 22, 65–68 (2000).
    CAS  PubMed  Article  Google Scholar 

    3.
    Juckett, G. & Hancox, J. G. Venomous snakebites in the United States: management review and update. Am. Fam. Phys. 65, 1367–1378 (2002).
    Google Scholar 

    4.
    Kasturiratne, A. et al. Estimates of disease burden due to land-snake bite in Sri Lankan hospitals. Southeast. Asian. J. Trop. Med. Public Health 36, 733 (2005).
    CAS  Google Scholar 

    5.
    Gutiérrez, J. M., Theakston, R. D. G. & Warrell, D. A. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 3, e150 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Kasturiratne, A. et al. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).
    Article  Google Scholar 

    7.
    Cruz, L. S., Vargas, R. & Lopes, A. A. Snakebite envenomation and death in the developing world. Ethn. Dis. 19, 42 (2009).
    Google Scholar 

    8.
    Warrell, D. Snake bite. Lancet 375, 77–88 (2010).
    PubMed  Article  Google Scholar 

    9.
    Chippaux, J. P. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon 57, 586–599 (2011).
    CAS  PubMed  Article  Google Scholar 

    10.
    Gutiérrez, J. M. Snakebite envenoming: a public health perspective. In Public Health-Methodology, Environmental and Systems Issues (ed. Maddock, J.) (InTech, London, 2012).
    Google Scholar 

    11.
    Hansson, E., Sasa, M., Mattisson, K., Robles, A. & Gutiérrez, J. M. Using geographical information systems to identify populations in need of improved accessibility to antivenom treatment for snakebite envenoming in Costa Rica. PLoS Negl. Trop. Dis. 7, e2009 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Nori, J., Carrasco, P. A. & Leynaud, G. C. Venomous snakes and climate change: ophidism as a dynamic problem. Clim. Change 122, 67–80 (2014).
    ADS  Article  Google Scholar 

    13.
    Chippaux, J. P. Incidence and mortality due to snakebite in the Americas. PLoS Negl. Trop. Dis. 11, e0005662-e5739 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Longbottom, J. et al. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet 392, 673–684 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Gutiérrez, J. M. et al. Snakebite envenoming. Nature 3, 17063 (2017).
    Google Scholar 

    16.
    Alirol, E., Sharma, S. K., Bawaskar, H. S., Kuch, U. & Chappuis, F. Snake bite in South Asia: a review. PLoS Negl. Trop. Dis. 4, e603 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Yañez-Arenas, C., Díaz-Gamboa, L., Patrón-Rivero, C., López-Reyes, K. & Chiappa-Carrara, X. Estimating geographic patterns of ophidism risk in Ecuador. Neotrop. Biodivers. 4, 55–61 (2018).
    Article  Google Scholar 

    18.
    Dehghani, R., Fathi, B., Panjeh Shahi, M. & Jazayeri, M. Ten years of snakebites in Iran. Toxicon 90, 291–298 (2014).
    CAS  PubMed  Article  Google Scholar 

    19.
    Latifi, M. The Snakes of Iran (Department of Environment, Tehran, 2000).
    Google Scholar 

    20.
    Monzavi, S. M., Dadpour, B. & Afshari, R. Snakebite management in Iran: devising a protocol. J. Res. Med. Sci. 19, 153–163 (2014).
    PubMed  PubMed Central  Google Scholar 

    21.
    Rastegar-Pouyani, E. et al. A re-evaluation of taxonomic status of Montivipera (Squamata: Viperidae) from Iran using a DNA barcoding approach. Biochem. Syst. Ecol. 57, 350–356 (2014).
    CAS  Article  Google Scholar 

    22.
    Oraie, H. et al. Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra 54, 233–238 (2018).
    Google Scholar 

    23.
    Moradi, N., Rastegra-Pouyani, N. & Rastegra-Pouyani, E. Geographic variation in the morphology of Macrovipera lebetina (Linnaeus, 1758) (Ophidia: Viperidae) in Iran. Acta Herpetol. 9, 187–202 (2014).

    24.
    Fathinia, B., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Toodeh-Dehghan, F. & Rajabizadeh, M. Molecular systematics of the genus Pseudocerastes (Ophidia: Viperidae) based on the mitochondrial cytochrome b gene. Turk. J. Zool. 38, 575–581 (2014).
    CAS  Article  Google Scholar 

    25.
    Behrooz, R. et al. Habitat modeling and conservation of the endemic Latifi’s viper (Montivipera latifii) in Lar National Park Northern Iran. Herpetol. Conserv. Biol. 10, 572–582 (2015).
    Google Scholar 

    26.
    Khani, Sh., Kami, H. G. & Rajabizadeh, M. Geographic variation of Gloydius halys caucasicus (Serpentes: Viperidae) in Iran. Zool. Middle East. 63, 303–310 (2017).
    Article  Google Scholar 

    27.
    Fathinia, B., Rastegar-Pouyani, N. & Rastegar-Pouyani, E. Molecular phylogeny and historical biogeography of genera Eristicophis and Pseudocerastes (Ophidia, Viperidae). Zool. Scr. 47, 673–685 (2018).
    Article  Google Scholar 

    28.
    Rastegar-Pouyani, E., Oraie, H., Khosravani, A. & Akbari, A. Phylogenetic position of Iranian pitvipers (Viperidae, Crotalinae, Gloydius) inferred from mitochondrial cytochrome b sequences. Trop. Zool. 31, 55–67 (2018).
    Article  Google Scholar 

    29.
    Eslamian, L. et al. Snake bite in Northwest Iran: a retrospective study. J. Anal. Res. Clin. Med. 4, 133–138 (2016).
    Article  Google Scholar 

    30.
    Dehghani, R., Rabani, D., Panjeh-Shahi, M., Jazayeri, M. & Sabahi Bidgoli, M. Incidence of snake bite in Kashan, IR Iran during an eight-year period (2004–2011). Arch. Trauma Res. 1, 67–71 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Farzaneh, E. et al. Epidemiological study of snakebites in Ardabil Province (Iran). Electron. Phys. 9, 3986–3990 (2017).
    Article  Google Scholar 

    32.
    Ebrahimi, V., Hamdami, E., Khademian, M. H., Moemenbellah-Fard, M. D. & Vazirianzadeh, B. Epidemiologic prediction of snake bites in tropical south Iran: using seasonal time series methods. Clin. Epidemiol. Glob. Health 6, 208–215 (2018).
    Article  Google Scholar 

    33.
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    34.
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).
    Google Scholar 

    35.
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Milanesi, P., Holderegger, R., Caniglia, R., Fabbri, E. & Randi, E. Different habitat suitability models yield different least-cost path distances for landscape genetic analysis. Basic Appl. Ecol. 17, 61–71 (2015).
    Article  Google Scholar 

    37.
    Moradi, S., Sheykhi Ilanloo, S., Kafash, A. & Yousefi, Y. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecol. Indic. 97, 159–164 (2019).
    Article  Google Scholar 

    38.
    Farrell, A. et al. Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data. Ecol. Evol. 9, 5938–5949 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLoS ONE 8, e79295 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Bradie, J. & Leung, B. A. quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
    Article  Google Scholar 

    41.
    Ashoori, A. et al. Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 85, 373–381 (2018).
    Article  Google Scholar 

    42.
    Sutton, L. J. & Puschendorf, R. Climatic niche of the Saker Falcon Falco cherrug: predicted new areas to direct population surveys in Central Asia. Ibis 162, 27–41 (2020).
    Article  Google Scholar 

    43.
    Andrade-Díaz, M. S. et al. Expansion of the agricultural frontier in the largest South American Dry Forest: identifying priority conservation areas for snakes before everything is lost. PLoS ONE 14, e0221901 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
    Article  Google Scholar 

    45.
    Qin, A. et al. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).
    Article  Google Scholar 

    46.
    Wang, R. et al. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 13, e0192153 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Kafash, A. et al. Climate change produces winners and losers: differential responses of amphibians in mountain forests of the Near East. Glob. Ecol. Conserv. 16, e00471 (2018).
    Article  Google Scholar 

    48.
    Schivo, F., Bauni, V., Krug, P. & Quintana, R. D. Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. Appl Geogr. 103, 70–89 (2019).
    Article  Google Scholar 

    49.
    Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., Kusza, S. & Pilliod, D. S. Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Glob. Ecol. Conserv. 19, e00637 (2019).
    Article  Google Scholar 

    50.
    Yousefi, M., Jouladeh-Rodbar, A. & Kafash, A. Using endemic freshwater fishes as proxies of their ecosystems to identify high priority rivers for conservation under climate change. Ecol. Indic. 112, 106137 (2020).
    Article  Google Scholar 

    51.
    Segura, S., Coppens d’Eeckenbrugge, G., López, L., Grum, M. & Guarino, L. Mapping the potential distribution of five species of Passiflora in Andean countries. Genet. Resour. Crop Evol. 50, 555–566 (2003).
    Article  Google Scholar 

    52.
    Rebelo, H. & Jones, G. Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47, 410–420 (2010).
    Article  Google Scholar 

    53.
    Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).
    Article  Google Scholar 

    55.
    Pauli, B. P. et al. Human habitat selection: using tools from wildlife ecology to predict recreation in natural landscapes. Nat. Areas J. 39, 142–149 (2019).
    Article  Google Scholar 

    56.
    Yañez-Arenas, C., Peterson, A. T., Mokondoko, P., Rojas-Soto, O. & Martínez-Meyer, E. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican State of Veracruz. PLoS ONE 9, e100957 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Yañez-Arenas, C., Peterson, A. T., Rodriguez-Medina, K. & Barve, N. Mapping current and future potential snakebite risk in the new world. Clim. Change 134, 697–711 (2016).
    ADS  Article  Google Scholar 

    58.
    Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195 (2019).
    ADS  Article  Google Scholar 

    59.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    PubMed  Article  Google Scholar 

    60.
    Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: a systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403 (2019).
    Article  Google Scholar 

    61.
    Hannah, L. Climate Change Biology 2nd edn. (Academic Press, Cambridge, 2015).
    Google Scholar 

    62.
    Yousefi, M. & Kafash, A. Venomous snakes of Iran under climate change. In SCCS Europe—4th Hungarian Student Conference on Conservation Science, 4–8 September (2018).

    63.
    Maritz, B. et al. Identifying global priorities for the conservation of vipers. Biol. Conserv. 204, 94–102 (2016).
    Article  Google Scholar 

    64.
    Sharma, S. K. et al. Effectiveness of rapid transport of victims and community health education on snake bite fatalities in rural Nepal. Am. J. Trop. Med. Hyg. 89, 145–150 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    WHO. Guidelines for the Management of Snakebites (World Health Organization, Geneva, 2016).
    Google Scholar 

    66.
    Trogridou, A. Prevention is Better Than Cure: Snakebite Education in India (Episthmes Agogis, 2018).

    67.
    Chappuis, F., Sharma, S. K., Jha, N., Loutan, L. & Bovier, P. A. Protection against snake bites by sleeping under a bed net in southeastern Nepal. Am. J. Trop. Med. Hyg. 77, 197–199 (2007).
    PubMed  Article  Google Scholar 

    68.
    Khatchikian, C., Sangermano, F., Kendell, D. & Livdahl, T. Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction. Med. Vet. Entomol. 25, 268–275 (2011).
    CAS  PubMed  Article  Google Scholar 

    69.
    Escobar, L. E. et al. Ecology and geography of transmission of two bat-borne rabies lineages in Chile. PLoS Negl. Trop. Dis. 7, e2577 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Du, Z. et al. Ecological niche modeling for predicting the potential risk areas of severe fever with thrombocytopenia syndrome. Int. J. Infect. Dis. 26, 1–8 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Peterson, T. Mapping Disease Transmission Risk: Enriching Models Using Biogeography and Ecology (Johns Hopkins University Press, Baltimore, 2014).
    Google Scholar 

    72.
    Escobar, L. E. & Craft, M. E. Advances and limitations of disease biogeography using ecological niche modeling. Front. Microbiol. 7, 1174 (2016).
    PubMed  PubMed Central  Google Scholar 

    73.
    Escobar, L. E. et al. Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Vet. Res. 46, 92 (2015).
    MathSciNet  PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Nyakarahuka, L. et al. Ecological niche modeling for filoviruses: a risk map for Ebola and Marburg virus disease outbreaks in Uganda.PLoS Curr. (2017). Edition 1 2017.https://doi.org/10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1.

    75.
    Soucy, J. P. R. et al. High-resolution ecological niche modeling of Ixodes scapularis ticks based on passive surveillance data at the Northern Frontier of Lyme disease emergence in North America. Vector Borne Zoonotic Dis. 18, 235–242 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    76.
    Little, E. A. H. et al. Predicting spatiotemporal patterns of Lyme disease incidence from passively collected surveillance data for Borrelia burgdorferi sensu lato-infected Ixodes scapularis ticks. Ticks. Ticks Tick Borne Dis. 10, 970–980 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Johnson, E. E., Escobar, L. E. & Zambrana-Torrelio, C. An ecological framework for modeling the geography of disease transmission. Trends Ecol. Evol. 34, 655–668 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Yousefi, M. et al. Upward altitudinal shifts in habitat suitability of mountain vipers since the last glacial maximum. PLoS ONE 10, e0138087 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    79.
    Rajabizadeh, M. Snakes of Iran (IranShenasi Publishing, Tehran, 2017).
    Google Scholar 

    80.
    IUCN. The IUCN Red List of Threatened Species. Version 2019.3. https://www.iucnredlist.org. Accessed 10 March 2020 (2019).

    81.
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
    PubMed  Article  Google Scholar 

    82.
    Terribile, L. C. et al. Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia 159, 617 (2009).
    ADS  PubMed  Article  Google Scholar 

    83.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    86.
    Broxton, P. D., Zeng, X., Schefic, W. & Troch, P. A. A MODIS-Based global 1-km maximum green vegetation fraction dataset. J. Appl. Meteorol. Clim. 53, 1996–2004 (2014).
    ADS  Article  Google Scholar 

    87.
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R Package (2015).

    88.
    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. https://srtm.csi.cgiar.org. Accessed on 15 Apr 2015 (2008).

    89.
    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    90.
    Naimi, B. Uncertainty Analysis for Species Distribution Models. R Package Version 1.1-15 (2015).

    91.
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, 2017).
    Google Scholar 

    92.
    Ridgeway, G. The state of boosting. Comput. Stat. 31, 172–181 (1999).
    Google Scholar 

    93.
    Hastie, T. J. & Tibshirani, R. Generalized Additive Models (Chapman and Hall, London, 1990).
    Google Scholar 

    94.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    95.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989).
    Google Scholar 

    96.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Article  Google Scholar 

    97.
    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.3-7 (2016).

    98.
    Freeman, E. A. & Moisen, G. PresenceAbsence: an r package for presence absence model analysis. J. Stat. Softw. 23, 1–31 (2008).
    Article  Google Scholar 

    99.
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Article  Google Scholar 

    100.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence–absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    101.
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
    Article  Google Scholar 

    102.
    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
    Article  Google Scholar  More