1.
Sarwar, M. H., Sarwar, M. F., Sarwar, M., Qadri, N. A. & Moghal, S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J. Cereals Oilseeds 4, 32–35 (2013).
Article Google Scholar
2.
Ranjan, R. & Yadav, R. Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 42, 1086–1113. https://doi.org/10.1080/01904167.2019.1589497 (2019).
CAS Article Google Scholar
3.
Sofi, F. et al. Health and nutrition studies related to cereal biodiversity: a participatory multi-actor literature review approach. Nutrients 10, 1207 (2018).
Article Google Scholar
4.
Stewart, B. A. & Lal, R. In Advances in Agronomy Vol. 151 (ed Donald L. Sparks) 1–44 (Academic Press, 2018).
5.
Sadras, V. et al. In Advances in Agronomy Vol. 163 (ed Donald L. Sparks) 153–177 (Academic Press, 2020).
6.
Yu, S. & Tian, L. Breeding major cereal grains through the lens of nutrition sensitivity. Mol. Plant 11, 23–30. https://doi.org/10.1016/j.molp.2017.08.006 (2018).
CAS Article PubMed Google Scholar
7.
Wang, J., Vanga, S., Saxena, R., Orsat, V. & Raghavan, V. Effect of climate change on the yield of cereal crops: a review. Climate 6, 41 (2018).
Article Google Scholar
8.
Chmielewski, F.-M., Müller, A. & Bruns, E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric. For. Meteorol. 121, 69–78. https://doi.org/10.1016/S0168-1923(03)00161-8 (2004).
ADS Article Google Scholar
9.
Price, R. K. & Welch, R. W. In Encyclopedia of Human Nutrition (3rd Edn) (ed Benjamin Caballero) 307–316 (Academic Press, 2013).
10.
McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 29, 111–142. https://doi.org/10.1111/j.1467-3010.2004.00418.x (2004).
Article Google Scholar
11.
Wang, H. L. et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric. For. Meteorol. 148, 1242–1251. https://doi.org/10.1016/j.agrformet.2008.03.003 (2008).
ADS Article Google Scholar
12.
Chen, X. et al. Does any phenological event defined by remote sensing deserve particular attention? An examination of spring phenology of winter wheat in Northern China. Ecol. Ind. 116, 106456. https://doi.org/10.1016/j.ecolind.2020.106456 (2020).
Article Google Scholar
13.
Li, Y., Hou, R. & Tao, F. Interactive effects of different warming levels and tillage managements on winter wheat growth, physiological processes, grain yield and quality in the North China Plain. Agr. Ecosyst. Environ. 295, 106923. https://doi.org/10.1016/j.agee.2020.106923 (2020).
CAS Article Google Scholar
14.
Li, Z. et al. Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg. Environ. Change 14, 39–48. https://doi.org/10.1007/s10113-013-0503-x (2014).
CAS Article Google Scholar
15.
Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T. & Woznicki, S. A. Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manag. 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001 (2017).
Article Google Scholar
16.
Akram, R. et al. In Advances in Rice Research for Abiotic Stress Tolerance (eds Hasanuzzaman, M. et al.) 69–85 (Woodhead Publishing, 2019).
17.
Farooq, M., Hussain, M., Wakeel, A. & Siddique, K. H. M. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35, 461–481. https://doi.org/10.1007/s13593-015-0287-0 (2015).
CAS Article Google Scholar
18.
Farooq, M., Hussain, M. & Siddique, K. H. M. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 33, 331–349. https://doi.org/10.1080/07352689.2014.875291 (2014).
CAS Article Google Scholar
19.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212. https://doi.org/10.1051/agro:2008021 (2009).
Article Google Scholar
20.
Hussain, J., Khaliq, T., Ahmad, A., Akhter, J. & Asseng, S. Wheat responses to climate change and its adaptations: a focus on arid and semi-arid environment. Int. J. Environ. Res. https://doi.org/10.1007/s41742-018-0074-2 (2018).
Article Google Scholar
21.
Hussain, M. et al. In Advances in Agronomy Vol. 148 (ed Donald L. Sparks) 231–287 (Academic Press, 2018).
22.
Dyer, G. A., López-Feldman, A., Yúnez-Naude, A. & Taylor, J. E. Genetic erosion in maize’s center of origin. Proc. Natl. Acad. Sci. 111, 14094–14099. https://doi.org/10.1073/pnas.1407033111 (2014).
ADS CAS Article PubMed Google Scholar
23.
Nicholson, S. E., Funk, C. & Fink, A. H. Rainfall over the African continent from the 19th through the 21st century. Global Planet. Change 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014 (2018).
ADS Article Google Scholar
24.
Pour, S. H., Wahab, A. K. A. & Shahid, S. Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos. Res. 233, 104704. https://doi.org/10.1016/j.atmosres.2019.104704 (2020).
Article Google Scholar
25.
Sadras, V. O. & Monzon, J. P. Modelled wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crops Res. 99, 136–146. https://doi.org/10.1016/j.fcr.2006.04.003 (2006).
Article Google Scholar
26.
Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x (2006).
ADS Article Google Scholar
27.
Liu, Y., Qin, Y., Ge, Q., Dai, J. & Chen, Q. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China. J. Geogr. Sci. 27, 1072–1084. https://doi.org/10.1007/s11442-017-1422-4 (2017).
Article Google Scholar
28.
Liu, L. et al. Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming. Eur. J. Agron. 94, 46–53. https://doi.org/10.1016/j.eja.2017.12.001 (2018).
Article Google Scholar
29.
Ye, Z. et al. Impacts of 1.5°C and 2.0°C global warming above pre-industrial on potential winter wheat production of China. Eur. J. Agron. 120, 126149. https://doi.org/10.1016/j.eja.2020.126149 (2020).
Article Google Scholar
30.
Kawakita, S., Takahashi, H. & Moriya, K. Prediction and parameter uncertainty for winter wheat phenology models depend on model and parameterization method differences. Agric. For. Meteorol. 290, 107998. https://doi.org/10.1016/j.agrformet.2020.107998 (2020).
ADS Article Google Scholar
31.
Ahmed, K., Shabbir, G., Ahmed, M. & Shah, K. N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci. Total Environ. 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
32.
Ahmed, M., Aslam, M. A., Fayyaz-Ul, H., Hayat, R. & Ahmad, S. Biochemical, physiological and agronomic response of wheat to changing climate of rainfed Pakistan. Pak. J. Bot 51, 535–551. https://doi.org/10.30848/PJB2019-2(10) (2019).
CAS Article Google Scholar
33.
Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Global Food Secur. 24, 100346. https://doi.org/10.1016/j.gfs.2019.100346 (2020).
Article Google Scholar
34.
Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256. https://doi.org/10.1016/j.foodres.2020.109256 (2020).
CAS Article PubMed PubMed Central Google Scholar
35.
Wreford, A. & Topp, C. F. E. Impacts of climate change on livestock and possible adaptations: a case study of the United Kingdom. Agric. Syst. 178, 102737. https://doi.org/10.1016/j.agsy.2019.102737 (2020).
Article Google Scholar
36.
Hu, Q., Weiss, A., Feng, S. & Baenziger, P. S. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric. For. Meteorol. 135, 284–290. https://doi.org/10.1016/j.agrformet.2006.01.001 (2005).
ADS Article Google Scholar
37.
He, L., Jin, N. & Yu, Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Sci. Total Environ. 707, 135638. https://doi.org/10.1016/j.scitotenv.2019.135638 (2020).
ADS CAS Article PubMed Google Scholar
38.
Tao, F., Yokozawa, M., Liu, J. & Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Res. 38, 83–94 (2008).
ADS Article Google Scholar
39.
Estrella, N., Sparks, T. H. & Menzel, A. Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Climate Res. 39, 235–248 (2009).
ADS Article Google Scholar
40.
Ahmed, M., Fayyaz-ul-Hassan & Ahmad, S. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Claudio O. Stockle) 91–111 (Springer International Publishing, 2017).
41.
García-Mozo, H., Mestre, A. & Galán, C. Phenological trends in southern Spain: a response to climate change. Agric. For. Meteorol. 150, 575–580. https://doi.org/10.1016/j.agrformet.2010.01.023 (2010).
ADS Article Google Scholar
42.
Wu, D. et al. Measured phenology response of unchanged crop varieties to long-term historical climate change. Int. J. Plant Prod. 13, 47–58. https://doi.org/10.1007/s42106-018-0033-z (2019).
Article Google Scholar
43.
Sujetovienė, G. et al. Climate-change-related long-term historical and projected changes to spring barley phenological development in Lithuania. J. Agric. Sci. 156, 1061–1069. https://doi.org/10.1017/S0021859618000904 (2019).
Article Google Scholar
44.
Ahmad, A. et al. In Handbook of Climate Change and Agroecosystems Vol. 3 (eds Rosenzweig, C. & Hillel, D.) 219–258 (World Scientific 2015).
45.
Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155. https://doi.org/10.1016/j.fcr.2013.05.021 (2013).
Article Google Scholar
46.
Bai, H., Tao, F., Xiao, D., Liu, F. & Zhang, H. Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Clim. Change 135, 539–553. https://doi.org/10.1007/s10584-015-1579-8 (2016).
ADS Article Google Scholar
47.
Shim, D., Lee, K.-J. & Lee, B.-W. Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region. Crop J. 5, 305–316. https://doi.org/10.1016/j.cj.2017.01.004 (2017).
Article Google Scholar
48.
Yang, J. et al. Yield-maturity relationships of summer maize from 2003 to 2017 in the Huanghuaihai plain of China. Sci. Rep. 9, 11417. https://doi.org/10.1038/s41598-019-47561-2 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
49.
Teller, A. S. Moving the conversation on climate change and inequality to the local: socio-ecological vulnerability in agricultural Tanzania. Soc. Dev. 2, 25–50. https://doi.org/10.1525/sod.2016.2.1.25 (2016).
Article Google Scholar
50.
Tao, F., Zhang, S. & Zhang, Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur. J. Agron. 43, 201–212. https://doi.org/10.1016/j.eja.2012.07.005 (2012).
Article Google Scholar
51.
Shi, W., Wang, M. & Liu, Y. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 750, 141147. https://doi.org/10.1016/j.scitotenv.2020.141147 (2021).
ADS CAS Article Google Scholar
52.
Siebert, S. & Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 44–57. https://doi.org/10.1016/j.agrformet.2011.08.007 (2012).
ADS Article Google Scholar
53.
Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36. https://doi.org/10.1016/S1161-0301(98)00047-1 (1999).
Article Google Scholar
54.
McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0 (1997).
ADS Article Google Scholar
55.
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365. https://doi.org/10.1016/j.tree.2007.04.003 (2007).
Article PubMed Google Scholar
56.
Xiao, D. et al. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theor. Appl. Climatol. 124, 653–661. https://doi.org/10.1007/s00704-015-1450-x (2016).
ADS Article Google Scholar
57.
Craufurd, P. Q. & Wheeler, T. R. Climate change and the flowering time of annual crops. J. Exp. Bot. 60, 2529–2539. https://doi.org/10.1093/jxb/erp196 (2009).
CAS Article PubMed Google Scholar
58.
van Bussel, L. G. J., Ewert, F. & Leffelaar, P. A. Effects of data aggregation on simulations of crop phenology. Agric. Ecosyst. Environ. 142, 75–84. https://doi.org/10.1016/j.agee.2010.03.019 (2011).
Article Google Scholar
59.
van Oort, P. A. J., Zhang, T., de Vries, M. E., Heinemann, A. B. & Meinke, H. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agric. For. Meteorol. 151, 1545–1555. https://doi.org/10.1016/j.agrformet.2011.06.012 (2011).
ADS Article Google Scholar
60.
Rezaei, E. E., Siebert, S., Hüging, H. & Ewert, F. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 8, 4891. https://doi.org/10.1038/s41598-018-23101-2 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
61.
Croitoru, A.-E., Holobaca, I.-H., Lazar, C., Moldovan, F. & Imbroane, A. Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Change 111, 393–410. https://doi.org/10.1007/s10584-011-0133-6 (2012).
ADS Article Google Scholar
62.
Hussain, M., Shabir, G., Farooq, M., Jabran, K. & Farooq, S. Developmental and phenological responses of wheat to sowing dates. Pak. J. Agri. Sci 49, 459–468 (2012).
Google Scholar
63.
Zhang, S. & Tao, F. Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur. J. Agron. 45, 165–176. https://doi.org/10.1016/j.eja.2012.10.005 (2013).
Article Google Scholar
64.
Yue, Y. et al. Prediction of maize growth stages based on deep learning. Comput. Electron. Agric. 172, 105351. https://doi.org/10.1016/j.compag.2020.105351 (2020).
Article Google Scholar
65.
Luo, Q. Temperature thresholds and crop production: a review. Clim. Change 109, 583–598. https://doi.org/10.1007/s10584-011-0028-6 (2011).
ADS Article Google Scholar
66.
Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018. https://doi.org/10.1088/1748-9326/8/2/024018 (2013).
ADS Article Google Scholar
67.
Luo, Q., Bange, M. & Clancy, L. Cotton crop phenology in a new temperature regime. Ecol. Model. 285, 22–29. https://doi.org/10.1016/j.ecolmodel.2014.04.018 (2014).
Article Google Scholar
68.
Pulatov, B., Linderson, M.-L., Hall, K. & Jönsson, A. M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214–215, 281–292. https://doi.org/10.1016/j.agrformet.2015.08.266 (2015).
ADS Article Google Scholar
69.
Hatfield, J. L. & Dold, C. Climate change impacts on corn phenology and productivity. Corn: Production and Human Health in Changing Climate, 95 (2018).
70.
Zhang, T., Huang, Y. & Yang, X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Change Biol. 19, 563–570. https://doi.org/10.1111/gcb.12057 (2013).
ADS Article Google Scholar
71.
Lin, Y. et al. Potential impacts of climate change and adaptation on maize in northeast China. Agron. J. 109, 1476–1490 (2017).
Article Google Scholar
72.
Wang, N. et al. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric. For. Meteorol. 250–251, 319–329. https://doi.org/10.1016/j.agrformet.2018.01.005 (2018).
ADS Article Google Scholar
73.
Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).
ADS Article Google Scholar
74.
Srivastava, R. K., Panda, R. K. & Chakraborty, A. Assessment of climate change impact on maize yield and yield attributes under different climate change scenarios in eastern India. Ecol. Ind. 120, 106881. https://doi.org/10.1016/j.ecolind.2020.106881 (2021).
Article Google Scholar
75.
Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495. https://doi.org/10.1007/s00442-005-0240-z (2005).
ADS Article PubMed Google Scholar
76.
Brown, M. E., de Beurs, K. M. & Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens. Environ. 126, 174–183. https://doi.org/10.1016/j.rse.2012.08.009 (2012).
ADS Article Google Scholar
77.
Kim, Y.-U. & Lee, B.-W. Earlier planting offsets the adverse effect of global warming on spring potato in South Korea. Sci. Total Environ. 742, 140667. https://doi.org/10.1016/j.scitotenv.2020.140667 (2020).
ADS CAS Article PubMed Google Scholar
78.
Baum, M. E., Licht, M. A., Huber, I. & Archontoulis, S. V. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. Eur. J. Agron. 119, 126101. https://doi.org/10.1016/j.eja.2020.126101 (2020).
Article Google Scholar
79.
Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).
ADS Article Google Scholar
80.
Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 44, 76–81. https://doi.org/10.1007/s004840000054 (2000).
ADS CAS Article PubMed Google Scholar
81.
Oteros, J., García-Mozo, H., Botey, R., Mestre, A. & Galán, C. Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012). Clim. Change 130, 545–558. https://doi.org/10.1007/s10584-015-1363-9 (2015).
ADS CAS Article Google Scholar
82.
Wang, Y., Luo, Y. & Shafeeque, M. Interpretation of vegetation phenology changes using daytime and night-time temperatures across the Yellow River Basin, China. Sci. Total Environ. 693, 133553. https://doi.org/10.1016/j.scitotenv.2019.07.359 (2019).
ADS CAS Article PubMed Google Scholar
83.
Moriondo, M. & Bindi, M. Impact of climate change on the phenology of typical Mediterranean crops. Italian J. Agrometeorol. 3, 5–12 (2007).
Google Scholar
84.
Anwar, M. R. et al. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric. Syst. 132, 133–144. https://doi.org/10.1016/j.agsy.2014.09.010 (2015).
ADS Article Google Scholar
85.
Jackson, R. B. et al. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 13, 120401. https://doi.org/10.1088/1748-9326/aaf303 (2018).
ADS CAS Article Google Scholar
86.
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018 (2018).
ADS Article Google Scholar
87.
Balch, J. K. et al. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philos. Trans. R. Soc. B Biol. Sci. 371, 20150177. https://doi.org/10.1098/rstb.2015.0177 (2016).
Article Google Scholar
88.
Ahmad, S. et al. Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan. Field Crops Res. 230, 46–61. https://doi.org/10.1016/j.fcr.2018.10.008 (2019).
Article Google Scholar
89.
Ahmad, S. et al. Application of DSSAT Model for sowing date management of C 4 summer cereals for fodder and grain crops under irrigated arid environment. Pakistan J. Life Soc. Sci. 14 (2016).
90.
Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001 (2015).
Article Google Scholar
91.
Aslam, M. A. et al. Can growing degree days and photoperiod predict spring wheat phenology?. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00057 (2017).
Article Google Scholar
92.
Zhang, L., Zhang, Z., Luo, Y., Cao, J. & Li, Z. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Sci. Total Environ. 728, 138614. https://doi.org/10.1016/j.scitotenv.2020.138614 (2020).
ADS CAS Article PubMed Google Scholar
93.
Tryjanowski, P. et al. Changing phenology of potato and of the treatment for its major pest (colorado potato beetle)—a long-term analysis. Am. J. Potato Res. https://doi.org/10.1007/s12230-017-9611-3 (2017).
Article Google Scholar
94.
Ahmad, S. et al. Quantification of climate warming and crop management impacts on cotton phenology. Plants (Basel) 6, 7. https://doi.org/10.3390/plants6010007 (2017).
Article Google Scholar
95.
Huang, J. & Ji, F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int. J. Biometeorol. 59, 877–888. https://doi.org/10.1007/s00484-014-0904-7 (2015).
ADS Article PubMed Google Scholar
96.
Wang, Z. et al. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci. Rep. 7, 6628. https://doi.org/10.1038/s41598-017-07056-4 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
97.
Srivastava, A., NareshKumar, S. & Aggarwal, P. K. Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosyst. Environ. 138, 160–169. https://doi.org/10.1016/j.agee.2010.04.012 (2010).
Article Google Scholar
98.
Sultan, B. et al. Robust features of future climate change impacts on sorghum yields in West Africa. Environ. Res. Lett. 9, 104006. https://doi.org/10.1088/1748-9326/9/10/104006 (2014).
ADS CAS Article Google Scholar
99.
Shew, A. M., Tack, J. B., Nalley, L. L. & Chaminuka, P. Yield reduction under climate warming varies among wheat cultivars in South Africa. Nat. Commun. 11, 4408. https://doi.org/10.1038/s41467-020-18317-8 (2020).
CAS Article PubMed PubMed Central Google Scholar
100.
Sonkar, G. et al. Vulnerability of Indian wheat against rising temperature and aerosols. Environ. Pollut. 254, 112946. https://doi.org/10.1016/j.envpol.2019.07.114 (2019).
CAS Article PubMed Google Scholar
101.
Fatima, Z. et al. Quantification of climate warming and crop management impacts on phenology of pulses-based cropping systems. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00112-6 (2020).
Article Google Scholar
102.
Liu, Y., Qin, Y., Wang, H., Lv, S. & Ge, Q. Trends in maize (Zea mays L.) phenology and sensitivity to climate factors in China from 1981 to 2010. Int J Biometeorol 64, 461–470. https://doi.org/10.1007/s00484-019-01832-9 (2020).
Article PubMed Google Scholar
103.
Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845. https://doi.org/10.1016/j.agrformet.2019.107845 (2020).
ADS Article Google Scholar
104.
Das, S., Kumar, A., Barman, M., Pal, S. & Bandopadhyay, P. In Agronomic Crops: Volume 3: Stress Responses and Tolerance (ed. Hasanuzzaman, M.) 13–28 (Springer Singapore, 2020).
105.
Xiao, D., Liu, D. L., Wang, B., Feng, P. & Waters, C. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agric. Syst. 181, 102805. https://doi.org/10.1016/j.agsy.2020.102805 (2020).
Article Google Scholar
106.
Liu, Y. et al. Impacts of 1.5 and 2.0°C global warming on rice production across China. Agric. For. Meteorol. 284, 107900. https://doi.org/10.1016/j.agrformet.2020.107900 (2020).
ADS Article Google Scholar
107.
Rani, B. A. & Maragatham, N. Effect of elevated temperature on rice phenology and yield. Indian J. Sci. Technol. 6, 5095–5097 (2013).
Google Scholar
108.
Shrestha, S. et al. Phenological responses of upland rice grown along an altitudinal gradient. Environ. Exp. Bot. 89, 1–10. https://doi.org/10.1016/j.envexpbot.2012.12.007 (2013).
Article Google Scholar
109.
Abbas, G. et al. Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. For. Meteorol. 247, 42–55. https://doi.org/10.1016/j.agrformet.2017.07.012 (2017).
ADS Article Google Scholar
110.
Estrella, N., Sparks, T. H. & Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Change Biol. 13, 1737–1747. https://doi.org/10.1111/j.1365-2486.2007.01374.x (2007).
ADS Article Google Scholar
111.
Li, K. et al. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int. J. Biometeorol. 60, 21–32. https://doi.org/10.1007/s00484-015-1002-1 (2016).
ADS Article PubMed Google Scholar
112.
He, D. et al. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agric. For. Meteorol. 232, 163–175. https://doi.org/10.1016/j.agrformet.2016.08.013 (2017).
ADS Article Google Scholar
113.
Wei, W., Wu, W., Li, Z., Yang, P. & Zhou, Q. Selecting the optimal ndvi time-series reconstruction technique for crop phenology detection. Intell. Autom. Soft Comput. 22, 237–247. https://doi.org/10.1080/10798587.2015.1095482 (2016).
Article Google Scholar
114.
Chakraborty, A., Das, P. K., Sai, M. V. R. S. & Behera, G. Spatial pattern of temporal trend of crop phenology matrices over india using timeseries gimms NDVI data (19826ndash;2006). ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 3820, 113–118 (2012).
Article Google Scholar
115.
Komal, C., Shi, W., Boori, M. S. & Corgne, S. Agriculture phenology monitoring using NDVI time series based on remote sensing satellites: a case study of Guangdong, China. Opt. Mem. Neural Netw. 28, 204–214. https://doi.org/10.3103/S1060992X19030093 (2019).
Article Google Scholar
116.
Liu, Y., Chen, Q., Ge, Q. & Dai, J. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010. Sci. China Earth Sci. 61, 1088–1097. https://doi.org/10.1007/s11430-017-9149-0 (2018).
ADS Article Google Scholar
117.
Xiao, D. et al. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 57, 275–285. https://doi.org/10.1007/s00484-012-0552-8 (2013).
ADS Article PubMed Google Scholar
118.
Hossain, A., da Silva Teixeira, J. A., Lozovskaya, M. V. & Zvolinsky, V. P. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J. Biol. Sci. 19, 473–487. https://doi.org/10.1016/j.sjbs.2012.07.005 (2012).
Article PubMed PubMed Central Google Scholar
119.
Martínez-Núñez, M. et al. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. South African J. Bot. 124, 436–443. https://doi.org/10.1016/j.sajb.2019.05.035 (2019).
Article Google Scholar
120.
Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. 114, 9326–9331. https://doi.org/10.1073/pnas.1701762114 (2017).
CAS Article PubMed Google Scholar
121.
Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 1328–1341. https://doi.org/10.1111/gcb.12758 (2015).
ADS CAS Article Google Scholar
122.
Subash, N. & Ram Mohan, H. S. Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agric. For. Meteorol. 164, 71–81. https://doi.org/10.1016/j.agrformet.2012.05.008 (2012).
ADS Article Google Scholar
123.
Tian, D. et al. Does decadal climate variation influence wheat and maize production in the southeast USA?. Agric. For. Meteorol. 204, 1–9. https://doi.org/10.1016/j.agrformet.2015.01.013 (2015).
ADS Article Google Scholar
124.
Quiring, S. M. & Legates, D. R. Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA. Agric. For. Meteorol. 148, 964–975. https://doi.org/10.1016/j.agrformet.2008.01.009 (2008).
ADS Article Google Scholar
125.
Blecharczyk, A., Sawinska, Z., Małecka, I., Sparks, T. H. & Tryjanowski, P. The phenology of winter rye in Poland: an analysis of long-term experimental data. Int. J. Biometeorol. 60, 1341–1346. https://doi.org/10.1007/s00484-015-1127-2 (2016).
ADS Article PubMed PubMed Central Google Scholar
126.
Luo, Q., O’Leary, G., Cleverly, J. & Eamus, D. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency. Int. J. Biometeorol. 62, 1049–1061. https://doi.org/10.1007/s00484-018-1508-4 (2018).
ADS Article PubMed Google Scholar
127.
He, L. et al. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric. For. Meteorol. 200, 135–143. https://doi.org/10.1016/j.agrformet.2014.09.011 (2015).
ADS Article Google Scholar
128.
Wang, J., Wang, E., Feng, L., Yin, H. & Yu, W. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res. 144, 135–144. https://doi.org/10.1016/j.fcr.2012.12.020 (2013).
CAS Article Google Scholar
129.
Zheng, Z., Cai, H., Wang, Z. & Wang, X. Simulation of climate change impacts on phenology and production of winter wheat in Northwestern China using CERES-wheat model. Atmosphere 11, 681 (2020).
ADS Article Google Scholar
130.
Hyles, J., Bloomfield, M. T., Hunt, J. R., Trethowan, R. M. & Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity https://doi.org/10.1038/s41437-020-0320-1 (2020).
Article PubMed Google Scholar
131.
Li, Q.-Y. et al. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. J. Integr. Agric. 11, 405–415. https://doi.org/10.1016/S2095-3119(12)60025-2 (2012).
Article Google Scholar
132.
Herndl, M., Shan, C.-G., Wang, P., Graeff, S. & Claupein, W. A model based ideotyping approach for wheat under different environmental conditions in North China Plain. Agric. Sci. China 6, 1426–1436. https://doi.org/10.1016/S1671-2927(08)60004-8 (2007).
Article Google Scholar
133.
Asseng, S., Turner, N. C., Ray, J. D. & Keating, B. A. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. Eur. J. Agron. 17, 123–141. https://doi.org/10.1016/S1161-0301(01)00149-6 (2002).
Article Google Scholar
134.
Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).
ADS Article Google Scholar
135.
Eyshi Rezaei, E., Siebert, S. & Ewert, F. Climate and management interaction cause diverse crop phenology trends. Agric. For. Meteorol. 233, 55–70. https://doi.org/10.1016/j.agrformet.2016.11.003 (2017).
ADS Article Google Scholar
136.
Wang, Y., Zhang, J., Song, G., Long, Z. & Chen, C. Impacts of recent temperatures rise on double-rice phenology across Southern China. Int. J. Plant Prod. 13, 1–10. https://doi.org/10.1007/s42106-018-0029-8 (2019).
Article Google Scholar
137.
Hu, X., Huang, Y., Sun, W. & Yu, L. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric. For. Meteorol. 247, 34–41. https://doi.org/10.1016/j.agrformet.2017.07.014 (2017).
ADS Article Google Scholar
138.
Zhang, S., Tao, F. & Zhang, Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur. J. Agron. 54, 70–83. https://doi.org/10.1016/j.eja.2013.12.001 (2014).
CAS Article Google Scholar
139.
Bai, H. & Xiao, D. Spatiotemporal changes of rice phenology in China during 1981–2010. Theor Appl Climatol 140, 1483–1494. https://doi.org/10.1007/s00704-020-03182-8 (2020).
ADS Article Google Scholar
140.
Abbas, G. et al. Sowing date and hybrid choice matters production of maize-maize system. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00104-6 (2020).
Article Google Scholar
141.
Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. 14, 309–320. https://doi.org/10.1007/s42106-020-00086-5 (2020).
Article Google Scholar
142.
Xiao, D., Zhao, Y., Bai, H., Hu, Y. & Cao, J. Impacts of climate warming and crop management on maize phenology in northern China. J. Arid Land 11, 892–903. https://doi.org/10.1007/s40333-019-0028-3 (2019).
Article Google Scholar
143.
Wang, Z. et al. Effects of climate change and cultivar on summer maize phenology. International Journal of Plant Production 10, 509–525 (2016).
Google Scholar
144.
Sacks, W. J. & Kucharik, C. J. Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology 151, 882–894. https://doi.org/10.1016/j.agrformet.2011.02.010 (2011).
145.
Mo, F. et al. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Research 196, 337–347. https://doi.org/10.1016/j.fcr.2016.06.024 (2016).
Article Google Scholar
146.
Wang, P. et al. Summer maize growth under different precipitation years in the Huang-Huai-Hai Plain of China. Agric. For. Meteorol. 285–286, 107927. https://doi.org/10.1016/j.agrformet.2020.107927 (2020).
ADS Article Google Scholar
147.
Liu, Y., Qin, Y. & Ge, Q. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010. J. Geog. Sci. 29, 351–362. https://doi.org/10.1007/s11442-019-1602-5 (2019).
Article Google Scholar
148.
Chen, C. et al. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security 24, 100359. https://doi.org/10.1016/j.gfs.2020.100359 (2020).
Article Google Scholar
149.
Lv, Z., Li, F. & Lu, G. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitig Adapt Strat Glob Change 25, 87–106. https://doi.org/10.1007/s11027-019-09861-w (2020).
Article Google Scholar
150.
Nahar, K., Ahamed, K. U. & Fujita, M. Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2, 51–56 (2010).
151.
Raoufi, R. S. & Soufizadeh, S. Simulation of the impacts of climate change on phenology, growth, and yield of various rice genotypes in humid sub-tropical environments using AquaCrop-Rice. Int J Biometeorol https://doi.org/10.1007/s00484-020-01946-5 (2020).
Article PubMed Google Scholar
152.
Karapinar, B. & Özertan, G. Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey. Climatic Change 158, 453–472. https://doi.org/10.1007/s10584-019-02532-4 (2020).
ADS CAS Article Google Scholar
153.
Ahmad, M. J., Iqbal, M. A. & Choi, K. S. Climate-driven constraints in sustaining future wheat yield and water productivity. Agric. Water Manag. 231, 105991. https://doi.org/10.1016/j.agwat.2019.105991 (2020).
Article Google Scholar
154.
Zacharias, M., Singh, S., Naresh Kumar, S., Harit, R. & Aggarwal, P. Impact of elevated temperature at different phenological stages on the growth and yield of wheat and rice. Ind J Plant Physiol. 15, 350 (2010).
Google Scholar
155.
Sadok, W. & Jagadish, S. V. K. The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci. 25, 644–651. https://doi.org/10.1016/j.tplants.2020.02.003 (2020).
CAS Article PubMed Google Scholar
156.
Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. 116, 123–128. https://doi.org/10.1073/pnas.1804387115 (2019).
CAS Article PubMed Google Scholar
157.
Lavee, H., Imeson, A. C. & Sarah, P. The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degrad. Dev. 9, 407–422. https://doi.org/10.1002/(sici)1099-145x(199809/10)9:5%3c407::aid-ldr302%3e3.0.co;2-6 (1998).
Article Google Scholar
158.
Traill, L. W. et al. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17, 1225–1233. https://doi.org/10.1111/j.1472-4642.2011.00807.x (2011).
Article Google Scholar
159.
Bellard, C., Leclerc, C. & Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 23, 203–212. https://doi.org/10.1111/geb.12093 (2014).
Article Google Scholar
160.
Feng, Q., Ma, H., Jiang, X., Wang, X. & Cao, S. What Has Caused Desertification in China?. Scientific Reports 5, 15998. https://doi.org/10.1038/srep15998 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
161.
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166–171. https://doi.org/10.1038/nclimate2837 (2016).
ADS Article Google Scholar
162.
Liu, B. et al. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology 25, 1428–1444. https://doi.org/10.1111/gcb.14542 (2019).
163.
Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173. https://doi.org/10.1111/gcb.14481 (2019).
ADS Article Google Scholar
164.
Nayak, D. et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agr. Ecosyst. Environ. 209, 108–124. https://doi.org/10.1016/j.agee.2015.04.035 (2015).
CAS Article Google Scholar
165.
Kang, Y., Khan, S. & Ma, X. Climate change impacts on crop yield, crop water productivity and food security – A review. Prog. Nat. Sci. 19, 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001 (2009).
Article Google Scholar
166.
Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: a review. Agron. Sustain. Dev. 36, 12. https://doi.org/10.1007/s13593-016-0350-5 (2016).
Article Google Scholar
167.
167Ortiz., R. in Food Security and Climate Change145–158 (2018).
168.
Kumar, S. & Sidana, B. K. Farmers’ perceptions and adaptation strategies to climate change in Punjab agriculture. Indian J. Agric. Sci 88, 1573–1581 (2018).
Google Scholar
169.
Burke, M. & Emerick, K. Adaptation to climate change: Evidence from US agriculture. American Economic Journal: Economic Policy 8, 106–140 (2016).
Google Scholar
170.
Pradhan, A., Chan, C., Roul, P. K., Halbrendt, J. & Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 163, 27–35. https://doi.org/10.1016/j.agsy.2017.01.002 (2018).
Article Google Scholar
171.
Bahri, H., Annabi, M., Cheikh M’Hamed, H. & Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Science of The Total Environment 692, 1223–1233. https://doi.org/10.1016/j.scitotenv.2019.07.307 (2019).
172.
Zampieri, M. et al. Estimating resilience of crop production systems: From theory to practice. Sci. Total Environ. 735, 139378. https://doi.org/10.1016/j.scitotenv.2020.139378 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
173.
Wiebe, K., Robinson, S. & Cattaneo, A. in Sustainable Food and Agriculture (eds Clayton Campanhola & Shivaji Pandey) 55–74 (Academic Press, 2019).
174.
Abebe, T., Guenzi, A. C., Martin, B. & Cushman, J. C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131, 1748–1755 (2003).
CAS Article Google Scholar
175.
Lee, S.-H. et al. Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnology Letters 37, 881–890. https://doi.org/10.1007/s10529-014-1749-1 (2015).
176.
Yamakawa, H., Hirose, T., Kuroda, M. & Yamaguchi, T. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray. Plant Physiol. 144, 258–277. https://doi.org/10.1104/pp.107.098665 (2007).
CAS Article PubMed PubMed Central Google Scholar
177.
Lehmann, N., Finger, R., Klein, T., Calanca, P. & Walter, A. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agric. Syst. 117, 55–65. https://doi.org/10.1016/j.agsy.2012.12.011 (2013).
Article Google Scholar
178.
Pimentel, A. J. B. et al. Characterization of heat tolerance in wheat cultivars and effects on production components. Revista Ceres 62, 191–198 (2015).
Article Google Scholar
179.
Lin, B. B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. Bioscience 61, 183–193. https://doi.org/10.1525/bio.2011.61.3.4 (2011).
Article Google Scholar
180.
Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25, n/a-n/a. https://doi.org/10.1029/2009GB003765 (2011).
181.
Mase, A. S., Gramig, B. M. & Prokopy, L. S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management 15, 8–17. https://doi.org/10.1016/j.crm.2016.11.004 (2017).
182.
Hernandez-Ochoa, I. M. et al. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: Management, breeding options and land use change. Eur. J. Agron. 109, 125915. https://doi.org/10.1016/j.eja.2019.125915 (2019).
Article Google Scholar
183.
Meza, F. J. & Silva, D. Dynamic adaptation of maize and wheat production to climate change. Climatic Change 94, 143–156. https://doi.org/10.1007/s10584-009-9544-z (2009).
ADS Article Google Scholar
184.
Luo, Q., Bellotti, W., Williams, M. & Wang, E. Adaptation to climate change of wheat growing in South Australia: Analysis of management and breeding strategies. Agr. Ecosyst. Environ. 129, 261–267. https://doi.org/10.1016/j.agee.2008.09.010 (2009).
Article Google Scholar
185.
Wang, B. et al. Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agric. Syst. 170, 9–18. https://doi.org/10.1016/j.agsy.2018.12.005 (2019).
Article Google Scholar
186.
Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Change Biol. 26, 3065–3078. https://doi.org/10.1111/gcb.15002 (2020).
ADS Article Google Scholar
187.
Hampton, K. N. Persistent and pervasive community: New communication technologies and the future of community. Am. Behav. Sci. 60, 101–124 (2016).
Article Google Scholar
188.
Asseng, S., Zhu, Y., Wang, E. & Zhang, W. in Crop Physiology (Second Edition) (ed Victor O. SadrasDaniel F. Calderini) 505–546 (Academic Press, 2015).
189.
Sadras, V. O., Vadez, V., Purushothaman, R., Lake, L. & Marrou, H. Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research 177, 1–8. https://doi.org/10.1016/j.fcr.2015.02.024 (2015).
Article Google Scholar
190.
Rodriguez, D. & Sadras, V. Opportunities from integrative approaches in farming systems design. Field Crops Research 124, 131–141 (2011).
Google Scholar
191.
Cabezas, J. M. et al. Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agric. Syst. 185, 102937. https://doi.org/10.1016/j.agsy.2020.102937 (2020).
Article Google Scholar
192.
Ahmad, I., Ahmad, B., Boote, K. & Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 115, 126040. https://doi.org/10.1016/j.eja.2020.126040 (2020).
CAS Article Google Scholar
193.
Abbas, G. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 429–445 (Springer Singapore, 2020).
194.
Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports 9, 7813. https://doi.org/10.1038/s41598-019-44251-x (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
195.
Ahmed, M. & Ahmad, S. in Agronomic Crops: Volume 2: Management Practices (ed Mirza Hasanuzzaman) 31–46 (Springer Singapore, 2019).
196.
van Ogtrop, F., Ahmad, M. & Moeller, C. Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications 21, 431–443. https://doi.org/10.1002/met.1429 (2014).
197.
Abedinpour, M. et al. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 110, 55–66. https://doi.org/10.1016/j.agwat.2012.04.001 (2012).
Article Google Scholar
198.
Sareen, S. et al. Molecular genetic diversity analysis for heat tolerance of indigenous and exotic wheat genotypes. J. Plant Biochem. Biotechnol. 29, 15–23. https://doi.org/10.1007/s13562-019-00501-7 (2020).
CAS Article Google Scholar
199.
Rezaei, E. E. et al. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Research 217, 93–103. https://doi.org/10.1016/j.fcr.2017.12.015 (2018).
Article Google Scholar
200.
Mechanisms and modelling. Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J. & Ewert, F. Heat stress in cereals. Eur. J. Agron. 64, 98–113. https://doi.org/10.1016/j.eja.2014.10.003 (2015).
Article Google Scholar
201.
Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00086-5 (2020).
Article Google Scholar
202.
Jahan, M. A. H. S. et al. Optimizing sowing window for wheat cultivation in Bangladesh using CERES-wheat crop simulation model. Agr. Ecosyst. Environ. 258, 23–29. https://doi.org/10.1016/j.agee.2018.02.008 (2018).
Article Google Scholar
203.
Ahmed, S., Humphreys, E. & Chauhan, B. S. Optimum sowing date and cultivar duration of dry-seeded boro on the High Ganges River Floodplain of Bangladesh. Field Crops Research 190, 91–102. https://doi.org/10.1016/j.fcr.2015.12.004 (2016).
Article Google Scholar
204.
Basso, B., Liu, L. & Ritchie, J. T. in Advances in Agronomy Vol. 136 (ed Donald L. Sparks) 27–132 (Academic Press, 2016).
205.
Xiong, W. et al. A calibration procedure to improve global rice yield simulations with EPIC. Ecol. Model. 273, 128–139. https://doi.org/10.1016/j.ecolmodel.2013.10.026 (2014).
Article Google Scholar
206.
Jalota, S. K., Vashisht, B. B., Kaur, H., Kaur, S. & Kaur, P. Location specific climate change scenario and its impact on rice and wheat in Central Indian Punjab. Agric. Syst. 131, 77–86. https://doi.org/10.1016/j.agsy.2014.07.009 (2014).
Article Google Scholar
207.
Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101, 9971–9975. https://doi.org/10.1073/pnas.0403720101 (2004).
ADS CAS Article PubMed PubMed Central Google Scholar
208.
Ritchie, J. T., Singh, U., Godwin, D. C. & Bowen, W. T. in Understanding Options for Agricultural Production Vol. 7 Systems Approaches for Sustainable Agricultural Development (eds GordonY Tsuji, Gerrit Hoogenboom, & PhilipK Thornton) Ch. 5, 79–98 (Springer Netherlands, 1998).
209.
Nissanka, S. P. et al. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software 70, 128–137. https://doi.org/10.1016/j.envsoft.2015.04.007 (2015).
Article Google Scholar
210.
Weerakoon, W. M. W. et al. Direct-seeded rice culture in Sri Lanka: Lessons from farmers. Field Crops Research 121, 53–63. https://doi.org/10.1016/j.fcr.2010.11.009 (2011).
Article Google Scholar
211.
Iftekharuddaula, K. M. et al. Development of early maturing submergence-tolerant rice varieties for Bangladesh. Field Crops Research 190, 44–53. https://doi.org/10.1016/j.fcr.2015.12.001 (2016).
Article Google Scholar
212.
Haefele, S. M., Kato, Y. & Singh, S. Climate ready rice: Augmenting drought tolerance with best management practices. Field Crops Research 190, 60–69. https://doi.org/10.1016/j.fcr.2016.02.001 (2016).
Article Google Scholar
213.
Latif, M. A., Islam, M. R., Ali, M. Y. & Saleque, M. A. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Research 93, 281–292. https://doi.org/10.1016/j.fcr.2004.10.005 (2005).
Article Google Scholar
214.
Sarangi, S. K. et al. Using improved variety and management enhances rice productivity in stagnant flood -affected tropical coastal zones. Field Crops Research 190, 70–81. https://doi.org/10.1016/j.fcr.2015.10.024 (2016).
Article Google Scholar
215.
Raza, M. A. et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports 9, 4947. https://doi.org/10.1038/s41598-019-41364-1 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
216.
Paudel, B., Khanal, R. C., KC, A., Bhatta, K. & Chaudhary, P. Climate-smart agriculture in Nepal. Research program on Climate Change, Agriculture and food security (2017).
217.
Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J. & Jat, M. L. in Advances in Agronomy Vol. Volume 117 (ed L. Sparks Donald) 315–369 (Academic Press, 2012).
218.
Yadvinder, S., Kukal, S. S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. 127 (ed Donald Sparks) 157–258 (Academic Press, 2014).
219.
Jat, M. L. et al. in Advances in Agronomy Vol. 137 (ed Donald L. Sparks) 127–235 (Academic Press, 2016).
220.
Kukal, S. S., Yadvinder, S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. Volume 127 (ed Sparks Donald) 157–258 (Academic Press, 2014).
221.
Witt, C., Pasuquin, J. & Dobermann, A. Towards a site-specific nutrient management approach for maize in Asia. Better Crops 90, 28–31 (2006).
Google Scholar
222.
Ullah, A., Ahmad, A., Khaliq, T. & Akhtar, J. Recognizing production options for pearl millet in Pakistan under changing climate scenarios. Journal of Integrative Agriculture 16, 762–773. https://doi.org/10.1016/S2095-3119(16)61450-8 (2017).
Article Google Scholar
223.
Ullah, A., Salehnia, N., Kolsoumi, S., Ahmad, A. & Khaliq, T. Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecological Indicators 90, 569–576. https://doi.org/10.1016/j.ecolind.2018.03.053 (2018).
224.
Ausiku, A. P., Annandale, J. G., Steyn, J. M. & Sanewe, A. J. Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water 12, 422 (2020).
CAS Article Google Scholar
225.
Alauddin, M., Rashid Sarker, M. A., Islam, Z. & Tisdell, C. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use Policy 91, 104430. https://doi.org/10.1016/j.landusepol.2019.104430 (2020).
Article Google Scholar
226.
Rahman, M. H. u. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 447–484 (Springer Singapore, 2020).
227.
Ishfaq, M. et al. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 241, 106363. https://doi.org/10.1016/j.agwat.2020.106363 (2020).
Article Google Scholar
228.
Rejesus, R. M., Palis, F. G., Rodriguez, D. G. P., Lampayan, R. M. & Bouman, B. A. M. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 36, 280–288. https://doi.org/10.1016/j.foodpol.2010.11.026 (2011).
Article Google Scholar
229.
Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002 (2017).
Article Google Scholar
230.
Stuart, D., Schewe, R. L. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36, 210–218. https://doi.org/10.1016/j.landusepol.2013.08.011 (2014).
Article Google Scholar
231.
Zheng, W., Luo, B. & Hu, X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production 272, 123054. https://doi.org/10.1016/j.jclepro.2020.123054 (2020).
Article Google Scholar
232.
Jiang, G. et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochem. Cycles 28, 319–333. https://doi.org/10.1002/2013gb004746 (2014).
ADS CAS Article Google Scholar
233.
Omotesho, A., Fakayode, S. & Tariya, Y. Curtailing fertilizer scarcity and climate change; an appraisal of factors affecting organic materials use option in Nigeria’s agriculture. Ethiopian Journal of Environmental Studies and Management 5, 281–290 (2012).
Article Google Scholar
234.
Raza, A. et al. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 8, 34 (2019).
CAS Article Google Scholar
235.
Sloan, K. et al. in The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future (eds Todd S. Rosenstock, Andreea Nowak, & Evan Girvetz) 227–233 (Springer International Publishing, 2019).
236.
Keith, W. et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 085010 (2015).
Article Google Scholar
237.
Zhang, Z., Yu, K., Siddique, K. H. M. & Nan, Z. Phenology and sowing time affect water use in four warm-season annual grasses under a semi-arid environment. Agric. For. Meteorol. 269–270, 257–269. https://doi.org/10.1016/j.agrformet.2019.02.027 (2019).
ADS Article Google Scholar
238.
Dreccer, M. F., Fainges, J., Whish, J., Ogbonnaya, F. C. & Sadras, V. O. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agric. For. Meteorol. 248, 275–294. https://doi.org/10.1016/j.agrformet.2017.10.006 (2018).
ADS Article Google Scholar
239.
Abid, M. et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8, 4615. https://doi.org/10.1038/s41598-018-21441-7 (2018).
240.
Macabuhay, A. A. Physiological and biochemical responses of wheat to combined heat stress and elevated CO2 during grain-filling (2016).
241.
Stratonovitch, P. & Semenov, M. A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. https://doi.org/10.1093/jxb/erv070 (2015).
Article PubMed PubMed Central Google Scholar
242.
Hernández, F., Poverene, M., Mercer, K. L. & Presotto, A. Genetic variation for tolerance to extreme temperatures in wild and cultivated sunflower (Helianthus annuus) during early vegetative phases. Crop and Pasture Science 71, 578–591. https://doi.org/10.1071/CP20005 (2020).
CAS Article Google Scholar
243.
Acharjee, T. K., van Halsema, G., Ludwig, F., Hellegers, P. & Supit, I. Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agric. Syst. 168, 131–143. https://doi.org/10.1016/j.agsy.2018.11.006 (2019).
Article Google Scholar
244.
Chibarabada, T. P., Modi, A. T. & Mabhaudhi, T. Options for improving water productivity: a case study of bambara groundnut and groundnut. Phys. Chem. Earth Parts A/B/C 115, 102806. https://doi.org/10.1016/j.pce.2019.10.003 (2020).
Article Google Scholar
245.
Islam, A. R. M. T., Shen, S., Yang, S., Hu, Z. & Atiqur Rahman, M. Spatiotemporal rice yield variations and potential agro-adaptation strategies in Bangladesh: A biophysical modeling approach. Sustain. Prod. Consum. 24, 121–138. https://doi.org/10.1016/j.spc.2020.07.005 (2020).
Article Google Scholar
246.
Tsegay, A. et al. Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia. Agric. Water Manag. 150, 81–91. https://doi.org/10.1016/j.agwat.2014.11.014 (2015).
Article Google Scholar
247.
van Oort, P. A. J., Timmermans, B. G. H. & van Swaaij, A. C. P. M. Why farmers’ sowing dates hardly change when temperature rises. Eur. J. Agron. 40, 102–111. https://doi.org/10.1016/j.eja.2012.02.005 (2012).
Article Google Scholar
248.
Bassu, S., Asseng, S., Motzo, R. & Giunta, F. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Res. 111, 109–118. https://doi.org/10.1016/j.fcr.2008.11.002 (2009).
Article Google Scholar
249.
Aasen, H., Kirchgessner, N., Walter, A. & Liebisch, F. PhenoCams for field phenotyping: using very high temporal resolution digital repeated photography to investigate interactions of growth, phenology, and harvest traits. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00593 (2020).
Article PubMed PubMed Central Google Scholar
250.
Singh, S., Sandhu, S., Dhaliwal, L. & Singh, I. Effect of planting geometry on microclimate, growth and yield of mung-bean (Vigna radiata L.). J. Agric. Phys. 12, 70–73 (2012).
Google Scholar
251.
van Etten, J. et al. Crop variety management for climate adaptation supported by citizen science. Proc. Natl. Acad. Sci. 116, 4194–4199. https://doi.org/10.1073/pnas.1813720116 (2019).
CAS Article PubMed Google Scholar
252.
Mahato, M. & Adhikari, B. B. Effect of planting geometry on growth of rice varieties. Int. J. Appl. Sci. Biotechnol. 5, 423–429 (2017).
CAS Article Google Scholar
253.
Raza, M. A. et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 9, e199. https://doi.org/10.1002/fes3.199 (2020).
Article Google Scholar
254.
Raza, M. A., van der Werf, W., Ahmed, M. & Yang, W. Removing top leaves increases yield and nutrient uptake in maize plants. Nutr. Cycl. Agroecosyst. 118, 57–73. https://doi.org/10.1007/s10705-020-10082-w (2020).
CAS Article Google Scholar
255.
Raza, M. A. et al. Effects of contrasting shade treatments on the carbon production and antioxidant activities of soybean plants. Funct. Plant Biol. FPB 47, 342–354. https://doi.org/10.1071/fp19213 (2020).
CAS Article PubMed Google Scholar
256.
Raza, M. A. et al. Optimum leaf defoliation: a new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res. 244, 107647. https://doi.org/10.1016/j.fcr.2019.107647 (2019).
Article Google Scholar
257.
Raza, M. A. et al. Growth and development of soybean under changing light environments in relay intercropping system. PeerJ 7, e7262. https://doi.org/10.7717/peerj.7262 (2019).
Article PubMed PubMed Central Google Scholar
258.
Raza, M. A. et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 8, e170. https://doi.org/10.1002/fes3.170 (2019).
Article Google Scholar
259.
Huang, F., Liu, Z., Zhang, P. & Jia, Z. Hydrothermal effects on maize productivity with different planting patterns in a rainfed farmland area. Soil Tillage Res. 205, 104794. https://doi.org/10.1016/j.still.2020.104794 (2021).
Article Google Scholar
260.
Rio, M., Rey, D., Prudhomme, C. & Holman, I. P. Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change. Agric. Water Manag. 206, 200–208. https://doi.org/10.1016/j.agwat.2018.05.005 (2018).
Article Google Scholar
261.
Muluneh, A., Stroosnijder, L., Keesstra, S. & Biazin, B. Adapting to climate change for food security in the Rift Valley dry lands of Ethiopia: supplemental irrigation, plant density and sowing date. J. Agric. Sci. 155, 703–724. https://doi.org/10.1017/S0021859616000897 (2016).
CAS Article Google Scholar
262.
Ndhleve, S., Nakin, M. & Longo-Mbenza, B. Impacts of supplemental irrigation as a climate change adaptation strategy for maize production: a case of the Eastern Cape Province of South Africa. Water SA 43, 222–228 (2017).
Article Google Scholar
263.
Bigelow, D. P. & Zhang, H. Supplemental irrigation water rights and climate change adaptation. Ecol. Econ. 154, 156–167. https://doi.org/10.1016/j.ecolecon.2018.07.015 (2018).
Article Google Scholar
264.
Trevaskis, B. Wheat gene for all seasons. Proc. Natl. Acad. Sci. 112, 11991–11992. https://doi.org/10.1073/pnas.1516398112 (2015).
ADS CAS Article PubMed Google Scholar
265.
Matthew, G., Pierre, M. & Ariel, O.-B. Negative impacts of climate change on cereal yields: statistical evidence from France. Environ. Res. Lett. 12, 054007 (2017).
ADS Article Google Scholar
266.
Ortiz, R. et al. Climate change: can wheat beat the heat?. Agric. Ecosyst. Environ. 126, 46–58. https://doi.org/10.1016/j.agee.2008.01.019 (2008).
Article Google Scholar
267.
Lobell, D. B. et al. Analysis of wheat yield and climatic trends in Mexico. Field Crops Res. 94, 250–256. https://doi.org/10.1016/j.fcr.2005.01.007 (2005).
Article Google Scholar
268.
Nazim Ud Dowla, M. A. N., Edwards, I., O’Hara, G., Islam, S. & Ma, W. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes. Engineering 4, 514–522. https://doi.org/10.1016/j.eng.2018.06.005 (2018).
CAS Article Google Scholar
269.
Mohammadi, R. The use of a combination scoring index to improve durum productivity under drought stress. Exp. Agric. 56, 161–170. https://doi.org/10.1017/S0014479719000231 (2019).
Article Google Scholar
270.
Cui, L. et al. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering 4, 507–513. https://doi.org/10.1016/j.eng.2018.07.003 (2018).
CAS Article Google Scholar
271.
Zachariah, M., Mondal, A., Das, M., AchutaRao, K. M. & Ghosh, S. On the role of rainfall deficits and cropping choices in loss of agricultural yield in Marathwada, India. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab93fc (2020).
Article Google Scholar
272.
Gahlaut, V., Samtani, H. & Khurana, P. Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 112, 4796–4807. https://doi.org/10.1016/j.ygeno.2020.08.031 (2020).
CAS Article Google Scholar
273.
Boote, K. J., Prasad, V., Allen, L. H., Singh, P. & Jones, J. W. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. Eur. J. Agron. 100, 99–109. https://doi.org/10.1016/j.eja.2017.09.002 (2018).
Article Google Scholar
274.
Elbashir, A. A. E. et al. Genetic variation in heat tolerance-related traits in a population of wheat multiple synthetic derivatives. Breed Sci. 67, 483–492. https://doi.org/10.1270/jsbbs.17048 (2017).
Article PubMed PubMed Central Google Scholar
275.
Reynolds, M. P. et al. An integrated approach to maintaining cereal productivity under climate change. Global Food Secur. 8, 9–18. https://doi.org/10.1016/j.gfs.2016.02.002 (2016).
Article Google Scholar
276.
Asseng, S. et al. Model-driven multidisciplinary global research to meet future needs: the case for “improving radiation use efficiency to increase yield”. Crop Sci. https://doi.org/10.2135/cropsci2018.09.0562 (2019).
Article Google Scholar
277.
Smit, B. & Skinner, M. W. Adaptation options in agriculture to climate change: a typology. Mitig. Adapt. Strat. Glob. Change 7, 85–114. https://doi.org/10.1023/A:1015862228270 (2002).
Article Google Scholar
278.
Liu, Y., Chen, Q., Ge, Q., Dai, J. & Dou, Y. Effects of climate change and agronomic practice on changes in wheat phenology. Clim. Change 150, 273–287. https://doi.org/10.1007/s10584-018-2264-5 (2018).
ADS CAS Article Google Scholar
279.
Loboguerrero, A. M. et al. Food and earth systems: priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability 11, 1372 (2019).
Article Google Scholar
280.
Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691–19696. https://doi.org/10.1073/pnas.0701890104 (2007).
ADS Article PubMed PubMed Central Google Scholar
281.
Bryan, E., Deressa, T. T., Gbetibouo, G. A. & Ringler, C. Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environ. Sci. Policy 12, 413–426. https://doi.org/10.1016/j.envsci.2008.11.002 (2009).
Article Google Scholar
282.
Wongnaa, C. A. & Babu, S. Building resilience to shocks of climate change in Ghana’s cocoa production and its effect on productivity and incomes. Technol. Soc. 62, 101288. https://doi.org/10.1016/j.techsoc.2020.101288 (2020).
Article Google Scholar
283.
Kumar, S., Mishra, A. K., Pramanik, S., Mamidanna, S. & Whitbread, A. Climate risk, vulnerability and resilience: supporting livelihood of smallholders in semiarid India. Land Use Policy 97, 104729. https://doi.org/10.1016/j.landusepol.2020.104729 (2020).
Article Google Scholar
284.
Morales-Castilla, I. et al. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. 117, 2864–2869. https://doi.org/10.1073/pnas.1906731117 (2020).
CAS Article PubMed Google Scholar
285.
Nelson, G. C. et al. Climate change: Impact on agriculture and costs of adaptation. Vol. 21 (Intl Food Policy Res Inst, 2009).
286.
Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).
Article Google Scholar
287.
Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 200. https://doi.org/10.1038/s41467-020-15076-4 (2020).
ADS CAS Article Google Scholar
288.
Mertz, O., Mbow, C., Reenberg, A. & Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in Rural Sahel. Environ. Manag. 43, 804–816. https://doi.org/10.1007/s00267-008-9197-0 (2009).
ADS Article Google Scholar
289.
Smit, B., Burton, I., Klein, R. J. T. & Wandel, J. An anatomy of adaptation to climate change and variability. Clim. Change 45, 223–251. https://doi.org/10.1023/A:1005661622966 (2000).
Article Google Scholar
290.
Thamo, T. et al. Climate change impacts and farm-level adaptation: economic analysis of a mixed cropping–livestock system. Agric. Syst. 150, 99–108. https://doi.org/10.1016/j.agsy.2016.10.013 (2017).
Article Google Scholar
291.
Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291. https://doi.org/10.1038/nclimate2153 (2014).
ADS Article Google Scholar
292.
Reidsma, P., Janssen, S., Jansen, J. & van Ittersum, M. K. On the development and use of farm models for policy impact assessment in the European Union—a review. Agric. Syst. 159, 111–125. https://doi.org/10.1016/j.agsy.2017.10.012 (2018).
Article Google Scholar
293.
Reidsma, P. et al. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environ. Res. Lett. 10, 045004 (2015).
ADS Article Google Scholar
294.
Reidsma, P., Ewert, F., Lansink, A. O. & Leemans, R. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur. J. Agron. 32, 91–102. https://doi.org/10.1016/j.eja.2009.06.003 (2010).
Article Google Scholar
295.
Shahzad, A. N. & Ahmad, S. In Agronomic Crops: Volume 2: Management Practices (ed Hasanuzzaman, M.) 111–126 (Springer Singapore, 2019).
296.
Ahmed, M. Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Science of The Total Environment734, 139397, 10.1016/j.scitotenv.2020.139397 (2020).
297.
Singh, S. Farmers’ perception of climate change and adaptation decisions: a micro-level evidence from Bundelkhand Region, India. Ecol. Ind. 116, 106475. https://doi.org/10.1016/j.ecolind.2020.106475 (2020).
Article Google Scholar
298.
Wallach, D. et al. Multimodel ensembles improve predictions of crop–environment–management interactions. Glob. Change Biol. 24, 5072–5083. https://doi.org/10.1111/gcb.14411 (2018).
ADS Article Google Scholar
299.
Aslam, M. U. et al. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 113–136 (Springer International Publishing, 2017).
300.
Ijaz, W., Ahmed, M., Fayyaz-ul-Hassan, Asim, M. & Aslam, M. in Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 371–386 (Springer International Publishing, 2017).
301.
Jabeen, M., Gabriel, H. F., Ahmed, M., Mahboob, M. A. & Iqbal, J. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 387–411 (Springer International Publishing, 2017).
302.
Aslam, M. A., Ahmed, M., Fayyaz-ul-Hassan & Hayat, R. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 71–90 (Springer International Publishing, 2017).
303.
Ahmed, M. et al. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: models evaluation and application. Comput. Electron. Agric. 123, 384–401. https://doi.org/10.1016/j.compag.2016.03.015 (2016).
Article Google Scholar
304.
Ahmed, M. & Stockle, C. O. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (Springer, Berlin, 2016).
Google Scholar
305.
Ahmed, M., Fayyaz Ul, H. & Van Ogtrop, F. F. Can models help to forecast rainwater dynamics for rainfed ecosystem?. Weather Clim. Extremes 5–6, 48–55. https://doi.org/10.1016/j.wace.2014.07.001 (2014).
Article Google Scholar
306.
Ahmed, M., Hassan, F., Aslam, M. A., Akram, M. N. & Akmal, M. Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. Afr. J. Biotech. 10, 9114–9121 (2011).
Article Google Scholar
307.
Ahmed, M. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 1–44 (Springer Singapore, 2020).
308.
Tariq, M., Ahmed, M., Iqbal, P., Fatima, Z. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 45–60 (Springer Singapore, 2020).
309.
Ahmed, M., Raza, M. A. & Hussain, T. In Systems Modeling (ed Ahmed, M.) 111–150 (Springer Singapore, 2020).
310.
Ahmed, M. et al. In Systems Modeling (ed Ahmed, M.) 151–178 (Springer Singapore, 2020).
311.
Kheir, A. M. S. et al. In Systems Modeling (ed Ahmed, M.) 179–202 (Springer Singapore, 2020).
312.
Ahmad, S., & Hasanuzzaman, M. Cotton Production and Uses. Springer Nature Singapore Pte Ltd. (https://link.springer.com/book/10.1007/978-981-15-1472-2); doi: 10.1007/978-981-15-1472-2 (2020)
313.
Khan, A., Ahmad, M., Shah, M. K. N. & Ahmed, M. Performance of wheat genotypes for Morpho-Physiological traits using multivariate analysis under terminal heat stress. Pak. J. Bot. 52(6), 1981–1988. https://doi.org/10.30848/PJB2020-6(30)(2020).
314.
Khan, A., Ahmad, M., Shah, M. K. N., & Ahmed, M. Genetic manifestation of physio-morphic and yield related traits conferring thermotolerance in wheat. Pak. J. Bot. 52(5), 1545–1552. https://doi.org/10.30848/PJB2020-5(27) (2020). More