Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016
1.
Chuine, I. et al. Historical phenology: grape ripening as a past climate indicator. Nature 432, 289 (2004).
ADS CAS Article Google Scholar
2.
Hufkens, K., Basler, D., Milliman, T., Melaas, E. K. & Richardson, A. D. An integrated phenology modelling framework in r. Methods Ecol. Evol. 9, 1276–1285. https://doi.org/10.1111/2041-210x.12970 (2018).
Article Google Scholar
3.
Zhu, K. & Wan, M. A productive science—phenology. In Public Science (1963).
4.
Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature526, 104–107, doi:https://doi.org/10.1038/nature15402. https://www.nature.com/nature/journal/v526/n7571/abs/nature15402.html#supplementary-information (2015).
5.
Jochner, S., Sparks, T. H., Laube, J. & Menzel, A. Can we detect a nonlinear response to temperature in European plant phenology?. Int. J. Biometeorol. 60, 1551–1561. https://doi.org/10.1007/s00484-016-1146-7 (2016).
ADS Article PubMed Google Scholar
6.
D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. (2018).
7.
Ganguly, S., Friedl, M. A., Tan, B., Zhang, X. & Verma, M. Land surface phenology from MODIS: characterization of the collection 5 global land cover dynamics product. Remote Sens. Environ. 114, 1805–1816 (2010).
ADS Article Google Scholar
8.
Zhang, X. et al. Generation and evaluation of the VIIRS land surface phenology product. Remote Sens. Environ. 216, 212–229. https://doi.org/10.1016/j.rse.2018.06.047 (2018).
ADS Article Google Scholar
9.
de Beurs, K. M. & Henebry, G. M. Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 89, 497–509 (2004).
ADS Article Google Scholar
10.
Liu, L., Zhang, X., Donnelly, A. & Liu, X. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Int. J. Biometeorol. 60, 1563–1575. https://doi.org/10.1007/s00484-016-1147-6 (2016).
ADS Article PubMed Google Scholar
11.
Adole, T., Dash, J. & Atkinson, P. M. Major trends in the land surface phenology (LSP) of Africa, controlling for land-cover change. Int. J. Remote Sens. https://doi.org/10.1080/01431161.2018.1479797 (2018).
Article Google Scholar
12.
Xu, C., Liu, H., Williams, A. P., Yin, Y. & Wu, X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol. 22, 2852–2860 (2016).
ADS Article Google Scholar
13.
Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. 34, L19405 (2007).
ADS Article Google Scholar
14.
Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x (2011).
15.
Reed, B. Trend analysis of time-series phenology of North America derived from satellite data. GISci. Remote Sens. 43, 24–38 (2006).
Article Google Scholar
16.
White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Chang Biol. 15, 2335–2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x (2009).
ADS Article Google Scholar
17.
Pelletier, J. D. & Turcotte, D. L. In Advances in Geophysics vol 40 (eds Renata Dmowska & Barry Saltzman) 91–166 (Elsevier, Amsterdam, 1999).
18.
Zhang, X., Tan, B. & Yu, Y. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982–2010. Int. J. Biometeorol. 58, 547–564. https://doi.org/10.1007/s00484-014-0802-z (2014).
ADS Article PubMed Google Scholar
19.
Melaas, E. K., Friedl, M. A. & Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 132, 176–185. https://doi.org/10.1016/j.rse.2013.01.011 (2013).
ADS Article Google Scholar
20.
Friedl, M. A. et al. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ. Res. Lett. 9, 054006 (2014).
ADS Article Google Scholar
21.
Wang, T., Peng, S., Lin, X. & Chang, J. Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proc. Natl. Acad. Sci. 110, E2854–E2855. https://doi.org/10.1073/pnas.1306157110 (2013).
ADS Article PubMed Google Scholar
22.
Reed, B., Budde, M., Spencer, P. & Miller, A. Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ. 113, 1443–1452 (2009).
ADS Article Google Scholar
23.
Dong, J., Zhang, G., Zhang, Y. & Xiao, X. Reply to Wang et al.: Snow cover and air temperature affect the rate of changes in spring phenology in the Tibetan Plateau. Proc. Natl. Acad. Sci. 110, E2856-E2857. https://doi.org/10.1073/pnas.1306813110 (2013).
24.
Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob. Change Biol. 18, 566–584 (2012).
ADS Article Google Scholar
25.
Keenan, T. et al. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).
ADS Article Google Scholar
26.
Liu, F. et al. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. J. Geogr. Sci. 27, 1085–1099. https://doi.org/10.1007/s11442-017-1423-3 (2017).
Article Google Scholar
27.
Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Bio.l 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).
28.
Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310. https://doi.org/10.1038/nature04188 (2005).
ADS CAS Article PubMed Google Scholar
29.
Kharin, V. V. et al. Risks from climate extremes change differently from 1.5 to 2.0°C depending on rarity. Earth’s Future 6, 704–715. https://doi.org/10.1002/2018EF000813 (2018).
30.
Upperman, C. R. et al. Exposure to extreme heat events is associated with increased hay fever prevalence among nationally representative sample of US adults: 1997–2013. J. Allergy Clin. Immunol. Pract. 5(435), e432-441.e432 (2017).
Google Scholar
31.
Stéfanon, M., Drobinski, P., & D’Andrea, F. Noblet-Ducoudré of interactive vegetation phenology on the, 2003 summer heat waves. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD018187 (2012).
Article Google Scholar
32.
Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. 113, 5880–5885. https://doi.org/10.1073/pnas.1519620113 (2016).
ADS CAS Article PubMed Google Scholar
33.
Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Luthi, D. & Schar, C. Soil moisture—atmosphere interactions during the 2003 European summer heat wave. J. Clim. 20, 5081–5099. https://doi.org/10.1175/Jcli4288.1 (2007).
ADS Article Google Scholar
34.
Zaitchik, B. F., Macalady, A. K., Bonneau, L. R. & Smith, R. B. Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int. J. Climatol. 26, 743–769. https://doi.org/10.1002/joc.1280 (2006).
Article Google Scholar
35.
Dunne, J. P., Stouffer, R. J. & John, J. G. Reductions in labour capacity from heat stress under climate warming. Nat. Climate Change3, 563. https://doi.org/10.1038/nclimate1827. https://www.nature.com/articles/nclimate1827#supplementary-information (2013).
36.
Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. https://doi.org/10.1126/sciadv.1700066 (2017).
Article PubMed PubMed Central Google Scholar
37.
Alexandrov, V. A. & Hoogenboom, G. The impact of climate variability and change on crop yield in Bulgaria. Agric. For. Meteorol. 104, 315–327. https://doi.org/10.1016/S0168-1923(00)00166-0 (2000).
ADS Article Google Scholar
38.
Siegmund, J. F., Wiedermann, M., Donges, J. F. & Donner, R. V. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species. Biogeosciences 13, 5541–5555 (2016).
ADS Article Google Scholar
39.
Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0135 (2017).
40.
Pedelty, J. et al. In 2007 IEEE International Geoscience and Remote Sensing Symposium 1021–1025.
41.
Rocha, A. V. & Shaver, G. R. Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agric. For. Meteorol. 149, 1560–1563. https://doi.org/10.1016/j.agrformet.2009.03.016 (2009).
ADS Article Google Scholar
42.
Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405. https://doi.org/10.1029/2005gl025583 (2006).
ADS Article Google Scholar
43.
Huete, A., Miura, T., Yoshioka, H., Ratana, P. & Broich, M. in Biophysical Applications of Satellite Remote Sensing (ed Jonathan M. Hanes) 1–41 (Spring, 2013).
44.
Zhang, Q. Y. et al. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371 (2005).
ADS Article Google Scholar
45.
Zhang, Q. Y. et al. Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPAR(chl)) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest?. Remote Sens. Environ. 113, 880–888 (2009).
ADS Article Google Scholar
46.
White, K., Pontius, J. & Schaberg, P. Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty. Remote Sens. Environ. 148, 97–107. https://doi.org/10.1016/j.rse.2014.03.017 (2014).
ADS Article Google Scholar
47.
Peng, D. et al. Spring green-up phenology products derived from MODIS NDVI and EVI: intercomparison, interpretation and validation using national phenology network and AmeriFlux observations. Ecol. Indic. 77, 323–336 (2017).
Article Google Scholar
48.
Karkauskaite, P., Tagesson, T. & Fensholt, R. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for start-of-season trend analysis of the northern hemisphere boreal zone. Remote Sens. Basel. https://doi.org/10.3390/rs9050485 (2017).
Article Google Scholar
49.
Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320. https://doi.org/10.5194/bg-11-4305-2014 (2014).
ADS Article Google Scholar
50.
Zhang, X. Y. et al. Evaluation of land surface phenology from VIIRS data using time series of phenocam imagery. Agric. For. Meteorol. 256–257, 137–149 (2018).
ADS Article Google Scholar
51.
Zhang, X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ 156, 457–472. https://doi.org/10.1016/j.rse.2014.10.012 (2015).
ADS Article Google Scholar
52.
Kogan, F., Gitelson, A., Zakarin, E., Spivak, L. & Lebed, L. AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogram. Eng. Remote Sens. 69, 899–906 (2003).
Article Google Scholar
53.
Zhang, X. Y. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).
ADS Article Google Scholar
54.
Zhang, X., Friedl, M. A. & Schaaf, C. B. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. 111, G04017 (2006).
ADS Google Scholar
55.
Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331. https://doi.org/10.1093/treephys/tpn040 (2009).
CAS Article PubMed Google Scholar
56.
Donnelly, A., Liu, L., Zhang, X. & Wingler, A. Autumn leaf phenology: discrepancies between in situ observations and satellite data at urban and rural sites. Int. J. Remote Sens. 39, 8129–8150. https://doi.org/10.1080/01431161.2018.1482021 (2018).
ADS Article Google Scholar
57.
Badeck, F. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x (2004).
Article Google Scholar
58.
Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).
ADS Article Google Scholar
59.
Luo, Y., Berbery, E. H., Mitchell, K. E. & Betts, A. K. Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis. J. Hydrometeorol. 8, 1184–1203 (2007).
ADS Article Google Scholar
60.
Reidmiller, D. R. et al. (eds) US Global Change Research Program (USGCRP Washington, DC, 2018).
Google Scholar
61.
Los, S. O., Collatz, G. J., Bounoua, L., Sellers, P. J. & Tucker, C. J. Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation. J. Climate 14, 1535–1549. https://doi.org/10.1175/1520-0442(2001)014%3c1535:giviss%3e2.0.co;2 (2001).
ADS Article Google Scholar
62.
Myneni, R. B., Tucker, C. J., Asrar, G. & Keeling, C. D. Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J. Geophys. Res. 103, 6145–6160 (1998).
ADS Article Google Scholar
63.
Chen, X. Q. & Xu, L. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int. J. Biometeorol. 56, 695–706 (2012).
ADS Article Google Scholar
64.
Matsumoto, K., Ohta, T., Irasawa, M. & Nakamura, T. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob. Change Biol. 9, 1634–1642 (2003).
65.
Liu, L., Zhang, X., Yu, Y. & Donnelly, A. Detecting spatiotemporal changes of peak foliage coloration in deciduous and mixedforests across the Central and Eastern United States. Environ. Res. Lett. 12, 024013 (2017).
ADS Article Google Scholar
66.
Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Clim. Change 81, 71–95. https://doi.org/10.1007/s10584-006-9226-z (2007).
Article Google Scholar
67.
Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Climate Change 3, 115–129. https://doi.org/10.1002/wcc.160 (2012).
Article Google Scholar
68.
Melaas, E. K., Sulla-Menashe, D. & Friedl, M. A. Multi-decadal changes and interannual variation in springtime phenology of North American temperate and boreal deciduous forests (Geophys. Res, Lett, 2018).
Google Scholar
69.
Papineau, J. M. Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int. J. Climatol. 21, 1577–1592. https://doi.org/10.1002/joc.686 (2001).
Article Google Scholar
70.
Willis, J. K., Roemmich, D. & Cornuelle, B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res. Oceans. https://doi.org/10.1029/2003jc002260 (2004).
Article Google Scholar
71.
Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484. https://doi.org/10.1126/science.291.5503.481 (2001).
ADS CAS Article PubMed Google Scholar
72.
Fang, J., Piao, S., Tang, Z., Peng, C. & Ji, W. Interannual variability in net primary production and precipitation. Science 293, 1723–1723. https://doi.org/10.1126/science.293.5536.1723a (2001).
CAS Article PubMed Google Scholar
73.
Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388. https://doi.org/10.1038/s41467-019-13365-1 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
74.
Marchand, L. J. et al. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agric. For. Meteorol. 290, 108031. https://doi.org/10.1016/j.agrformet.2020.108031 (2020).
ADS Article PubMed PubMed Central Google Scholar
75.
Zhang, J., Zheng, H., Zhang, X. & VanLooy, J. Changes in regional snowfall in Central North America (1961–2017): mountain versus plains. Geosciences 10, 157 (2020).
ADS CAS Article Google Scholar
76.
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Global Ecol. Biogeogr. 19, 607–620 (2010).
Google Scholar
77.
Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607 (2008).
CAS Article Google Scholar
78.
Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691 (2007).
ADS CAS Article Google Scholar
79.
Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).
Article Google Scholar
80.
Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Climate Change 4, 287. https://doi.org/10.1038/nclimate2153. https://www.nature.com/articles/nclimate2153#supplementary-information (2014).
81.
Myneni, R., Keeling, C., Tucker, C., Asrar, G. & Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).
ADS CAS Article Google Scholar
82.
Peñuelas, J. & Filella, I. Responses to a warming world. Science 294, 793–795 (2001).
Article Google Scholar
83.
Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M. & Peterson, D. H. Changes in the onset of spring in the Western United States. Bull. Am. Meteorol. Soc. 82, 399–416. https://doi.org/10.1175/1520-0477(2001)082%3c0399:CITOOS%3e2.3.CO;2 (2001).
ADS Article Google Scholar
84.
Zheng, C. et al. Climatic anomaly and its impact on vegetation phenology, carbon sequestration and water-use efficiency at a humid temperate forest. J. Hydrol. 565, 150–159. https://doi.org/10.1016/j.jhydrol.2018.08.012 (2018).
ADS CAS Article Google Scholar
85.
CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. 111, 4916 (2014).
ADS CAS Article Google Scholar
86.
Allen, M. R. et al. IPCC fifth assessment synthesis report-climate change 2014 synthesis report (2014).
87.
Friedlingstein, P. et al. Global carbon budget 2019(11), 1783–1838 (2019).
Google Scholar
88.
Ogunbode, C. A., Doran, R. & Böhm, G. Exposure to the IPCC special report on 1.5 °C global warming is linked to perceived threat and increased concern about climate change. Climate Change 158, 361–375.https://doi.org/10.1007/s10584-019-02609-0 (2020).
89.
Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. 114, 4881 (2017).
ADS CAS Article Google Scholar
90.
Teshome, A. & Zhang, J. Increase of extreme drought over ethiopia under climate warming. Adv. Meteorol. https://doi.org/10.1155/2019/5235429 (2019).
Article Google Scholar
91.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H. & Liu, Z. Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004JD005263 (2005).
Article Google Scholar
92.
Wang, J. & Zhang, X. Impacts of wildfires on interannual trends in land surface phenology: an investigation of the Hayman Fire. Environ. Res. Lett. 12, 054008 (2017).
ADS Article Google Scholar
93.
Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. 103, 14637 (2006).
ADS CAS Article Google Scholar
94.
Xin, Q., Broich, M., Zhu, P. & Gong, P. Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sens. Environ. 161, 63–77. https://doi.org/10.1016/j.rse.2015.02.003 (2015).
ADS Article Google Scholar
95.
Peng, D. et al. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. ISPRS J. Photogram. Remote Sens. 132, 185–198. https://doi.org/10.1016/j.isprsjprs.2017.09.002 (2017).
ADS Article Google Scholar
96.
Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. & Beierkuhnlein, C. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob. Change Biol. 15, 837–849. https://doi.org/10.1111/j.1365-2486.2008.01690.x (2009).
ADS Article Google Scholar
97.
Nagy, L., Kreyling, J., Gellesch, E., Beierkuhnlein, C. & Jentsch, A. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int. J. Biometeorol. 57, 579–588. https://doi.org/10.1007/s00484-012-0585-z (2013).
ADS CAS Article PubMed Google Scholar More