Behaviours indicating cannibalistic necrophagy in ants are modulated by the perception of pathogen infection level
1.
Fox, L. R. Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975).
Article Google Scholar
2.
Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Evol. Syst. 12, 225–251 (1981).
Article Google Scholar
3.
Elgar, M. A. & Crespi, B. J. Ecology and evolution of cannibalism. In Cannibalism: ecology and evolution among diverse taxa (eds Elgar, M. A. & Crespi, B. J.) 1–12 (Oxford University Press, Oxford, 1992).
Google Scholar
4.
Richardson, M. L., Mitchell, R. F., Reagel, P. F. & Hanks, L. M. Causes and consequences of cannibalism in noncarnivorous insects. Annu. Rev. Entomol. 55, 39–53 (2010).
CAS PubMed Article Google Scholar
5.
Vilaça, A. Relations between funerary cannibalism and warfare cannibalism: The question of predation. Ethnos 65, 83–106 (2000).
Article Google Scholar
6.
Lopez-Riquelme, G. O. & Fanjul-Moles, M. L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 9, 71–129 (2013).
Google Scholar
7.
Walls, S. C. & Roudebush, R. E. Reduced aggression toward siblings as evidence of kin recognition in cannibalistic salamanders. Am. Nat 138, 1027–1038 (1991).
Article Google Scholar
8.
Pfennig, D. W. Cannibalistic tadpoles that pose the greatest threat to kin are most likely to discriminate kin. Proc. R. Soc. Lond. B 266, 57–61 (1999).
Article Google Scholar
9.
Bilde, T. & Lubin, Y. Kin recognition and cannibalism in a subsocial spider. J. Evolut. Biol. 14, 959–966 (2001).
Article Google Scholar
10.
Santana, A. F. K., Roselino, A. C., Cappelari, F. A. & Zucoloto, F. S. Cannibalism in insects. In Insect bioecology and nutrition for integrated pest management (eds Panizzi, A. R. & Parra, J. R. P.) 177–190 (CRC Press, Boca Raton, 2012).
Google Scholar
11.
Hölldobler, B. & Wilson, E. O. The ants (The Belknap Press of Harvard University, London, 1990).
Google Scholar
12.
Schmickl, T. & Crailsheim, K. Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortage. J. Comput. Physiol. A 187, 541–547 (2001).
CAS Article Google Scholar
13.
Sun, Q. & Zhou, X. Corpse management in social insects. Int. J. Biol. Sci. 9, 313–321 (2013).
PubMed PubMed Central Article Google Scholar
14.
Davis, H. E., Meconcelli, S., Rudek, R. & McMahon, D. P. Termites shape their collective behavioural response based on stage of infection. Sci. Rep. 8, 14433. https://doi.org/10.1038/s41598-018-32721-7 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
15.
Mabelis, A. A. Wood ant wars: the relationship between aggression and predation in the red wood ant (Formica polyctena Först.). Neth. J. Zool. 29, 451–620 (1979).
Article Google Scholar
16.
Driessen, G. J. J., Van Raalte, ATh. & De Bruyn, G. Cannibalism in the red wood ant, Formica polyctena (Hymenoptera: Formicidae). Oecologia 63, 13–22 (1984).
ADS PubMed Article Google Scholar
17.
Yao, M. et al. The ancient chemistry of avoiding risks of predation and disease. Evol. Biol. 36, 267–281 (2009).
Article Google Scholar
18.
Visscher, P. K. The honey bee way of death: Necrophoric behaviour in Apis mellifera colonies. Anim. Behav. 31, 1070–1076 (1983).
Article Google Scholar
19.
Oi, D. H. & Pereira, R. M. Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Florida Entomol. 76, 63–74 (1993).
Article Google Scholar
20.
Nazzi, F., Della Vedova, G. & D’Agaro, M. A semiochemical from brood cells infested by Varroa destructor triggers hygienic behaviour in Apis mellifera. Apidologie 35, 65–70 (2004).
CAS Article Google Scholar
21.
Renucci, M., Tirrard, A. & Provost, E. Complex undertaking behavior in Temnothorax lichtensteini ant colonies: From corpse-burying behavior to necrophoric behavior. Insect. Soc. 58, 9–16 (2011).
Article Google Scholar
22.
Diez, L., Le Borgne, H., Lejeune, P. & Detrain, C. Who brings out the dead? Necrophoresis in the red ant Myrmica rubra. Anim. Behav. 6, 1259–1264 (2013).
Article Google Scholar
23.
Baracchi, D., Fadda, A. & Turillazzi, S. Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J. Insect. Physiol. 58, 1589–1596 (2012).
CAS PubMed Article Google Scholar
24.
Pull, Ch. D. et al. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife 7, e32073. https://doi.org/10.7554/eLife.32073 (2018).
Article PubMed PubMed Central Google Scholar
25.
Leclerc, J.-B. & Detrain, C. Ants detect but do not discriminate diseased workers within their nest. Sci. Nat. 103, 70. https://doi.org/10.1007/s00114-016-1394-8 (2016).
CAS Article Google Scholar
26.
Williams, T. & Hernandez, O. Costs of cannibalism in the presence of an iridovirus pathogen of Spodoptera frugiperda. Ecol. Entomol. 31, 106–113 (2006).
Article Google Scholar
27.
Rudolf, V. H. W. & Antonovics, J. Disease transmission by cannibalism: rare event or common occurrence?. Proc. R. Soc. Lond. B 274, 1205–1210 (2007).
Google Scholar
28.
Sadeh, A. & Rosenheim, J. A. Cannibalism amplifies the spread of vertically transmitted pathogens. Ecology 97, 1994–2002 (2016).
PubMed Article Google Scholar
29.
Claessen, D., de Roos, A. M. & Persson, L. Population dynamic theory of size-dependent cannibalism. Proc. R. Soc. Lond. B 271, 333–340 (2004).
Article Google Scholar
30.
Pfennig, D. W., Ho, S. G. & Hoffman, E. A. Pathogen transmission as a selective force against cannibalism. Anim. Behav. 55, 1255–1261 (1998).
CAS PubMed Article Google Scholar
31.
Loreto, R. G. & Hughes, D. P. Disease in the society: infectious cadavers result in collapse of ant sub-colonies. PLoS ONE 11, e0160820 (2016).
PubMed PubMed Central Article CAS Google Scholar
32.
Hughes, W. H., Eilenberg, J. & Boomsmal, J. J. Trade-offs in group living: Transmission and disease resistance in leaf-cutting ants. Proc. R. Soc. Lond. B 269, 1811–1819 (2002).
Article Google Scholar
33.
Cremer, S. & Sixt, M. Analogies in the evolution of individual and social immunity. Proc. R. Soc. Lond. B 364, 129–142 (2009).
Google Scholar
34.
Konrad, M. et al. Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS ONE 10, 1–15 (2012).
Google Scholar
35.
Liu, L., Ganghua, L., Pengdong, S., Chaoliang, L. & Quiying, H. Experimental verification and molecular basis of active immunization against fungal pathogens in termites. Sci. Rep. 5, 15106. https://doi.org/10.1038/srep15106 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
36.
Marikovsky, P. I. On some features of behaviour of the ants Formica rufa L. infected with fungus disease. Insect. Soc. 2, 173–179 (1962).
Article Google Scholar
37.
Rutkowski, T. et al. Ants trapped for years in an old bunker; survival by cannibalism and eventual escape. J. Hymenopt. Res. 72, 177–184 (2019).
Article Google Scholar
38.
Seifert, B. Die Ameisen Mittel- und Nordeuropas (Lutra-Verlags-und Vertriebsgesellschaft, Görlitz, 2007).
Google Scholar
39.
Czechowski, W., Radchenko, A., Czechowska, W. & Vepsäläinen, K. The ants of Poland with reference to the myrmecofauna of Europe. Fauna Poloniae (n.s.) 4. (Natura Optima Dux Foundation, 2012).
40.
Meyling, N. V. & Eilenberg, J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control 43, 145–155 (2007).
Article Google Scholar
41.
Reber, A. & Chapuisat, M. Diversity, prevalence and virulence of fungal entomopathogens in colonies of the ant Formica selysi. Insect. Soc. 59, 231–239 (2012).
Article Google Scholar
42.
Hajek, A. E. & St. Leger, R. J. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293–322 (1994).
Article Google Scholar
43.
Maák, I. et al. Cues or meaningless objects? Differential responses of the ant Formica cinerea to corpses of competitors and enslavers. Anim. Behav. 91, 53–59 (2014).
Article Google Scholar
44.
Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
Google Scholar
45.
Nonacs, P. Death in the distance: Mortality risk as information for foraging ants. Behaviour 112, 23–35 (1990).
Article Google Scholar
46.
Roces, F. & Núṅez, J. A. Information about food quality influences load-size selection in recruited leaf-cutting ants. Anim. Behav. 45, 135–143 (1993).
Article Google Scholar
47.
Song, D., Hu, X. P. & Su, N.-Y. Survivorship, cannibalism, body weight loss, necrophagy, and entombement in laboratory groups of the Formosan subterranean termite, Coptotermes formosanus under starvation (Isoptera: Rhinotermitidae). Sociobiology 47, 27–39 (2006).
Google Scholar
48.
Heifig, I., Lima, J. T., Janei, V. & Costa-Leonardo, A. M. Effects of group size and starvation on survival of the Asian subterranean termite Coptotermes gestroi (Isoptera: Rhinotermitidae). Austral Entomol. 57, 279–284 (2017).
Article Google Scholar
49.
Pompilio, L., Kacelnik, A. & Behmer, S. T. State-dependent learned valuation drives choice in an invertebrate. Science 311, 1613–1615 (2006).
ADS CAS PubMed Article Google Scholar
50.
Akino, T. & Yamaoka, R. Origin of oleic acid: Corpse recognition signal in the ant Formica japonica Motschlsky (Hymenoptera: Formicidae). Jpn. J. Appl. Entomol. Z. 40, 265–271 (1996).
CAS Article Google Scholar
51.
Chouvenc, T., Robert, A., Sémon, E. & Bordereau, C. Burial behaviour by dealates of the termite Pseudacanthotermes spiniger (Termitidae, Macrotermitinae) induced by chemical signals from termite corpses. Insect. Soc. 59, 119–125 (2012).
Article Google Scholar
52.
Kok-Boon, N., Beng-Keok, Y., Kunio, T., Tsuyoshi, Y. & Chow-Yang, L. Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS ONE 7, 1–11 (2012).
Google Scholar
53.
Diez, L., Moquet, L. & Detrain, C. Post-mortem changes in chemical profile and their influence on corpse removal in ants. J. Chem. Ecol. 39, 1424–1432 (2013).
CAS PubMed Article Google Scholar
54.
Bignell, D. E., Roisin, Y. & Lo, N. Biology of Termites: A modern synthesis (Springer, Berlin, 2010).
Google Scholar
55.
Dlusskij, G. M. Ants of the genus Formica (Hymenoptera, Formicidae, g. Formica) (Nauka, Moscow, 1967) (in Russian).
Google Scholar
56.
Czechowski, W. Ants cemeteries. Przegląd Zoologiczny 20, 417–427 (1976) (in Polish with English summary).
Google Scholar
57.
Czechowski, W. Around nest cemeteries of Myrmica schencki Em. (Hymenoptera: Formicidae): their origin and a possible significance. Pol. J. Ecol. 56, 359–363 (2008).
Google Scholar
58.
Gibb, H. Experimental evidence for mediation of competition by habitat succession. Ecology 92, 1871–1878 (2011).
CAS PubMed Article Google Scholar
59.
Chouvenc, T., Su, N.-Y. & Elliott, M. L. Interaction between the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) and the entomopathogenic fungus Metarhizium anisopliae in foraging arenas. J. Econ. Entomol. 101, 885–893 (2008).
CAS PubMed Article Google Scholar
60.
Yanagawa, A., Yokohari, F. & Shimizu, S. The role of antennae in removing entomopathogenic fungi from cuticle of the termite Coptotermes formosanus. . J. Insect Sci. 9, 1–9 (2009).
Article Google Scholar
61.
Tranter, Ch., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Threat detection: Contextual recognition and response to parasites by ants. Behav. Ecol. 26, 396–405 (2015).
Article Google Scholar
62.
Bonadies, E., Wcislo, W. T., Gálvez, D., Hughes, W. O. H. & Fernández-Marin, H. Hygiene defense behaviors used by a fungus-growing ant depend on the fungal pathogen stages. Insects 10, 130 (2019).
PubMed Central Article PubMed Google Scholar
63.
Simone-Finstrom, M. D. & Spivak, M. Increased resin collection after parasite challenge: A case of self-medication in honey bees?. PLoS ONE 7, e34601. https://doi.org/10.1371/journal.pone.0034601 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
64.
Brütsch, T. & Chapuisat, M. Wood ants protect their brood with tree resin. Anim. Behav. 93, 157–161 (2014).
Article Google Scholar
65.
Ormond, E. L., Thomas, A. P. M., Pell, J. K., Freeman, S. N. & Roy, H. E. Avoidance of a generalist entomopathogenic fungus by the ladybird Coccinella septempunctata. FEMS Microbiol. Ecol. 77, 229–237 (2011).
CAS PubMed Article Google Scholar
66.
Fernández-Marín, H., Zimmerman, J. K., Rehner, S. A. & Wcislo, W. T. Active use of the metapleural glands by ants in controlling fungal infection. Proc. R. Soc. Lond. B 273, 1689–1695 (2006).
Google Scholar
67.
Tragust, S. et al. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr. Biol. 23, 1–7 (2013).
Article CAS Google Scholar
68.
Tragust, S., Herrmann, C., Häfner, J., Braasch, R., Tilgen, Ch., Hoock, M., Milidakis, M. A., Gross, R. & Feldhaar, H. Formicine ants swallow their highly acidic poison for gut microbial selection and control. bioRxiv preprint https://doi.org/10.1101/2020.02.13.947432 (2020).
69.
Cremer, S., Pull, Ch. D. & Fürst, M. A. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).
CAS PubMed Article Google Scholar
70.
Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).
ADS CAS PubMed Article Google Scholar
71.
Hernandez-Lopez, J., Reissberger-Gallé, U., Crailsheim, K. & Schuehly, W. Cuticular hydrocarbon cues of immune-challenged workers elicit immune activation in honeybee queens. Mol. Ecol. 26, 3062–3073 (2017).
CAS PubMed Article Google Scholar
72.
Chouvenc, T. & Su, N.-Y. When subterranean termites challenge the rules of fungal epizootics. PLoS ONE 7, 84. https://doi.org/10.1371/journal.pone.0034484 (2012).
CAS Article Google Scholar
73.
Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insect. Soc. 61, 247–252 (2014).
Article Google Scholar
74.
Diez, L., Urbain, L., Lejeune, Ph. & Detrain, C. Emergency measures: adaptive response to pathogen intrusion in the ant nest. Behav. Process. 116, 80–86 (2015).
Article Google Scholar
75.
Qui, H.-L. et al. Differential necrophoric behaviour of the ant Solenopsis invicta towards fungal infected corpses of workers and pupae. Bull. Entomol. Res. 105, 607–614 (2015).
Article CAS Google Scholar
76.
Pereira, H. & Detrain, C. Pathogen avoidance and prey discrimination in ants. R. Soc. Open Sci. 7, 191705 (2020).
ADS PubMed PubMed Central Article Google Scholar
77.
Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).
Article CAS Google Scholar
78.
Pull, Ch. D. & Cremer, S. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour. BMC Evol. Biol. 219, 17. https://doi.org/10.1186/s12862-017-1062-4 (2017).
Article Google Scholar
79.
Kramm, K. R., West, D. F. & Rockenbach, P. G. Pathogens of termites: transfer of the entomopathogen Metarhizium anisopliae between the termites of Reticulitermes sp.. J. Invertebr. Pathol. 40, 1–6 (1982).
Article Google Scholar
80.
Kesäniemi, J., Koskimäki, J. J. & Jurvansuu, J. Corpse management of the invasive Argentine ant inhibits growth of pathogenic fungi. Sci. Rep. 9, 7593. https://doi.org/10.1038/s41598-019-44144-z (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
81.
Greenwald, E. E., Baltiansky, L. & Feinerman, O. Individual crop loads provide local control for collective food intake in ant colonies. eLife 7, e31730 (2018).
PubMed PubMed Central Article Google Scholar
82.
Horstmann, K. Untersuchungen über den Nahrungserwerb der Waldameisen (Formica polyctena Foerster) im Eichenwald. Oecologia 5, 138–157 (1970).
ADS PubMed Article Google Scholar
83.
Bhatkar, A. & Whitcomb, W. H. Artificial diet for rearing various species of ants. Florida Entomol. 53, 229–232 (1970).
Article Google Scholar
84.
Choe, D. H. & Rust, M. K. Horizontal transfer of insecticides in laboratory colonies of the argentine ant (Hymenoptera: Formicidae). J. Econ. Entomol. 101, 1397–1405 (2008).
CAS PubMed Article Google Scholar
85.
Pereira, R. M. & Stimac, J. L. Transmission of Beauveria bassiana within nests of Solenopsis invicta (Hymenoptera: Formicidae) in the laboratory. Environ. Entomol. 21, 1427–1432 (1992).
Article Google Scholar
86.
Liu, H., Skinner, M., Parker, B. L. & Brownbridge, M. Pathogenicity of Beauveria bassiana, Metarhizium anisopliae (Deuteromycotina: Hyphomycetes), and other entomopathogenic fungi against Lygus lineolaris (Hemiptera: Miridae). J. Econ. Entomol. 95, 675–681 (2002).
PubMed Article Google Scholar
87.
Loreto, R. G. & Hughes, D. P. Disease dynamics in ants. Adv. Genet. 94, 287–306. https://doi.org/10.1016/bs.adgen.2015.12.005 (2016).
CAS Article PubMed Google Scholar
88.
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017). https://www.R-project.org/.
89.
Therneau, T. coxme: Mixed Effects Cox Models. R package version 2.2-5. https://CRAN.R-project.org/package=coxme (2015).
90.
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-5. https://CRAN.R-project.org/package=lme4 (2013).
91.
Bartoń, K. MuMIn: Multi-model inference. R package version 1.9.13. https://CRAN.R-project.org/package=MuMIn (2013).
92.
Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).
CAS PubMed Article Google Scholar More