Trophic downgrading reduces spatial variability on rocky reefs
1.
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
ADS CAS PubMed Article Google Scholar
2.
Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).
ADS CAS PubMed Article Google Scholar
3.
Hamilton, S. L. & Caselle, J. E. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests. Proc. R. Soc. B Biol. Sci. 282, 20141817 (2015).
Article Google Scholar
4.
Power, M. E. Effects of fish in river food webs. Science 250, 811–814 (1990).
ADS CAS PubMed Article Google Scholar
5.
Saleem, M. Loss of microbiome ecological niches and diversity by global change and trophic downgrading. Microbiome Commun. Ecol. 20, 89–113 (2015).
Google Scholar
6.
Risch, A. C. et al. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nat. Commun. 9, 1–11 (2018).
CAS Article Google Scholar
7.
Eisaguirre, J. H. et al. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 101, e02993 (2020).
PubMed PubMed Central Article Google Scholar
8.
Stromayer, K. A. & Warren, R. J. Are overabundant deer herds in the eastern United States creating alternate stable states in forest plant communities?. Wildl. Soc. Bul. 25, 227–234 (1997).
Google Scholar
9.
Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Cons. 29, 436–459 (2002).
Article Google Scholar
10.
Strickland, M. S., Hawlena, D., Reese, A., Bradford, M. A. & Schmitz, O. J. Trophic cascade alters ecosystem carbon exchange. Proc. Natl. Acad. Sci. 110, 11035–11038 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
11.
Atwood, T. B. et al. Predator-induced reduction of freshwater carbon dioxide emissions. Nat. Geosci. 6, 191–194 (2013).
ADS CAS Article Google Scholar
12.
Edwards, M. S. et al. Marine deforestation leads to widespread loss of ecosystem function. PLoS One https://doi.org/10.1371/journal.pone.0226173 (2020).
Article PubMed PubMed Central Google Scholar
13.
Ripple, W. J. & Becshta, R. L. Hardwood tree decline following large carnivore loss on the Great Plains, USA. Front. Ecol. Environ. 5, 241–246 (2004).
Article Google Scholar
14.
Ripple, W. J. Wolves and the ecology of fear: Can predation risk structure ecosystems. Bioscience 54, 55–766 (2004).
Article Google Scholar
15.
Beschta, R. L. & Ripple, W. J. Recovering riparian plant communities with wolves in northern Yellowstone, USA. Rest. Ecol. 18, 380–389 (2010).
Article Google Scholar
16.
Metzger, J. R., Konar, B. & Edwards, M. S. Assessing a macroalgal foundation species: Community variation with shifting algal assemblages. Mar. Biol. 166, 156 (2019).
Article Google Scholar
17.
Gabara, S, Konar, B. & Edwards, M. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere. (in press).
18.
Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proc. Natl. Acad. Sci. 107, 18272–18277 (2010).
ADS CAS PubMed Article Google Scholar
19.
Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14894–14899 (2015).
ADS CAS PubMed Article Google Scholar
20.
Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).
PubMed Article Google Scholar
21.
Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).
Article Google Scholar
22.
Bengtsson, J., Baillie, S. R. & Lawton, J. Community variability increases with time. Oikos 78, 249–256 (1997).
Article Google Scholar
23.
Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
Article Google Scholar
24.
Deutschman, D. H., Levin, S. A., Devine, C. & Buttel, L. A. Scaling from trees to forests: Analysis of a complex simulation model. Science 277, 1688 (1997).
Article Google Scholar
25.
Brown, B. L. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol. Lett. 6, 316–325 (2003).
Article Google Scholar
26.
Hughes, T. P. et al. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63 (1999).
ADS CAS Article Google Scholar
27.
Edwards, M. S. & Estes, J. A. Catastrophe, recovery, and range limitation in NE Pacific kelp forests: A large-scale perspective. Mar. Ecol. Prog. Ser. 320, 79–87 (2006).
ADS Article Google Scholar
28.
Parepa, M., Fischer, M. & Bossdorf, O. Environmental variability priomotes plant invasion. Nat. Commun. 4, 1604 (2013).
ADS PubMed Article CAS PubMed Central Google Scholar
29.
Dunstan, P. K. & Johnson, C. R. Linking richness, community variability, and invasion resisteance with patch size. Ecology 87, 2842–2850 (2006).
PubMed Article PubMed Central Google Scholar
30.
Prevéy, J. S., Germino, M. J., Huntly, N. J. & Inouye, R. S. Exotic plants increase and native plants decrease with loss of foundation species in sagebrush steppe. Plant Ecol. 207, 39–51 (2010).
Article Google Scholar
31.
Marks, L. M., Reed, D. C. & Obaza, A. K. Assessment of control methods for the invasive seaweed Sargassum horneri in California, USA. Manag. Biol. Invasions 8, 205–213 (2017).
Article Google Scholar
32.
Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
Article Google Scholar
33.
Edwards, M. S. Estimating scale-dependency in disturbance impacts: El Niños and giant kelp forests in the northeast Pacific. Oecologia 138, 436–447 (2004).
ADS PubMed Article Google Scholar
34.
Dayton, P. K. & Tegner, M. J. The importance of scale in community ecology: A kelp forest example with terrestrial analogs. In A New Ecology: Novel Approaches To Interactive Systems (eds Price, P. W. et al.) (Wiley, New York, 1984).
Google Scholar
35.
Jenkinson, R. S., Hovel, K. A., Dunn, R. P. & Edwards, M. S. Biogeographical variation in the distribution, abundance, and interactions among key species on rocky reefs of the northeast Pacific. Mar. Ecol. Prog. Ser. 648, 51–65 (2020).
ADS Article Google Scholar
36.
Mann, K. H. Seaweeds: Their productivity and strategy for growth: The role of large marine algae in coastal productivity is far more important than has been suspected. Science 182, 975–981 (1973).
ADS CAS PubMed Article Google Scholar
37.
Leith, H. & Whittaker, R. H. Primary Productivity of the Biosphere (Springer, Berin, 1975).
Google Scholar
38.
Reed, D. C. & Brzezinski, M. A. Kelp forests. In The Management of Natural Coastal Carbon Sinks (eds Laffoley, D. & Grimsditch, G.) 31 (Springer, Gland, 2009).
Google Scholar
39.
Spector, M. & Edwards, M. S. Modelling the impacts of kelp deforestation on benthic primary production on temperate rocky reefs. Algae 35, 1–16 (2020).
Article Google Scholar
40.
Dayton, P. K. Ecology of kelp communities. Ann. Rev. Ecol. Syst. 16, 215–245 (1985).
Article Google Scholar
41.
Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).
ADS Article Google Scholar
42.
Estes, J. A. et al. Complex trophic interactions in kelp forest ecosystems. Bull. Mar. Sci. 74, 621–638 (2004).
ADS Google Scholar
43.
Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).
CAS PubMed Article Google Scholar
44.
Kriegisch, N., Reeves, S. E., Johnson, C. R. & Ling, S. D. Top-down sea urchin overgrazing overwhelms bottom-up stimulation of kelp beds despite sediment enhanncement. J. Exp. Mar. Biol. Ecol. 514(515), 48–58 (2019).
Article Google Scholar
45.
Schiebling, R. E., Hennigar, A. W. & Balch, T. Destructive grazing, epiphytism, and disease: The dynamics of sea urchin—kelp interactions in Nova Scotia. Can. J. Fish. Sci. Aquat. 56, 2300–2314 (1999).
Article Google Scholar
46.
Fagerli, C. W., Norderhaug, K. M. & Christie, H. C. Lack of sea urchin settlement may explain kelp forest recovery in overgrazed areas in Norway. Mar. Ecol. Prog. Ser. 488, 119–132 (2012).
ADS Article Google Scholar
47.
Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).
ADS Article Google Scholar
48.
Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-drivebn catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).
ADS CAS PubMed Article Google Scholar
49.
Simenstad, C. A., Estes, J. A. & Kenyon, K. W. Aleuts, sea otters, and alternate stable state communities. Science 200, 403–411 (1978).
ADS CAS PubMed Article Google Scholar
50.
Christie, H., Norderhaug, K. M. & Fredriksen, S. Macrophytes as habitat for fauna. Mar. Ecol. Prog. Ser. 396, 221–233 (2009).
ADS Article Google Scholar
51.
Greig-Smith, P. Pattern in vegetation. J. Ecol. 67, 755–779 (1979).
Article Google Scholar
52.
Clark, W. C. Scales of climate impacts. Clim. Change 7, 5–27 (1985).
ADS Article Google Scholar
53.
Woodward, F. I. Climate and Plant Distribution (Cambridge University Press, Cambridge, 1987).
Google Scholar
54.
Levin, S. A. Multiple scales and the maintenance of biodiversity. Ecosystems 3, 498–506 (2000).
Article Google Scholar
55.
Edwards, M.S. Scale-dependent patterns of community regulation in giant kelp forests. Ph.D. dissertation, University of California Santa Cruz (2001).
56.
Estes, J. A. Serendipity: An Ecologists Quest to understand Nature (University of California Press, California, 2016) ((ISBN-13:978-0520285033)).
Google Scholar
57.
Doroff, A. M. et al. Sea otter population declines in the Aleutian archipelago. J. Mammal. 84, 55–64 (2003).
Article Google Scholar
58.
Konar, B. K., Edwards, M. S. & Estes, J. A. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiol. 724, 91–107 (2014).
Article Google Scholar
59.
Graham, M. H. & Edwards, M. S. Statistical significance versus factor fit: Estimating the importance of individual factor in ecological analysis of variance. Oikos 93, 505–513 (2001).
Article Google Scholar
60.
Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (K PRIMER-E, Plymouth, 2006).
Google Scholar
61.
Estes, J. A. & Duggins, D. O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995).
Article Google Scholar
62.
Levin, S. A. Challenges in the development of a theory of ecosystem structure and function. In Perspectives in Ecological Theory (eds Roughgarden, J. et al.) 242–255 (Princeton, Princeton University Press, 1989).
Google Scholar
63.
Tegner, M. J., Dayton, P. K., Edwards, P. B. & Riser, K. L. Large-scale, low-frequency oceanographic effects on kelp forest successions: A tale of two cohorts. Mar. Ecol. Prog. Ser. 146, 17–134 (1997).
Article Google Scholar
64.
Karlson, R. H. & Cornell, H. V. Scale-dependent variation in local vs regional effects on coral species richness. Ecol. Monogr. 68, 259–274 (1998).
Article Google Scholar
65.
Reed, R. K. & Stabeno, P. J. The recent return of the Alaskan Stream to Near Strait. J. Mar. Res. 51, 515–527 (1993).
Article Google Scholar
66.
Ladd, C., Hunt, G. L., Mordy, C. W., Salo, S. A. & Stabeno, P. J. Marine environment of the eastern and central Aleutian Islands. Fish. Oceanogr. 14, 22–38 (2005).
Article Google Scholar
67.
Reed, R. K. & Stabeno, P. J. The Aleutian North slope current. In Dynamics of the Bering Sea 177–191 (University of Alaska Sea Grant, Alaska, 1999).
Google Scholar
68.
Stabeno, P. J. & Reed, R. K. A major circulation anomaly in the western Bering Sea. Geophys. Res. Let. 19, 1671–1674 (1992).
ADS Article Google Scholar
69.
Hunt, G. L. & Stabeno, P. J. Oceanography and ecology of the Aleutian Archipelago: Spatial and temporal variation. Fish. Oceanogr. 14, 292–306 (2005).
Article Google Scholar
70.
Konar, et al. A swath across the great divide: Kelp forests across the Samalga Pass biogeographic break. Cont. Shelf Res. 143, 78–88 (2017).
ADS Article Google Scholar
71.
Wilkinson, C. R. & Cheshire, A. C. Patterns in the distribution of sponge populations across the central Great Barrier Reef. Coral Reefs 8, 127–134 (1989).
ADS Article Google Scholar
72.
Wilkinson, C. R. & Cheshire, A. C. Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: Evidence for higher productivity in the Caribbean. Mar. Ecol. Prog. Ser. 67, 285–294 (1990).
ADS Article Google Scholar
73.
Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. Temporal and spatial scales of kelp demography: The role of oceanographic climate. Ecol. Monogr. 69, 219–250 (1999).
Article Google Scholar
74.
Konar, B., Edwards, M. & Efird, T. Local habitat and regional oceanographic influence on fish distribution patterns in the diminishing kelp forests across the Aleutian Archipelago. Environ. Biol. Fish. 98, 1935–1951 (2015).
Article Google Scholar
75.
Blanchette, C. A., Broitman, B. R. & Gaines, S. D. Intertidal community structure and oceanographic patterns around Santa Cruz Island, CA, USA. Mar. Biol. 149, 689–701 (2006).
Article Google Scholar
76.
García-Charton, J. A. et al. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Mar. Biol. 144, 161–182 (2004).
Article Google Scholar
77.
Hewitt, J. E., Thrush, S. F. & Dayton, P. D. Habitat variation, species diversity and ecological functioning in a marine system. J. Exp. Mar. Biol. Ecol. 366, 116–122 (2008).
Article Google Scholar
78.
Bland, A., Konar, B. & Edwards, M. Spatial trends and environmental drivers of epibenthic shelf community structure across the Aleutian Islands. Cont. Shelf Res. 175, 12–29 (2019).
ADS Article Google Scholar
79.
Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).
Article Google Scholar
80.
Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Cons. Biol. 21, 1301–1315 (2007).
Article Google Scholar
81.
Hoffman, G. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS One 20, 20 (2011).
Google Scholar
82.
Svenning, J. C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).
ADS CAS PubMed Article Google Scholar
83.
Stewart, N. & Konar, B. Kelp forests versus urchin barrens: Alternate stable states and their effect on sea otter prey quality in the Aleutian Islands. J. Mar. Sci. https://doi.org/10.1155/2012/492308 (2012).
Article Google Scholar
84.
Rogachev, K. A. & Shlyk, N. V. The role of the Aleutian eddies in the Kamchatka current warming. Russ. Meteorol. Hydrol. 43, 43–48 (2018).
Article Google Scholar
85.
Scheibling, R. E. & Hennigar, A. W. Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: Evidence for a link with large-scale meterologic and oceanographic events. Mar. Ecol. Prog. Ser. 152, 155–165 (1997).
ADS Article Google Scholar
86.
Girard, D., Clemente, S., Toledo-Guedes, K., Brito, A. & Hernández, J. C. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Ecol. 33, 377–385 (2012).
ADS Article Google Scholar
87.
Feehan, C. J. & Scheibling, R. E. Disease as a control of sea urchin populations in Nova Scotian kelp beds. Mar. Ecol. Prog. Ser. 500, 149–158 (2014).
ADS Article Google Scholar
88.
Hagen, N. T. Sea urchin outbreaks and nematode epizootics in Vestfjorden, northern Norway. Sarsia 72, 213–229 (1987).
Article Google Scholar
89.
Shimizu, M. & Nagakura, K. Acid phosphatase activity in the body wall of the sea urchin, Strongylocentrotus intermedius, cultured at varying water temperatures. Comp. Biochem. Physiol. 106B, 303–307 (1993).
CAS Google Scholar
90.
Wang, Y. et al. Isolation and characterization of bacteria associated with a syndrome disease of sea urchin Strongylocentrotus intermedius in North China. Aquacult. Res. 44, 691–700 (2013).
CAS Article Google Scholar
91.
Behrens, M. D. & Lafferty, K. D. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).
ADS Article Google Scholar
92.
Feehan, C. J. & Scheibling, R. E. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Biol. 161, 1467–1485 (2014).
CAS Article Google Scholar
93.
Stabeno, P. J., Kachel, D. G., Kachel, N. B. & Sullivan, M. E. Observations from moorings in the Aleutian Passes: Temperature, salinity and transport. Fish. Oceanogr. 14, 39–54 (2005).
Article Google Scholar
94.
Favorite, F. Flow into the Bering Sea through the Aleutian Passes. In Oceanography of the Bering Sea with Emphasis on Renewable Resources (eds Hood, D. W. & Kelly, E. J.) 3–37 (Institute of Marine Science University of Alaska, Fairbanks, 1974).
Google Scholar More
