1.
Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).
PubMed Article CAS PubMed Central Google Scholar
2.
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Article Google Scholar
3.
Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sustain. 2, 66–74 (2010).
Article Google Scholar
4.
Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).
PubMed Article PubMed Central Google Scholar
5.
Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary dynamics. Nat. Ecol. Evol. 2, 9–15 (2018).
PubMed Article PubMed Central Google Scholar
6.
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).
PubMed Article PubMed Central Google Scholar
7.
Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).
CAS PubMed Article PubMed Central Google Scholar
8.
Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313, 966–968 (2006).
CAS PubMed Article PubMed Central Google Scholar
9.
Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12, 1505–1512 (2019).
PubMed PubMed Central Article Google Scholar
10.
Boeuf, G. Marine biodiversity characteristics. C. R. Biol. 334, 435–440 (2011).
PubMed Article Google Scholar
11.
Loss, S. R., Terwilliger, L. A. & Peterson, A. C. Assisted colonization: integrating conservation strategies in the face of climate change. Biol. Conserv. 144, 92–100 (2011).
Article Google Scholar
12.
Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
Article Google Scholar
13.
Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861 (2011).
Article Google Scholar
14.
Novak, B. J. De-extinction. Genes 9, 548 (2018).
PubMed Central Article CAS PubMed Google Scholar
15.
Muir, W. M. et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc. Natl Acad. Sci. USA 105, 17312–17317 (2008).
CAS PubMed Article Google Scholar
16.
Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun 9, 2186 (2018).
PubMed PubMed Central Article CAS Google Scholar
17.
Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).
18.
Díaz, S. et al. The IPBES conceptual framework — connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).
Article Google Scholar
19.
Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, 2017).
20.
Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).
Article Google Scholar
21.
Larkin, A. A. & Martiny, A. C. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ. Microbiol. Rep. 9, 55–70 (2017).
CAS PubMed Article Google Scholar
22.
Rodríguez-Verdugo, A., Buckley, J. & Stapley, J. The genomic basis of eco-evolutionary dynamics. Mol. Ecol. 26, 1456–1464 (2017).
PubMed Article CAS Google Scholar
23.
Chen, E., Huang, X., Tian, Z., Wing, R. A. & Han, B. The genomics of oryza species provides insights into rice domestication and heterosis. Annu. Rev. Plant. Biol. 70, 639–665 (2019).
CAS PubMed Article Google Scholar
24.
Bailey, J. K. et al. Beavers as molecular geneticists: a genetic basis to the foraging of an ecosystem engineer. Ecology 85, 603–608 (2004).
Article Google Scholar
25.
Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7, 510–523 (2006).
CAS PubMed Article Google Scholar
26.
Lee, S. M., Jellison, T. & Alper, H. S. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 7, 1–8 (2014).
Article CAS Google Scholar
27.
Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019).
CAS PubMed PubMed Central Article Google Scholar
28.
Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).
CAS PubMed PubMed Central Article Google Scholar
29.
King, K. C. & Lively, C. M. Does genetic diversity limit disease spread in natural host populations. Heredity 109, 199–203 (2012).
CAS PubMed PubMed Central Article Google Scholar
30.
Robinson, S. J., Samuel, M. D., Johnson, C. J., Adams, M. & McKenzie, D. I. Emerging prion disease drives host selection in a wildlife population. Ecol. Appl. 22, 1050–1059 (2012).
PubMed Article Google Scholar
31.
Springbett, A. J., MacKenzie, K., Woolliams, J. A. & Bishop, S. C. The contribution of genetic diversity to the spread of infectious diseases in livestock populations. Genetics 165, 1465–1474 (2003).
CAS PubMed PubMed Central Google Scholar
32.
McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).
CAS PubMed Article Google Scholar
33.
Heap, I. M. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51, 235–243 (1997).
CAS Article Google Scholar
34.
Whalon, M. E., Mota-Sanchez, D. & Hollingworth, R. M. Global Pesticide Resistance in Arthropods (CABI, 2008).
35.
Hartley, C. J. et al. Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc. Natl Acad. Sci. USA 103, 8757–8762 (2006).
CAS PubMed Article Google Scholar
36.
Dunlop, E. S., Eikeset, A. M. & Stenseth, N. C. From genes to populations: how fisheries-induced evolution alters stock productivity. Ecol. Appl. 25, 1860–1868 (2015).
PubMed Article Google Scholar
37.
Waples, R. S. & Audzijonyte, A. Fishery-induced evolution provides insights into adaptive responses of marine species to climate change. Front. Ecol. Environ. 14, 217–224 (2016).
Article Google Scholar
38.
Food and Agriculture Organization of the United Nations. Review of the state of world marine fishery resources (FAO, 2011).
39.
Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009).
CAS PubMed Article Google Scholar
40.
Philipp, D. P. et al. Fisheries-induced evolution in Largemouth Bass: linking vulnerability to angling, parental care, and fitness. Am. Fish. Soc. Symp. 82, 223–234 (2015).
Google Scholar
41.
Philipp, D. P. et al. Selection for vulnerability to angling in largemouth bass. Trans. Am. Fish. Soc. 138, 189–199 (2009).
Article Google Scholar
42.
Pigeon, G., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Intense selective hunting leads to artificial evolution in horn size. Evol. Appl. 9, 521–530 (2016).
PubMed PubMed Central Article Google Scholar
43.
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
Article Google Scholar
44.
Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
PubMed Article PubMed Central Google Scholar
45.
Hendry, A. P., Schoen, D. J., Wolak, M. E. & Reid, J. M. The contemporary evolution of fitness. Annu. Rev. Ecol. Evol. Syst. 49, 457–476 (2018).
Article Google Scholar
46.
Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).
PubMed Article PubMed Central Google Scholar
47.
Souza, F. F. C. et al. Uncovering prokaryotic biodiversity within aerosols of the pristine Amazon forest. Sci. Total Environ. 688, 83–86 (2019).
CAS PubMed Article PubMed Central Google Scholar
48.
Suffredini, I. B., Barradas Paciencia, M. L., Varella, A. D. & Younes, R. N. Antibacterial activity of Brazilian Amazon plant extracts. Braz. J. Infect. Dis. 10, 400–402 (2006).
PubMed Article PubMed Central Google Scholar
49.
Blanco-Salas, J., Gutiérrez-García, L., Labrador-Moreno, J. & Ruiz-Téllez, T. Wild plants potentially used in human food in the protected area ‘Sierra Grande de Hornachos’ of Extremadura (Spain). Sustainability 11, 456 (2019).
Article Google Scholar
50.
Sam Ma, Z., Li, L. & Zhang, Y. P. Defining individual-level genetic diversity and similarity profiles. Sci. Rep. 10, 5805 (2020).
Article CAS Google Scholar
51.
Avolio, M. L., Beaulieu, J. M., Lo, E. Y. Y. & Smith, M. D. Measuring genetic diversity in ecological studies. Plant. Ecol. 213, 1105–1115 (2012).
Article Google Scholar
52.
Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
PubMed PubMed Central Article Google Scholar
53.
Booker, T. R., Jackson, B. C. & Keightley, P. D. Detecting positive selection in the genome. BMC Biol. 15, 1–10 (2017).
Article CAS Google Scholar
54.
Dawkins, R. The Extended Phenotype – The Gene as the Unit of Selection (Oxford Univ. Press, 1983).
55.
Shuster, S. M., Lonsdorf, E. V., Wimp, G. M., Bailey, J. K. & Whitham, T. G. Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60, 991–1003 (2006).
CAS PubMed Article PubMed Central Google Scholar
56.
Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).
57.
Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
PubMed Article CAS PubMed Central Google Scholar
58.
Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).
CAS PubMed PubMed Central Article Google Scholar
59.
Skovmand, L. H. et al. Keystone genes. Trends Ecol. Evol. 33, 689–700 (2018).
PubMed Article PubMed Central Google Scholar
60.
Pregitzer, C. C., Bailey, J. K., Hart, S. C. & Schweitzer, J. A. Soils as agents of selection: feedbacks between plants and soils alter seedling survival and performance. Evol. Ecol. 24, 1045–1059 (2010).
Article Google Scholar
61.
Bailey, J. K. et al. From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Phil. Trans. R. Soc. B 364, 1607–1616 (2009).
PubMed Article PubMed Central Google Scholar
62.
Davies, C., Ellis, C. J., Iason, G. R. & Ennos, R. A. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes. Biol. Lett. 10, 20140190 (2014).
PubMed PubMed Central Article Google Scholar
63.
Thompson, T. Q. et al. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations. Proc. Natl Acad. Sci. USA 116, 177–186 (2019).
CAS PubMed Article PubMed Central Google Scholar
64.
Ford, M. D. et al. Reviewing and synthesizing the state of the science regarding associations between adult run timing and specific genotypes in Chinook salmon and steelhead (US Department of Commerce, 2020).
65.
Leroy, C. J. et al. Salmon carcasses influence genetic linkages between forests and streams. Can. J. Fish. Aquat. Sci. 73, 910–920 (2016).
Article Google Scholar
66.
Crutsinger, G. M. et al. Testing a ‘genes-to-ecosystems’ approach to understanding aquatic-terrestrial linkages. Mol. Ecol. 23, 5888–5903 (2014).
PubMed Article PubMed Central Google Scholar
67.
Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).
68.
Csilléry, K., Rodríguez-Verdugo, A., Rellstab, C. & Guillaume, F. Detecting the genomic signal of polygenic adaptation and the role of epistasis in evolution. Mol. Ecol. 27, 606–612 (2018).
PubMed Article PubMed Central Google Scholar
69.
Zytynska, S. E., Fleming, S., Tétard-Jones, C., Kertesz, M. A. & Preziosi, R. F. Community genetic interactions mediate indirect ecological effects between a parasitoid wasp and rhizobacteria. Ecology 91, 1563–1568 (2010).
PubMed Article PubMed Central Google Scholar
70.
Carroll, S. P., Dingle, H. & Famula, T. R. Rapid appearance of epistasis during adaptive divergence following colonization. Proc. R. Soc. Lond. B 270, S80–S83 (2003).
Article Google Scholar
71.
Carroll, S. P. et al. And the beak shall inherit – evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).
Article Google Scholar
72.
Doust, A. N. et al. Beyond the single gene: how epistasis and gene-byenvironment effects influence crop domestication. Proc. Natl Acad. Sci. USA 111, 6178–6183 (2014).
CAS PubMed Article PubMed Central Google Scholar
73.
Wellenreuther, M., Mérot, C., Berdan, E. & Bernatchez, L. Going beyond SNPs: the role of structural genomic variants in adaptive evolution and species diversification. Mol. Ecol. 28, 1203–1209 (2019).
PubMed Article PubMed Central Google Scholar
74.
Ayala, D. et al. Association mapping desiccation resistance within chromosomal inversions in the African malaria vector Anopheles gambiae. Mol. Ecol. 28, 1333–1342 (2019).
CAS PubMed Article PubMed Central Google Scholar
75.
Christmas, M. J. et al. Chromosomal inversions associated with environmental adaptation in honeybees. Mol. Ecol. 28, 1358–1374 (2019).
CAS PubMed Article PubMed Central Google Scholar
76.
Kess, T. et al. A migration-associated supergene reveals loss of biocomplexity in Atlantic cod. Sci. Adv. 5, eaav2461 (2019).
PubMed PubMed Central Article Google Scholar
77.
Berg, P. R. et al. Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions. Heredity 119, 418–428 (2017).
CAS PubMed PubMed Central Article Google Scholar
78.
Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. Ecology: trophic cascades in a formerly cod-dominated ecosystem. Science 308, 1621–1623 (2005).
CAS PubMed Article PubMed Central Google Scholar
79.
Prunier, J. et al. Gene copy number variations involved in balsam poplar (Populus balsamifera L.) adaptive variations. Mol. Ecol. 28, 1476–1490 (2019).
CAS PubMed Article PubMed Central Google Scholar
80.
Youngson, N. A. & Whitelaw, E. Transgenerational epigenetic effects. Annu. Rev. Genomics Hum. Genet. 9, 233–257 (2008).
CAS PubMed Article PubMed Central Google Scholar
81.
Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).
CAS PubMed Article PubMed Central Google Scholar
82.
Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015).
CAS PubMed PubMed Central Article Google Scholar
83.
Le Luyer, J. et al. Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc. Natl Acad. Sci. USA 114, 12964–12969 (2017).
PubMed Article CAS PubMed Central Google Scholar
84.
Baerwald, M. R. et al. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol. Ecol. 25, 1785–1800 (2016).
CAS PubMed Article PubMed Central Google Scholar
85.
Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).
CAS PubMed PubMed Central Article Google Scholar
86.
Davies, T. J., Urban, M. C., Rayfield, B., Cadotte, M. W. & Peres-Neto, P. R. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology 97, 2212–2222 (2016).
PubMed Article PubMed Central Google Scholar
87.
Cadotte, M. W. Phylogenetic diversity-ecosystem function relationships are insensitive to phylogenetic edge lengths. Funct. Ecol. 29, 718–723 (2015).
Article Google Scholar
88.
Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl Acad. Sci. USA 110, 8996–9000 (2013).
CAS PubMed Article PubMed Central Google Scholar
89.
MacIvor, J. S. et al. Manipulating plant phylogenetic diversity for green roof ecosystem service delivery. Evol. Appl. 11, 2014–2024 (2018).
PubMed PubMed Central Article Google Scholar
90.
Clark, J. S., Scher, C. L. & Swift, M. The emergent interactions that govern biodiversity change. Proc. Natl Acad. Sci. USA 117, 17074–17083 (2020).
PubMed Article Google Scholar
91.
Crutsinger, G. M. A community genetics perspective: opportunities for the coming decade. N. Phytol. 210, 65–70 (2016).
Article Google Scholar
92.
Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).
CAS PubMed Article Google Scholar
93.
van Moorsel, S. J. et al. Community evolution increases plant productivity at low diversity. Ecol. Lett. 21, 128–137 (2018).
PubMed Article Google Scholar
94.
Wade, M. J. The co-evolutionary genetics of ecological communities. Nat. Rev. Genet. 8, 185–195 (2007).
CAS PubMed Article Google Scholar
95.
Genung, M. A., Bailey, J. K. & Schweitzer, J. A. Welcome to the neighbourhood: Interspecific genotype by genotype interactions in Solidago influence above- and belowground biomass and associated communities. Ecol. Lett. 15, 65–73 (2012).
PubMed Article Google Scholar
96.
Genung, M. A., Bailey, J. K. & Schweitzer, J. A. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics. PLoS ONE 8, e53718 (2013).
CAS PubMed PubMed Central Article Google Scholar
97.
Lankau, R. A. & Nodurft, R. N. An exotic invader drives the evolution of plant traits that determine mycorrhizal fungal diversity in a native competitor. Mol. Ecol. 22, 5472–5485 (2013).
PubMed Article Google Scholar
98.
Lankau, R. A., Nuzzo, V., Spyreas, G. & Davis, A. S. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 107, 1253 (2010).
CAS Article Google Scholar
99.
Lankau, R. A. Coevolution between invasive and native plants driven by chemical competition and soil biota. Proc. Natl Acad. Sci. USA 109, 11240–11245 (2012).
CAS PubMed Article Google Scholar
100.
Lankau, R. A., Bauer, J. T., Anderson, M. R. & Anderson, R. C. Long-term legacies and partial recovery of mycorrhizal communities after invasive plant removal. Biol. Invasions 16, 1979–1990 (2014).
Article Google Scholar
101.
Miller, E. T., Svanbäck, R. & Bohannan, B. J. M. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).
PubMed Article PubMed Central Google Scholar
102.
Pearse, D. E., Miller, M. R., Abadía-Cardoso, A. & Garza, J. C. Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout. Proc. R. Soc. B 281, 20140012 (2014).
PubMed Article PubMed Central Google Scholar
103.
Narum, S. R., Genova, A. D., Micheletti, S. J. & Maass, A. Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proc. R. Soc. B 285, 20180935 (2018).
PubMed Article CAS PubMed Central Google Scholar
104.
Prince, D. J. et al. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci. Adv. 3, e1603198 (2017).
PubMed PubMed Central Article Google Scholar
105.
Rey, O. et al. Linking epigenetics and biological conservation: towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
Article Google Scholar
106.
Hu, J. & Barrett, R. D. H. Epigenetics in natural animal populations. J. Evol. Biol. 30, 1612–1632 (2017).
CAS PubMed Article PubMed Central Google Scholar
107.
Herrera, C. M., Medrano, M., Pérez, R., Bazaga, P. & Alonso, C. Within-plant heterogeneity in fecundity and herbivory induced by localized DNA hypomethylation in the perennial herb Helleborus foetidus. Am. J. Bot. 106, 798–806 (2019).
CAS PubMed Article PubMed Central Google Scholar
108.
Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro (R factor/restriction enzyme/transformation/endonuclease/antibiotic resistance). Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).
CAS PubMed Article PubMed Central Google Scholar
109.
Porteus, M. H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973 (2005).
CAS PubMed Article PubMed Central Google Scholar
110.
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).
CAS PubMed Article PubMed Central Google Scholar
111.
Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).
CAS PubMed Article PubMed Central Google Scholar
112.
Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. Lond. B 270, 921–928 (2003).
CAS Article Google Scholar
113.
Zhang, Y., Massel, K., Godwin, I. D. & Gao, C. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210 (2018).
CAS PubMed PubMed Central Article Google Scholar
114.
Charu, V. & Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 100, 130–134 (2012).
Google Scholar
115.
Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, O. P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 7, 303 (2016).
PubMed PubMed Central Article Google Scholar
116.
Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).
CAS PubMed Article PubMed Central Google Scholar
117.
Rode, N. O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V. & Débarre, F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. Conserv. Genet. 20, 671–690 (2019).
CAS Article Google Scholar
118.
Esvelt, K. M. & Gemmell, N. J. Conservation demands safe gene drive. PLoS Biol. 15, 1–8 (2017).
Article CAS Google Scholar
119.
Phuc, H. et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 5, 11 (2007).
PubMed PubMed Central Article CAS Google Scholar
120.
Campbell, K. J. et al. in Island Invasives: Scaling up to Meet the Challenge (eds Veitch, C. R., Clout, M. N., Martin, A. R., Russel, J. C. & West, C. J.) 6–14 (IUCN, 2019).
121.
Sherkow, J. S. & Greely, H. T. What if extinction is not forever? Science 340, 32–33 (2013).
CAS PubMed Article PubMed Central Google Scholar
122.
Otoupal, P. B., Cordell, W. T., Bachu, V., Sitton, M. J. & Chatterjee, A. Multiplexed deactivated CRISPR-Cas9 gene expression perturbations deter bacterial adaptation by inducing negative epistasis. Commun. Biol. 1, 129 (2018).
PubMed PubMed Central Article CAS Google Scholar
123.
Kraft, K. et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 10, 833–839 (2015).
CAS PubMed Article PubMed Central Google Scholar
124.
Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 18, 563–575 (2017).
CAS PubMed Article PubMed Central Google Scholar
125.
Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).
CAS PubMed PubMed Central Article Google Scholar
126.
Carrière, Y., Crowder, D. W. & Tabashnik, B. E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3, 561–573 (2010).
PubMed PubMed Central Article Google Scholar
127.
Fish, D. & Carpenter, S. R. Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63, 283–288 (1982).
Article Google Scholar
128.
Kraus, J. M. & Vonesh, J. R. Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages. Oecologia 170, 1111–1122 (2012).
PubMed Article PubMed Central Google Scholar
129.
Sheehan, S. & Song, Y. S. Deep learning for population genetic inference. PLoS Comput. Biol. 12, e1004845 (2016).
PubMed PubMed Central Article CAS Google Scholar
130.
Schrider, D. R. & Kern, A. D. Supervised machine learning for population genetics: a new paradigm. Trends Genet. 34, 301–312 (2018).
CAS PubMed PubMed Central Article Google Scholar
131.
Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).
Article Google Scholar
132.
Desjardins-Proulx, P., Laigle, I., Poisot, T. & Gravel, D. Ecological interactions and the Netflix problem. PeerJ 2017, e3644 (2017).
Article Google Scholar
133.
Ruffley, M., Peterson, K., Week, B., Tank, D. C. & Harmon, L. J. Identifying models of trait-mediated community assembly using random forests and approximate Bayesian computation. Dep. Biol. Sci. https://doi.org/10.1002/ece3.5773 (2019).
Article Google Scholar
134.
Laikre, L. et al. Neglect of genetic diversity in implementation of the convention on biological diversity: conservation in practice and policy. Conserv. Biol. 24, 86–88 (2010).
PubMed Article PubMed Central Google Scholar
135.
Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).
Article Google Scholar
136.
Meyer, P. et al. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231, 345–352 (1992).
CAS PubMed Article PubMed Central Google Scholar
137.
Morandin, L. A. & Winston, M. L. Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881 (2005).
Article Google Scholar
138.
Axelsson, E. P. et al. Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition. J. Appl. Ecol. 48, 1472–1479 (2011).
Article Google Scholar
139.
Axelsson, E. P., Hjältén, J. & LeRoy, C. J. Performance of insect-resistant Bacillus thuringiensis (Bt)-expressing aspens under semi-natural field conditions including natural herbivory in Sweden. For. Ecol. Manage. 264, 167–171 (2012).
Article Google Scholar
140.
Sundström, L. F., Lõhmus, M., Tymchuk, W. E. & Devlin, R. H. Gene-environment interactions influence ecological consequences of transgenic animals. Proc. Natl Acad. Sci. USA 104, 3889–3894 (2007).
PubMed Article PubMed Central Google Scholar
141.
Sundström, L. F., Lôhmus, M., Johnsson, J. I. & Devlin, R. H. Growth hormone transgenic salmon pay for growth potential with increased predation mortality. Proc. R. Soc. Lond. B 271, 350–352 (2004).
Article Google Scholar
142.
Bodbyl Roels, S. A. & Kelly, J. K. Rapid evolution caused by pollinator loss in Mimulus guttatus. Evolution 65, 2541–2552 (2011).
PubMed Central Article Google Scholar
143.
Cheptou, P. O., Carrue, O., Rouifed, S. & Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).
CAS PubMed Article PubMed Central Google Scholar
144.
Polymenakou, P. N. Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere 3, 87–102 (2012).
Article Google Scholar
145.
Collins, S. Many possible worlds: expanding the ecological scenarios in experimental evolution. Evol. Biol. 38, 3–14 (2011).
Article Google Scholar
146.
Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).
CAS Article Google Scholar
147.
Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).
PubMed Article PubMed Central Google Scholar
148.
Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).
CAS PubMed Article PubMed Central Google Scholar
149.
Hairston, N. G. et al. Rapid evolution revealed by dormant eggs. Nature 401, 446–446 (1999).
Article Google Scholar
150.
Bothe, H. & Słomka, A. Divergent biology of facultative heavy metal plants. J. Plant Physiol. 219, 45–61 (2017).
CAS PubMed Article PubMed Central Google Scholar
151.
Reusch, T. B. H., Ehlers, A., Hammerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. USA 102, 2826–2831 (2005).
CAS PubMed Article PubMed Central Google Scholar
152.
Crutsinger, G. M., Souza, L. & Sanders, N. J. Intraspecific diversity and dominant genotypes resist plant invasions. Ecol. Lett. 11, 16–23 (2008).
PubMed PubMed Central Google Scholar
153.
Pelz, H. J. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847 (2005).
CAS PubMed PubMed Central Article Google Scholar
154.
National Research Council. Materials Research to Meet 21st Century Defense Needs (National Academies Press, 2003).
155.
Hutchison, W. D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).
CAS PubMed Article Google Scholar
156.
Leale, A. M. & Kassen, R. The emergence, maintenance, and demise of diversity in a spatially variable antibiotic regime. Evol. Lett. 2, 134–143 (2018).
PubMed PubMed Central Article Google Scholar
157.
Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002).
CAS PubMed Article Google Scholar
158.
Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’ s finches. Science 313, 224–226 (2006).
CAS PubMed Article Google Scholar
159.
Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).
CAS PubMed Article Google Scholar
160.
Constantino, V. Instinct extinct: the great pacific flyway. Leonardo 52, 5–11 (2018).
Article Google Scholar
161.
Lewis, B., Grant, W. S., Brenner, R. E. & Hamazaki, T. Changes in size and age of chinook salmon Oncorhynchus tshawytscha returning to Alaska. PLoS ONE 10, 132872 (2015).
Google Scholar
162.
Schweitzer, J. A. et al. From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11, 1005–1020 (2008).
CAS Article Google Scholar
163.
Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018). Introduction to the key concept of NCP.
PubMed Article Google Scholar More