Trait convergence and trait divergence in lake phytoplankton reflect community assembly rules
1.
Götzenberger, L. et al. Ecological assembly rules in plant communities—Approaches, patterns and prospects. Biol. Rev. 87, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x (2012).
Article PubMed Google Scholar
2.
Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. P. Natl. Axad. Sci. USA 104, 20684–20689. https://doi.org/10.1073/pnas.0704716104 (2007).
ADS Article Google Scholar
3.
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).
Article PubMed Google Scholar
4.
Nobel, I.R. & Slatyer, R.O. Post-fire succession of plants in Mediterranean ecosystems in: Proceedings of the Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems (eds. Mooney, H.A. & Conrad, C.E.) 27–36 (California Palo Alto, 1977).
5.
Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126. https://doi.org/10.1890/07-1134.1 (2009).
Article Google Scholar
6.
Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an amazonian forest. Science 322, 580–582. https://doi.org/10.1126/science.1160662 (2008).
ADS CAS Article PubMed Google Scholar
7.
MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385. https://doi.org/10.1086/282505 (1967).
Article Google Scholar
8.
Pásztor, L., Botta-Dukát, Z., Magyar, G., Czárán, T. & Meszéna, G. Theory-Based Ecology: A Darwinian Approach (Oxford University Press, Oxford, 2016).
Google Scholar
9.
Diamond, J.M. Assembly of Species Communities in Ecology and Evolution of Communities (eds. Cody, M.L. & Diamond, J.M.) 342–444 (Belknap Press, 1975).
10.
Litchman, E., Klausmeier, C. A., Schofield, O. M. & Falkowski, P. G. The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170–1181. https://doi.org/10.1111/j.1461-0248.2007.01117.x (2007).
Article PubMed Google Scholar
11.
Reynolds, C. S., Huszár, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428. https://doi.org/10.1093/plankt/24.5.417 (2002).
Article Google Scholar
12.
Salmaso, N. & Padisák, J. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578, 97–112. https://doi.org/10.1007/s10750-006-0437-0 (2007).
Article Google Scholar
13.
Salmaso, N., Naselli-Flores, L. & Padisák, J. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 60, 603–619. https://doi.org/10.1111/fwb.12520 (2015).
Article Google Scholar
14.
Borics, G., Tóthmérész, B., Lukács, B. A. & Várbíró, G. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698, 251–262. https://doi.org/10.1007/s10750-012-1129-6 (2012).
Article Google Scholar
15.
Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206. https://doi.org/10.1086/652373 (2010).
Article PubMed PubMed Central Google Scholar
16.
Padisák, J., Vasas, G. & Borics, G. Phycogeography of freshwater phytoplankton: Traditional knowledge and new molecular tools. Hydrobiologia 764, 3–27. https://doi.org/10.1007/s10750-015-2259-4 (2016).
CAS Article Google Scholar
17.
Padisák, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. 107, 563–593 (1997).
Google Scholar
18.
Méndez, V., Assaf, M., Masó-Puigdellosas, A., Campos, D. & Horsthemke, W. Demographic stochasticity and extinction in populations with Allee effect. Phys. Rev. E. 99, 022101. https://doi.org/10.1103/PhysRevE.99.022101 (2019).
ADS Article Google Scholar
19.
Parvinen, K., Dieckmann, U., Gyllenberg, M. & Metz, J. A. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evolut. Biol. 16, 143–153. https://doi.org/10.1046/j.1420-9101.2003.00478.x (2003).
CAS Article Google Scholar
20.
Borics, G., Abonyi, A., Salmaso, N. & Ptacnik, R. Freshwater phytoplankton diversity: Models, drivers and implications for ecosystem properties. Hydrobiologia https://doi.org/10.1007/s10750-020-04332-9 (2020).
Article PubMed PubMed Central Google Scholar
21.
Naselli-Flores, L., Padisák, J., Dokulil, M. T. & Chorus, I. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502, 395–403. https://doi.org/10.1023/B:HYDR.0000004297.52645.59 (2003).
Article Google Scholar
22.
Weiher, E. & Keddy, P.A. Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos 74, 159–164 (1995). https://www.jstor.org/stable/3545686.
23.
Coyle, J. R. et al. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37, 814–826. https://doi.org/10.1111/ecog.00473 (2014).
Article Google Scholar
24.
Baastrup-Spohr, L., Sand-Jensen, K., Nicolajsen, S. V. & Bruun, H. H. From soaking wet to bone dry: Predicting plant community composition along a steep hydrological gradient. J. Veg. Sci. 26, 619–630. https://doi.org/10.1111/jvs.12280 (2015).
Article Google Scholar
25.
Lhotsky, B. et al. Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. J. Ecol. 104, 507–517. https://doi.org/10.1111/1365-2745.12532 (2016).
Article Google Scholar
26.
Butterfield, B. J., Bradford, J. B., Munson, S. M. & Gremer, J. R. Aridity increases below-ground niche breadth in grass communities. Plant Ecol. 218, 385–394. https://doi.org/10.1007/s11258-016-0696-4 (2017).
Article Google Scholar
27.
Gastauer, M., Saporetti-Junior, A. W., Valladares, F. & Meira-Neto, J. A. Phylogenetic community structure reveals differences in plant community assembly of an oligotrophic white-sand ecosystem from the Brazilian Atlantic Forest. Acta Bot. Bras. 31, 531–538. https://doi.org/10.1590/0102-33062016abb0442 (2017).
Article Google Scholar
28.
Chapman, J. & McEwan, R. The role of environmental filtering in structuring appalachian tree communities: Topographic influences on functional diversity are mediated through soil characteristics. Forests 9, 19. https://doi.org/10.3390/f9010019 (2018).
Article Google Scholar
29.
Lukács, B. A. et al. Carbon forms, nutrients and water velocity filter hydrophyte and riverbank species differently: A trait-based study. J. Veg. Sci. 30, 471–484 (2019).
Article Google Scholar
30.
Kuczynski, L. & Grenouillet, G. Community disassembly under global change: Evidence in favor of the stress-dominance hypothesis. Glob. Chang. Biol. 24, 4417–4427. https://doi.org/10.1111/gcb.14320 (2018).
ADS Article PubMed Google Scholar
31.
Patrick, L. E. & Stevens, R. D. Phylogenetic community structure of North American desert bats: Influence of environment at multiple spatial and taxonomic scales. J. Anim. Ecol. 85, 1118–1130. https://doi.org/10.1111/1365-2656.12529 (2016).
Article PubMed Google Scholar
32.
Lopez, B. et al. A new framework for inferring community assembly processes using phylogenetic information, relevant traits and environmental gradients. One Ecosyst. 1, e9501. https://doi.org/10.3897/oneeco.1.e9501 (2016).
Article Google Scholar
33.
Ács, E. et al. Trait-based community assembly of epiphytic diatoms in saline astatic ponds: a test of the stress-dominance hypothesis. Sci. Rep. 9(1), 15749 (2019).
ADS Article PubMed PubMed Central Google Scholar
34.
Downing, J. A. & McCauley, E. The nitrogen:phosphorus relationship in lakes. Limnol. Oceanogr. 37, 936–945 (1992).
ADS CAS Article Google Scholar
35.
Phillips, G. et al. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704, 75–95. https://doi.org/10.1007/s10750-012-1390-8 (2013).
Article Google Scholar
36.
Padisák, J. et al. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502, 157–168. https://doi.org/10.1023/B:HYDR.0000004278.10887.40 (2003).
Article Google Scholar
37.
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411 (2012).
Article Google Scholar
38.
Huisman, J., van Oostveen. P. & Weissing, F.J. Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am. Nat. 154, 46–68, https://doi.org/10.1086/303220 (1999).
39.
Bird, D. F. & Kalff, J. Bacterial grazing by planktonic lake algae. Science 231, 493–495. https://doi.org/10.1126/science.231.4737.493 (1986).
ADS CAS Article Google Scholar
40.
Stoecker, D. K. Mixotrophy among Dinoflagellates. J. Eukaryot. Microbiol. 46, 397–401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x (1999).
Article Google Scholar
41.
Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties. (John Wiley and Sons, 2001). ISBN 0-471-49601-4.
42.
Navas, M. & Violle, C. Plant traits related to competition: How do they shape the functional diversity of communities?. Commun. Ecol. 10, 131–137. https://doi.org/10.1556/ComEc.10.2009.1.15 (2009).
Article Google Scholar
43.
Reynolds, C. S. The Ecology of Phytoplankton (Cambridge University Press, Cambridge, 2006).
Google Scholar
44.
Borics, G., Grigorszky, I., Szabó, S. & Padisák, J. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. Hydrobiologia 424, 79–90. https://doi.org/10.1023/A:1003948827254 (2000).
Article Google Scholar
45.
Mason, N. W. H., de Bello, F., Doležal, J. & Lepš, J. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J. Ecol. 99, 788–796. https://doi.org/10.1111/j.1365-2745.2011.01801.x (2011).
Article Google Scholar
46.
Dobosi, Z. & Felméry, L. Climatology, ELTE TTK, Nemzeti Tankönyvkiadó, p. 500 (in Hungarian).
47.
Mihevc, A., Prelovšek, M. & Hajna, N.Z. Introduction to the Dinaric Karst. Inštitut za raziskovanje krasa ZRC SAZU. (2010).
48.
Borics, G. et al. Phytoplankton-based shallow lake types in the Carpathian basin: Steps towards a bottom-up typology. Fund. Appl. Limnol. 184, 23–34. https://doi.org/10.1127/1863-9135/2014/0518 (2014).
Article Google Scholar
49.
Borics, G., Abonyi, A., Várbíró, G., Padisák, J. &T-Krasznai, E. Lake stratification in the Carpathian basin and its interesting biological consequences. Inland Waters 5, 173–186, https://doi.org/10.5268/IW-5.2.702 (2015).
50.
Utermöhl, H. Zur Vervollkommnung der quantitative Phytolankton-Methodik. Mitt. Int. Verein. Limnol. 9, 1–38. https://doi.org/10.1080/05384680.1958.11904091 (1958).
Article Google Scholar
51.
Török, P. et al. Functional diversity supports the biomass–Diversity humped-back relationship in phytoplankton assemblages. Funct. Ecol. 30, 1593–1602. https://doi.org/10.1111/1365-2435.12631 (2016).
Article Google Scholar
52.
Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x (1999).
Article Google Scholar
53.
MSZ ISO 10260:1993. Water Quality. Measurement of Biochemical Parameters. Spectrometric Determination of the Chlorophyll-a Concentration.
54.
MSZ EN ISO 6878:2004. Water Quality. Determination of Phosphorus. Ammonium Molybdate Spectrometric Method.
55.
ISO 11905-1:1997. Water Quality. Determination of Nitrogen. Part 1: Method Using Oxidative Digestion with Peroxodisulfate.
56.
MSZ ISO 6060:1991.Water Quality. Determination of the Chemical Oxygen Demand.
57.
Botta-Dukát, Z. Cautionary note on calculating standardized effect size (SES) in randomization test. Commun. Ecol. 19, 77–83, https://doi.org/10.1556/168.2018.19.1.8 (2018).
58.
Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x (2005).
Article Google Scholar
59.
Legendre, P. & Legendre, L.F. Numerical Ecology Vol. 24. (Elsevier, 2012).
60.
Götzenberger, L. et al. Which randomizations detect convergence and divergence in trait‐based community assembly? A test of commonly used null models. J. Veg. Sci. 27, https://doi.org/10.1111/jvs.12452, 1275–1287.
61.
Botta-Dukát, Z. & Czúcz, B. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods Ecol. Evol. 7, 114–126. https://doi.org/10.1111/2041-210X.12450 (2016).
Article Google Scholar
62.
Garnier E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, e2630–2637, https://doi.org/10.1890/03-0799.
63.
Dray, S. & Dufour, A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20, https://doi.org/10.18637/jss.v022.i04.
64.
Oksanen J. et al. Package ‘vegan’. Community Ecology Package, Version, 2(9) (2013).
65.
Team R. Core (2017) R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
Google Scholar More
