More stories

  • in

    Changes in diving behaviour and habitat use of provisioned whale sharks: implications for management

    1.
    Wearing, S. & Neil, J. Ecotourism: Impacts, Potentials and Possibilities? (Routledge, London, 2009).
    Google Scholar 
    2.
    Scheyvens, R. Ecotourism and the empowerment of local communities. Tour. Manag. 20(2), 245–249 (1999).
    Article  Google Scholar 

    3.
    Cisneros-Montemayor, A. M., Barnes-Mauthe, M., Al-Abdulrazzak, D., Navarro-Holm, E. & Sumaila, U. R. Global economic value of shark ecotourism: implications for conservation. Oryx 47(3), 381–388 (2013).
    Article  Google Scholar 

    4.
    Ziegler, J. A. et al. Measuring perceived crowding in the marine environment: perspectives from a mass tourism. Tour. Mar. Environ. 14(4), 211–230 (2019).
    Article  Google Scholar 

    5.
    Gallagher, A. J. & Hammerschlag, N. Global shark currency: the distribution, frequency, and economic value of shark ecotourism. Curr. Issues Tour. 14(8), 797–812 (2011).
    Article  Google Scholar 

    6.
    Gallagher, A. J. et al. Biological effects, conservation potential, and research priorities of shark diving tourism. Biol. Conserv. 184, 365–379 (2015).
    Article  Google Scholar 

    7.
    Apps, K., Dimmock, K., Lloyd, D. & Huveneers, C. In the water with white sharks (Carcharodon carcharias): participants’ beliefs toward cage-diving in Australia. Anthrozoös 29(2), 231–245 (2016).
    Article  Google Scholar 

    8.
    Vianna, G. M. S., Meekan, M. G., Pannell, D. J., Marsh, S. P. & Meeuwig, J. J. Socio-economic value and community benefits from shark-diving tourism in Palau: a sustainable use of reef shark populations. Biol. Conserv. 145(1), 267–277 (2012).
    Article  Google Scholar 

    9.
    Huveneers, C. et al. The economic value of shark-diving tourism in Australia. Rev. Fish Biol. Fish. 27(3), 665–680 (2017).
    MathSciNet  Article  Google Scholar 

    10.
    Semeniuk, C. A. & Rothley, K. D. Costs of group-living for a normally solitary forager: effects of provisioning tourism on southern stingrays Dasyatis americana. Mar. Ecol. Prog. Ser. 357, 271 (2008).
    ADS  Article  Google Scholar 

    11.
    Barnett, A., Payne, N. L., Semmens, J. M. & Fitzpatrick, R. Ecotourism increases the field metabolic rate of whitetip reef sharks. Biol. Conserv. 199, 132–136 (2016).
    Article  Google Scholar 

    12.
    Meyer, C. G., Dale, J. J., Papastamatiou, Y. P., Whitney, N. M. & Holland, K. N. Seasonal cycles and long-term trends in abundance and species composition of sharks associated with cage diving ecotourism activities in Hawaii. Environ. Conserv. 36(2), 104–111 (2009).
    Article  Google Scholar 

    13.
    Bruce, B. D. & Bradford, R. W. The effects of shark cage-diving operations on the behaviour and movements of white sharks, Carcharodon carcharias, at the Neptune Islands, South Australia. Mar. Biol. 160(4), 889–907 (2013).
    Article  Google Scholar 

    14.
    Brunnschweiler, J. M. & Barnett, A. Opportunistic visitors: long-term behavioural response of bull sharks to food provisioning in Fiji. PLoS ONE 8(3), e58522 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Araujo, G. et al. Population structure and residency patterns of whale sharks, Rhincodon typus, at a provisioning site in Cebu, Philippines. PeerJ 2, e543 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Corcoran, M. J. et al. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana. PLoS ONE 8(3), e59235 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Huveneers, C. et al. The effects of cage-diving activities on the fine-scale swimming behaviour and space use of white sharks. Mar. Biol. 160(11), 2863–2875 (2013).
    Article  Google Scholar 

    18.
    Fitzpatrick, R., Abrantes, K. G., Seymour, J. & Barnett, A. Variation in depth of whitetip reef sharks: does provisioning ecotourism change their behaviour?. Coral Reefs 30(3), 569–577 (2011).
    ADS  Article  Google Scholar 

    19.
    Smith, K., Scarr, M. & Scarpaci, C. Grey nurse shark (Carcharias taurus) diving tourism: tourist compliance and shark behaviour at Fish Rock, Australia. Environ. Manag. 46(5), 699–710 (2010).
    ADS  Article  Google Scholar 

    20.
    Huveneers, C., Watanabe, Y. Y., Payne, N. L. & Semmens, J. M. Interacting with wildlife tourism increases activity of white sharks. Conserv. Physiol. 6(1), coy019 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Rowat, D. & Brooks, K. S. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80(5), 1019–1056 (2012).
    PubMed  Article  CAS  Google Scholar 

    22.
    Cagua, E. F., Collins, N., Hancock, J. & Rees, R. Whale shark economics: a valuation of wildlife tourism in South Ari Atoll, Maldives. PeerJ 2, e515 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Topelko, K. N. & Dearden, P. The shark watching industry and its potential contribution to shark conservation. J. Ecotour. 4(2), 108–128 (2005).
    Article  Google Scholar 

    24.
    Araujo, G. et al. Assessing the impacts of tourism on the world’s largest fish Rhincodon typus at Panaon Island, Southern Leyte, Philippines. Aquat. Conserv. 27(5), 986–994 (2017).
    Article  Google Scholar 

    25.
    Dearden P, Ziegler J. Protecting an endangered species: the role of whale shark tourism as an incentive-based conservation approach. In: Pierce S, Dove A (eds) Saving Earth’s Largest Fish: Biology and Conservation of Whale Sharks. Taylor & Francis/CRC Press (in press, 2021).

    26.
    Thomson, J. A. et al. Feeding the world’s largest fish: highly variable whale shark residency patterns at a provisioning site in the Philippines. R. Soc. Open Sci. 4(9), 170394 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Schleimer, A. et al. Learning from a provisioning site: code of conduct compliance and behaviour of whale sharks in Oslob, Cebu, Philippines. PeerJ 3, e1452 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Wong, C. M. et al. Whale Shark tourism: impacts on coral reefs in the Philippines. Environ. Manag. 63(2), 282–291 (2019).
    ADS  Article  Google Scholar 

    29.
    Graham, R. T., Roberts, C. M. & Smart, J. C. Diving behaviour of whale sharks in relation to a predictable food pulse. J. R. Soc. Interface 3(6), 109–116 (2006).
    PubMed  Article  Google Scholar 

    30.
    Tyminski, J. P., de la Parra-Venegas, R., Cano, J. G. & Hueter, R. E. Vertical movements and patterns in diving behavior of Whale Sharks as revealed by pop-up satellite tags in the Eastern Gulf of Mexico. PLoS ONE 10(11), e0142156 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Weihs, D. Mechanically efficient swimming techniques for fish with negative buoyancy. J. Mar. Res. 31, 194–209 (1973).
    Google Scholar 

    32.
    Carey, F. G. & Scharold, J. V. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106, 329–342. https://doi.org/10.1007/BF01344309 (1990).
    Article  Google Scholar 

    33.
    Gleiss, A. C., Norman, B. & Wilson, R. P. Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks. Funct. Ecol. 25(3), 595–607 (2011).
    Article  Google Scholar 

    34.
    Brunnschweiller, J. W., Baensch, H., Pierce, S. J. & Sims, D. W. Deep-diving behaviour of a whale shark (Rhincodon typus) during long-distance movement in the western Indian Ocean. J. Fish Biol. 74, 706–714. https://doi.org/10.1111/j.1095-8649.2008.02155.x (2009).
    Article  Google Scholar 

    35.
    Sims, D. W., Southall, E. J., Tarling, G. A. & Metcalfe, J. D. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761 (2005).
    Article  Google Scholar 

    36.
    Thums, M., Meekan, M., Stevens, J., Wilson, S. & Polovina, J. Evidence for behavioural thermoregulation by the world’s largest fish. J. R. Soc. Interface 10, 20120477 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Fry, F. E. J. & Hart, J. S. The relation of temperature to oxygen consumption in the gold sh. Biol. Bull. 94, 66–77 (1948).
    PubMed  Article  CAS  Google Scholar 

    38.
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19(11), 1372–1385 (2016).
    PubMed  Article  Google Scholar 

    39.
    Rohner, C. A. et al. Diet of whale sharks Rhincodon typus inferred from stomach content and signature fatty acid analyses. Mar. Ecol. Prog. Ser. 493, 219–235 (2013).
    ADS  Article  CAS  Google Scholar 

    40.
    Brierley, A. S. Diel vertical migration. Curr. Biol. 24(22), R1074–R1076. https://doi.org/10.1016/j.cub.2014.08.054 (2014).
    Article  PubMed  CAS  Google Scholar 

    41.
    Meekan, M., Fuiman, L., Davis, R., Berger, Y. & Thums, M. Swimming strategy and body plan of the world’s largest fish: implications for foraging efficiency and thermoregulation. Front. Mar. Sci. 2, 64 (2015).
    Article  Google Scholar 

    42.
    Diamant, S. et al. Movements and habitat use of satellite-tagged whale sharks off western Madagascar. Endanger. Species Res. 36, 49–58 (2018).
    Article  Google Scholar 

    43.
    Rohner, C. A. et al. Satellite tagging highlights the importance of productive Mozambican coastal waters to the ecology and conservation of whale sharks. PeerJ 6, e4161 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Araujo, G. et al. Satellite tracking of juvenile whale sharks in the Sulu and Bohol Seas, Philippines. PeerJ 6, e5231 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Araujo, G. et al. Photo-ID and telemetry highlight a global whale shark hotspot in Palawan, Philippines. Sci. Rep. 9(1), 1–12 (2019).
    Article  CAS  Google Scholar 

    46.
    Robinson, D. P. et al. Some like it hot: repeat migration and residency of whale sharks within an extreme natural environment. PLoS ONE 12(9), e0185360 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Gervais, C. R. et al. Too hot to handle? Using movement to alleviate effects of elevated temperatures in a benthic elasmobranch, Hemiscyllium ocellatum. Mar. Biol. 165(11), 162 (2018).
    Article  Google Scholar 

    48.
    Nakamura, I., Matsumoto, R. & Sato, K. Body temperature stability in the whale shark, the world’s largest fish. J. Exp. Biol. 223(11), jeb210286 (2020).
    PubMed  Article  Google Scholar 

    49.
    Watanabe, Y. Y., Payne, N. L., Semmens, J. M., Fox, A. & Huveneers, C. Swimming strategies and energetics of endothermic white sharks during foraging. J. Exp. Biol. 222(4), jeb185603 (2019).
    PubMed  Article  Google Scholar 

    50.
    Gleiss, A. C., Wright, S., Liebsch, N., Wilson, R. P. & Norman, B. Contrasting diel patterns in vertical movement and locomotor activity of whale sharks at Ningaloo Reef. Mar. Biol. 160(11), 2981–2992 (2013).
    Article  CAS  Google Scholar 

    51.
    White, C. R., Phillips, N. F. & Seymour, R. S. The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2(1), 125–127 (2006).
    PubMed  Article  Google Scholar 

    52.
    Norin, T. & Gamperl, A. K. Metabolic scaling of individuals vs. populations: evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 32(2), 379–388 (2018).
    Article  Google Scholar 

    53.
    Payne, N. L. et al. A new method for resolving uncertainty of energy requirements in large water breathers: the ‘mega-flume’ seagoing swim-tunnel respirometer. Methods Ecol. Evol. 6, 668–677 (2015).
    Article  Google Scholar 

    54.
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).
    Article  Google Scholar 

    55.
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the Anthropocene. Trends Ecol. Evol. 34(4), 369–383 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B 285(1875), 20172456 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Doane, M. P., Haggerty, J. M., Kacev, D., Papudeshi, B. & Dinsdale, E. A. The skin microbiome of the common thresher shark (Alopias vulpinus) has low taxonomic and gene function β-diversity. Environ. Microbiol. Rep. 9, 357–373. https://doi.org/10.1111/1758-2229.12537 (2017).
    Article  PubMed  CAS  Google Scholar 

    58.
    Ratnarajah, L., Nicol, S. & Bowie, A. R. Pelagic iron recycling in the southern ocean: exploring the contribution of marine animals. Front. Mar. Sci. 5, 109 (2018).
    Article  Google Scholar 

    59.
    Gordon, A. L., Sprintall, J. & Ffield, A. Regional oceanography of the Philippine Archipelago. Oceanography 24(1), 14–27 (2011).
    Article  Google Scholar 

    60.
    Keinath, J. A. & Musick, J. A. Movements and diving behaviour of a Leatherback Turtle, Dermochelys coriacea. Copeia 1993, 1010–1017 (1993).
    Article  Google Scholar 

    61.
    Moore, G. I. & Newbrey, M. G. Whale shark on a white shark’s menu. Mar. Biodivers. 46(4), 745–746 (2016).
    Article  Google Scholar 

    62.
    Hammerschlag, N. Quantifying shark predation effects on prey: dietary data limitations and study approaches. Endanger. Species Res. 38, 147–151 (2019).
    Article  Google Scholar 

    63.
    Araujo, G. et al. Population structure, residency patterns and movements of whale sharks in Southern Leyte, Philippines: results from dedicated photo-ID and citizen science. Aquat. Conserv. 27(1), 237–252. https://doi.org/10.1002/aqc.2636 (2017).
    Article  Google Scholar 

    64.
    Brena, P. F., Mourier, J., Planes, S. & Clua, E. Shark and ray provisioning: functional insights into behavioral, ecological and physiological responses across multiple scales. Mar. Ecol. Prog. Ser. 538, 273 (2015).
    ADS  Article  CAS  Google Scholar 

    65.
    Gallagher, A. J. & Huveneers, C. P. Emerging challenges to shark-diving tourism. Mar. Pollut. 96, 9–12 (2018).
    Article  Google Scholar 

    66.
    Pierce, S. J. & Norman, B. Rhincodon typus.The IUCN Red List of Threatened Species 2016: e.T19488A2365291. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T19488A2365291.en (2016)

    67.
    Himawan, M. R. et al. Sex and size range composition of whale shark (Rhincodon typus) and their sighting behaviour in relation with fishermen lift-net within Cenderawasih Bay National Park, Indonesia. AACL Bioflux 8(2), 123–133 (2015).
    Google Scholar 

    68.
    Weinfield, N. S., Sroufe, L. A. & Egeland, B. Attachment from infancy to early adulthood in a high-risk sample: continuity, discontinuity, and their correlates. Child Dev. 71(3), 695–702 (2000).
    PubMed  Article  CAS  Google Scholar 

    69.
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (eds Gail, M., Krickeberg, K., Samet, J. M., Tsiatis, A., & Wong, W). (New York, NY: Springer, 2009).

    70.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar 

    71.
    Lawson, C. L. et al. Powering ocean giants: the energetics of shark and ray megafauna. Trends Ecol. Evol. 34(11), 1009–1021 (2019).
    PubMed  Article  Google Scholar 

    72.
    Clarke, A. Principles of Thermal Ecology: Temperature, Energy and Life (Oxford University Press, Oxford, 2017).
    Google Scholar 

    73.
    Dowd, W., Brill, R. W., Bushnell, P. G. & Musick, J. A. Standard and routine metabolic rates of juvenile sandbar sharks (Carcharhinus plumbeus), including the effects of body mass and acute temperature change. Fish Bull. 104, 323–331 (2006).
    Google Scholar 

    74.
    Chapman, C. A., Harahush, B. K. & Renshaw, G. M. The physiological tolerance of the grey carpet shark (Chiloscyllium punctatum) and the epaulette shark (Hemiscyllium ocellatum) to anoxic exposure at three seasonal temperatures. Fish Physiol. Biochem. 37(3), 387–399 (2011).
    PubMed  Article  CAS  Google Scholar  More

  • in

    Serpentine alteration as source of high dissolved silicon and elevated δ30Si values to the marine Si cycle

    1.
    Frost, B. R. & Beard, J. S. On silica activity and serpentinization. J. Petrol. 48, 1351–1368 (2007).
    ADS  CAS  Article  Google Scholar 
    2.
    Fryer, P. B. Recent studies of Serpentinite occurrences in the oceans: mantle-ocean interactions in the plate tectonic cycle. Chem. der Erde Geochem. 62, 257–302 (2002).
    ADS  CAS  Article  Google Scholar 

    3.
    Bach, W. et al. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 33, 4–7 (2006).
    Article  CAS  Google Scholar 

    4.
    Früh-Green, G. L., Connolly, J. A. D., Plas, A., Kelley, D. S. & Grobéty, B. Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. Geophys. Monogr. 144, 119–136 (2004).
    Google Scholar 

    5.
    Deschamps, F., Godard, M., Guillot, S. & Hattori, K. Geochemistry of subduction zone serpentinites: a review. Lithos 178, 96–127 (2013).
    ADS  CAS  Article  Google Scholar 

    6.
    Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).
    ADS  CAS  Article  Google Scholar 

    7.
    Cannat, M., Fontaine, F. & Escartín, J. Serpentinization at slow-spreading ridges: extent and associated hydrogen and methane fluxes, in diversity of hydrothermal systems on slow spreading ocean ridge. AGU Geophys. Monogr. Ridges 188, 241–264 (2010).
    CAS  Google Scholar 

    8.
    Fisher, A. T. & Wheat, C. G. Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flanks. Oceanography 23, 74–87 (2010).
    Article  Google Scholar 

    9.
    Frings, P. J., Clymans, W., Fontorbe, G., De La Rocha, C. L. & Conley, D. J. The continental Si cycle and its impact on the ocean Si isotope budget. Chem. Geol. 425, 12–36 (2016).
    ADS  CAS  Article  Google Scholar 

    10.
    Sutton, J. N. et al. A review of the stable isotope bio-geochemistry of the global silicon cycle and its associated trace elements. Front. Earth Sci. 5, 112 (2018).

    11.
    Basile-Doelsch, I., Meunier, J. D. & Parron, C. Another continental pool in the terrestrial silicon cycle. Nature 433, 399–402 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F. & Li, R. H. Silicon isotope study on rice plants from the Zhejiang province, China. Chem. Geol. 218, 41–50 (2005).
    ADS  CAS  Article  Google Scholar 

    13.
    Cornelis, J.-T., Delvaux, B., André, L., Ranger, J. & Opfergelt, S. Tracing mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios. Geochim. Cosmochim. Acta 74, 3913–3924 (2010).
    ADS  CAS  Article  Google Scholar 

    14.
    Cockerton, H. E. et al. Stable-isotope (H, O, and Si) evidence for seasonal variations in hydrology and Si cycling from modern waters in the Nile Basin: implications for interpreting the Quaternary record. Quat. Sci. Rev. 66, 4–21 (2013).
    ADS  Article  Google Scholar 

    15.
    Reynolds, B. C., Frank, M. & Halliday, A. N. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet. Sci. Lett. 244, 431–443 (2006).
    ADS  CAS  Article  Google Scholar 

    16.
    Grasse, P., Ehlert, C. & Frank, M. The influence of water mass mixing on the dissolved Si isotope composition in the Eastern Equatorial Pacific. Earth Planet. Sci. Lett. 380, 60–71 (2013).
    ADS  CAS  Article  Google Scholar 

    17.
    Grasse, P., Closset, I., Jones, J. L., Geilert, S. & Brzezinski, M. A. Controls on Dissolved Silicon Isotopes along the US GEOTRACES Eastern Pacific Zonal Transect (GP16). Global Biogeochem. Cycles 34, https://doi.org/10.1029/2020GB006538 (2020).

    18.
    Benton, L. D., Ryan, J. G. & Tera, F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett. 187, 273–282 (2001).
    ADS  CAS  Article  Google Scholar 

    19.
    Boschi, C., Dini, A., Früh-Green, G. L. & Kelley, D. S. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30°N): Insights from B and Sr isotope data. Geochim. Cosmochim. Acta 72, 1801–1823 (2008).
    ADS  CAS  Article  Google Scholar 

    20.
    Vils, F., Tonarini, S., Kalt, A. & Seitz, H. M. Boron, lithium and strontium isotopes as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth Planet. Sci. Lett. 286, 414–425 (2009).
    ADS  CAS  Article  Google Scholar 

    21.
    Harvey, J., Savov, I. P., Agostini, S., Cliff, R. A. & Walshaw, R. Si-metasomatism in serpentinized peridotite: the effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209. Geochim. Cosmochim. Acta 126, 30–48 (2014).
    ADS  CAS  Article  Google Scholar 

    22.
    Spivack, A. J. & Edmond, J. M. Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Acta 51, 1033–1043 (1987).
    ADS  CAS  Article  Google Scholar 

    23.
    Martin, C., Flores, K. E. & Harlow, G. E. Boron isotopic discrimination for subduction-related serpentinites. Geology 44, 899–902 (2016).
    ADS  CAS  Article  Google Scholar 

    24.
    Tenthorey, E. & Hermann, J. Composition of fluids during serpentinite breakdown in subduction zones: evidence for limited boron mobility. Geology 32, 865–868 (2004).
    ADS  CAS  Article  Google Scholar 

    25.
    Spivack, A., Palmer, M. R. & Edmond, J. M. The sedimentary cycle of the boron isotopes. Geochim. Cosmochim. Acta 51, 1939–1949 (1987).
    ADS  CAS  Article  Google Scholar 

    26.
    Mottl, M. J., Wheat, C. G., Fryer, P., Gharib, J. & Martin, J. B. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim. Cosmochim. Acta 68, 4915–4933 (2004).
    ADS  CAS  Article  Google Scholar 

    27.
    Hulme, S. M., Wheat, C. G., Fryer, P. & Mottl, M. J. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone. Geochem. Geophys. Geosyst. 11 https://doi.org/10.1029/2009GC002674 (2010).

    28.
    Fryer, P., Wheat, C. G., Williams, T. & Expedition 366 Scientists, T. Mariana Convergent Margin and South Chamorro Seamount. Proceedings 648 of the International Ocean Discovery Program, 366: College Station, TX (International Ocean Discovery Program, 2018).

    29.
    Lee, K., Byrne, T.-K., Millero, R. H., Feely, F. J. & Liu, R. A. Y.-M. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811 (2010).
    ADS  CAS  Article  Google Scholar 

    30.
    Foster, G. L., Pogge Von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11 https://doi.org/10.1029/2010GC003201 (2010).

    31.
    Liu, Y. & Tossell, J. A. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochem. Cosmochim. Acta 69, 3995–4006 (2005).
    ADS  CAS  Article  Google Scholar 

    32.
    Savage, P. S., Georg, R. B., Armytage, R. M. G., Williams, H. M. & Halliday, A. N. Silicon isotope homogeneity in the mantle. Earth Planet. Sci. Lett. 295, 139–146 (2010).
    ADS  CAS  Article  Google Scholar 

    33.
    Geilert, S., Vroon, P. Z., Roerdink, D. L. & Cappellen, P. & van Bergen, M. J. Silicon isotope fractionation during abiotic silica precipitation at low temperatures: inferences from flow-through experiments. Geochim. Cosmochim. Acta 142, 95–114 (2014).
    ADS  CAS  Article  Google Scholar 

    34.
    Milliken, K. L., Lynch, F. L. & Seifert, K. E. Marine weathering of Serpentinites and Serpentinite Breccias, Sites 897 and 899, Iberia Abyssal Plain. In Proceedings of the Ocean Drilling Program (eds Whitmarsh, R. B., Sawyer, D. S., Klaus, A. & Masson, D. G.) Vol. 149, 529–540 (College Station, TX: Ocean Drill. Program, 1996).

    35.
    Parkhurst, D. L. & Appelo, C. A. J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. (U.S. Geological Survey Techniques and Methods, 2013).

    36.
    Oelze, M., von Blanckenburg, F., Bouchez, J., Hoellen, D. & Dietzel, M. The effect of Al on Si isotope fractionation investigated by silica precipitation experiments. Chem. Geol. 397, 94–105 (2015).
    ADS  CAS  Article  Google Scholar 

    37.
    Geilert, S. et al. Silicon isotope fractionation during silica precipitation from hot-spring waters: evidence from the Geysir geothermal field, Iceland. Geochim. Cosmochim. Acta 164, 403–427 (2015).
    ADS  CAS  Article  Google Scholar 

    38.
    Oelze, M., von Blanckenburg, F., Hoellen, D., Dietzel, M. & Bouchez, J. Si stable isotope fractionation during adsorption and the competition between kinetic and equilibrium isotope fractionation: Implications for weathering systems. Chem. Geol. 380, 161–171 (2014).
    ADS  CAS  Article  Google Scholar 

    39.
    Ehlert, C. et al. Stable silicon isotope signatures of marine pore waters–Biogenic opal dissolution versus authigenic clay mineral formation. Geochim. Cosmochim. Acta 191, 102–117 (2016).

    40.
    Geilert, S. et al. Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis. Biogeosciences 17, 1745–1763 (2020).
    ADS  Article  Google Scholar 

    41.
    Ng, C. H. et al. Sediment efflux of silicon on the Greenland margin and implications for the marine silicon cycle. Earth Planet. Sci. Lett. 529, 115877 (2020).
    CAS  Article  Google Scholar 

    42.
    Opfergelt, S. et al. Silicon isotopes and the tracing of desilication in volcanic soil weathering sequences, Guadeloupe. Chem. Geol. 326–327, 113–122 (2012).
    ADS  Article  CAS  Google Scholar 

    43.
    Opfergelt, S. et al. Silicon isotopes in allophane as a proxy for mineral formation in volcanic soils. Appl. Geochem. Geochem. 26, S115–S118 (2011).
    CAS  Article  Google Scholar 

    44.
    Zeebe, R. E. & Wolf-Gladrow, D. Stable isotope fractionation. CO2 Seawater Equilibrium, Kinetics, Isotopes 141–250 (2001).

    45.
    Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 261–270 (2006).
    Article  CAS  Google Scholar 

    46.
    Klein, F., Marschall, H. R., Bowring, S. A., Humphris, S. E. & Horning, G. Mid-ocean ridge Serpentinite in the Puerto Rico Trench: from Seafloor Spreading to Subduction. J. Pet. 58, 1729–1754 (2017).
    ADS  CAS  Article  Google Scholar 

    47.
    Snow, J. E. & Dick, H. J. B. Pervasive magnesium loss by marine weathering of peridotite. Geochim. Cosmochim. Acta 59, 4219–4235 (1995).
    ADS  CAS  Article  Google Scholar 

    48.
    Paulick, H. et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15 ° 20 ′ N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chem. Geol. 234, 179–210 (2006).
    ADS  CAS  Article  Google Scholar 

    49.
    Caillaud, J., Proust, D. & Righi, D. Weathering sequences of rock-forming minerals in a Serpentinite: influence of microsystems on clay mineralogy. Clays Clay Min. 54, 87–100 (2006).
    ADS  CAS  Article  Google Scholar 

    50.
    Morrow, C. A. et al. Expedition 366 Scientists, Mariana Convergent Margin and South Chamorro Seamount. Proceedings of the International Ocean Discovery Program, 366: College Station, TX (International Ocean Discovery Program, 2019).

    51.
    Coogan, L. A. & Gillis, K. M. Low-temperature alteration of the seafloor: impacts on ocean chemistry. Annu. Rev. Earth Planet. Sci. 46, 21–45 (2018).
    ADS  Article  CAS  Google Scholar 

    52.
    Wheat, C. G., Fisher, A. T., Mcmanus, J., Hulme, S. M. & Orcutt, B. N. Cool seafloor hydrothermal springs reveal global geochemical fluxes. Earth Planet. Sci. Lett. 476, 179–188 (2017).
    ADS  CAS  Article  Google Scholar 

    53.
    Wheat, C. G. & McManus, J. The potential role of ridge-flank hydrothermal systems on oceanic germanium and silicon balances. Geochim. Cosmochim. Acta 69, 2021–2029 (2005).
    ADS  CAS  Article  Google Scholar 

    54.
    Opfergelt, S. et al. Iron and silicon isotope behaviour accompanying weathering in Icelandic soils, and the implications for iron export from petlands. Geochim. Cosmochim. Acta 217, 273–291 (2017).
    ADS  CAS  Article  Google Scholar 

    55.
    Yu, H.-M., Li, Y.-H., Gao, Y.-J., Huang, J. & Huang, F. Silicon isotopic compositions of altered oceanic crust: Implications for Si isotope heterogeneity in the mantle. Chem. Geol. 479, 1–9 (2018).
    ADS  CAS  Article  Google Scholar 

    56.
    Alt, J. C. et al. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256. Geochem. Geophys. Geosyst. 11 https://doi.org/10.1029/2010GC003144 (2010).

    57.
    Beucher, C. P., Brzezinski, M. A. & Jones, J. L. Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific. Geochim. Cosmochim. Acta 72, 3063–3073 (2008).
    ADS  CAS  Article  Google Scholar 

    58.
    Hendry, K. R. & Brzezinski, M. A. Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate. Quat. Sci. Rev. 89, 13–26 (2014).
    ADS  Article  Google Scholar 

    59.
    Johnson, H. P., Hautala, S. L., Bjorklund, T. A. & Zarnetske, M. R. Quantifying the North Pacific silica plume. Geochem. Geophys. Geosyst. 7 https://doi.org/10.1029/2005GC001065 (2006).

    60.
    Gieskes, J. M., Gamo, T. & Brumsack, H. Chemical methods for interstitial water analysis aboard JOIDES Resolution. Ocean Drilling Program Technology Note 15. Texas A&M University (1991).

    61.
    van den Boorn, S. H. J. M. et al. Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method. J. Anal. Spectrom. 21, 734 (2006).
    Article  CAS  Google Scholar 

    62.
    Georg, R. B., Reynolds, B. C., Frank, M. & Halliday, A. N. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 235, 95–104 (2006).
    ADS  CAS  Article  Google Scholar 

    63.
    van den Boorn, S. H. J. M., Vroon, P. Z. & van Bergen, M. J. Sulfur-induced offsets in MC-ICP-MS silicon-isotope measurements. J. Anal. Spectrom. 24, 1111 (2009).
    Article  CAS  Google Scholar 

    64.
    Hughes, H. J. et al. Controlling the mass bias introduced by anionic and organic matrices in silicon isotopic measurements by MC-ICP-MS. J. Anal. Spectrom. 26, 1892 (2011).
    CAS  Article  Google Scholar 

    65.
    Cardinal, D., Alleman, L. Y., de Jong, J., Ziegler, K. & André, L. Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J. Anal. Spectrom. 18, 213–218 (2003).
    CAS  Article  Google Scholar 

    66.
    Oelze, M., Schuessler, J. A. & von Blanckenburg, F. Mass bias stabilization by Mg doping for Si stable isotope analysis by MC-ICP-MS. J. Anal. Spectrom. 31, 2094–2100 (2016).
    CAS  Article  Google Scholar 

    67.
    Albarède, F. et al. Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim. Cosmochim. Acta 68, 2725–2744 (2004).
    ADS  Article  CAS  Google Scholar 

    68.
    Grasse, P. et al. GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater. J. Anal. Spectrom. 32, 562–578 (2017).
    CAS  Article  Google Scholar 

    69.
    Gaillardet, J., Lemarchand, D., Göpel, C. & Manhès, G. Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions. Geostand. Newsl. 25, 67–75 (2001).
    CAS  Article  Google Scholar 

    70.
    Jurikova, H. et al. Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction. Geochem. Cosmochin. Acta 248, 370–386 (2019).
    ADS  CAS  Article  Google Scholar 

    71.
    Vogl, J. & Rosner, M. Production and certification of a unique set of isotope and delta reference materials for boron isotope determination in geochemical, environmental and industrial. Mater. Geostand. Geoanal. Res. 36, 161–175 (2012).
    CAS  Article  Google Scholar 

    72.
    Howarth, R. J. & McArthur, J. M. Strontium isotope stratigraphy. in A Geological Time Scale, with Look-up Table Version 4 (eds Gradstein, F. M. & Ogg, J. G.) 96–105 (Cambridge University Press, Cambridge, 2004). More

  • in

    Modeling Posidonia oceanica shoot density and rhizome primary production

    Study area and environmental variables
    The data set used in this study included 192 sites in which lepidochronological data and shoot density were acquired between 1994 and 2003. Clearly, the rhizome primary production of P. oceanica was estimated as defined by Pergent-Martini et al.12.
    The spatial coverage of the data set was not uniform across the Italian Seas. In fact, the sampling sites were mainly concentrated in five Italian regions, i.e. Liguria, Tuscany, Lazio, Basilicata and Apulia (Fig. 1).
    Figure 1

    Sampling sites from which field data and indirect measurements have been collected (red circles). Data about several sampling stations are available at each site (N = 6 to 15).

    Full size image

    The environmental variables were all acquired from maps and other related information sources (Table 1), according to the main aim of the study. A detailed explanation of these variables and of the methodology for their acquisition is given in the supplementary materials.
    Table 1 Environmental factors used as predictive variables for developing P. oceanica models.
    Full size table

    Since these environmental factors were used as predictive variables in the modeling procedure, their selection was based on the ecological nature of the modelled processes, taking into account their influence on the latter. For instance, it is well known that depth plays a crucial role in determining the properties of P. oceanica meadows, such as density and productivity, as it is strictly related to other fundamental environmental factors, e.g. light. Therefore, both depth and gradient were considered as predictive variables, as well as the profile of the isobaths, described as either linear, convex or concave. The presence of sources of disturbance, such as sewage discharge or similar pollution, was also taken into account, as an increase in turbidity following an excessive enrichment from nutrient inputs might entail a reduction of water transparency and light penetration, which in turn can alter the ecological proprieties of a P. oceanica meadow. As for the sea floor typologies, i.e. sand, rock and matte, sources of disturbance have been represented as binary variables because of the intention of using only indirect methods for data acquisition, e.g. maps. Clearly, with such types of data source it was possible to perform, with good confidence, only a qualitative assessment. A quantitative coding of those predictive variables would indeed require expensive and time-consuming efforts for field activities, leading to a major drawback of the proposed approach.
    The data set was partitioned into two subsets, i.e. training and test sets, for modeling purposes. Data partitioning represents a critical step in modeling, whose aim is obtaining two subsets that are as much as possible independent from each other, while simultaneously representative of the modelled problem, in order to avoid modeling artifacts and to ensure the applicability of the resulting models18.
    Accordingly, the partitioning was not based on random selection of the data, rather the subsets were obtained on the basis of the following approach. The data were stratified according to depth, i.e. they were sorted on the basis of their depth and assigned to one of the following bathymetric classes, i.e.[0,5] m, (5,10] m, (10,15] m, (15,20] m, (20,25] m, (25,35] m. These classes comprised 16.67%, 23.96%, 27.08%, 17.71%, 9.90% and 4.69% of the total number of records, respectively. Subsequently, within each bathymetric class, about 70% of the data, i.e. n = 136, were assigned to the training set, while the remaining ones, i.e. n = 56, to the test set. While the former subset comprising the majority of the data was used for the training procedure of the Machine Learning algorithm, i.e. Random Forest19, the test subset was only used a posteriori to evaluate model performance.
    The rationale behind the aforementioned approach is that the depth has a paramount ecological role in regulating both P. oceanica shoot density and rhizome primary production, as previously noted. In fact, a wide range of environmental conditions are related to depth, such as light, water movement and sedimentation flows, which in turn strictly affected the structure, the functioning and the ecological condition of P. oceanica meadows. Therefore, using the abovementioned strategy in the data allocation, the inherent variability of the ecological patterns was properly distributed among the subsets, thus ensuring the possibility of obtaining ecologically sound models.
    Random Forest
    The Random Forest (RF) is a Machine Learning technique which fits an ensemble of Classification Trees and combines their predictions into a single model19.
    RF has proven effective in a wide range of applications as it is able to address, for example, both regression and classification problems20, to perform cluster analysis and missing values imputation21,22.
    RF has been used for predicting current and potential future spatial distribution of plant species23, as well as for estimating the marine biodiversity on the basis of the sea floor hardness24. RF has been also applied in ecological applications as a classification tool for the assessment of the vulnerability of P. oceanica meadows over a large spatial scale25, and for land cover classification using remote sensing data26,27.
    This method relies upon one of the main features of Machine Learning methods, namely that an ensemble of ‘weak learners’ usually outperforms a single ‘strong learner’19. As a matter of fact, each Classification Tree in the forest represents a weak learner, i.e. a single model, trained on a partly independent data subset, i.e. on a bootstrap sample. Each Classification Tree provides predictions based on the data contained in its bootstrap sample, and many trees are combined into an ensemble model, i.e. into a ‘forest’. The overall output of a RF is obtained by averaging the outcomes of all the trees for regression applications, while it is based on majority voting for classification problems.
    The diversity of the trees in the forest is ensured by the use of random subsets of data for the tree-building process, i.e. bootstrap samples, as well as by making a random subset of predictive variables available for the tree splitting procedure. These features allow the RF to reduce the correlation among its Classification Trees, while keeping the variance relatively small, thus leading to a more robust model19.
    The selection of a random subset of predictive variables at each split ensures maintaining a certain level of randomness during the tree construction process28, and is necessary for the proper functioning of RF. As a matter of fact, the size of the random subset of predictive variables available for the tree splitting procedure represents a tuning parameter, defined as mtry. The latter together with the minimum number of records to be contained in each leaf, called nodesize, are the main tuning parameters that deeply affect RF performance21,29.
    In its original work, Breiman19 suggested to set the mtry value equal to p/3 for regression applications, being p is the total number of predictors, and tuning it from half to twice its original value. On the other hand, nodesize and ntree (the latter parameter is the total number of Classification Trees in the forest) are more related to the generalization ability of the RF, and to the overall complexity of the model. Growing a very large forest, e.g. ntree  > 500, or growing the trees to achieve a high degree of purity at their leaves, e.g. nodesize  More

  • in

    Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits

    Main features of mycorrhizal genomes
    We compared 62 draft genomes from mycorrhizal fungi, including 29 newly released genomes, and predicted 9344–31,291 protein-coding genes per species (see “Methods”, Supplementary Information and Supplementary Data 1). This set includes new genomes from the early diverging fungal clades in the Russulales, Thelephorales, Phallomycetidae, and Cantharellales (Basidiomycota), and Helotiales and Pezizales (Ascomycota). We combined these mycorrhizal fungal genomes with 73 fungal genomes from wood decayers, soil/litter saprotrophs, and root endophytes (Fig. 1 and Supplementary Data 2). There was little variation in the completeness of the gene repertoires, based on Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis (coefficient of variation, c.v. = 7.98), despite variation in assembly contiguity (Fig. 1). Genome size varied greatly within each phylum, with genomes of mycorrhizal fungi being larger than those of saprotrophic species (Figs. 1 and 2, and Supplementary Data 2; P  More

  • in

    Drivers of wildfire carbon emissions

    1.
    Cohen, J. et al. Nat. Geosci. 7, 627–637 (2014).
    CAS  Article  Google Scholar 
    2.
    Xiao, J. & Zhuang, Q. Environ. Res. Lett. 2, 044003 (2007).
    Article  Google Scholar 

    3.
    Veraverbeke, S. et al. Nat. Clim. Change 7, 529–534 (2017).
    Article  Google Scholar 

    4.
    Balshi, M. S. et al. J. Geophys. Res. 112, G02029 (2007).
    Article  Google Scholar 

    5.
    Kelly, R., Genet, H., McGuire, A. D. & Hu, F. S. Nat. Clim. Change 6, 79–82 (2016).
    CAS  Article  Google Scholar 

    6.
    Walker, X. J. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00920-8 (2020).

    7.
    Harden, J. W. et al. Glob. Chang. Biol. 6, 174–184 (2000).
    Article  Google Scholar 

    8.
    Harmon, M. E. J. For. 99, 24–29 (2001).
    Google Scholar 

    9.
    Loehman, R. A., Reinhardt, E. & Riley, K. L. For. Ecol. Manag. 317, 9–19 (2014).
    Article  Google Scholar 

    10.
    Fauria, M. M. & Johnson, E. A. J. Geophys. Res.-Biogeo. 111, G04008 (2006).
    Google Scholar 

    11.
    Holden, Z. A. & Jolly, W. M. For. Ecol. Manag. 262, 2133–2141 (2011).
    Article  Google Scholar 

    12.
    Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. & Mack, M. C. Glob. Chang. Biol. 16, 1281–1295 (2010).
    Article  Google Scholar  More

  • in

    Individual species provide multifaceted contributions to the stability of ecosystems

    1.
    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).
    CAS  Article  Google Scholar 
    2.
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
    CAS  PubMed  Article  Google Scholar 

    3.
    Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).
    CAS  PubMed  Article  Google Scholar 

    4.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
    CAS  PubMed  Article  Google Scholar 

    5.
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
    CAS  PubMed  Article  Google Scholar 

    6.
    Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).
    CAS  PubMed  Article  Google Scholar 

    7.
    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).
    CAS  Article  Google Scholar 

    8.
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).
    PubMed  Article  Google Scholar 

    10.
    Macdougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494, 86–89 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Donohue, I. et al. Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Glob. Change Biol. 23, 2962–2972 (2017).
    Article  Google Scholar 

    14.
    Sanders, D., Thébault, E., Kehoe, R. & Frank van Veen, F. J. Trophic redundancy reduces vulnerability to extinction cascades. Proc. Natl Acad. Sci. USA 115, 2419–2424 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    O’Connor, N. E., Bracken, M. E., Crowe, T. P. & Donohue, I. Nutrient enrichment alters the consequences of species loss. J. Ecol. 103, 862–870 (2015).
    Article  Google Scholar 

    16.
    O’Connor, N. E. & Donohue, I. Environmental context determines multi-trophic effects of consumer species loss. Glob. Change Biol. 19, 431–440 (2013).
    Article  Google Scholar 

    17.
    O’Connor, N. E. & Crowe, T. P. Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86, 1783–1796 (2005).
    Article  Google Scholar 

    18.
    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Article  Google Scholar 

    21.
    O’Gorman, E. J. & Emmerson, M. C. Perturbations to trophic interactions and the stability of complex food webs. Proc. Natl Acad. Sci. USA 106, 13393–13398 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 1973).

    24.
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).
    CAS  Article  Google Scholar 

    25.
    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
    Article  Google Scholar 

    30.
    Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1927 (2001).
    CAS  PubMed  Article  Google Scholar 

    31.
    Díaz, S., Symstad, A. J., Chapin, F. S., Wardle, D. A. & Huenneke, L. F. Functional diversity revealed by removal experiments. Trends Ecol. Evol. 18, 140–146 (2003).
    Article  Google Scholar 

    32.
    Borrvall, C. & Ebenman, B. Early onset of secondary extinctions in ecological communities following the loss of top predators. Ecol. Lett. 9, 435–442 (2006).
    PubMed  Article  Google Scholar 

    33.
    Petchey, O. L., Eklöf, A., Borrvall, C. & Ebenman, B. Trophically unique species are vulnerable to cascading extinction. Am. Nat. 171, 568–579 (2008).
    PubMed  Article  Google Scholar 

    34.
    Kardol, P., Fanin, N. & Wardle, D. A. Long-term effects of species loss on community properties across contrasting ecosystems. Nature 557, 710–713 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).
    PubMed  Article  Google Scholar 

    36.
    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).
    Article  Google Scholar 

    37.
    de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Neubert, M. & Caswell, H. Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology 78, 653–665 (2012).
    Article  Google Scholar 

    39.
    Arnoldi, J. F., Loreau, M. & Haegeman, B. Resilience, reactivity and variability: a mathematical comparison of ecological stability measures. J. Theor. Biol. 389, 47–59 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Naeem, S. Advancing realism in biodiversity research. Trends Ecol. Evol. 23, 414–416 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Mrowicki, R. J., Maggs, C. A. & O’Connor, N. E. Consistent effects of consumer species loss across different habitats. Oikos 124, 1555–1563 (2015).
    Article  Google Scholar 

    42.
    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 23, 575–585 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656 (2014).
    Article  Google Scholar 

    45.
    Johns, K. A., Osborne, K. O. & Logan, M. Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef. Coral Reefs 33, 553–563 (2014).
    Article  Google Scholar 

    46.
    Gülzow, N., Muijsers, F., Ptacnik, R. & Hillebrand, H. Functional and structural stability are linked in phytoplankton metacommunities of different connectivity. Ecography 40, 719–732 (2016).
    Article  Google Scholar 

    47.
    Garnier, A., Pennekamp, F., Lemoine, M. & Petchey, O. L. Temporal scale dependent interactions between multiple environmental disturbances in microcosm ecosystems. Glob. Change Biol. 23, 5237–5248 (2017).
    Article  Google Scholar 

    48.
    Yang, Q., Fowler, M. S., Jackson, A. L. & Donohue, I. The predictability of ecological stability in a noisy world. Nat. Ecol. Evol. 3, 251–259 (2019).
    PubMed  Article  Google Scholar 

    49.
    Pimm, S. L., Donohue, I., Montoya, J. M. & Loreau, M. Measuring resilience is essential to understand it. Nat. Sustain. 2, 895–897 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Mrowicki, R. J., O’Connor, N. E. & Donohue, I. Temporal variability of a single population can determine the vulnerability of communities to perturbations. J. Ecol. 104, 887–897 (2016).
    Article  Google Scholar 

    52.
    Griffin, J. N. et al. Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118, 1335–1342 (2009).
    Article  Google Scholar 

    53.
    Emmerson, M. C., Solan, M., Emes, C., Paterson, D. M. & Raffaelli, D. Consistent patterns and the idiosyncstatic effects of biodiversity in marine ecosystems. Nature 411, 73–77 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Baert, J. M., Eisenhauer, N., Janssen, C. R. & de Laender, F. Biodiversity effects on ecosystem functioning respond unimodally to environmental stress. Ecol. Lett. 21, 1191–1199 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Vye, S., Dick, J. T. A., Emmerson, M. C. & O’Connor, N. E. Cumulative effects of an invasive species and nutrient enrichment on rock pool communities. Mar. Ecol. Prog. Ser. 594, 39–50 (2018).
    CAS  Article  Google Scholar 

    56.
    Thiébaut, E. et al. Changes in a benthic system exposed to multiple stressors: a 40-year time-series in the English Channel. PeerJ Prepr. 6, e26745v1 (2018).
    Google Scholar 

    57.
    Houbin, C., Thiébaut, E. & Hoebeke, M. Study of specific diversity of macrobenthic communities in the ‘Pierre Noire’ site: Dataset/Sampling event (Station Biologique de Roscoff – Sorbonne Université-CNRS, 2018); https://doi.org/10.21411/kfms-pq29

    58.
    O’Connor, N. E., Donohue, I., Crowe, T. P. & Emmerson, M. C. Importance of consumers on exposed and sheltered rocky shores. Mar. Ecol. Prog. Ser. 443, 65–75 (2011).
    Article  Google Scholar 

    59.
    O’Connor, N. E., Emmerson, M. C., Crowe, T. P. & Donohue, I. Distinguishing between direct and indirect effects of predators in complex ecosystems. J. Anim. Ecol. 82, 438–448 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Byrnes, J. E. & Stachowicz, J. J. The consequences of consumer diversity loss: different answers from different experimental designs. Ecology 90, 2879–2888 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Firth, L. B. & Crowe, T. P. Competition and habitat suitability: small-scale segregation underpins large-scale coexistence of key species on temperate rocky shores. Oecologia 162, 163–174 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Crowe, T. P. et al. Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning. PLoS ONE 8, e66238 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Benedetti-Cecchi, L., Tamburello, L., Maggi, E. & Bulleri, F. Experimental perturbations modify the performance of early warning indicators of regime shift. Curr. Biol. 25, 1867–1872 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Griffin, J. N. et al. Consumer effects on ecosystem functioning in rock pools: roles of species richness and composition. Mar. Ecol. Prog. Ser. 420, 45–56 (2010).
    Article  Google Scholar 

    65.
    Griffin, J. N., Méndez, V., Johnson, A. F., Jenkins, S. R. & Foggo, A. Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 118, 37–44 (2009).
    Article  Google Scholar 

    66.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    67.
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).
    Article  Google Scholar 

    68.
    Clarke, K. R. Non‐parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
    Article  Google Scholar 

    69.
    White, L., O’Connor, N., Yang, Q., Emmerson, M. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems_Dataset (Version 1). Zenodo https://doi.org/10.5281/zenodo.3974299 (2020).

    70.
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
    CAS  PubMed  Article  Google Scholar 

    71.
    Whittaker, F. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).
    Article  Google Scholar 

    72.
    Lande, R. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76, 5–13 (1996).
    Article  Google Scholar 

    73.
    Olden, J. D., Poff, N. L. R., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24 (2004).
    PubMed  Article  Google Scholar 

    74.
    France, K. E. & Duffy, J. E. Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441, 1139–1143 (2006).
    CAS  PubMed  Article  Google Scholar 

    75.
    Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 15211 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 12457 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Daily mapping of Australian Plague Locust abundance

    1.
    Stige, L. C., Chan, K.-S., Zhang, Z., Frank, D. & Stenseth, N. C. Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. Proc. Natl. Acad. Sci. 104, 16188–16193 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Walker, F. Catalogue of the Specimens of Dermaptera Saltatoria in Collection of the British Museum. Part III. 485–594 (British Museum (Natural History), 1870).

    3.
    Wright, D. E. Analysis of the development of major plagues of the Australian plague locust Chortoicetes terminifera (Walker) using a simulation model. Aust. J. Ecol. 12, 423–437 (1987).
    Article  Google Scholar 

    4.
    Deveson, E. D. & Walker, P. W. Not a one-way trip: Historical distribution data for Australian plague locusts support frequent seasonal exchange migrations. J. Orthoptera Res. 14, 91–105 (2005).
    Article  Google Scholar 

    5.
    Wang, H. Quantitative assessment of Australian plague locust habitats in the inland of eastern Australia using RS and GIS technologies in Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI vol. 9239 92390D (International Society for Optics and Photonics, 2014).

    6.
    Chapuis, M.-P. et al. Challenges to assessing connectivity between massive populations of the Australian plague locust. Proc. R. Soc. B Biol. Sci. 278, 3152–3160 (2011).
    Article  Google Scholar 

    7.
    Murray, D. A. H., Clarke, M. B. & Ronning, D. A. Estimating invertebrate pest losses in six major Australian grain crops. Aust. J. Entomol. 52, 227–241 (2013).
    Article  Google Scholar 

    8.
    Zhang, L., Lecoq, M., Latchininsky, A. & Hunter, D. Locust and grasshopper management. Annu. Rev. Entomol. 64, 15–34 (2019).
    CAS  PubMed  Article  Google Scholar 

    9.
    Adriaansen, C., Woodman, J., Deveson, E. & Drake, V. The Australian Plague Locust: risk and response. Environ. Hazards Risks Disasters Biol https://doi.org/10.1016/B978-0-12-394847-2.00005-X (2016).
    Article  Google Scholar 

    10.
    Farrow, R. A. & Longstaff, B. C. Comparison of the annual rates of increase of locusts in relation to the incidence of plagues. Oikos 2, 207–222 (1986).
    Article  Google Scholar 

    11.
    Wardhaugh, K. G. The effects of temperature and moisture on the inception of diapause in eggs of the Australian plague locust, Chortoicetes terminifera Walker (Orthoptera: Acrididae). Aust. J. Ecol. 5, 187–191 (1980).
    Article  Google Scholar 

    12.
    Wardhaugh, K. G. Diapause strategies in the Australian plague locust (Chortoicetes terminifera Walker). In The evolution of insect life cycles 89–104 (Springer, Berlin, 1986).
    Google Scholar 

    13.
    Clark, D. P. Flights after sunset by the Australian plague locust, Chortoicetes terminifera (Walker) and their significance in dispersal and migration. Aust. J. Zool. 19, 159–176 (1971).
    Article  Google Scholar 

    14.
    Farrow, R. A. Origin and decline of the 1973 plague locust outbreak in central western New South Wales. Aust. J. Zool. 25, 455–489 (1977).
    Article  Google Scholar 

    15.
    Wang, B. et al. Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Sci. Total Environ. 668, 947–957 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Veran, S. et al. Modeling spatiotemporal dynamics of outbreaking species: influence of environment and migration in a locust. Ecology 96, 737–748 (2015).
    PubMed  Article  Google Scholar 

    17.
    Maywald, G., Kriticos, D., Sutherst, R. & Bottomley, W. DYMEX model builder version 3: user’s guide. (2007).

    18.
    Meynard, C. N. et al. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Change Biol. 23, 4739–4749 (2017).
    ADS  Article  Google Scholar 

    19.
    Piou, C. et al. Coupling historical prospection data and a remotely-sensed vegetation index for the preventative control of Desert locusts. Basic Appl. Ecol. 14, 593–604 (2013).
    Article  Google Scholar 

    20.
    Tratalos, J. A., Cheke, R. A., Healey, R. G. & Stenseth, N. C. Desert locust populations, rainfall and climate change: Insights from phenomenological models using gridded monthly data. Clim. Res. 43, 229–239 (2010).
    Article  Google Scholar 

    21.
    Tian, H. et al. Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China. Proc. Natl. Acad. Sci. 108, 14521–14526 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Croft, S., Chauvenet, A. L. & Smith, G. C. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE 12, e0176339 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Woodman, J. D. High-temperature survival is limited by food availability in first-instar locust nymphs. Aust. J. Zool. 58, 323–330 (2011).
    Article  Google Scholar 

    25.
    Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    26.
    Yee, T. W. & Mitchell, N. D. Generalized additive models in plant ecology. J. Veg. Sci. 2, 587–602 (1991).
    Article  Google Scholar 

    27.
    Bučas, M. et al. Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea: Evaluating the scope for predictive mapping using different modelling approaches. ICES J. Mar. Sci. 70, 1233–1243 (2013).
    Article  Google Scholar 

    28.
    Heersink, D. K. et al. Statistical modeling of a larval mosquito population distribution and abundance in residential Brisbane. J. Pest Sci. 89, 267–279 (2016).
    Article  Google Scholar 

    29.
    Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16, 309–330 (2001).
    Article  Google Scholar 

    30.
    Tozer, C. R., Kiem, A. S. & Verdon-Kidd, D. C. On the uncertainties associated with using gridded rainfall data as a proxy for observed. Hydrol. Earth Syst. Sci. 16, 1481–1499 (2012).
    ADS  Article  Google Scholar 

    31.
    Gregg, P. Development of the Australian Plague Locust, Chortoicetes terminifera, in relation to weather I. Effects of constant temperature and humidity. Aust. J. Entomol. 22, 247–251 (1983).
    Article  Google Scholar 

    32.
    Pruess, K. P. Day-degree methods for pest management. Environ. Entomol. 12, 613–619 (1983).
    Article  Google Scholar 

    33.
    McVicar, T. R., Briggs, P. R., King, E. A. & Raupach, M. R. A review of predictive modelling from a natural resource management perspective: the role of remote sensing of the terrestrial environment (CSIRO Land and Water CSIRO Earth Observation Centre, Canberra, 2003).
    Google Scholar 

    34.
    Grundy, M. J. et al. Soil and landscape grid of Australia. Soil Res. 53, 835–844 (2015).
    Article  Google Scholar 

    35.
    Cressie, N. & Wikle, C. K. Statistics for spatio-temporal data (John Wiley & Sons, New York, 2015).
    Google Scholar 

    36.
    James, G., Witten, D., Hastie, T. & Tibshirani, R. An introduction to statistical learning (Springer, Berlin, 2013).
    Google Scholar 

    37.
    Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. Gen. 135, 370–384 (1972).
    Article  Google Scholar 

    38.
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer-Verlag, Berlin, 2002). https://doi.org/10.1007/978-0-387-21706-2.
    Google Scholar 

    40.
    Wood, S. N., Goude, Y. & Shaw, S. Generalized additive models for large data sets. J. R. Stat. Soc. Ser. C Appl. Stat. 64, 139–155 (2015).
    MathSciNet  Article  Google Scholar 

    41.
    Clark, D. P. The influence of rainfall on the densities of adult Chortoicetes terminifera (Walker) in central western New South Wales, 1965–73. Aust. J. Zool. 22, 365–386 (1974).
    Article  Google Scholar 

    42.
    Shelford, V. E. The ecology of North America. Ecol. N. Am. 2, 2 (1963).
    Google Scholar 

    43.
    Deveson, E. D. Satellite normalized difference vegetation index data used in managing Australian plague locusts. J. Appl. Remote Sens. 7, 075096 (2013).
    ADS  Article  Google Scholar 

    44.
    Kuhnert, P. M. & Lucchesi, L. Vizumap: An R package for visualizing uncertainty in spatial data (Zenodo, Boca Raton, 2018). https://doi.org/10.5281/zenodo.1479951.
    Google Scholar 

    45.
    Lucchesi, L. R. & Wikle, C. K. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph rotation. Stat 6, 292–302 (2017).
    MathSciNet  Article  Google Scholar 

    46.
    Benfekih, L., Chara, B. & Doumandji-Mitiche, B. Influence of anthropogenic impact on the habitats and swarming risks of Dociostaurus maroccanus and Locusta migratoria (Orthoptera, Acrididae) in the Algerian Sahara and the semi-arid zone. J. Orthoptera Res. 11, 243–250 (2002).
    Article  Google Scholar 

    47.
    Štrumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41, 647–665 (2014).
    Article  Google Scholar 

    48.
    Escorihuela, M. J. et al. SMOS based high resolution soil moisture estimates for desert locust preventive management. Remote Sens. Appl. Soc. Environ. 11, 140–150 (2018).
    Google Scholar 

    49.
    Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).
    ADS  Article  Google Scholar 

    50.
    Hu, G. et al. Long-term seasonal forecasting of a major migrant insect pest: the brown planthopper in the Lower Yangtze River Valley. J. Pest Sci. 92, 417–428 (2019).
    Article  Google Scholar  More