More stories

  • in

    Identifying the sources of structural sensitivity in partially specified biological models

    Quantifying structural sensitivity in models with uncertain component functions
    In general, we consider a system of the form:

    $$begin{aligned} dot{{mathbf{x }}}={mathbf{G}} left( h_1left( {mathbf{x}} right) ,h_2left( {mathbf{x}} right) ,ldots ,h_pleft( {mathbf{x}} right) , f_1left( {mathbf{x}} right) ,f_2left( {mathbf{x}} right) ,ldots ,f_{m-p}left( {mathbf{x}} right) right) , end{aligned}$$
    (1)

    where ({mathbf {x}}in {mathbb {R}}) is the vector of d state variables, (h_i, f_i:{mathbb {R}}^{d_i}rightarrow {mathbb {R}}) are the m different component functions describing the inflows and outflows of biomass, energy or individuals due to certain biological processes, with ({mathbf{G}} :{mathbb {R}}^mrightarrow {mathbb {R}}^d) being a composition function describing the general topology of the system. We consider that the precise mathematical formulation of the functions (f_i) are known (or at least postulated) with the only related uncertainty being the precise choice of their parameters. The functions (h_1,ldots h_p) are considered to have unspecified functional form. Instead, they are represented by bounds on their derivatives matching the qualitative properties we would expect from such a function. For example, the per-capita reproduction rate of a population is generally decreasing, at least at large population numbers, while a feeding term described by a Holling type II functional response of a predator should be increasing and decelerating. The (h_i) may also have quantitative bounds on their values:

    $$begin{aligned} h_i^{text {low}}left( {mathbf{x}} right)1)), an important question remains: which of the unknown functions contribute the most to the degree of structural sensitivity in the system? The degree of structural sensitivity does not distinguish between the various sources of uncertainty and therefore cannot quantify the relative contributions of the unknown functions to the uncertainty in the model dynamics.
    To determine the contribution of each unknown function (h_i), one can allow the error terms (left( varepsilon _1,varepsilon _2,ldots ,varepsilon _pright)) to vary with the goal of investigating how the degree of sensitivity varies with them. For the purpose of this section, let us denote the initial error terms by (varepsilon _i^0). We might be tempted to use the dependence on the (varepsilon _i) to perform global optimisation under certain constraints to find the best possible reduction of (left( varepsilon _1,varepsilon _2,ldots ,varepsilon _pright)). However, one should bear in mind that this analysis would depend on the base functions (hat{h}_i) considered. While these functions are ideally fitted to experimental data, they are only accurate within the error terms (varepsilon _i^0). Excessively reducing the (varepsilon _i) will force all admissible functions to conform strongly in their shape to these base functions far beyond their demonstrated accuracy of fit.
    The dependence of the degree of sensitivity on (varepsilon _i) should therefore only be evaluated locally by calculating the gradient (left( frac{partial Delta }{partial varepsilon _1},ldots ,frac{partial Delta }{partial varepsilon _p}right) |_{left( varepsilon _1^0,ldots varepsilon _p^0right) }) giving the direction for the best local reduction of the errors. To adjust for the fact that the error terms may be of different orders of magnitude, when handling the vectors of error terms we should use the norm

    $$begin{aligned} left| varvec{varepsilon }right| = sqrt{sum _{i=1}^{p} left( frac{varepsilon _i }{varepsilon _i^0}right) ^2}. end{aligned}$$
    (9)

    Working in this norm, the gradient needs to be weighted by the initial error terms to provide the direction for the best local reduction of the error terms, this is described by the following structural sensitivity gradient.
    Definition 2
    The structural sensitivity gradient in a model with p unknown functions each having an error of magnitude (varepsilon ^0_i) is defined as

    $$begin{aligned} left( -varepsilon _1^0cdot frac{partial Delta }{partial varepsilon _1},ldots ,-varepsilon _p^0cdot frac{partial Delta }{partial varepsilon _p}right) |_{left( varepsilon _1=varepsilon _1^0,ldots ,varepsilon _p=varepsilon _p^0right) }, end{aligned}$$
    (10)

    where (Delta left( varepsilon _1,ldots ,varepsilon _pright)) is the degree of structural sensitivity of the system considered as a function of the error terms (varepsilon _i).
    One possible problem with the structural sensitivity gradient is that the degree of structural sensitivity in the system may not be an increasing function of the magnitude of the errors. Consider the case that the exact system is structurally unstable, e.g. at a bifurcation point. Then no matter how small the error terms are, there may still be very high levels of structural sensitivity, while larger error terms may cause the level of uncertainty to decrease5. In this case, the structural sensitivity gradient will indicate that one or more of the functions has a negative contribution to the uncertainty of the system, and cannot be taken as a basis for sensitivity analysis.
    An alternative approach to quantifying the individual impact of unknown functions which avoids this issue is the computation of partial degrees of sensitivity with respect to each (h_k). To do this, we fix every unknown function except (h_k), a set which we denote ({mathbf{H}} _{sim k}), by fixing the (x_j^*), (h_ileft( {mathbf{x}} ^*right)), and (frac{partial h_i}{partial x_j} left( {mathbf{x}} ^* right)) that are consequently determined by the isocline equations. Denoting by (V_k) the cross-sections of V where only (h_k) varies, and the cross-sections for ({mathbf{H}} _{sim k}) by (V_{sim k}), the local partial degree of structural sensitivity can be defined as follows.
    Definition 3
    The local partial degree of structural sensitivity with respect to (h_k), is the degree of structural sensitivity in the model when (h_k) is unspecified and all other functions (h_i in {mathbf{H}} _{sim k}) are fixed:

    $$begin{aligned} Delta _k({mathbf{H}} _{sim k}):= 4 cdot int _{V_{k_{text {stable}}}} rho _{mathbf{H} _kvert {mathbf{H}} _{sim k}} , d{mathbf{H}} _k cdot left( 1 – int _{V_{k_{text {stable}}}} rho _{mathbf{H} _kvert {mathbf{H}} _{sim k}} , d{mathbf{H}} _k right) , end{aligned}$$
    (11)

    where (rho _{mathbf{H} _kvert {mathbf{H}} _{sim k}}) is the conditional probability density function on ({mathbf{H}} _{sim k}):

    $$begin{aligned} rho _{mathbf{H} _kvert {mathbf{H}} _{sim k}} = frac{rho }{int _V rho d{mathbf{H}} _{sim k }}, end{aligned}$$

    with (rho) the (joint) probability distribution over V.
    The local partial sensitivity (Delta _k({mathbf{H}} _{sim k})) is a function of ({mathbf{H}} _{sim k}) in that it depends upon the particular values at which the elements of (V_{sim k}) are fixed. As with the degree of structural sensitivity, it can be interpreted as either the probability that the stability of the given equilibrium will be different for two independent choices of the function (h_k) when the (h_{sim k}) are fixed at the given values, or in terms of variance as (Delta _k({mathbf{H}} _{sim k})=4cdot {text {Var}}_k(Yvert {mathbf{H}} _{sim k})) (Y is the Bernoulli variable for stability). If the joint probability distribution (rho) is uniform in V, then (Delta _k({mathbf{H}} _{sim k})) can be expressed purely in terms of the fraction of the volume of (V_k) which gives a stable equilibrium:

    $$begin{aligned} Delta _k({mathbf{H}} _{sim k}) = 4 cdot frac{int _{V_{k_{text {stable}}}} d{mathbf{H}} _k}{int _{V_k} d{mathbf{H}} _k} cdot left( 1 – frac{int _{V_{k_{text {stable}}}} d{mathbf{H}} _k}{int _{V_k} d{mathbf{H}} _k} right) . end{aligned}$$
    (12)

    To obtain a global measure for the sensitivity of the model to (h_k), we can take the average of (Delta _k) over (V_{sim k}).
    Definition 4
    The partial degree of structural sensitivity with respect to (h_k) is given by

    $$begin{aligned} bar{Delta }_k := int _{V_{sim k}} rho _{mathbf{H} _{sim k}} cdot Delta _k({mathbf{H}} _{sim k}) , d{mathbf{H}} _{sim k} end{aligned}$$
    (13)

    where (rho _{mathbf{H} _{sim k}}) is the marginal probability density function of ({mathbf{H}} _{sim k}).
    Recalling the variance-based interpretation of the degree of sensitivity, we obtain (bar{Delta }_k = 4cdot E_{sim k}({text {Var}}_kleft( Yvert {mathbf{H}} _{sim k}right) )). In other words, (bar{Delta }_k) gives the scaled average variance when all functions except (h_k) are fixed. We can also relate the partial degree of structural sensitivity to indices used in conventional variance-based sensitivity analysis. Dividing (bar{Delta }_k) by the overall degree of structural sensitivity in the model gives us (frac{bar{Delta }_k}{Delta }=frac{E_{sim k}({text {Var}}_kleft( Yvert {mathbf{H}} _{sim k}right) )}{{text {Var}}(Y)}=S_{T_k}), the total effect index23 of (h_k) on the stability of the equilibrium. This is a measure of the total contribution of (h_k) to the sensitivity—both alone and in conjunction with the other functions ({mathbf{H}} _{sim k}). However, since the space of valid functions V is in general not a hypercube, the functions (h_i) are not independent factors, and a total decomposition of variance is not possible. Indeed, even if the joint probability distribution (rho) is uniform, the marginal probability distribution (rho _{mathbf{H} _{sim k}}) will generally not be: instead it will equal the volume of the corresponding cross-section (V_k) for ({mathbf{H}} _{sim k}), divided by the volume of V. An alternative to using the partial degrees of sensitivity would be to consider the first-order sensitivity indices (S_k=frac{{text {Var}}_kleft( E_{mathbf{H} _{sim k}}left( Yvert h_k right) right) }{{text {Var}}(Y)}). However, these do not take into account possible joint effects of the (h_i) on the structural sensitivity of the system, so a small (S_k) does not indicate that (h_k) is not a source of sensitivity, whereas (bar{Delta }_k=0) means that (h_k) does not contribute to the structural sensitivity in the system at all.
    Similarly to the gradient of the total degree of sensitivity (Delta) as a function of the respective error tolerances, the vector (left( -bar{Delta }_{h_1},ldots , -bar{Delta }_{h_p}right)) needs to be scaled by the elements of (varepsilon ^0) to give us the optimal direction of decrease in (Delta) if the error terms (varepsilon _i) are subject to a proportional reduction. This is described by (left( -varepsilon _1^0 bar{Delta }_{h_1},ldots , -varepsilon _p^0bar{Delta }_{h_p}right)).
    Outline of an iterative framework of experiments for reducing structural sensitivity
    When dealing with partially specified models, an important practical task is the reduction of the overall uncertainty in the system by decreasing the uncertainty in the system processes (i.e. the unknown model functions). Here we propose an iterative process of such a reduction based on improving our empirical knowledge of the uncertain functions (h_k).
    As a starting point, we assume that experiments have produced data on the unknown functions (h_1,ldots ,h_p), to which we can fit some base functions (hat{h}_1,ldots ,hat{h}_p) with initial errors (varepsilon _1^0,ldots ,varepsilon _p^0). We assume that it is possible to perform additional experiments on all uncertain processes in order to obtain more data such that the (varepsilon _i) can be decreased, but with the natural constraint that the total error can only be reduced by a magnitude of (0 More

  • in

    Deglacial to Holocene variability in surface water characteristics and major floods in the Beaufort Sea

    1.
    Serreze, M. C., Holland, M. M. & Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315, 1533–1536 (2007).
    CAS  Article  Google Scholar 
    2.
    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).
    CAS  Article  Google Scholar 

    3.
    Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 121–133 (2019).
    Article  CAS  Google Scholar 

    4.
    Kim, K. et al. Vertical feedback mechanism of winter Arctic amplification and sea ice loss. Sci. Rep. 9, 1184 (2019).
    Article  CAS  Google Scholar 

    5.
    Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).
    CAS  Article  Google Scholar 

    6.
    Mundy, C. J. et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 36, L17601 (2009).
    Article  Google Scholar 

    7.
    Sévellec, F., Fedorov, A. V. & Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Chang. 7, 604–610 (2017).
    Article  Google Scholar 

    8.
    Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34, L09501 (2007).
    Article  Google Scholar 

    9.
    Routson, C. C. et al. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 568, 83–87 (2019).
    CAS  Article  Google Scholar 

    10.
    Parkinson, C. L. & Cavalieri, D. J. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 113, C07003 (2008).
    Article  Google Scholar 

    11.
    Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502 (2012).
    Article  Google Scholar 

    12.
    Matsumura, S. & Kosaka, Y. Arctic–Eurasian climate linkage induced by tropical ocean variability. Nat. Commun. 10, 1–8 (2019).
    CAS  Article  Google Scholar 

    13.
    Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0-180°W). Quat. Sci. Rev. 23, 529–560 (2004).
    Article  Google Scholar 

    14.
    Holmes, R. M. et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean. Global Biogeochem. Cycles 16, 1098 (2002).
    Article  CAS  Google Scholar 

    15.
    Duk-Rodkin, A. & Hughes, O. L. Tertiary-quaternary drainage of the pre-glacial Mackenzie basin. Quat. Int. 22–23, 221–241 (1994).
    Article  Google Scholar 

    16.
    McManus, J. F., Francois, R., Gherardl, J. M., Keigwin, L. & Drown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).
    CAS  Article  Google Scholar 

    17.
    Peltier, W. R., Vettoretti, G. & Stastna, M. Atlantic meridional overturning and climate response to Arctic Ocean freshening. Geophys. Res. Lett. 33, L06713 (2006).
    Google Scholar 

    18.
    Broecker, W. S. et al. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, 318–321 (1989).
    Article  Google Scholar 

    19.
    Keigwin, L. D. et al. Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling. Nat. Geosci. 11, 599–604 (2018).
    CAS  Article  Google Scholar 

    20.
    Leydet, D. J. et al. Opening of glacial Lake Agassiz’s eastern outlets by the start of the Younger Dryas cold period. Geology 46, 155–158 (2018).
    CAS  Article  Google Scholar 

    21.
    Fisher, T. G. & Lowell, T. V. Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data. Quat. Int. 260, 106–114 (2012).
    Article  Google Scholar 

    22.
    Tarasov, L. & Peltier, W. R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662–665 (2005).
    CAS  Article  Google Scholar 

    23.
    Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).
    CAS  Article  Google Scholar 

    24.
    Fisher, T. G., Waterson, N., Lowell, T. V. & Hajdas, I. Deglaciation ages and meltwater routing in the Fort McMurray region, northeastern Alberta and northwestern Saskatchewan, Canada. Quat. Sci. Rev. 28, 1608–1624 (2009).
    Article  Google Scholar 

    25.
    Fisher, T. G., Smith, D. G. & Andrews, J. T. Preboreal oscillation caused by a glacial Lake Agassiz flood. Quat. Sci. Rev. 21, 873–878 (2002).
    Article  Google Scholar 

    26.
    Jin, Y. K. ARA04C cruise report: barrow, US—Beaufort Sea, CAN—Nome, US 6-24 September 2013 (Korea Polar Research Institute, Incheon, 2013).

    27.
    Gamboa, A., Montero-Serrano, J. -C., St-Onge, G., Rochon, A. & Desiage, P. -A. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic). Geochem. Geophys. Geosyst. 18, 488–512 (2017).
    CAS  Article  Google Scholar 

    28.
    Belt, S. T. et al. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16–27 (2007).
    CAS  Article  Google Scholar 

    29.
    Brown, T. A., Belt, S. T., Tatarek, A. & Mundy, C. J. Source identification of the Arctic sea ice proxy IP 25. Nat. Commun. 5, 4197 (2014).
    CAS  Article  Google Scholar 

    30.
    Müller, J. et al. Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet. Sci. Lett. 306, 137–148 (2011).
    Article  CAS  Google Scholar 

    31.
    Smik, L., Cabedo-Sanz, P. & Belt, S. T. Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: A further development of the PIP25 index. Org. Geochem. 92, 63–69 (2016).
    CAS  Article  Google Scholar 

    32.
    Lü, X. et al. Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as a paleotemperature proxy for mid-to-low latitude marginal seas. Org. Geochem. 89, 31–43 (2015).
    Article  CAS  Google Scholar 

    33.
    Volkman, J. K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 9, 83–99 (1986).
    CAS  Article  Google Scholar 

    34.
    Fahl, K. & Stein, R. Biomarkers as organic-carbon-source and environmental indicators in the late quaternary Arctic Ocean: problems and perspectives. Mar. Chem. 63, 293–309 (1999).
    CAS  Article  Google Scholar 

    35.
    Fahl, K. & Stein, R. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: new insights from biomarker proxy records. Earth Planet. Sci. Lett. 351, 123–133 (2012).
    Article  CAS  Google Scholar 

    36.
    Rampen, S. W., Abbas, B. A., Schouten, S. & Damsté, J. S. S. A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity. Limnol. Oceanogr. 55, 91–105 (2010).
    CAS  Article  Google Scholar 

    37.
    Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).
    CAS  Article  Google Scholar 

    38.
    Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C. & Sinninghe Damsté, J. S. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71, 703–713 (2007).
    CAS  Article  Google Scholar 

    39.
    Blaga, C. I. et al. Branched glycerol dialkyl glycerol tetraethers in lake sediments: can they be used as temperature and pH proxies? Org. Geochem. 41, 1225–1234 (2010).
    CAS  Article  Google Scholar 

    40.
    De Jonge, C. et al. In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochim. Cosmochim. Acta 125, 476–491 (2014).
    Article  CAS  Google Scholar 

    41.
    Zhang, Z., Metzger, P. & Sachs, J. P. Co-occurrence of long chain diols, keto-ols, hydroxy acids and keto acids in recent sediments of Lake El Junco, Galápagos Islands. Org. Geochem. 42, 823–837 (2011).
    CAS  Article  Google Scholar 

    42.
    de Bar, M. W. et al. Constraints on the application of long chain diol proxies in the Iberian Atlantic margin. Org. Geochem. 101, 184–195 (2016).
    Article  CAS  Google Scholar 

    43.
    Lattaud, J. et al. The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins. Clim. Past 13, 1049–1061 (2017).
    Article  Google Scholar 

    44.
    Lattaud, J. et al. The C32 alkane-1,15-diol as a tracer for riverine input in coastal seas. Geochim. Cosmochim. Acta 202, 146–158 (2017).
    CAS  Article  Google Scholar 

    45.
    Pico, T., Mitrovica, J. X. & Mix, A. C. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event. Sci. Adv. 6, eaay2935 (2020).
    CAS  Article  Google Scholar 

    46.
    Jakobsson, M. et al. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records. Clim. Past 13, 991–1005 (2017).
    Article  Google Scholar 

    47.
    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).
    Article  Google Scholar 

    48.
    Niebauer, H. J. & Alexander, V. Oceanographic frontal structure and biological production at an ice edge. Cont. Shelf Res. 4, 367–388 (1985).
    Article  Google Scholar 

    49.
    Smith, W. O. & Nelson, D. M. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science. 227, 163–166 (1985).
    CAS  Article  Google Scholar 

    50.
    Ackley, S. F. & Sullivan, C. W. Physical controls on the development and characteristics of Antarctic sea ice biological communities-a review and synthesis. Deep Sea Res. I 41, 1583–1604 (1994).
    Article  Google Scholar 

    51.
    Strass, V. H. & Nöthig, E. M. Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol. 16, 409–422 (1996).
    Article  Google Scholar 

    52.
    Collins, L. G. et al. Evaluating highly branched isoprenoid (HBI) biomarkers as a novel Antarctic sea-ice proxy in deep ocean glacial age sediments. Quat. Sci. Rev. 79, 87–98 (2013).
    Article  Google Scholar 

    53.
    Belt, S. T. et al. Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet. Sci. Lett. 431, 127–139 (2015).
    CAS  Article  Google Scholar 

    54.
    Smik, L., Belt, S. T., Lieser, J. L., Armand, L. K. & Leventer, A. Distributions of highly branched isoprenoid alkenes and other algal lipids in surface waters from East Antarctica: further insights for biomarker-based paleo sea-ice reconstruction. Org. Geochem. 95, 71–80 (2016).
    CAS  Article  Google Scholar 

    55.
    Ribeiro, S. et al. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: spatial distribution and implications for palaeoenvironmental studies. Ambio 46, 106–118 (2017).
    CAS  Article  Google Scholar 

    56.
    Wagner, A., Lohmann, G. & Prange, M. Arctic river discharge trends since 7ka BP. Glob. Planet. Change 79, 48–60 (2011).
    Article  Google Scholar 

    57.
    North Greenland Ice Core Project Members. High resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).
    Article  CAS  Google Scholar 

    58.
    Broecker, W. S. Was the Younger Dryas triggered by a flood? Science 312, 1146–1148 (2006).
    CAS  Article  Google Scholar 

    59.
    Not, C. & Hillaire-Marcel, C. Enhanced sea-ice export from the Arctic during the Younger Dryas. Nat. Commun. 3, 1–5 (2012).
    Article  CAS  Google Scholar 

    60.
    Fagel, N., Not, C., Gueibe, J., Mattielli, N. & Bazhenova, E. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge. Quat. Sci. Rev. 92, 140–154 (2014).
    Article  Google Scholar 

    61.
    Scott, D. B., Schell, T., St-Onge, G., Rochon, A. & Blasco, S. Foraminiferal assemblage changes over the last 15,000 years on the Mackenzie-Beaufort Sea Slope and Amundsen Gulf, Canada: implications for past sea ice conditions. Paleoceanography 24, PA2219 (2009).
    Article  Google Scholar 

    62.
    Keigwin, L. D., Donnelly, J. P., Cook, M. S., Driscoll, N. W. & Brigham-Grette, J. Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology 34, 861–864 (2006).
    Article  Google Scholar 

    63.
    Hill, J. C. & Driscoll, N. W. Paleodrainage on the Chukchi shelf reveals sea level history and meltwater discharge. Mar. Geol. 254, 129–151 (2008).
    CAS  Article  Google Scholar 

    64.
    England, J. H. & Furze, M. F. A. New evidence from the western Canadian Arctic Archipelago for the resubmergence of Bering Strait. Quat. Res. 70, 60–67 (2008).
    CAS  Article  Google Scholar 

    65.
    Dyke, A. S. & Savelle, J. M. Holocene history of the Bering Sea bowhead whale (Balaena mysticetus) in its Beaufort Sea summer grounds off Southwestern Victoria Island, Western Canadian Arctic. Quat. Res. 55, 371–379 (2001).
    Article  Google Scholar 

    66.
    Dyke, A. S., Dale, J. E. & McNeely, R. N. Marine molluscs as indicators of environmental change in glaciated North America and greenland during the last 18 000 Years. Geogr. Phys. Quat. 50, 125–184 (1996).
    Google Scholar 

    67.
    Belt, S. T., Smik, L., Köseoglu, D., Knies, J. & Husum, K. A novel biomarker-based proxy for the spring phytoplankton bloom in Arctic and sub-arctic settings–HBI T25. Earth Planet. Sci. Lett. 523, 115703 (2019).
    CAS  Article  Google Scholar 

    68.
    Fietz, S., Huguet, C., Rueda, G., Hambach, B. & Rosell-Melé, A. Hydroxylated isoprenoidal GDGTs in the Nordic Seas. Mar. Chem. 152, 1–10 (2013).
    CAS  Article  Google Scholar 

    69.
    Klotsko, S., Driscoll, N. & Keigwin, L. Multiple meltwater discharge and ice rafting events recorded in the deglacial sediments along the Beaufort Margin, Arctic Ocean. Quat. Sci. Rev. 203, 185–208 (2019).
    Article  Google Scholar 

    70.
    Sachs, J. P. et al. An Arctic Ocean paleosalinity proxy from δ2H of palmitic acid provides evidence for deglacial Mackenzie River flood events. Quat. Sci. Rev. 198, 76–90 (2018).
    Article  Google Scholar 

    71.
    Spielhagen, R. F., Erlenkeuser, H. & Siegert, C. History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation. Glob. Planet. Change 48, 187–207 (2005).
    Article  Google Scholar 

    72.
    Nørgaard-pedersen, N. et al. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover. Paleoceanography 18, 1–19 (2003).
    Article  Google Scholar 

    73.
    Stein, R. et al. The last deglaciation event in the eastern central Arctic. Ocean Sci. 264, 692–696 (1994).
    CAS  Google Scholar 

    74.
    Poore, R. Z., Osterman, L., Hole, W. & Hole, W. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology 27, 759–762 (1999).
    CAS  Article  Google Scholar 

    75.
    Stein, R., Fahl, K. & Müller, J. Proxy reconstruction of Cenozoic Arctic Ocean sea ice history–from IRD to IP25. Polarforschung 82, 37–71 (2012).
    Google Scholar 

    76.
    Häggi, C. et al. Modern and late Pleistocene particulate organic carbon transport by the Amazon River: Insights from long-chain alkyl diols. Geochim. Cosmochim. Acta 262, 1–19 (2019).
    Article  CAS  Google Scholar 

    77.
    Breckenridge, A. The Tintah-Campbell gap and implications for glacial Lake Agassiz drainage during the Younger Dryas cold interval. Quat. Sci. Rev. 117, 124–134 (2015).
    Article  Google Scholar 

    78.
    Praetorius, S. et al. The role of Northeast Pacific meltwater events in deglacial climate change. Sci. Adv. 6, eaay2915 (2020).
    Article  Google Scholar 

    79.
    Boden, P., Fairbanks, G., Wright, D. & Burckle, H. High-resolution stable isotope records from southwest Sweden: the drainage of the Baltic Ice Lake and Younger Dryas ice margin oscillations. Paleoceanography 12, 39–49 (1997).
    Article  Google Scholar 

    80.
    Schell, T. M., Scott, D. B., Rochon, A. & Blasco, S. Late quaternary paleoceanography and paleo-sea ice conditions in the Mackenzie Trough and Canyon, Beaufort Sea. Can. J. Earth Sci. 45, 1399–1415 (2008).
    Article  Google Scholar 

    81.
    Andrews, J. T. & Dunhill, G. Early to mid-Holocene Atlantic water influx and deglacial meltwater events, Beaufort Sea slope, Arctic Ocean. Quat. Res. 61, 14–21 (2004).
    CAS  Article  Google Scholar 

    82.
    Winterfeld, M. et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost. Nat. Commun. 9, 3666 (2018).
    Article  CAS  Google Scholar 

    83.
    Meyer, V. D. et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming. Environ. Res. Lett. 14, 085003 (2019).
    CAS  Article  Google Scholar 

    84.
    Stein, R., Fahl, K., Dittmers, K., Nissen, F. & Stepanets, O. V. Holocene siliciclastic and organic carbon fluxes in the Oh and Yenisei estuaries and the adjacent inner Kara Sea: Quantification, variability, and paleoenvironmental implications. In Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability and Environmental Significance 401–432 (Elsevier, Amsterdam, 2003).

    85.
    Stein, R. & Fahl, K. The Kara Sea: distribution, sources, variability and burial of organic carbon. in The Organic Carbon Cycle in the Arctic Ocean 213–237 (Springer-Verlag, Berlin, 2004). .

    86.
    Pearce, C. et al. Heinrich 0 on the east Canadian margin: source, distribution, and timing. Paleoceanography 30, 1613–1624 (2015).
    Article  Google Scholar 

    87.
    Blaauw, M. & Christeny, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6, 457–474 (2011).
    Google Scholar 

    88.
    Blaauw, M. & Christen, J. A. Bacon Manual—v2.3.3 (2013).

    89.
    Reimer, P. J. et al. Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal Bp. Radiocarbon 55, 1869–1887 (2013).
    CAS  Article  Google Scholar 

    90.
    Brown, T. A. & Belt, S. T. Novel tri- and tetra-unsaturated highly branched isoprenoid (HBI) alkenes from the marine diatom Pleurosigma intermedium. Org. Geochem. 91, 120–122 (2016).
    CAS  Article  Google Scholar 

    91.
    Boon, J. J. et al. Black Sea sterol—a molecular fossil for dinoflagellate blooms. Nature 277, 125–127 (1979).
    CAS  Article  Google Scholar 

    92.
    Versteegh, G., Bosch, H. & De Leeuw, J. Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a critical review. Org. Geochem. 27, 1–13 (1997).
    CAS  Article  Google Scholar 

    93.
    Rampen, S. W. et al. Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction. Geochim. Cosmochim. Acta 84, 204–216 (2012).
    CAS  Article  Google Scholar 

    94.
    Stein, R. & Macdonald, R. W. The Organic Carbon Cycle in the Arctic Ocean (Springer-Verlag, Berlin, 2004).

    95.
    Wu, J. et al. Biomarker data of sediment core ARA04C/37, Beaufort Sea, Arctic Ocean. PANGAEA https://doi.org/10.1594/PANGAEA.915048 (2020).

    96.
    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).
    Article  Google Scholar  More

  • in

    Light environments affect herbivory patterns but not reproductive performance of a multivoltine specialist moth, Pareuchaetes pseudoinsulata

    1.
    Muth, N. Z., Kluger, E. C., Levy, J. H., Edwards, M. J. & Niesenbaum, R. A. Increased per capita herbivory in the shade: necessity, feedback, or luxury consumption?. Ecoscience 15, 182–188 (2008).
    Article  Google Scholar 
    2.
    Karolewski, P., Giertych, M. J., Żmuda, M., Jagodziński, A. M. & Oleksyn, J. Season and light affect constitutive defenses of understory shrub species against folivorous insects. Acta Oecol. 53, 19–32 (2013).
    ADS  Article  Google Scholar 

    3.
    Łukowski, A., Giertych, M. J., Zadworny, M., Mucha, J. & Karolewski, P. Preferential feeding and occupation of sunlit leaves favors defense response and development in the flea beetle, Altica brevicollis coryletorum: a pest of Corylus avellana. PLoS ONE 10(4), e0126072 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Uyi, O. O., Zachariades, C., Heshula, L. U. & Hill, M. P. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant. PLoS ONE 13(1), e0190700 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Moore, L. V., Myers, J. H. & Eng, R. Western tent caterpillars prefer the sunny side of the tree but why?. Oikos 51, 321–326 (1988).
    Article  Google Scholar 

    6.
    Sipura, M. & Tahvanainen, J. Shading enhances the quality of willow leaves to leaf beetles: but does it matter?. Oikos 91, 550–558 (2000).
    Article  Google Scholar 

    7.
    Henriksson, J. et al. Effects of host shading on consumption and growth of the geometrid Epirrita autumnata: interactive roles of water, primary and secondary compounds. Oikos 103, 3–16 (2003).
    CAS  Article  Google Scholar 

    8.
    Diaz, R. et al. Differential performance of Tropical Soda Apple and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae) in open and shaded habitats. Environ. Entomol. 40, 1437–1447 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Uyi, O. O., Uwagiahanor, B. I. & Ejomah, A. J. The nocturnal larvae of a specialist folivore prefer Chromolaena odorata (L.) foliage from a sunny environment, but does it matter?. Arthropod Plant Interact. 11, 603–611 (2017).
    Article  Google Scholar 

    10.
    Moran, P. J. & Showler, A. T. Plant responses to water deficit and shade stresses in pigweed and their influence on feeding and oviposition by the beet armyworm (Lepidoptera: Noctuidae). Environ. Entomol. 34, 929–937 (2005).
    Article  Google Scholar 

    11.
    Uyi, O. O., Zachariades, C., Hill, M. P. & Conlong, D. The nocturnal larvae of a specialist folivore perform better on Chromolaena odorata leaves from a shaded environment. Entomol. Exp. Appl. 156, 187–199 (2015).
    Article  Google Scholar 

    12.
    Bryant, J. P., Chapin, F. S. III. & Klein, D. R. Carbon: nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357–368 (1983).
    CAS  Article  Google Scholar 

    13.
    Bryant, J. P., Chapin, F. S. III., Reichardt, P. B. & Clausen, T. P. Response of winter chemical defence in Alaska paper birch and green alder to manipulation of plant carbon: nutrient balance. Oecologia 72, 510–514 (1987).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Herms, D. A. & Mattson, W. J. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67, 283–335 (1992).
    Article  Google Scholar 

    15.
    Barber, N. A. & Marquis, R. J. Light environment and impact of foliage quality on herbivorous insect attack and bird predation. Oecologia 166, 401–409 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Barbehenn, R. V., Chen, Z., Karowe, D. N. & Spickard, A. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob. Change Biol. 10, 1565–1575 (2004).
    ADS  Article  Google Scholar 

    17.
    Barbehenn, R. V., Karowe, D. N. & Spickard, A. Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars. Oecologia 140, 86–95 (2004).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Caswell, H., Reed, F. C., Stephenson, S. N. & Werner, P. Photosynthetic pathways and selective herbivory: a hypothesis. Am. Nat. 107, 465–480 (1973).
    CAS  Article  Google Scholar 

    19.
    Nokelainen, O., van Ripley, B. S., Bergen, E., Osborne, C. P. & Brakefield, P. M. Preference for C4 shade grasses increases hatchling performance in the butterfly, Bicyclus safitza. Ecol. Evol. 6, 5246–5255 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Uyi, O. O. & Igbinosa, I. B. The status of Chromolaena odorata and its biocontrol in West Africa,in Zachariades, C., Strathie, L.W., Day, M.D. & Muniappan, R. (eds). Proceedings of the Eighth International Workshop on Biological Control and Management of Chromolaena odorataand other Eupatorieae, Nairobi, Kenya, 1–2 November 2010. Agricultural Research Council—Plant Protection Research Institute, Pretoria, South Africa, pp. 86–98 (2013).

    21.
    Uyi, O. O. et al. Chromolaena odorata invasion in Nigeria: a case for coordinated biological control. Manag. Biol. Invasions 5, 377–393 (2014).
    Article  Google Scholar 

    22.
    Zachariades, C., Day, M., Muniappan, R. & Reddy, G. V. P. Chromolaena odorata (L.) King and Robinson (Asteraceae). In Biological Control of Tropical Weeds Using Arthropods (eds Muniappan, R. et al.) 130–160 (Cambridge University Press, Cambridge, 2009).
    Google Scholar 

    23.
    Zhang, L. L. & Wen, D. Z. Structural and physiological responses of two invasive weeds, Mikania micrantha and Chromolaena odorata to contrasting light and soil water conditions. J. Plant. Res. 122, 69–79 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Muniappan, R., Sundaramurthy, V. T. & Virktamath, C. A. Distribution of Chromolaena odorata (Asteraceae) and bionomics and utilization of food by Pareuchaetes pseudoinsulata (Lepidoptera: Arctiidae) in India, in: Delfosse, E. S. (ed) Proceedings of the Seventh International Symposium on Biological Control of Weeds, 6–11 March, 1988, Rome, Italy, pp 401–409 (1989).

    25.
    Cruttwell, R. E. The insects of Eupatorium odoratum L. in Trinidad and their potential as agents for biological control. PhD Dissertation, University of the West Indies, Trinidad (1972).

    26.
    Cock, M. W. J. & Holloway, J. D. The history of, and prospects for, the biological control of Chromolaena odorata (Compositae) by Pareuchaetes pseudoinsulata Rego Barros and allies (Lepidoptera, Arctiidae). Bull. Entomol. Res. 72, 193–205 (1982).
    Article  Google Scholar 

    27.
    Uyi, O., Egbon, I. N. & Igbinosa, I. B. Discovery of, and studies on Pareuchaetes pseudoinsulata (Lepidoptera: Arctiidae) in southern Nigeria. Int. J. Trop. Insect Sci. 31, 199–203 (2011).
    Article  Google Scholar 

    28.
    Seibert, T. F. Biological control of the weed, Chromolaena odorata (Asteraceae) by Pareuchaetes pseudoinsulata (Lepidoptera: Arctiidae) in Guam and the Northern Mariana Islands. Entomophaga 35, 531–539 (1989).
    Article  Google Scholar 

    29.
    Braimah, H., Ekyem, S.O., Issah, U.S. & Mochiah, M. Social perceptions and ecological impacts following biological control of Chromolaena odorataby Pareuchaetes pseudoinsulatain the forest region of Ghana, in: Zachariades, C., Strathie, L. W., Day, M. D. & Muniappan, R. (eds) Proceedings of the Eighth International Workshop on Biological Control and Management of Chromolaena odorataand other Eupatorieae, Nairobi, Kenya, 1–2 November 2010.Agricultural Research Council—Plant Protection Research Institute, Pretoria, South Africa pp. 110–116 (2013).

    30.
    Olckers, T. & Hulley, P. E. Host specificity tests on leaf-feeding insects: aberrations from the use of excised leaves. African Entomol. 2, 68–70 (1994).
    Google Scholar 

    31.
    Blossey, B. & Nötzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83, 887–889 (1995).
    Article  Google Scholar 

    32.
    Friberg, M. & Wiklund, C. Butterflies and plants: preference/performance studies in relation to plant size and the use of intact plants vs. cuttings. Entomol. Exp. Appl. 160, 201–208 (2016).
    CAS  Article  Google Scholar 

    33.
    Uyi, O. O., Hill, M. P. & Zachariades, C. Variation in host plant has no effect on the performance and fitness-related traits of the specialist herbivore, Pareuchaetes insulata. Entomol. Exp. Appl. 153, 64–75 (2014).
    Article  Google Scholar 

    34.
    Bakr, E. M. A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. J. Appl. Entomol. 129, 173–175 (2005).
    Article  Google Scholar 

    35.
    implications for insect defoliation. Steinbauer, M.J. Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus). Austral. For. 64, 32–37 (2001).
    Article  Google Scholar 

    36.
    Watanabe, F. S. & Olsen, S. R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. Proc. 29, 677–678 (1965).
    ADS  CAS  Article  Google Scholar 

    37.
    Marais, J. P. Evaluation of acid hydrolysis procedures for the rapid determination of total non-structural carbohydrates in plant species. Agrochemophysica 11, 1–3 (1979).
    CAS  Google Scholar 

    38.
    Lockett, C. J., Dhileepan, K., Robinson, M. & Pukallus, K. J. Impact of a biological control agent, Chiasmia assimilis, on prickly acacia (Acacia nilotica ssp. indica) seedlings. Biol. Control 62, 183–188 (2012).
    Article  Google Scholar 

    39.
    Mäntylä, E., Klemola, T., Sirkiä, P. & Laaksonen, T. Low light reflectance may explain the attraction of birds to defoliated trees. Behav. Ecol. 19, 325–330 (2008).
    Article  Google Scholar 

    40.
    Uyi, O. O., Zachariades, C. & Hill, M. P. The life history traits of the arctiine moth Pareuchaetes insulata, a biological control agent of Chromolaena odorata in South Africa. Afr. Entomol. 22, 611–624 (2014).
    Article  Google Scholar 

    41.
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Łukowski, A., Giertych, M. J., Walczak, U., Baraniak, E. & Karolewski, P. Light conditions affect the performance of Yponomeuta evonymellus on its native host Prunus padus and the alien Prunus serotina. Bull. Entomol. Res. 107, 208–216 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Behmer, S. T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, Princeton, 2012).
    Google Scholar 

    45.
    Lee, K. P., Cory, J. S., Wilson, K., Raubenheimer, D. & Simpson, S. J. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. R. Soc. Lond. B 273, 823–829 (2006).
    CAS  Google Scholar 

    46.
    Clissold, F. J. The biomechanics of chewing and plant fracture: mechanisms and implications. Adv. Insect Physiol. 34, 317–372 (2007).
    Article  Google Scholar 

    47.
    Raubenheimer, A. D., Lee, K. P. & Simpson, S. J. Does Bertrand’s rule apply to macronutrients?. Proc. R. Soc. B 272, 2429–2434 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Boersma, M. & Elser, J. J. Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87, 1325–1330 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Zehnder, C. & Hunter, M. D. More is not necessarily better: the impact of limiting and excessive nutrients on herbivore population growth rates. Ecol. Entomol. 34, 535–543 (2009).
    Article  Google Scholar 

    50.
    Lee, K. P., Behmer, S. T., Simpson, S. J. & Raubenheimer, D. A geometric analysis of nutrient regulation in the generalist caterpillar, Spodoptera littoralis (Boisduval). J. Insect Physiol. 48, 655–665 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Clissold, F. J., Sanson, G. D. & Read, J. The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. J. Anim. Ecol. 75, 1000–1013 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Daily mapping of Australian Plague Locust abundance

    1.
    Stige, L. C., Chan, K.-S., Zhang, Z., Frank, D. & Stenseth, N. C. Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. Proc. Natl. Acad. Sci. 104, 16188–16193 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Walker, F. Catalogue of the Specimens of Dermaptera Saltatoria in Collection of the British Museum. Part III. 485–594 (British Museum (Natural History), 1870).

    3.
    Wright, D. E. Analysis of the development of major plagues of the Australian plague locust Chortoicetes terminifera (Walker) using a simulation model. Aust. J. Ecol. 12, 423–437 (1987).
    Article  Google Scholar 

    4.
    Deveson, E. D. & Walker, P. W. Not a one-way trip: Historical distribution data for Australian plague locusts support frequent seasonal exchange migrations. J. Orthoptera Res. 14, 91–105 (2005).
    Article  Google Scholar 

    5.
    Wang, H. Quantitative assessment of Australian plague locust habitats in the inland of eastern Australia using RS and GIS technologies in Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI vol. 9239 92390D (International Society for Optics and Photonics, 2014).

    6.
    Chapuis, M.-P. et al. Challenges to assessing connectivity between massive populations of the Australian plague locust. Proc. R. Soc. B Biol. Sci. 278, 3152–3160 (2011).
    Article  Google Scholar 

    7.
    Murray, D. A. H., Clarke, M. B. & Ronning, D. A. Estimating invertebrate pest losses in six major Australian grain crops. Aust. J. Entomol. 52, 227–241 (2013).
    Article  Google Scholar 

    8.
    Zhang, L., Lecoq, M., Latchininsky, A. & Hunter, D. Locust and grasshopper management. Annu. Rev. Entomol. 64, 15–34 (2019).
    CAS  PubMed  Article  Google Scholar 

    9.
    Adriaansen, C., Woodman, J., Deveson, E. & Drake, V. The Australian Plague Locust: risk and response. Environ. Hazards Risks Disasters Biol https://doi.org/10.1016/B978-0-12-394847-2.00005-X (2016).
    Article  Google Scholar 

    10.
    Farrow, R. A. & Longstaff, B. C. Comparison of the annual rates of increase of locusts in relation to the incidence of plagues. Oikos 2, 207–222 (1986).
    Article  Google Scholar 

    11.
    Wardhaugh, K. G. The effects of temperature and moisture on the inception of diapause in eggs of the Australian plague locust, Chortoicetes terminifera Walker (Orthoptera: Acrididae). Aust. J. Ecol. 5, 187–191 (1980).
    Article  Google Scholar 

    12.
    Wardhaugh, K. G. Diapause strategies in the Australian plague locust (Chortoicetes terminifera Walker). In The evolution of insect life cycles 89–104 (Springer, Berlin, 1986).
    Google Scholar 

    13.
    Clark, D. P. Flights after sunset by the Australian plague locust, Chortoicetes terminifera (Walker) and their significance in dispersal and migration. Aust. J. Zool. 19, 159–176 (1971).
    Article  Google Scholar 

    14.
    Farrow, R. A. Origin and decline of the 1973 plague locust outbreak in central western New South Wales. Aust. J. Zool. 25, 455–489 (1977).
    Article  Google Scholar 

    15.
    Wang, B. et al. Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Sci. Total Environ. 668, 947–957 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Veran, S. et al. Modeling spatiotemporal dynamics of outbreaking species: influence of environment and migration in a locust. Ecology 96, 737–748 (2015).
    PubMed  Article  Google Scholar 

    17.
    Maywald, G., Kriticos, D., Sutherst, R. & Bottomley, W. DYMEX model builder version 3: user’s guide. (2007).

    18.
    Meynard, C. N. et al. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Change Biol. 23, 4739–4749 (2017).
    ADS  Article  Google Scholar 

    19.
    Piou, C. et al. Coupling historical prospection data and a remotely-sensed vegetation index for the preventative control of Desert locusts. Basic Appl. Ecol. 14, 593–604 (2013).
    Article  Google Scholar 

    20.
    Tratalos, J. A., Cheke, R. A., Healey, R. G. & Stenseth, N. C. Desert locust populations, rainfall and climate change: Insights from phenomenological models using gridded monthly data. Clim. Res. 43, 229–239 (2010).
    Article  Google Scholar 

    21.
    Tian, H. et al. Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China. Proc. Natl. Acad. Sci. 108, 14521–14526 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Croft, S., Chauvenet, A. L. & Smith, G. C. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE 12, e0176339 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Woodman, J. D. High-temperature survival is limited by food availability in first-instar locust nymphs. Aust. J. Zool. 58, 323–330 (2011).
    Article  Google Scholar 

    25.
    Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    26.
    Yee, T. W. & Mitchell, N. D. Generalized additive models in plant ecology. J. Veg. Sci. 2, 587–602 (1991).
    Article  Google Scholar 

    27.
    Bučas, M. et al. Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea: Evaluating the scope for predictive mapping using different modelling approaches. ICES J. Mar. Sci. 70, 1233–1243 (2013).
    Article  Google Scholar 

    28.
    Heersink, D. K. et al. Statistical modeling of a larval mosquito population distribution and abundance in residential Brisbane. J. Pest Sci. 89, 267–279 (2016).
    Article  Google Scholar 

    29.
    Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16, 309–330 (2001).
    Article  Google Scholar 

    30.
    Tozer, C. R., Kiem, A. S. & Verdon-Kidd, D. C. On the uncertainties associated with using gridded rainfall data as a proxy for observed. Hydrol. Earth Syst. Sci. 16, 1481–1499 (2012).
    ADS  Article  Google Scholar 

    31.
    Gregg, P. Development of the Australian Plague Locust, Chortoicetes terminifera, in relation to weather I. Effects of constant temperature and humidity. Aust. J. Entomol. 22, 247–251 (1983).
    Article  Google Scholar 

    32.
    Pruess, K. P. Day-degree methods for pest management. Environ. Entomol. 12, 613–619 (1983).
    Article  Google Scholar 

    33.
    McVicar, T. R., Briggs, P. R., King, E. A. & Raupach, M. R. A review of predictive modelling from a natural resource management perspective: the role of remote sensing of the terrestrial environment (CSIRO Land and Water CSIRO Earth Observation Centre, Canberra, 2003).
    Google Scholar 

    34.
    Grundy, M. J. et al. Soil and landscape grid of Australia. Soil Res. 53, 835–844 (2015).
    Article  Google Scholar 

    35.
    Cressie, N. & Wikle, C. K. Statistics for spatio-temporal data (John Wiley & Sons, New York, 2015).
    Google Scholar 

    36.
    James, G., Witten, D., Hastie, T. & Tibshirani, R. An introduction to statistical learning (Springer, Berlin, 2013).
    Google Scholar 

    37.
    Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. Gen. 135, 370–384 (1972).
    Article  Google Scholar 

    38.
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer-Verlag, Berlin, 2002). https://doi.org/10.1007/978-0-387-21706-2.
    Google Scholar 

    40.
    Wood, S. N., Goude, Y. & Shaw, S. Generalized additive models for large data sets. J. R. Stat. Soc. Ser. C Appl. Stat. 64, 139–155 (2015).
    MathSciNet  Article  Google Scholar 

    41.
    Clark, D. P. The influence of rainfall on the densities of adult Chortoicetes terminifera (Walker) in central western New South Wales, 1965–73. Aust. J. Zool. 22, 365–386 (1974).
    Article  Google Scholar 

    42.
    Shelford, V. E. The ecology of North America. Ecol. N. Am. 2, 2 (1963).
    Google Scholar 

    43.
    Deveson, E. D. Satellite normalized difference vegetation index data used in managing Australian plague locusts. J. Appl. Remote Sens. 7, 075096 (2013).
    ADS  Article  Google Scholar 

    44.
    Kuhnert, P. M. & Lucchesi, L. Vizumap: An R package for visualizing uncertainty in spatial data (Zenodo, Boca Raton, 2018). https://doi.org/10.5281/zenodo.1479951.
    Google Scholar 

    45.
    Lucchesi, L. R. & Wikle, C. K. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph rotation. Stat 6, 292–302 (2017).
    MathSciNet  Article  Google Scholar 

    46.
    Benfekih, L., Chara, B. & Doumandji-Mitiche, B. Influence of anthropogenic impact on the habitats and swarming risks of Dociostaurus maroccanus and Locusta migratoria (Orthoptera, Acrididae) in the Algerian Sahara and the semi-arid zone. J. Orthoptera Res. 11, 243–250 (2002).
    Article  Google Scholar 

    47.
    Štrumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41, 647–665 (2014).
    Article  Google Scholar 

    48.
    Escorihuela, M. J. et al. SMOS based high resolution soil moisture estimates for desert locust preventive management. Remote Sens. Appl. Soc. Environ. 11, 140–150 (2018).
    Google Scholar 

    49.
    Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).
    ADS  Article  Google Scholar 

    50.
    Hu, G. et al. Long-term seasonal forecasting of a major migrant insect pest: the brown planthopper in the Lower Yangtze River Valley. J. Pest Sci. 92, 417–428 (2019).
    Article  Google Scholar  More

  • in

    Data mining and model-predicting a global disease reservoir for low-pathogenic Avian Influenza (A) in the wider pacific rim using big data sets

    Study area
    The study area consists of the wider northern Pacific Rim area which is known to be an exchange frontier between diseases and cultures (Fig. 12,9). We followed methods outlined in5,11,12 and specifically13 drawing inference from predictions.
    The conducted international landscape investigation in this study area is described in a research workflow (Fig. 2), and it mainly consists of different steps: field work, open access data compilation, data cleaning and lab work, GIS mapping, data mining and prediction, reflection and inference, as further described below (for more clarifications or questions please contact authors).
    Figure 2

    Workflow of this study to obtain best-available AI data and to data mine and predict them with machine learning in a geographic information system (GIS) for best-possible predictions and inference for the Pacific Rim study area (IRD = Influenza Research Database; USDA = U.S. Department of Agriculture); for more details, model specifications etc. see manuscript text.

    Full size image

    Field work
    As part of the eASIA program the field sampling of AI was conducted in Russia and Japan primarily during the fall (August) 2016, 2017 and 2018. Fall is a season when birds finished breeding and started to migrate southwards to their wintering sites. Birds are known during that time to disperse relatively slowly along flyways10,12,14,15. Traditionally, this time period has the highest known prevalence of virus, thus far9 In Vietnam, the surveillance targeting domestic birds was conducted in summers and falls. Together with all eASIA participants, we extracted data from an agreeable compatible workflow and protocol that allowed for geo-referenced and time-referenced AI samples in the field. Hunters were not directly involved in the study (see permits for bird specimen details). In Russia, following their lab method protocol and according to standard procedures16,17 it resulted in 52 samples (10 LPAI presences) from years 2016 and 2017 with 13 unique locations. In Japan, their respective lab method protocol was followed (details in18) resulting in 203 samples from years 2016 and 2017 based on 5 unique locations. In Vietnam, the lab method protocol of Japan was followed (details in19) resulting in 1,182 samples (951 LPAI presences) from years 2016 and 2017 based on 102 unique locations. Finally, we were also able to obtain 407 samples (395 LPAI presences) for Mongolia for 27 unique locations, also following the protocol from Japan. Alaska was not part of field campaign but had data available through the IRD ‘flu’ database (see details below).
    All field data were compiled into one eASIA database for further analysis (Appendix 1), namely to carry out data mining, model-training and subsequent predictions with machine learning and geographic information system (GIS; details in9,10).
    Compilations of open access AI data
    To reach across the Pacific Rim for a wider and more robust inference, and to make a connection with North America and other available data, further AI data from Alaska were obtained from the IRD database online (https://www.fludb.org/brc/home.spg? Decorator = influenza). This resulted in 38,517 samples (448 low-path AI presences) from 1,175 unique locations. We then queried all these data for low-path AI strains which resulted in 110 strains and 40,837 samples from 157 host species entries that we used for this study (see Appendix 2 for details). To our knowledge, that is the biggest and most diverse AI database ever compiled and analysed for the Pacific Rim (see Herrick et al. 2013 for a first initial model and using all of AI).
    Data mining of low-path AI
    We queried the obtained data for the number of low-path AI strains, host species distribution, proportion of host species carrying a specific low-path AI strain, and prevalence.
    Compilations of open access GIS data layers for the study area
    GIS layers are used as predictors for model-predictions in the study area. Here we used 19 global GIS layers available from earlier research (Sriram and Huettmann unpublished https://www.earth-syst-sci-data-discuss.net/essd-2016-65/; Table 1). For polygon outlines we used data with our ArcGIS UAF campus license (FH). All GIS data layers were displayed for the study area as a Mercator projection using WGS84, decimal degrees coordinates (latitude and longitude) with a precision of 6 decimals (GPS and GIS, a real world precision of 5 decimals).
    Table 1 List of GIS Predictors used in this study to data mine and predict low path (LP) Avian Influenza (AI) *
    Full size table

    GIS mapping and data processing
    We used commercial and open source GIS softwares (ArcGIS, QGIS) to operate, map and overlay all data. We imported the AI Data from ASCII table (MS Excel) into a shapefile layer of AI, and overlaid them with 19 environmental GIS layers we had available from compiled global data sets. This resulted into a data cube that is analyzed with data mining and for modeling and predictions.
    Modeling and predictions
    The resulting data cube was imported into SPM 8.2 (https://www.minitab.com/en-us/products/spm/) and then modeled and predicted. We ran a stochastic grading boosting (TreeNet) algorithm for best-possible predictions and inference (20see also9,10,12,21; for an R implementation see22). As outlined in9,12,21 we started with default settings for this powerful software as they are known to achieve best inference, as taken from the predictive performance13. Models then used 6 Maximum nodes per tree, 10 Cases as a Terminal Node Minimum, 200 trees to converge, a balanced class weight and a ten-fold cross-validation (a repeated 90% training vs 10% testing setting) optimizing on the ROC. To avoid overfitting we used an auto learn rate and a 50% subsampling. The resulting tree model was stored as a grove and applied to an equally-spaced lattice of the predictors (excluding species information). The maps were presented in GIS with a resolution of a 5 km pixel size (Appendix 3).
    Model assessment data
    We were able to obtain two alternative data set on AI for an assessment of our predictions. The Influenza Research Database (IRD) has an Asian subset (n = 28,205 and 19,405) comparable to our work, and which was used to confront our predictions for the study area.
    Although the U.S. Department of Agriculture (USDA) has a U.S-wide AI survey data set (3,589 for Alaska), it actually lacks geo-referencing with coordinates (just done by counties etc.) and just includes H5, H7 Avian Flu columns; presumably done trying to protect the industry. We still used this best-available alternative data set for further assessment of the model predictions.
    Ethics statement
    For this eASIA project oropharyngeal and cloacal samples in Russia were collected according to the “Federal Law on Hunting and Sharing of Hunting Resources of Russian Federation # 209-ФЗ” and with the permissions of local governments in hunting regions during each hunting seasons. Hunted birds were provided for sampling by licensed hunters to our group during expeditions.
    Fecal samples in Japan were collected with the permission of the municipality managing the sampling areas and Hokkaido University. Fecal samples in Mongolia were collected with the permission of the State Central Veterinary Laboratory, Mongolia. These samples were transferred to Japan under the permissions of the Animal Quarantine Service, Japan (27douken560-2, 28douken563-6, 29douken 683–2). Swab samples in Vietnam were collected with the permission of the Department of Animal Health, Vietnam. These samples were transferred to Japan under the permissions of the Animal Quarantine Service, Japan (27douken560-3, 28douken563-1, 28douken563-4, 28douken563-5, 29douken683-3, 29douken683-4).
    Data reported in the Influenza Research Database (IRD) were from samples obtained and submitted under NIH-funded avian influenza surveillance collection efforts (CEIRS) and are publicly available at: www.fludb.org . This work was supported in part by a National Institute of Allergy and Infectious Disease Centers of Excellence in Influenza Research and Surveillance (CEIRS) award, Contract HHSN272201400008C (to Eric Bortz).
    For Alaska USDA data, wild bird samples primarily came from hunter-killed waterfowl, with voluntary participation from hunters. These sampling activities were covered under US Fish and Wildlife Service Federal Permit MB124992-0. More

  • in

    Cooperative rescue of a juvenile capuchin (Cebus imitator) from a Boa constrictor

    1.
    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).
    Article  Google Scholar 
    2.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    3.
    van Schaik, C. P., van Noordwijk, M. A., de Boer, R. J. & den Tonkelaar, I. The effect of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca fascicularis). Behav. Ecol. Sociobiol. 13, 173–181 (1983).
    Article  Google Scholar 

    4.
    Sterck, E. H. M., Watts, D. P. & van Schaik, C. P. The evolution of female social relationships in non-human primates. Behav. Ecol. Sociobiol. 41, 291–309 (1997).
    Article  Google Scholar 

    5.
    Isbell, L. A. The Fruit, the Tree, and the Serpet: Why We See So Well (Harvard University Press, Cambridge, 2009).
    Google Scholar 

    6.
    Seyfarth, R. M., Cheney, D. L. & Marler, P. Vervet monkey alarm calls: semantic communication in a free-ranging primate. Anim. Behav. 28, 1070–1094 (1980).
    Article  Google Scholar 

    7.
    Crofoot, M. C. Why Mob? Reassessing the costs and benefits of primate predator harassment. Folia Primatol. 83, 252–273 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Carlson, N. V., Healy, S. D. & Templeton, C. N. Mobbing. Curr. Biol. 28, R1081–R1082 (2018).
    CAS  PubMed  Article  Google Scholar 

    9.
    Tórrez, L., Robles, N., González, A. & Crofoot, M. C. Risky business? Lethal attack by a jaguar sheds light on the costs of predator mobbing for capuchins (Cebus capucinus). Int. J. Primatol. 33, 440–446 (2012).
    Article  Google Scholar 

    10.
    Corrêa, H. K. M. & Coutinho, P. E. G. Fatal attack of a pit viper, Bothrops jararaca, on an infant buffy-tufted ear marmoset (Callithrix aurita). Primates 38, 215–217 (1997).
    Article  Google Scholar 

    11
    Foerster, S. Two incidents of venomous snakebite on juvenile blue and Sykes monkeys (Cercopithecus mitis stuhlmanni and C. m. albogularis). Primates 49, 300–303 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ferrari, S. F. & Beltrão-Mendes, R. Do snakes represent the principal predatory threat to callitrichids? Fatal attack of a viper (Bothrops leucurus) on a common marmoset (Callithrix jacchus) in the Atlantic Forest of the Brazilian Northeast. Primates 52, 207–209 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Rose, L. M. et al. Interspecific interactions between Cebus capucinus and other species: data from three Costa Rican sites. Int. J. Primatol. 24, 759–796 (2003).
    Article  Google Scholar 

    14.
    Perry, S., Manson, J. H., Dower, G. & Wikberg, E. White-faced capuchins cooperate to rescue a groupmate from a Boa constrictor. Folia Primatol. 74, 109–111 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    van Schaik, C. P. & van Noordwijk, M. A. The special role of male Cebus monkeys in predation avoidance and its effect on group composition. Behav. Ecol. Sociobiol. 24, 265–276 (1989).
    Article  Google Scholar 

    16.
    Fragaszy, D. M., Visalberghi, E. & Fedigan, L. M. The Complete Capuchin: The Biology of the Genus Cebus (Cambridge University Press, Cambridge, 2004).
    Google Scholar 

    17.
    Meno, W., Coss, R. G. & Perry, S. Development of snake-directed antipredator behavior by wild white-faced capuchin monkeys: I. Snake-species discrimination. Am. J. Primatol. 75, 281–291 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Fedigan, L. M. & Jack, K. M. Tracking neotropical monkeys in Santa Rosa: lessons from a regenerating Costa Rican dry forest. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D.) 165–184 (Springer, Berlin, 2012).
    Google Scholar 

    19.
    Campos, F. A. A synthesis of long-term environmental change in Santa Rosa, Costa Rica. In Primate Life Histories, Sex Roles, and Adaptability (eds Kalbitzer, U. & Jack, K. M.) 331–358 (Springer, Berlin, 2018).
    Google Scholar 

    20.
    Rose, L. M. Sex differences in diet and foraging behavior in white-faced capuchins (Cebus capucinus). Int. J. Primatol. 15, 95–114 (1994).
    Article  Google Scholar 

    21.
    Shields, W. M. Factors affecting nest and site fidelity in adirondack barn swallows (Hirundo rustica). Auk 101, 780–789 (1984).
    Article  Google Scholar 

    22.
    Teunissen, N., Kingma, S. A. & Peters, A. Predator defense is shaped by risk, brood value and social group benefits in a cooperative breeder. Behav. Ecol. 31, 761–771 (2020).
    Article  Google Scholar 

    23.
    Kennedy, R. A. W., Evans, C. S. & McDonald, P. G. Individual distinctiveness in the mobbing call of a cooperative bird, the noisy miner Manorina melanocephala. J. Avian Biol. 40, 481–490 (2009).
    Article  Google Scholar 

    24.
    Briones-Fourzán, P., Pérez-Ortiz, M. & Lozano-Álvarez, E. Defense mechanisms and antipredator behavior in two sympatric species of spiny lobsters, Panulirus argus and P. guttatus. Mar. Biol. 149, 227–239 (2006).
    Article  Google Scholar 

    25.
    Leuchtenberger, C., Almeida, S. B., Andriolo, A. & Crawshaw, P. G. Jaguar mobbing by giant otter groups. Acta Ethol. 19, 143–146 (2016).
    Article  Google Scholar 

    26.
    Graw, B. & Manser, M. B. The function of mobbing in cooperative meerkats. Anim. Behav. 74, 507–517 (2007).
    Article  Google Scholar 

    27.
    Boesch, C. The effects of leopard predation on grouping patterns in forest chimpanzees. Behaviour 117, 220–242 (1991).
    Article  Google Scholar 

    28.
    Pitman, R. L. et al. Humpback whales interfering when mammal-eating killer whales attack other species: Mobbing behavior and interspecific altruism?. Mar. Mammal Sci. 33, 7–58 (2017).
    Article  Google Scholar 

    29.
    Gusset, M. Banded together: a review of the factors favouring group living in a social carnivore, the banded mongoose Mungos mungo (Carnivora: Herpestidae). Mammalia 71, 80–82 (2007).
    Article  Google Scholar 

    30.
    Johnson, C. & Norris, K. S. Delphinid social organisation and social behavior. In Dolphin Cognition and Behavior: a Comparative Approach (eds Schusterman, R. J. et al.) 335–346 (Lawrence Erlbaum Associates, Mahwah, 1986).
    Google Scholar 

    31.
    Hollis, K. L. & Nowbahari, E. Toward a behavioral ecology of rescue behavior. Evol. Psychol. 11, 647–664 (2013).
    PubMed  Article  Google Scholar 

    32.
    Nowbahari, E. & Hollis, K. L. Distinguishing between rescue, cooperation and other forms of altruistic behavior. Commun. Integr. Biol. 3, 77–79 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Gursky, S. Predation on a wild spectral tarsier (Tarsius spectrum) by a snake. Folia Primatol. 73, 60–62 (2002).
    PubMed  Article  Google Scholar 

    34.
    Quintino, E. P. & Bicca-Marques, J. C. Predation of Alouatta puruensis by Boa constrictor. Primates 54, 325–330 (2013).
    PubMed  Article  Google Scholar 

    35.
    Teixeira, D. S. et al. Fatal attack on black-tufted-ear marmosets (Callithrix penicillata) by a Boa constrictor: a simultaneous assault on two juvenile monkeys. Primates 57, 123–127 (2016).
    PubMed  Article  Google Scholar 

    36.
    Cisneros-Heredia, D. F., León-Reyes, A. & Seger, S. Boa constrictor predation on a Titi monkey, Callicebus discolor. Neotrop. Primates 13, 11–12 (2005).
    Article  Google Scholar 

    37.
    Chapman, C. A. Boa constrictor predation and group response in white-faced Cebus monkeys. Biotropica 18, 171–172 (1986).
    Article  Google Scholar 

    38.
    Ferrari, S. F., Pereira, W. L. A., Santos, R. R. & Veiga, L. M. Fatal attack of a Boa constrictor on a bearded saki (Chiropotes satanas utahicki). Folia Primatol. 75, 111–113 (2004).
    PubMed  Article  Google Scholar 

    39.
    Heymann, E. W. A field observation of predation on a moustached tamarin (Saguinus mystax) by an anaconda. Int. J. Primatol. 8, 193–195 (1987).
    Article  Google Scholar 

    40.
    Burney, D. A. Sifaka predation by a large boa. Folia Primatol. 73, 144–145 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Pennisi, E. How did cooperative behavior evolve. Science 309, 93 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Foster, K. R., Wenseleers, T. & Ratnieks, F. L. W. Kin selection is the key to altruism. Trends Ecol. Evol. 21, 57–60 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Fedigan, L. M. & Jack, K. M. Neotropical primates in a regenerating Costa Rican dry forest: a comparison of howler and capuchin population patterns. Int. J. Primatol. 22, 689–713 (2001).
    Article  Google Scholar 

    44.
    Gould, L., Fedigan, L. M. & Rose, L. M. Why be vigilant? The case of the alpha animal. Int. J. Primatol. 18, 401–414 (1997).
    Article  Google Scholar 

    45.
    Schoof, V. A. M. & Jack, K. M. Rank-based differences in fecal androgen and cortisol levels in male white-faced capuchins, Cebus capucinus, in the Santa Rosa Sector, Area de Conservacíon Guanacaste, Costa Rica. Am. J. Primatol. 71, 76 (2009).
    Google Scholar 

    46.
    Schaebs, F. S., Perry, S. E., Cohen, D., Mundry, R. & Deschner, T. Social and demographic correlates of male androgen levels in wild white-faced capuchin monkeys (Cebus capucinus). Am. J. Primatol. 79, 79 (2017).
    Article  CAS  Google Scholar 

    47.
    Jack, K. M. et al. Hormonal correlates of male life history stages in wild white-faced capuchin monkeys (Cebus capucinus). Gen. Comp. Endocrinol. 195, 58–67 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Godoy, I., Vigilant, L. & Perry, S. E. Inbreeding risk, avoidance and costs in a group-living primate, Cebus capucinus. Behav. Ecol. Sociobiol. 70, 1601–1611 (2016).
    Article  Google Scholar 

    49.
    Wikberg, E. C. et al. Inbreeding avoidance and female mate choice shape reproductive skew in capuchin monkeys (Cebus capucinus imitator). Mol. Ecol. 26, 653–667 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Van Schaik, C. P. Why are diurnal primates living in groups?. Behaviour 87, 120–144 (1983).
    Article  Google Scholar 

    51.
    Tello, N. S., Huck, M. & Heymann, E. W. Boa constrictor attack and successful group defence in moustached tamarins, Saguinus mystax. Folia Primatol. 73, 146–148 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Gardner, C. J., Radolalaina, P., Rajerison, M. & Greene, H. W. Cooperative rescue and predator fatality involving a group-living strepsirrhine, Coquerel’s sifaka (Propithecus coquereli), and a Madagascar ground boa (Acrantophis madagascariensis). Primates 56, 127–129 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Eberle, M. & Kappeler, P. M. Mutualism, reciprocity, or kin selection? Cooperative rescue of a conspecific from a boa in a nocturnal solitary forager the gray mouse lemur. Am. J. Primatol. 70, 410–414 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Ribeiro-Júnior, M. A., Ferrari, S. F., Lima, J. R. F., da Silva, C. R. & Lima, J. D. Predation of a squirrel monkey (Saimiri sciureus) by an Amazon tree boa (Corallus hortulanus): even small Boids may be a potential threat to small-bodied platyrrhines. Primates 57, 317–322 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Wiens, F. & Zitzmann, A. Predation on a wild slow loris (Nycticebus coucang) by a reticulated python (Python reticulatus). Folia Primatol. 70, 362–364 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Raktondravony, D., Goodman, S. M. & Soarimalala, V. Predation on Hapalemur griseus griseus by Boa manditra (Boidae) in the littoral forest of eastern Madagascar. Folia Primatol. 69, 405–408 (1998).
    Article  Google Scholar  More

  • in

    Implication of single year seasonal sampling to genetic diversity fluctuation that coordinates with oceanographic dynamics in torpedo scads near Taiwan

    1.
    Dunn, D. C., Boustany, A. M. & Halpin, P. N. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12, 110–119 (2011).
    Article  Google Scholar 
    2.
    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).
    Article  Google Scholar 

    3.
    Wedding, L. M. et al. Geospatial approaches to support pelagic conservation planning and adaptive management. Endang. Species Res. 30, 1–9 (2016).
    Article  Google Scholar 

    4.
    André, C. et al. Population structure in Atlantic cod in the eastern North Sea-Skagerrak-Kattegat: early life stage dispersal and adult migration. BMC Res. Notes 9, 1 (2016).
    Article  Google Scholar 

    5.
    Canales-Aguirre, C. B., Ferrada-Fuentes, S., Galleguillos, R. & Hernández, C. E. Genetic structure in a small pelagic fish coincides with a marine protected area: seascape genetics in Patagonian Fjords. PLoS ONE 11, e0160670. https://doi.org/10.1371/journal.pone.0160670 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Eggers, F. et al. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats. PLoS ONE 9, e111985 (2014).
    ADS  Article  Google Scholar 

    7.
    Saraux, C. et al. Small pelagic fish dynamics: a review of mechanisms in the Gulf of Lions. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 52–61 (2019).
    ADS  Article  Google Scholar 

    8.
    Silva, A. et al. Adult-mediated connectivity and spatial population structure of sardine in the Bay of Biscay and Iberian coast. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 62–74 (2019).
    ADS  Article  Google Scholar 

    9.
    Sreenivasan, P. Observations on the fishery and biology of Megalaspis cordyla (Linnaeus) at Vizhinjam. Indian J. Fish. 25, 122–140 (1978).
    Google Scholar 

    10.
    Nakabō, T. Fishes of Japan: With Pictorial Keys to the Species Vol. 1 (Tokai University Press, Tokyo, 2002).
    Google Scholar 

    11.
    Shao, K. T. Taiwan Fish Database. WWW Web electronic publication. https://fishdb.sinica.edu.tw. Accessed October 20, 2019.

    12.
    Sreenivasan, P. Observations on the food and feeding habits of the Ttorpedo trevally Megalaspis cordyla (Linnaeus) from Vizhinjam bay. Indian J. Fish. 21, 76–84 (1974).
    Google Scholar 

    13.
    Hu, J., Kawamura, H., Hong, H. & Qi, Y. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. J. Oceanogr. 56, 607–624 (2000).
    Article  Google Scholar 

    14.
    Gallagher, S. J. et al. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. Paleoceanography https://doi.org/10.1029/2008PA001660 (2009).
    Article  Google Scholar 

    15.
    Gallagher, S. J. et al. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach. Prog. Earth Planet. Sci. 2, 17 (2015).
    ADS  Article  Google Scholar 

    16.
    Jan, S., Wang, J., Chern, C.-S. & Chao, S.-Y. Seasonal variation of the circulation in the Taiwan Strait. J. Mar. Syst. 35, 249–268 (2002).
    Article  Google Scholar 

    17.
    Winans, G. A. Geographic variation in the milkfish Chanos chanos I. Biochemical evidence. Evolution 34, 558–574 (1980).
    CAS  PubMed  Google Scholar 

    18.
    Bell, L., Moyer, J. & Numachi, K. Morphological and genetic variation in Japanese populations of the anemonefish Amphiprion clarkii. Mar. Biol. 72, 99–108 (1982).
    Article  Google Scholar 

    19.
    Richardson, B. Distribution of protein variation in skipjack tuna (Katsumonuspelamis) from the central and south-west Pacific. Aust. J. Mar. Freshw. Res. 34, 231–251 (1983).
    CAS  Article  Google Scholar 

    20.
    Rosenblatt, R. H. & Waples, R. S. A genetic comparison of allopatric populations of shore fish species from the eastern and central Pacific Ocean: dispersal or vicariance?. Copeia 1986, 275–284 (1986).
    Article  Google Scholar 

    21.
    McMillan, W. O. & Palumbi, S. R. Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc. R. Soc. B 260, 229–236 (1995).
    ADS  CAS  Article  Google Scholar 

    22.
    Grant, W. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).
    Article  Google Scholar 

    23.
    Palumbi, S. R. & Wilson, A. C. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 44, 403–415 (1990).
    Article  Google Scholar 

    24.
    Ayala, F. J., Hedgecock, D., Zumwalt, G. S. & Valentine, J. W. Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution 27, 177–191 (1973).
    PubMed  Google Scholar 

    25.
    Benzie, J. A. & Williams, S. T. Genetic structure of giant clam (Tridacna maxima) populations from reefs in the Western Coral Sea. Coral Reefs 11, 135–141 (1992).
    ADS  Article  Google Scholar 

    26.
    Williams, S. T. & Benzie, J. A. H. Genetic uniformity of widely separated populations of the coral reef starfish Linckia laevigata from the East Indian and West Pacific Oceans, revealed by allozyme electrophoresis. Mar. Biol. 126, 99–107 (1996).
    Article  Google Scholar 

    27.
    Arnaud, S., Bonhomme, F. & Borsa, P. Mitochondrial DNA analysis of the genetic relationships among populations of scad mackerel (Decapterus macarellus, D. macrosoma, and D. russelli) in South-East Asia. Mar. Biol. 135, 699–707. https://doi.org/10.1007/s002270050671 (1999).
    CAS  Article  Google Scholar 

    28.
    Huang, C., Weng, C. & Lee, S. Distinguishing two types of gray mullet, Mugil cephalus L. (Mugiliformes: Mugilidae), by using glucose-6-phosphate isomerase (GPI) allozymes with special reference to enzyme activities. J. Comp. Physiol. B 171, 387–394 (2001).
    CAS  Article  Google Scholar 

    29.
    McCafferty, S. et al. Historical biogeography and molecular systematics of the Indo-Pacific genus Dascyllus (Teleostei: Pomacentridae). Mol. Ecol. 11, 1377–1392 (2002).
    CAS  Article  Google Scholar 

    30.
    Benzie, J. A. & Williams, S. T. Genetic structure of giant clam (Tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51, 768–783 (1997).
    PubMed  Google Scholar 

    31.
    Fauvelot, C. & Planes, S. Understanding origins of present-day genetic structure in marine fish: biologically or historically driven patterns? Mar. Biol. 141, 773–788 (2002).
    Article  Google Scholar 

    32.
    Rajanna, K., Benakappa, S., Anjanayappa, H. & Honnananda, B. Maturation and spawning of the horse mackerel, Megalaspis cordyla (Linnaeus) from Mangalore waters. Environ. Ecol. 30, 41–44 (2012).
    Google Scholar 

    33.
    Song, N., Jia, N., Yanagimoto, T., Lin, L. & Gao, T. Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712 (2013).
    CAS  Article  Google Scholar 

    34.
    Niu, S.-F. et al. Demographic history and population genetic analysis of Decapterus maruadsi from the northern South China Sea based on mitochondrial control region sequence. PeerJ 7, e7953 (2019).
    Article  Google Scholar 

    35.
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).
    ADS  CAS  Article  Google Scholar 

    36.
    Lavery, S., Moritz, C. & Fielder, D. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol. Ecol. 5, 557–570 (1996).
    Article  Google Scholar 

    37.
    Planes, S. Geographic structure and gene flow in the manini (convict surgeonfish, Acanthurustriostegus) in the South Central Pacific. Genetics and Evolution of Aquatic Organisms, 113–122 (1994).

    38.
    Ocean Data Bank of the Ministry of Science and Technology, Republic of China. https://www.odb.ntu.edu.tw/.

    39.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  Article  Google Scholar 

    40.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    41.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol. 4, vey016 (2018).
    Article  Google Scholar 

    42.
    Damerau, M., Freese, M. & Hanel, R. Multi-gene phylogeny of jacks and pompanos (Carangidae), including placement of monotypic vadigo Campogramma glaycos. J. Fish Biol. 92, 190–202 (2018).
    CAS  Article  Google Scholar 

    43.
    Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).
    CAS  Article  Google Scholar 

    44.
    Múrias dos Santos, A., Cabezas, M. P., Tavares, A. I., Xavier, R. & Branco, M. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32, 627–628. https://doi.org/10.1093/bioinformatics/btv636 (2015).
    CAS  Article  PubMed  Google Scholar 

    45.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
    CAS  Article  Google Scholar 

    46.
    Global Administrative Areas (2012). GADM database of Global Administrative Areas. https://www.gadm.org.

    47.
    QGIS.org (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.org.

    48.
    Adobe Inc. (2019). Adobe Illustrator. https://adobe.com/products/illustrator. More