More stories

  • in

    Environmental drivers of megafauna and hominin extinction in Southeast Asia

    1.
    Détroit, F. et al. A new species of Homo from the Late Pleistocene of the Philippines. Nature 568, 181–186 (2019).
    PubMed  Article  ADS  CAS  Google Scholar 
    2.
    Kaifu, Y. Archaic hominin populations in Asia before the arrival of modern humans: their phylogeny and implications for the “Southern Denisovans”. Curr. Anthropol. 58, S418–S433 (2017).
    Article  Google Scholar 

    3.
    Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Louys, J., Curnoe, D. & Tong, H. Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 152–173 (2007).
    Article  Google Scholar 

    5.
    Klein, R. G. Stable carbon isotopes and human evolution. Proc. Natl Acad. Sci. USA 110, 10470–10472 (2013).
    CAS  PubMed  Article  ADS  Google Scholar 

    6.
    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).
    CAS  PubMed  Article  ADS  Google Scholar 

    7.
    Heaney, L. R. in Tropical Forests and Climate (ed. Myers, N.) 53–61 (Springer, 1991).

    8.
    Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quat. Sci. Rev. 24, 2228–2242 (2005).
    Article  ADS  Google Scholar 

    9.
    Louys, J. & Turner, A. Environment, preferred habitats and potential refugia for Pleistocene Homo in Southeast Asia. C. R. Palevol 11, 203–211 (2012).
    Article  Google Scholar 

    10.
    Dennell, R. & Roebroeks, W. An Asian perspective on early human dispersal from Africa. Nature 438, 1099–1104 (2005).
    CAS  PubMed  Article  ADS  Google Scholar 

    11.
    van den Bergh, G. D., de Vos, J. & Sondaar, P. Y. The Late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 385–408 (2001).
    Article  Google Scholar 

    12.
    Steiper, M. E. Population history, biogeography, and taxonomy of orangutans (Genus: Pongo) based on a population genetic meta-analysis of multiple loci. J. Hum. Evol. 50, 509–522 (2006).
    PubMed  Article  Google Scholar 

    13.
    Patel, R. P. et al. Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist. R. Soc. Open Sci. 3, 160350 (2016).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    14.
    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl Acad. Sci. USA 106, 11188–11193 (2009).
    CAS  PubMed  Article  ADS  Google Scholar 

    15.
    Sun, X., Li, X., Luo, Y. & Chen, X. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 301–316 (2000).
    Article  Google Scholar 

    16.
    Louys, J. & Meijaard, E. Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J. Biogeogr. 37, 1432–1449 (2010).
    Google Scholar 

    17.
    Raes, N. et al. Historical distribution of Sundaland’s dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl Acad. Sci. USA 111, 16790–16795 (2014).
    CAS  PubMed  Article  ADS  Google Scholar 

    18.
    Handiani, D. et al. Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3. Clim. Past Discuss. 8, 5359–5387 (2012).
    Article  ADS  Google Scholar 

    19.
    Chabangborn, A., Brandefelt, J. & Wohlfarth, B. Asian monsoon climate during the Last Glacial Maximum: palaeo-data–model comparisons: LGM Asian monsoon climate. Boreas 43, 220–242 (2014).
    Article  Google Scholar 

    20.
    Levin, N. E. et al. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. Geol. S. Am. S. 446, 215–235 (2008).
    Google Scholar 

    21.
    Cerling, T. E., Hart, J. A. & Hart, T. B. Stable isotope ecology in the Ituri Forest. Oecologia 138, 5–12 (2004).
    PubMed  Article  ADS  Google Scholar 

    22.
    Secord, R., Wing, S. L. & Chew, A. Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning. Paleobiology 34, 282–300 (2008).
    Article  Google Scholar 

    23.
    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour? Folia Primatol. 91, 219–227 (2020).
    PubMed  Article  Google Scholar 

    24.
    Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).
    Article  ADS  Google Scholar 

    25.
    Sarr, A. C. et al. Subsiding Sundaland. Geology 47, 119–122 (2019).
    Article  ADS  Google Scholar 

    26.
    Di Nezio, P. N. et al. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanogr 31, 866–894 (2016).
    Article  ADS  Google Scholar 

    27.
    Roberts, P. et al. Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea. Nat. Commun. 11, 2068 (2020).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    28.
    Barker, G. & Farr, L. E. Archaeological Investigations in the Niah Caves, Sarawak, The Archaeology of Niah Caves, Sarawak (McDonald Institute Monographs, 2016).

    29.
    Piper, P. J. & Rabett, R. J. Hunting in a tropical rainforest: evidence from the Terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).
    Article  Google Scholar 

    30.
    Steiner, C. C., Houck, M. L. & Ryder, O. A. Genetic variation of complete mitochondrial genome sequences of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Conserv. Genet. 19, 397–408 (2018).
    CAS  Article  Google Scholar 

    31.
    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).
    PubMed  Article  Google Scholar 

    32.
    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the Anthropocene. Sci. Adv. 4, e1701422 (2018).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    33.
    Craig, H. The geochemistry of the stable carbon isotope. Geochim. Cosmochim. Acta 3, 53–92 (1953).
    CAS  Article  ADS  Google Scholar 

    34.
    Smith, B. N. & Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).
    Article  Google Scholar 

    36.
    Sponheimer, M. et al. Do “savanna” chimpanzees consume C4 resources? J. Hum. Evol. 51, 128–133 (2006).
    CAS  PubMed  Article  Google Scholar 

    37.
    Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).
    CAS  Article  ADS  Google Scholar 

    38.
    Codron, J. et al. Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc. R. Soc. Lond. B 279, 2433–2441 (2012).
    Google Scholar 

    39.
    Crowley, B. E. et al. Extinction and ecology retreat in a community of primates. Proc. R. Soc. Lond. B 279, 3597–3605 (2012).
    Google Scholar 

    40.
    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).
    CAS  Article  Google Scholar 

    41.
    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).
    Article  Google Scholar 

    42.
    Pearcy, R. W. & Pfitsch, W. A. Influence of sunflecks on the δ13C of Adenocaulon bicolor plants occurring in contrasting forest understory microsites. Oecologia 86, 457–462 (1991).
    PubMed  Article  ADS  Google Scholar 

    43.
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).
    Article  Google Scholar 

    44.
    Ehleringer, J. R., Rundel, P. W. & Nagy, K. A. Stable isotopes in physiological ecology and food web research. Trends Ecol. Evol. 1, 42–45 (1986).
    CAS  PubMed  Article  Google Scholar 

    45.
    van der Merwe, N. J. & Medina, E. Photosynthesis and 13C/12C ratios in Amazonian rainforests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).
    Article  ADS  Google Scholar 

    46.
    Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006).
    CAS  Article  Google Scholar 

    47.
    Gonfiantini, R., Gratziu, S. & Tongiorgi, E. in Isotopes and Radiation in Soil Plant Nutrition Studies (Technical Report Series No. 206) (ed. Joint FAO/IAEA Division of Atomic Energy in Agriculture) 405–410 (Isotope Atomic Energy Commission, 1965).

    48.
    Flanagan, L. B., Comstock, J. P. & Ehleringer, J. R. Comparison of modelled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiol. 96, 588–596 (1991).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Yakir, D., Berry, J. A., Giles, L. & Osmond, C. B. Isotopic heterogeneity of water in transpiring leaves: Identification of the component that controls the δ18O of atmospheric O2 and CO2. Plant Cell Environ. 17, 73–80 (1994).
    CAS  Article  Google Scholar 

    50.
    Sheshshayee, M. S. et al. Oxygen isotope enrichment (Δ18O) as a measure of time-averaged transpiration rate. J. Exp. Bot. 56, 3033–3039 (2005).
    CAS  PubMed  Article  Google Scholar 

    51.
    Buchmann, N. & Ehleringer, J. R. CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies. Agric. For. Meteorol. 89, 45–58 (1998).
    Article  ADS  Google Scholar 

    52.
    Buchmann, N., Guehl, J. M., Barigah, T. S. & Ehleringer, J. R. Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110, 120–131 (1997).
    CAS  PubMed  Article  ADS  Google Scholar 

    53.
    da Silveira, L., Sternberg, L., Mulkey, S. S. & Joseph Wright, S. Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56 (1989).
    PubMed  Article  ADS  Google Scholar 

    54.
    McCarroll, D. & Loader, N. J. in Isotopes in Palaeonvironmental Research (ed. Leng, M. J.) 67–116 (Springer, 2006).

    55.
    Carter, M. L. & Bradbury, M. W. Oxygen isotope ratios in primate bone carbonate reflect amount of leaves and vertical stratification in the diet. Am. J. Primatol. 78, 1086–1097 (2016).
    CAS  PubMed  Article  Google Scholar 

    56.
    Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).
    CAS  Article  ADS  Google Scholar 

    57.
    Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl Acad. Sci. USA 103, 11201–11205 (2006).
    CAS  PubMed  Article  ADS  Google Scholar 

    58.
    Lee-Thorp, J. et al. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proc. Natl Acad. Sci. USA 109, 20369–20372 (2012).
    CAS  PubMed  Article  ADS  Google Scholar 

    59.
    Roberts, P. et al. Fruits of the forest: Human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene ( More

  • in

    Roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra Flueck. trees

    1.
    Rodd, T. & Stackhouse, J. Tree: A Visual Guide (University of California Press, California, 2008).
    Google Scholar 
    2.
    Thulin, M. Boswellia sacra. The IUCN Red List of Threatened Species 1998: e.T34533A9874201. (1998).

    3.
    Gebrehiwot, K., Muys, B., Haile, M. & Mitloehner, R. Introducing Boswellia papyrifera (Del.) Hochst and its non-timber forest product, frankincense. Int. For. Rev. 5, 348–353 (2003).
    Google Scholar 

    4.
    Tolera, M. et al. Resin secretory structures of Boswellia papyrifera and implications for frankincense yield. Ann. Bot. 111, 61–68 (2013).
    PubMed  Article  Google Scholar 

    5.
    Khan, A. L. et al. Endogenous phytohormones of frankincense producing Boswellia sacra tree populations. PLoS ONE 13, e0207910 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Environment Society of Oman. Annual report 2014. 53 (2014). Available at: https://www.eso.org.om/index/images/file/2016-03/ESO_2014_Annual_Report_English.pdf. (Accessed: 17th August 2020)

    7.
    Bari, R. & Jones, J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009).
    CAS  PubMed  Article  Google Scholar 

    8.
    Miller, B., Madilao, L. L., Ralph, S. & Bohlmann, J. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in sitka spruce. Plant Physiol. 137, 369–382 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    El Atta, H. A., Aref, I. M. & Khalil, S. A. Increased gum arabic production after infestation of acacia senegal with Aspergillus flavus and Pseudomonas pseudoalcaligenes transmitted by Agrilus nubeculosus. Afr. J. Biotechnol. 10, 7166–7173 (2011).
    Google Scholar 

    10.
    Evert, R. F. & Eichhorn, S. E. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body (John Wiley & Sons, New York, 2006).
    Google Scholar 

    11.
    Miyamoto, K. Physiological and biochemical studies on exudation of gum polysaccharides in plants. Regul. Plant Growth Dev. 50, 2–11 (2015).
    CAS  Google Scholar 

    12.
    Cabrita, P. A model for resin flow. In Plant cell and tissue differentiation and secondary metabolites 1–28 (Springer, Cham, 2019).
    Google Scholar 

    13.
    Kuroda, K. & Shimaji, K. Traumatic resin canal formation as a marker of xylem growth. For. Sci. 29, 653–659 (1983).
    Google Scholar 

    14.
    Krekling, T., Vincent, R. F., Berryman, A. A. & Christiansen, E. The structure and development of polyphenolic parenchyma cells in Norway spruce (Picea abies) bark. Flora 195, 354–369 (2000).
    Article  Google Scholar 

    15.
    Nagy, N. E., Franceschi, V. R., Solheim, H., Krekling, T. & Christiansen, E. Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits. Am. J. Bot. 87, 302–313 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Zeneli, G., Krokene, P., Christiansen, E., Krekling, T. & Gershenzon, J. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol. 26, 977–988 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Hudgins, J. W., Christiansen, E. & Franceschi, V. R. Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol. 23, 361–371 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Hudgins, J. W. & Franceschi, V. R. Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol. 135, 2134–3149 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Shain, L. Stem defense against pathogens. In Plant Stems: Physiology and Functional Morphology (ed. Gartner, B. L.) 383–406 (Academic Press, New York, 1995).
    Google Scholar 

    20.
    Yang, Y.-X., Ahammed, G., Wu, C., Fan, S. & Zhou, Y.-H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr. Protein Pept. Sci. 16, 450–461 (2015).
    CAS  PubMed  Article  Google Scholar 

    21.
    Hudgins, J. W., Ralph, S. G., Franceschi, V. R. & Bohlmann, J. Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224, 865–877 (2006).
    CAS  PubMed  Article  Google Scholar 

    22.
    Zhao, T. et al. The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies. Phytochemistry 71, 1332–1341 (2010).
    CAS  PubMed  Article  Google Scholar 

    23.
    Pieterse, C. M. J. & Van Loon, L. C. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4, 52–58 (1999).
    CAS  PubMed  Article  Google Scholar 

    24.
    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).
    CAS  PubMed  Article  Google Scholar 

    25.
    Derksen, H., Rampitsch, C. & Daayf, F. Signaling cross-talk in plant disease resistance. Plant Sci. 207, 79–87 (2013).
    CAS  PubMed  Article  Google Scholar 

    26.
    Thaler, J. S., Humphrey, P. T. & Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17, 260–270 (2012).
    CAS  PubMed  Article  Google Scholar 

    27.
    Saniewski, M., Nowacki, J. & Czapski, J. The effect of methyl jasmonate on ethylene production and ethylene-forming enzyme activity in tomatoes. J. Plant Physiol. 129, 175–180 (1987).
    CAS  Article  Google Scholar 

    28.
    Yi, Xu. et al. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6, 1077–1085 (1994).
    Article  Google Scholar 

    29.
    Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Métraux, J. P. & Broekaert, W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Creelman, R. A. & Mullet, J. E. Biosysnthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381 (1997).
    CAS  PubMed  Article  Google Scholar 

    31.
    Sudha, G. & Ravishankar, G. A. Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid. Acta Physiol. Plant. 25, 249–256 (2003).
    CAS  Article  Google Scholar 

    32.
    Kunkel, B. N. & Brooks, D. M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325–331 (2002).
    CAS  PubMed  Article  Google Scholar 

    33.
    Telewski, F. W., Wakefield, A. H. & Jaffe, M. J. Computer-assisted image analysis of tissues of ethrel-treated Pinus taeda seedlings. Plant Physiol. 72, 177–181 (1983).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Yamamoto, F., Kozlowski, T. T. & Wolter, K. E. Effect of flooding on growth, stem anatomy, and ethylene production of Pinus halepensis seedlings. Can. J. For. Res. 17, 69–79 (1987).
    CAS  Article  Google Scholar 

    35.
    Kusumoto, D. & Suzuki, K. Induction of traumatic resin canals in Cupressaceae by ethrel application. Mokuzaigakkaishi 47, 1–6 (2001).
    Google Scholar 

    36.
    Lawton, K. A., Potter, S. L., Uknes, S. & Ryals, J. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6, 581–588 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Kozlowski, G., Buchala, A., Plant, J. M. P. & Métraux, J. P. Methyl jasmonate protects Norway spruce seedlings against Pythium ultimum Trow. Physiol. Mol. Plant Pathol. 55, 53–58 (1999).
    CAS  Article  Google Scholar 

    38.
    Arango-Velez, A. et al. Differences in defence responses of Pinus contorta and Pinus banksiana to the mountain pine beetle fungal associate Grosmannia clavigera are affected by water deficit. Plant Cell Environ. 39, 726–744 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Krokene, P., Nagy, N. E. & Solheim, H. Methyl jasmonate and oxalic acid treatment of Norway spruce: Anatomically based defense responses and increased resistance against fungal infection. Tree Physiol. 28, 29–35 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Krokene, P., Nagy, N. E. & Krekling, T. Traumatic resin ducts and polyphenolic parenchyma cells in conifers. In Induced Plant Resistance to Herbivory 147–169 (Springer, Berlin, 2008). https://doi.org/10.1007/978-1-4020-8182-8_7.
    Google Scholar 

    41.
    WMO. World Weather Information Service. World Weather Information Service (2019). Available at: https://worldweather.wmo.int/en/city.html?cityId=113. (Accessed: 22nd August 2020)

    42.
    Abeles, F. B., Morgan, P. W. & Saltveit, M. E. Ethylene in plant biology (Elsevier Inc, Amsterdam, 2012). https://doi.org/10.1016/C2009-0-03226-7.
    Google Scholar 

    43.
    Yamamoto, F., Sakata, T. & Terazawa, K. Growth, morphology, stem anatomy, and ethylene production in flooded Alnus japonica seedlings. IAWA J. 16, 47–59 (1995).
    Article  Google Scholar 

    44.
    Du, S., Sugano, M., Tsushima, M., Nakamura, T. & Yamamoto, F. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation. J. Plant Res. 117, 171–174 (2004).
    CAS  PubMed  Article  Google Scholar 

    45.
    Wilkes, J., Dale, G. T. & Old, K. M. Production of ethylene by Endothia gyrosa and Cytospora eucalypticola and its possible relationship to kino vein formation in Eucalyptus maculata. Physiol. Mol. Plant Pathol. https://doi.org/10.1016/0885-5765(89)90024-6 (1989).
    Article  Google Scholar 

    46.
    Popp, M. P., Johnson, J. D. & Lesney, M. S. Changes in ethylene production and monoterpene concentration in slash pine and loblolly pine following inoculation with bark beetle vectored fungi. Tree Physiol. 15, 807–812 (1995).
    CAS  Article  Google Scholar 

    47.
    Yamamoto, F. & Kozlowski, T. Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy and ethylene production of Pinus densiflora seedlings. J. Exp. Bot. 38, 293–310 (1987).
    CAS  Article  Google Scholar 

    48.
    Heijari, J. et al. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomol. Exp. Appl. 115, 117–124 (2005).
    CAS  Article  Google Scholar 

    49.
    Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A. & Raskin, I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3, 809–818 (1991).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Enyedi, A. J., Yalpani, N., Silverman, P. & Raskin, I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus (systemic acquired resistance/pathogenesis-related proteins/glucosyltransferase/sigaI transduction). Plant Biol. 89, 2 (1992).
    Google Scholar 

    51.
    Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M. & Dong, X. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12, 2175–2190 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Kozlowski, G. & Métraux, J. P. Infection of Norway spruce (Picea abies (L.) Karst.) seedlings with Pythium irregulare Buism. and Pythium ultimum Trow.: histological and biochemical responses. Eur. J. Plant Pathol. 104, 225–234 (1998).
    CAS  Article  Google Scholar 

    53.
    Davis, J. M. et al. Pathogen challenge, salicylic acid, and jasmonic acid regulate expression of chitinase gene homologs in pine. Mol. Plant-Microbe Interact. 15, 380–387 (2002).
    CAS  PubMed  Article  Google Scholar 

    54.
    O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J. & Klee, H. J. Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J. 25, 315–323 (2001).
    PubMed  Article  Google Scholar 

    55.
    Doares, S. H., Narváez-Vpsquez, J., Conconi, A. & Ryan, C. A. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108, 1741–1742 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Dekebo, A., Zewdu, M. & Dagne, E. Volatile oils of frankincense from Boswellia papyrifera. Bull. Chem. Soc. Ethiop. 13, 93–96 (1999).
    CAS  Article  Google Scholar 

    57.
    GHCN. Global Historical Climatology Network (GHCN) | National Centers for Environmental Information (NCEI) formerly known as National Climatic Data Center (NCDC). (2020).

    58.
    Ahmed, A. E. M. et al. Effects of ethephon and methyl jasmonate on physicochemical properties of Acacia seyal var. seyal (L.) gum produced in Sudan. Food Hydrocoll. 90, 413–420 (2019).
    CAS  Article  Google Scholar  More

  • in

    Permafrost dynamics and the risk of anthrax transmission: a modelling study

    In this section, we first present the general formulation of our anthrax transmission model following both a deterministic and a stochastic approach. The latter seems particularly suitable in this case because of its ability to capture the dynamics of discrete events furthering pathogen spread, especially in the case of a small host population or episodic disease transmission. Then, we illustrate the methods used to derive conditions for the establishment of sustained disease transmission, in particular considering seasonal variations of environmental forcings and herding practice.
    The anthrax transmission model
    Our formulation builds on a compartmental model describing the epidemiological dynamics that affect a target population (composed of susceptible and infected individuals) being exposed to environmental contamination. We focus on domestic herbivores because they are both the most at risk and the most socio-economically valuable for Arctic communities. We thus neglect any direct interaction between infected carcasses and carnivores or scavengers, and consider environmental spores as the only source of infection (i.e. by ingestion while herds graze). As little is known yet on how age and sex of the animals may influence anthrax transmission, we suppose that all animals are equally vulnerable to the infection.
    Let S(t), I(t) and R(t) be the total abundances of susceptible, infected and temporarily immune animals at time t, respectively, and let H be the total size of the animal population. Differently from previous formulations, we introduce two different reservoirs of spores. The first (with abundance (B_1 (t))) accounts for fresh spores that are released after the death of infected hosts and that are immediately available on the soil surface. As these spores infiltrate, are washed away or get buried, they enter the second reservoir (with abundance (B_2 (t))), which describes long-term storage in the soil. Anthrax transmission can thus be described by the following system of ordinary differential equations:

    $$begin{aligned} frac{dS}{dt}&= mu (H-S) -F(t)S +rho R end{aligned}$$
    (1)

    $$begin{aligned} frac{dI}{dt}&=sigma F(t)S -(mu +alpha ) I end{aligned}$$
    (2)

    $$begin{aligned} frac{dR}{dt}&= (1-sigma )F(t)S – (mu +rho ) R end{aligned}$$
    (3)

    $$begin{aligned} frac{dB_1}{dt}&=theta alpha frac{I}{A} -(delta _1+chi ) B_1 end{aligned}$$
    (4)

    $$begin{aligned} frac{dB_2}{dt}&= chi B_1 -delta _2 B_2 end{aligned}$$
    (5)

    As for susceptible animals (Eq. 1), we assume that pastoralist practices keep herd size under controlled demographic growth, with (mu H) being the constant recruitment rate compensating the natural (non disease-induced) mortality occurring at rate (mu). Susceptible animals may become infected at a rate expressed by the total force of infection, F(t), which will be described in details later. A fraction (sigma) of animals that have been exposed to anthrax spores develops symptoms and enters the infected compartment I (Eq. 2). Once infected, symptomatic animals may die as a result of the anthrax infection at rate (alpha), or die for other causes not related to the disease at rate (mu). The remaining fraction of exposed animals ((1-sigma), e.g. animals that have been exposed to lower doses of spores) may not exhibit symptom and develop a temporary immunity38. As these individuals do not shed spores, we assume that they enter directly the immune compartment R (Eq. 3). These animals lose their immunity and return to the susceptible class at rate (rho). When infected animals die of anthrax disease, spores proliferate in the host carcass. We assume that each death produces a constant number (theta) of spores, which are then released from the carcass and contaminate the surrounding environment, whose areal extent is A (Eq. 4). Both (B_1 (t)) and (B_2 (t)) are environmental densities of spores per unit area (# spores m(^{-2})). The freshly released spores decay at a rate (delta _1), or may be removed from the surface soil layer and stored in the active layer reservoir at a rate (chi) (Eq. 5). The latter rate thus conceptually encapsulates the combined effect of infiltration, runoff, and the burying of infected carcasses without appropriate sanitary precautions. Spores stored in the active layer decay at a rate (delta _2). The main processes involved in anthrax transmission dynamics have been conceptualized in Fig. 1.
    The force of infection F(t) , which controls the rate at which susceptible animals get infected, depends on the concentrations of spores ((B_1), (B_2)) and the rate of exposure ((beta (t))) according to

    $$begin{aligned} F(t)=beta (t)biggl (frac{B_1}{K+B_1}+eta (t)frac{B_2}{K+B_2}biggl ), end{aligned}$$
    (6)

    where the fraction (B_i/(K+B_i)) (for (i=1,2)) is the probability of becoming infected after being exposed to a certain density (B_i) of spores, K being the half-saturation constant (i.e. the dose of spores for which infection risk is half of its maximum value). As mentioned before, because of the processes involving active layer thaw, including e.g. cryoturbation, soil cracking, and solifluction, we assume that spores (B_2) may become available to grazing animals. The exposure to spores (B_2) is therefore influenced by active layer thawing, which has a significant seasonal component. The interaction between thawing and the release of spores is expressed through the parameter (eta (t)), which quantifies the probability of being exposed to spores (B_2) relatively to that of being exposed to freshly released spores ((B_1)). Because all the processes mentioned above are more likely to occur with thawing, we assume the probability (eta (t)) to be proportional to the depth of the active layer. We will later relax this simple assumption and investigate more complex relationships. We initially mimic the annual cycle of active layer thawing with a simple sinusoidal function (which also simplifies stability analysis via Floquet theory), so that (eta (t)) can be expressed as:

    $$begin{aligned} eta (t)=max biggl (0, ; epsilon _{eta } sin biggl (frac{2pi }{365}tbiggl )biggl ) end{aligned}$$
    (7)

    with (epsilon _{eta }) indicating the maximum amplitude of seasonal fluctuations, i.e. the maximum probability for susceptibles to be exposed to spores (B_2) relative to spores (B_1). Note that the soil thaws only during the warmer months, during which susceptibles are potentially exposed to spores (B_2) ((eta (t) >0)). Later on, we model more realistically the annual cycle of active layer depth, relating it to a real record of surface soil temperatures via the Stefan equation39, 40, so as to better analyze anthrax risk in the Arctic environment.
    Herding practices and grazing activity might vary seasonally as well, favouring increased exposure during warmer months. Therefore, we set

    $$begin{aligned} beta (t)= beta _0biggl (1+epsilon _{beta }sin biggl (frac{2 pi }{365} t+2pi phi biggl )biggl ) end{aligned}$$
    (8)

    where (beta _0) is the average value of (beta (t)), (epsilon _{beta }) is the maximum amplitude of seasonal grazing fluctuations, while (0le phi le 1) is the temporal lag between the phases of (beta (t)) and (eta (t)). Note that t is expressed in days.
    Finally, to reduce the number of model parameters, we introduce the dimensionless spore concentrations (B^{*}_1={B_1}/{K}) and (B^{*}_2={B_2}/{K}) (see equations S1–S5 in the Supplementary Information). This substitution allows the aggregation of parameters (theta), A, and K into a single one, namely (theta ^{*}=theta /(A K)).
    Figure 1

    Conceptual diagram of the anthrax transmission model described in Eqs. 1–5.

    Full size image

    Stochastic formulation
    To build a stochastic version of our anthrax transmission model, we rely on an extension of the classic exact stochastic simulator algorithm (SSA)41 that has recently been proposed to describe the Haiti cholera epidemic42. In the SSA, each animal is considered individually, i.e. the abundances of susceptible and infected animals are treated as discrete variables, ({mathscr {S}}(t)) and ({mathscr {I}}(t)). Accordingly, each individual experiences stochastic events (i.e. birth, death, infection, anthrax-related death, etc.; see Table 1) that occur at different rates, (e_k), where k indicates a generic event, depending on the state of the system. The overall occurrence of events is modeled as a Poisson point process whose rate e is defined as the sum of the rates of occurrence of all possible events, i.e.

    $$begin{aligned} e=sum limits _{k=1}^8 e_k . end{aligned}$$

    The inter-arrival time between two subsequent events is thus an exponentially distributed random variable with mean 1/e, and the next event to occur is selected according to the probability (e_k/e)41.
    Table 1 State transitions and rates of all possible events involving susceptible, infected and temporally immune (recovered) animals.
    Full size table

    The concentrations of anthrax spores, ({mathscr {B}}^{*}_1(t)) and ({mathscr {B}}^{*}_2(t)), are instead treated as continuous stochastic variables, because they are typically large enough to allow a continuous description. At each anthrax-related death event, ({mathscr {B}}^{*}_1(t)) undergoes a step increase of size (theta ^{*}), whereas between events spore concentrations are updated using the analytical solution of equations S4–S5 (see the Supplementary Information), with (theta ^{*}=0). In analogy with the deterministic formulation (Eq. 6), the force of infection reads

    $$begin{aligned} {mathscr {F}}(t)=beta (t)biggl (frac{{mathscr {B}}^{*}_1}{K+{mathscr {B}}^{*}_1}+eta (t)frac{{mathscr {B}}^{*}_2}{K+{mathscr {B}}^{*}_2}biggl ). end{aligned}$$

    Finally, a Monte Carlo approach, in which many different trajectories (realizations) of the SSA are evaluated, is used to study the long-term behaviour of the stochastic formulation of the anthrax transmission model.
    Derivation of disease transmission conditions
    Linear stability analysis of time-invariant systems
    Conditions for long-term pathogen invasion and sustained transmission (endemicity) are first derived in the absence of seasonal fluctuations. To that end, we consider the exposure rate and the probability to be infected by spores (B_2) to be constant over time (i.e. (beta (t)=const=beta _0) and (eta (t)=const=eta _0), respectively).
    Endemic anthrax transmission is possible if the disease-free equilibrium (DFE), a state of system 1–5 where ((S,I,R,B_1,B_2)=(H,0,0,0,0)), is asymptotically unstable. Linear stability analysis is used to determine a threshold condition based on the basic reproduction number43

    $$begin{aligned} R_{0}=frac{sigma beta _0 theta ^{*} Halpha (delta _2+eta _0chi )}{delta _2(mu + alpha )(delta _1+chi )} . end{aligned}$$
    (9)

    Specifically, the DFE is asymptotically stable when (R_01), unfeasible and unstable otherwise. Clearly, (R_0=1) represents a bifurcation point, where the two equilibria collide and exchange their stability (transcritical bifurcation). For further mathematical details, the reader may refer to the Supplementary Information.
    In the absence of the long-term spore reservoir (B_2), the basic reproduction number ({tilde{R}}_{0}) reads:

    $$begin{aligned} {tilde{R}}_{0}=frac{sigma beta _0 theta ^{*} H alpha }{(mu + alpha )(delta _1+chi )}. end{aligned}$$
    (10)

    This definition will become useful in the following section.
    Periodic systems: Floquet analysis
    Conditions for endemic anthrax transmission to occur in a seasonally forced environment can be studied by applying Floquet theory36,37. The disease-free equilibrium of model 1–5 subject to periodic fluctuations is unstable when its maximum Floquet exponent, (xi _{max}), is positive (for further theoretical details see Supplementary Information). To compare transmission dynamics between periodic and time-independent conditions we calculated also ({overline{R}}_0) by assuming (eta (t)) and (beta (t)) to be constant and equal to their average value. For any parameter set, ({overline{R}}_0) provides information regarding the stability conditions of the system if temporal fluctuations of parameters were neglected.
    Note that other parameters may vary seasonally: for instance, the spore transition rate (chi) and the decay rates of the spores stored in the two reservoirs may vary over time because of fluctuations in the environment, temperature, and freezing or thawing conditions. However, for the sake of simplicity, and also due to the lack of detailed information, in the following we limit our analyses on the coupled effect of (beta (t)) and (eta (t)) (Eqs. 8 and 7, respectively).
    Model setting and data
    Most of the model parameters have been estimated according to reference values proposed in the literature, as shown in Table 2. The average lifespan of domestic livestock varies widely (on average between 5 and 20 years, or even more44), depending on the animal species and herding management. Since animals with shorter life expectancy are more likely to be infected (see Supplementary Fig. S1), we assumed an average mortality rate of 0.2 years(^{-1}) as a representative case, i.e. domestic cattle with an average lifespan of 5 years. Given high mortality rates among infected herbivores14, we assumed that about 70% of infected animals develop symptoms. The remaining 30% grow a temporary immune response, ensuring animal immunity for about 6 months38. Typically, infection with anthrax bacterium leads symptomatic animals to death in about 14 days14. Then, as the spores are released from infected carcasses, we assumed they remain directly available for about 10 days before their removal from the soil surface15,32. Spores can be viable for decades14, thus we assumed an average viability of 10 years. Finally, we assumed that the probability (eta) can vary between 0 and 1, thus implying that animals can be equally exposed to the two spore reservoirs during the periods of maximum thawing. The parameters (beta) and (theta ^{*}), which quantify overall exposure and contamination, respectively, are critical in determining transmission dynamics. However, the lack of suitable epidemiological records prevents a proper estimation. Therefore, we explored different combinations of these parameters to compare different scenarios for anthrax transmission dynamics and discuss the results. While the maximum exposure rate (beta) has an easily interpretable physical meaning, the parameter (theta ^{*}) has a less immediate interpretation. We therefore illustrate results in terms of the corresponding ({tilde{R}}_{0}) (Eq. 10), that is, the basic reproduction number of the simplified model that does not account for the long-term spore reservoir (B_2). All simulations have been run with a total population size of (H=10^4) animals.
    Finally, we exploited real data on the current variability of climate and permafrost dynamics to investigate the relationship between warm years (and related deeper active layers) and the risk of anthrax outbreaks. To that end, we run model simulations using the stochastic formulation and realistic forcing. To obtain the latter, we exploited a 17-year-long (2002–2018) dataset of thawing depth available at the Samoylov monitoring site (Lena River delta, northern Siberia)45 which we combined with records of soil surface temperature ((hbox {T}_{S})). We then modeled the yearly cycle of the active layer depth Z via the Stefan equation39,40 according to which (Z=Esqrt{C_S}), where E is the edaphic factor taking into account soil properties and (C_S) is the cumulative soil surface temperature, calculated when the top soil temperature is above (0,^{circ }hbox {C}). The estimated value of parameter E is equal to (2.58,hbox {cm}^circ hbox {C}^{-0.5}), when Z is in cm and (C_S) in (^{circ }hbox {C}) (see Supplementary Fig. S2). To produce synthetic time series of active layer depth to be used in the simulations, we first calculated the mean annual soil surface temperature and fitted a normal probability distribution to the 17 records. We then produced 200-year-long time-series of daily soil surface temperature randomly sampling the mean annual temperature from the normal distribution and assigning an annual pattern obtained shifting the trajectory of the average year (i.e. the year whose daily values are the averages across the available record for that specific day). Soil surface temperature is then transformed into active layer depth using the calibrated Stefan equation. In each 200-year-long model simulation, we discarded the first 100 years, which were used as model spin-up period, and retained the last 100 years for analysis. We run 100 replicas of the process, thus obtaining a total of 10,000 years of simulated anthrax incidence. Note that a 100-year-long simulation should not be interpreted as a future projection for which the hypothesis of steady climate is hardly justifiable, but rather as a computational way to obtain a large sample of simulations exploring the current climate variability without the need to repeat the spin-up phase of the model.
    In the analysis described so far, we assumed the probability of contact between animals and spores (B_2), i.e. the parameter (eta (t)), to be proportional to the active layer depth. This implicitly assumes that the underground concentration of spores is uniform. However, as the potential sources of spores are on the surface, a negative gradient of spore concentration for increasing depth could be expected. Mathematically, this can be mimicked assuming a saturating relationship between the probability (eta (t)) and the active layer depth Z(t) so that the marginal increase of risk associated with a unit increase of Z decreases with the depth of the active layer itself. We have therefore explored two scenarios: in the first one (case 1) we assumed a linear relationship, i.e. (eta (t)propto Z(t)); in the second (case 2) a saturating relationship of the type (eta (t)propto Z(t)/(Z(t)+Z_0)), where (Z_0) represents the semi-saturation depth, which has been set to 0.2 m. We then scaled (eta (t)) so that the maximum value for case 1 is equal to 0.2. Accordingly, (eta (t)) in case 2 has been scaled so that it has the same long-term mean of case 1.
    Table 2 Parameter values and their literature sources.
    Full size table More

  • in

    Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment

    1.
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11:1485.
    Article  Google Scholar 

    4.
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Sun R, Zhang X-X, Guo X, Wang D, Chu H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem. 2015;88:9–18.
    CAS  Article  Google Scholar 

    6.
    Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337:349–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kumar A, Patel JS, Meena VS. Rhizospheric microbes for sustainable agriculture: an overview. In: Meena VS, editor. Role of rhizospheric microbes in soil: volume 1: stress management and agricultural sustainability. Singapore: Springer Singapore; 2018. p. 1–31.

    8.
    Yeates GW, Bongers T. Nematode diversity in agroecosystems. In: Paoletti MG, editor. Invertebrate biodiversity as bioindicators of sustainable landscapes. Amsterdam: Elsevier; 1999. p. 113–35.

    9.
    Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010;20:947–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Cai G, Chen D, Ding H, Pacholski A, Fan X, Zhu Z. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr Cycl Agroecosys. 2002;63:187–95.
    CAS  Article  Google Scholar 

    12.
    Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome. 2019;7:143.
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA. 2008;105:10583–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Bokulich NA, Mills DA. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol. 2013;79:2519–26.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. 2010;12:2165–79.
    CAS  PubMed  Google Scholar 

    16.
    Porazinska D, Giblin-Davis, Robin M, Faller LF, William K, Natsumi M, et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resour. 2009;9:1439–50.
    CAS  PubMed  Article  Google Scholar 

    17.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 2005;166:1063–8.
    Article  CAS  Google Scholar 

    21.
    Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N Phytol. 2010;188:223–41.
    Article  CAS  Google Scholar 

    22.
    Quast C, Pruesse E, Gerken J, Peplies J, Yarza P, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Article  Google Scholar 

    24.
    Dean R, Kan JALV, Pretorius ZA, Hammond‐Kosack KE, Pietro AD, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:804.
    PubMed Central  Article  Google Scholar 

    25.
    Wang F-H, Qiao M, Su J-Q, Chen Z, Zhou X, Zhu Y-G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ Sci Technol. 2014;48:9079–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45–e45.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:11.

    29.
    Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.

    30.
    Hines J, van der Putten WH, De Deyn GB, Wagg C, Voigt W, Mulder C, et al. Chapter four-Towards an integration of biodiversity–ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services. Adv Ecol Res. 2015;53:161–99.

    31.
    Menezes AB, Prendergast-Miller MT, Richardson AE, Toscas P, Farrell M, Macdonald LM, et al. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ Microbiol. 2015;17:2677–89.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    32.
    Heleno R, Devoto M, Pocock M. Connectance of species interaction networks and conservation value: Is it any good to be well connected? Ecol Indic. 2012;14:7–10.
    Article  Google Scholar 

    33.
    Ramírez-Flandes S, González B, Ulloa O. Redox traits characterize the organization of global microbial communities. Proc Natl Acad Sci USA. 2019;116:3630.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Pérez Castro S, Cleland EE, Wagner R, Sawad RA, Lipson DA. Soil microbial responses to drought and exotic plants shift carbon metabolism. ISME J. 2019;13:1776–87.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Zhang C, Song Z, Zhuang D, Wang J, Xie S, Liu G. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biol Fert Soils. 2019;55:229–42.
    CAS  Article  Google Scholar 

    36.
    Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem. 2015;88:137–47.
    CAS  Article  Google Scholar 

    37.
    García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett. 2016;19:554–63.
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome. 2013;1:22.
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Lu J, Yang F, Wang S, Ma H, Liang J, Chen Y. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium–like and Burkholderia pyrrocinia–like strains. Front Microbiol. 2017;8:2255.

    40.
    Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M, Bode HB, et al. Molecular keys to the janthinobacterium and duganella spp. interaction with the plant pathogen Fusarium graminearum. Front Microbiol. 2016;7:1668.

    41.
    Clay K, Leuchtmann A. Infection of woodland grasses by fungal endophytes. Mycologia. 1989;81:805–11.
    Article  Google Scholar 

    42.
    Huang X, Liu L, Wen T, Zhang J, Wang F, Cai Z. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol. 2016;100:5581–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Palleroni NJ. Pseudomonas. In: M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman, editors. Bergeyʼs Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc. in association with Bergey’s Manual Trust; 2015. p. 1–105.

    44.
    Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Mao Y, Li X, Smyth EM, Yannarell AC, Mackie RI. Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ Microbiol Rep. 2014;6:293–306.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80:1.
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Agnolucci M, Battini F, Cristani C, Giovannetti M. Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fert Soils. 2015;51:379–89.
    CAS  Article  Google Scholar 

    48.
    Levy A, Merritt AJ, Mayo MJ, Chang BJ, Abbott LK, Inglis TJJ. Association between Burkholderia species and arbuscular mycorrhizal fungus spores in soil. Soil Biol Biochem. 2009;41:1757–9.
    CAS  Article  Google Scholar 

    49.
    Li X, Rui J, Xiong J, Li J, He Z, Zhou J, et al. Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE. 2014;9:e112609.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Ragot SA, Kertesz MA, Mészáros É, Frossard E, Bünemann EK. Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol Ecol. 2016;93:fiw212.

    51.
    Gianfreda L. Enzymes of importance to rhizosphere processes. J Soil Sc Plant Nutr. 2015;15:283–306.
    CAS  Google Scholar 

    52.
    Su J-Q, Ding L-J, Xue K, Yao H-Y, Quensen J, Bai S-J, et al. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol. 2015;24:136–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Ratliff TJ, Fisk MC. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biol Biochem. 2016;94:61–9.
    CAS  Article  Google Scholar  More

  • in

    Relatives of rubella virus in diverse mammals

    1.
    Lambert, N., Strebel, P., Orenstein, W., Icenogle, J. & Poland, G. A. Rubella. Lancet 385, 2297–2307 (2015).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Zhou, Y., Ushijima, H. & Frey, T. K. Genomic analysis of diverse rubella virus genotypes. J. Gen. Virol. 88, 932–941 (2007).
    CAS  PubMed  Article  Google Scholar 

    3.
    Chen, J.-P., Strauss, J. H., Strauss, E. G. & Frey, T. K. Characterization of the rubella virus nonstructural protease domain and its cleavage site. J. Virol. 70, 4707–4713 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Perelygina, L. et al. Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog. 15, e1008080 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    DuBois, R. M. et al. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 493, 552–556 (2013).
    CAS  PubMed  Article  ADS  Google Scholar 

    6.
    McCarthy, M., Lovett, A., Kerman, R. H., Overstreet, A. & Wolinsky, J. S. Immunodominant T-cell epitopes of rubella virus structural proteins defined by synthetic peptides. J. Virol. 67, 673–681 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Maton, W. G. Some account of a rash liable to be mistaken for scarlatina. Med. Trans. R. Coll. Physicians 5, 149–165 (1815).
    Google Scholar 

    8.
    Cooper, L. Z. The history and medical consequences of rubella. Rev. Infect. Dis. 7, S2–S10 (1985).
    PubMed  Article  Google Scholar 

    9.
    Gregg, N. M. Congenital cataract following German measles in the mother. Aust. N. Z. J. Ophthalmol. 3, 35–46 (1941).
    Google Scholar 

    10.
    Parkman, P. D., Buescher, E. L. & Artenstein, M. S. Recovery of rubella virus from army recruits. Proc. Soc. Exp. Biol. Med. 111, 225–230 (1962).
    CAS  PubMed  Article  Google Scholar 

    11.
    Weller, T. H. & Neva, F. A. Propagation in tissue culture of cytopathic agents from patients with rubella-like illness. Proc. Soc. Exp. Biol. Med. 111, 215–225 (1962).
    Article  Google Scholar 

    12.
    Swan, C., Tostevin, A. L. & Black, G. H. Final observations on congenital defects in infants following infectious diseases during pregnancy, with special reference to rubella. Med. J. Aust. 2, 889–908 (1946).
    CAS  PubMed  Article  Google Scholar 

    13.
    Edmunds, W. J., Gay, N. J., Kretzschmar, M., Pebody, R. G. & Wachmann, H. The pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. Epidemiol. Infect. 125, 635–650 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Gonzales, J. A. et al. Association of ocular inflammation and rubella virus persistence. JAMA Ophthalmol. 137, 435–438 (2019).
    PubMed  Article  Google Scholar 

    15.
    Grant, G. B., Reef, S. E., Patel, M., Knapp, J. K. & Dabbagh, A. Progress in rubella and congenital rubella syndrome control and elimination — worldwide, 2000–2016. MMWR Morb. Mortal. Wkly. Rep. 66, 1256–1260 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Namuwulya, P. et al. Phylogenetic analysis of rubella viruses identified in Uganda, 2003–2012. J. Med. Virol. 86, 2107–2113 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Kretsinger, K., Strebel, P., Kezaala, R. & Goodson, J. L. Transitioning lessons learned and assets of the global polio eradication initiative to global and regional measles and rubella elimination. J. Infect. Dis. 216, S308–S315 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    19.
    Fahr, J. in Mammals of Africa. Vol. IV: Hedgehogs, Shrews and Bats (eds Happold, M. & Happold, D. C. D.) 380–383 (Bloomsbury, 2013).

    20.
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).
    Article  Google Scholar 

    21.
    O’Shea, T. J., Bogan, M. A. & Ellison, L. E. Monitoring Trends in Bat Populations of the United States and Territories: Status of the Science and Recommendations for the Future. Information and Technology Report USGS/BRD/ITR–2003–0003 (US Department of the Interior, US Geological Survey Washington, 2003).

    22.
    Landau, I. & Chabaud, A.-G. Description de Plasmodium cyclopsi n. sp. parasite du Microchirotère Hipposideros cyclops à Makokou (Gabon). Ann. Parasitol. Hum. Comp. 53, 247–253 (1978).
    CAS  PubMed  Article  Google Scholar 

    23.
    Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl Acad. Sci. USA 110, 17415–17419 (2013).
    CAS  PubMed  Article  ADS  Google Scholar 

    24.
    Michaux, J. R., Libois, R. & Filippucci, M.-G. So close and so different: comparative phylogeography of two small mammal species, the yellow-necked fieldmouse (Apodemus flavicollis) and the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity 94, 52–63 (2005).
    CAS  PubMed  Article  Google Scholar 

    25.
    Labuda, M. et al. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology 235, 138–143 (1997).
    CAS  PubMed  Article  Google Scholar 

    26.
    Klempa, B. et al. Complex evolution and epidemiology of Dobrava–Belgrade hantavirus: definition of genotypes and their characteristics. Arch. Virol. 158, 521–529 (2013).
    CAS  PubMed  Article  Google Scholar 

    27.
    Sibold, C. et al. Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and is carried by two different Apodemus mice species. J. Med. Virol. 63, 158–167 (2001).
    CAS  PubMed  Article  Google Scholar 

    28.
    Oktem, I. M. et al. Dobrava–Belgrade virus in Apodemus flavicollis and A. uralensis mice, Turkey. Emerg. Infect. Dis. 20, 121–125 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Doty, J. B. et al. Isolation and characterization of Akhmeta virus from wild-caught rodents (Apodemus spp.) in Georgia. J. Virol. 93, e00966-19 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Prpić, J. et al. First evidence of hepatitis E virus infection in a small mammal (yellow-necked mouse) from Croatia. PLoS ONE 14, e0225583 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Hofmann, J., Renz, M., Meyer, S., von Haeseler, A. & Liebert, U. G. Phylogenetic analysis of rubella virus including new genotype I isolates. Virus Res. 96, 123–128 (2003).
    CAS  PubMed  Article  Google Scholar 

    32.
    Abernathy, E. et al. Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961–2009. Virol. J. 10, 32 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols 10, 845–858 (2015).
    CAS  PubMed  Article  Google Scholar 

    34.
    Wolinsky, J. S. et al. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain. J. Virol. 67, 961–968 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Guy, C., Thiagavel, J., Mideo, N. & Ratcliffe, J. M. Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’. R. Soc. Open Sci. 6, 181182 (2019).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    36.
    Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. R. Soc. Lond. B 280, 20122753 (2013).
    Google Scholar 

    37.
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    38.
    Frey, T. K. Neurological aspects of rubella virus infection. Intervirology 40, 167–175 (1997).
    CAS  PubMed  Article  Google Scholar 

    39.
    Bharadwaj, S. D. et al. Acute encephalitis with atypical presentation of rubella in family cluster, India. Emerg. Infect. Dis. 24, 1923–1925 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Grant, G. B. et al. Accelerating measles and rubella elimination through research and innovation — findings from the Measles & Rubella Initiative research prioritization process, 2016. Vaccine 37, 5754–5761 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Struhsaker, T. T. Ecology of an African Rain Forest: Logging in Kibale and the Conflict between Conservation and Exploitation (Univ. Press Florida, 1997).

    42.
    Plumptre, A. J. et al. The biodiversity of the Albertine Rift. Biol. Conserv. 134, 178–194 (2007).
    Article  Google Scholar 

    43.
    Ulrich, R. G. et al. Network “rodent-borne pathogens” in Germany: longitudinal studies on the geographical distribution and prevalence of hantavirus infections. Parasitol. Res. 103, S121–S129 (2008).
    PubMed  Article  Google Scholar 

    44.
    Schlegel, M. et al. Molecular identification of small mammal species using novel cytochrome b gene-derived degenerated primers. Biochem. Genet. 50, 440–447 (2012).
    CAS  PubMed  Article  Google Scholar 

    45.
    Foley, N. M. et al. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol. Biol. Evol. 32, 313–333 (2015).
    CAS  PubMed  Article  Google Scholar 

    46.
    Zhao, G. et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 503, 21–30 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. Version 37.78 https://sourceforge.net/projects/bbmap/ (2014).

    48.
    Andrews, S. FastQC. A quality control tool for high throughput sequence data. Version 0.11.5 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

    49.
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
    CAS  PubMed  Article  Google Scholar 

    51.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  Article  Google Scholar 

    52.
    Huson, D. H. et al. MEGAN community edition — interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput. Biol. 12, e1004957 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Wylezich, C., Papa, A., Beer, M. & Höper, D. A versatile sample processing workflow for metagenomic pathogen detection. Sci. Rep. 8, 13108 (2018).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    54.
    Scheuch, M., Höper, D. & Beer, M. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinformatics 16, 69 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Hobman, T. C. & Gillam, S. In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. Virology 173, 241–250 (1989).
    CAS  PubMed  Article  Google Scholar 

    59.
    Gasteiger, E. et al. in The Proteomics Protocols Handbook (ed Walker, J. M.) 571–607 (Humana Press, 2005).

    60.
    Forth, L. F. & Höper, D. Highly efficient library preparation for ion torrent sequencing using Y-adapters. Biotechniques 67, 229–237 (2019).
    CAS  PubMed  Article  Google Scholar 

    61.
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  Article  Google Scholar 

    62.
    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
    CAS  PubMed  Article  Google Scholar 

    63.
    Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).
    CAS  PubMed  Article  Google Scholar 

    64.
    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Rose, A. S. & Hildebrand, P. W. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 43, W576–W579 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011).
    CAS  PubMed  Article  Google Scholar 

    67.
    Korber, B. in Computational Analysis of HIV Molecular Sequences Ch. 4 (eds Rodrigo, A. G. & Learn, G. H.) 55–72 (Kluwer Academic Publishers, 2000).

    68.
    Leskovec, J. SNAP 2.1. http://snap.stanford.edu/snap-2.1/download.html (2013). More

  • in

    A comprehensive quantification of global nitrous oxide sources and sinks

    1.
    Prather, M. J. et al. Measuring and modeling the lifetime of nitrous oxide including its variability. J. Geophys. Res. D 120, 5693–5705 (2015).
    ADS  CAS  Google Scholar 
    2.
    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

    3.
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).
    ADS  CAS  Google Scholar 

    4.
    Davidson, E. A. Representative concentration pathways and mitigation scenarios for nitrous oxide. Environ. Res. Lett. 7, 024005 (2012).
    ADS  Google Scholar 

    5.
    Hall, B., Dutton, G. & Elkins, J. The NOAA nitrous oxide standard scale for atmospheric observations. J. Geophys. Res. D 112, D09305 (2007).
    ADS  Google Scholar 

    6.
    Prinn, R. G. et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst.Sci. Data10, 985–1018 (2018).
    Google Scholar 

    7.
    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil.Trans. R. Soc. Lond. B 368, 20130122 (2013).
    Google Scholar 

    8.
    Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).
    ADS  CAS  Google Scholar 

    9.
    United Nations Environment Programme & Suntharalingam, P. Drawing Down N 2O to Protect Climate and the Ozone Layer (United Nations Environment Programme, 2013).

    10.
    Park, S. et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5, 261–265 (2012).
    ADS  CAS  Google Scholar 

    11.
    Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9, 105012 (2014).
    ADS  Google Scholar 

    12.
    Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).
    ADS  CAS  Google Scholar 

    13.
    Syakila, A. & Kroeze, C. The global nitrous oxide budget revisited. Greenhouse Gas Meas. Manage. 1, 17–26 (2011).
    ADS  CAS  Google Scholar 

    14.
    IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggleston, H. S. et al.) (IGES, 2006).

    15.
    Dangal, S. R. et al. Global nitrous oxide emissions from pasturelands and rangelands: magnitude, spatio-temporal patterns and attribution. Glob. Biogeochem. Cycles 33, 200–222 (2019).
    ADS  CAS  Google Scholar 

    16.
    Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).
    ADS  Google Scholar 

    17.
    Wang, Q. et al. Data-driven estimates of global nitrous oxide emissions from croplands. Natl Sci. Rev. 7, 441–452 (2020).
    CAS  Google Scholar 

    18.
    Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).
    ADS  CAS  Google Scholar 

    19.
    Zaehle, S., Ciais, P., Friend, A. D. & Prieur, V. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat. Geosci. 4, 601–605 (2011).
    ADS  CAS  Google Scholar 

    20.
    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Verchot, L. V. et al. Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Glob. Biogeochem. Cycles 13, 31–46 (1999).
    ADS  CAS  Google Scholar 

    22.
    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Van Meter, K. J., Basu, N. B., Veenstra, J. J. & Burras, C. L. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 11, 035014 (2016).
    ADS  Google Scholar 

    24.
    Firestone, M. K. & Davidson, E. A. Microbiological basis of NO and N2O production and consumption in soil. In Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere Vol. 47 (Andreae, M. O. & Schimel, D. S.) 7–21 (Wiley, 1989).

    25.
    Griffis, T. J. et al. Nitrous oxide emissions are enhanced in a warmer and wetter world. Proc. Natl Acad. Sci. USA 114, 12081–12085 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Pärn, J. et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 9, 1135 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    27.
    Smith, K. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Glob. Change Biol. 3, 327–338 (1997).
    ADS  CAS  Google Scholar 

    28.
    The Food and Agriculture Organization of the United Nations Statistics (FAO, accessed 7 July 2019); https://www.fao.org/faostat/en/#data/.

    29.
    Xu, R. et al. Increased nitrogen enrichment and shifted patterns in the world’s grassland: 1860–2016. Earth Syst. Sci. Data 11, 175–187 (2019).
    ADS  Google Scholar 

    30.
    Beusen, A. H., Bouwman, A. F., Van Beek, L. P., Mogollón, J. M. & Middelburg, J. J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).
    ADS  CAS  Google Scholar 

    31.
    MacLeod, M., Hasan, M. R., Robb, D. H. F. & Mamun-Ur-Rashid, M. Quantifying and Mitigating Greenhouse Gas Emissions from Global Aquaculture FAO Fisheries and Aquaculture technical paper no. 626 (FAO, 2019).

    32.
    Buitenhuis, E. T., Suntharalingam, P. & Le Quéré, C. Constraints on global oceanic emissions of N2O from observations and models. Biogeosciences 15, 2161–2175 (2018).
    ADS  CAS  Google Scholar 

    33.
    Manizza, M., Keeling, R. F. & Nevison, C. D. On the processes controlling the seasonal cycles of the air–sea fluxes of O2 and N2O: a modelling study. Tellus B 64, 18429 (2012).
    ADS  Google Scholar 

    34.
    Martinez-Rey, J., Bopp, L., Gehlen, M., Tagliabue, A. & Gruber, N. Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model. Biogeosciences 12, 4133–4148 (2015).
    ADS  Google Scholar 

    35.
    Maavara, T. et al. Nitrous oxide emissions from inland waters: are IPCC estimates too high? Glob. Change Biol. 25, 473–488 (2019).
    ADS  Google Scholar 

    36.
    Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2020).
    ADS  CAS  Google Scholar 

    37.
    Gerber, P. J. et al. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities. (FAO, 2013).

    38.
    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).
    ADS  CAS  Google Scholar 

    39.
    Yuan, J. et al. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change 9, 318–322 (2019).
    ADS  Google Scholar 

    40.
    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Winiwarter, W., Höglund-Isaksson, L., Klimont, Z., Schöpp, W. & Amann, M. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environ. Res. Lett. 13, 014011 (2018).
    ADS  Google Scholar 

    42.
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).
    ADS  CAS  Google Scholar 

    44.
    European Environment Agency. Annual European Union Greenhouse Gas Inventory 1990–2017 and Inventory Report 2019 EEA/PUBL/2019/051 (EEA, 2019).

    45.
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Kanter, D. et al. A post-Kyoto partner: considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proc. Natl Acad. Sci. USA 110, 4451–4457 (2013).
    ADS  CAS  Google Scholar 

    47.
    Schneider, L., Lazarus, M. & Kollmuss, A. Industrial N 2O Projects Under the CDM: Adipic Acid – A Case of Carbon Leakage SEI working paper WP-US-1006 (Stockholm Environment Institute, 2010).

    48.
    O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
    ADS  Google Scholar 

    49.
    Gütschow, J. et al. The PRIMAP-hist national historical emissions time series. Earth Syst.Sci. Data 8, 571–603 (2016).
    Google Scholar 

    50.
    Nevison, C. D., Lueker, T. J. & Weiss, R. F. Quantifying the nitrous oxide source from coastal upwelling. Glob. Biogeochem. Cycles 18, GB1018 (2004).
    ADS  Google Scholar 

    51.
    Lauerwald, R. et al. Natural lakes are a minor global source of N2O to the atmosphere. Glob. Biogeochem. Cycles 33, 1564–1581 (2019).
    ADS  CAS  Google Scholar 

    52.
    Kroeze, C., Mosier, A. & Bouwman, L. Closing the global N2O budget: a retrospective analysis 1500–1994. Glob. Biogeochem. Cycles 13, 1–8 (1999).
    ADS  CAS  Google Scholar 

    53.
    Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).
    ADS  CAS  Google Scholar 

    54.
    De Klein, C. et al. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4, Ch. 11 (IPCC, 2006).

    55.
    Dentener, F. J. & Crutzen, P. J. A three-dimensional model of the global ammonia cycle. J. Atmos. Chem. 19, 331–369 (1994).
    CAS  Google Scholar 

    56.
    Röckmann, T., Kaiser, J., Crowley, J. N., Brenninkmeijer, C. A. & Crutzen, P. J. The origin of the anomalous or “mass-independent” oxygen isotope fractionation in tropospheric N2O. Geophys. Res. Lett. 28, 503–506 (2001).
    ADS  Google Scholar 

    57.
    Kaiser, J. & Röckmann, T. Absence of isotope exchange in the reaction of N2O+O(1D) and the global Δ17O budget of nitrous oxide. Geophys. Res. Lett. 32, L15808 (2005).
    ADS  Google Scholar 

    58.
    Schlesinger, W. H. An estimate of the global sink for nitrous oxide in soils. Glob. Change Biol. 19, 2929–2931 (2013).
    ADS  Google Scholar 

    59.
    Syakila, A., Kroeze, C. & Slomp, C. P. Neglecting sinks for N2O at the Earth’s surface: does it matter? J. Integr. Environ. Sci. 7, 79–87 (2010).
    Google Scholar 

    60.
    Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21, 112–156 (2013).
    CAS  Google Scholar 

    61.
    Bouwman, A. F. et al. Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Rev. Fish. Sci. 19, 331–357 (2011).
    ADS  CAS  Google Scholar 

    62.
    Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Williams, J. & Crutzen, P. J. Nitrous oxide from aquaculture. Nat. Geosci. 3, 143 (2010).
    ADS  CAS  Google Scholar 

    64.
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Yang, J. et al. Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: reconstructing global fire history for the 20th and early 21st centuries. J. Geophys. Res. Biogeosci. 119, 249–263 (2014).
    ADS  Google Scholar 

    66.
    Dennis, R. A Review of Fire Projects in Indonesia (1982–1998) (Center for International Forestry Research, 1999).

    67.
    Suntharalingam, P. et al. Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide. Geophys. Res. Lett. 39, L07605 (2012).
    ADS  Google Scholar 

    68.
    Murray, R. H., Erler, D. V. & Eyre, B. D. Nitrous oxide fluxes in estuarine environments: response to global change. Glob. Change Biol. 21, 3219–3245 (2015).
    ADS  Google Scholar 

    69.
    Erler, D. V. et al. Applying cavity ring-down spectroscopy for the measurement of dissolved nitrous oxide concentrations and bulk nitrogen isotopic composition in aquatic systems: correcting for interferences and field application. Limnol. Oceanogr. Methods 13, 391–401 (2015).
    CAS  Google Scholar 

    70.
    Murray, R., Erler, D., Rosentreter, J. & Eyre, B. Seasonal and spatial N2O concentrations and emissions in three tropical estuaries. Mar. Chem. 221, 103779 (2020).
    CAS  Google Scholar 

    71.
    Vernberg, F. J. & Vernberg, W. B. The Coastal Zone: Past, Present, and Future (Univ. South Carolina Press, 2001).

    72.
    Houghton, R. et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235–262 (1983).
    CAS  Google Scholar 

    73.
    Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009).
    ADS  CAS  Google Scholar 

    74.
    van Lent, J., Hergoualc’h, K. & Verchot, L. V. Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis. Biogeosciences 12, 7299–7313 (2015).
    ADS  Google Scholar 

    75.
    Keller, M. & Reiners, W. A. Soil–atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob. Biogeochem. Cycles 8, 399–409 (1994).
    ADS  CAS  Google Scholar 

    76.
    Melillo, J. M. et al. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J. Geophys. Res. D 106, 34179–34188 (2001).
    ADS  CAS  Google Scholar 

    77.
    McGuire, A. et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 15, 183–206 (2001).
    ADS  CAS  Google Scholar 

    78.
    Dlugokencky, E., Steele, L., Lang, P. & Masarie, K. The growth rate and distribution of atmospheric methane. J. Geophys. Res. D 99, 17021–17043 (1994).
    ADS  CAS  Google Scholar 

    79.
    IPCC 2013. Annex II: Climate System Scenario Tables (eds Prather, M. et al.). In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    80.
    Prather, M. J., Holmes, C. D. & Hsu, J. Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 39, L09803 (2012).
    ADS  Google Scholar 

    81.
    Prather, M. J. & Hsu, J. Coupling of nitrous oxide and methane by global atmospheric chemistry. Science 330, 952–954 (2010).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    82.
    Mosier, A. & Kroeze, C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chemosphere 2, 465–473 (2000).
    CAS  Google Scholar 

    83.
    Mosier, A. et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosyst. 52, 225–248 (1998).
    CAS  Google Scholar 

    84.
    Houghton, J. T. et al (eds) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Vols 1–3 (IPCC, 1997).

    85.
    Nevison, C. Indirect N2O emissions from agriculture. In Background Papers:IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories 381–397 (IPCC, 2000).

    86.
    2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (IPCC, 2019).

    87.
    Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008).
    ADS  CAS  Google Scholar 

    88.
    Smith, K. A., Mosier, A. R., Crutzen, P. J. & Winiwarter, W. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Phil.Trans. R. Soc. Lond. B 367, 1169–1174 (2012).
    CAS  Google Scholar 

    89.
    Thompson, R. L. et al. Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion. Atmos. Chem. Phys. 14, 1801–1817 (2014).
    ADS  Google Scholar 

    90.
    Wells, K. C. et al. Simulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints. Geosci. Model Dev. 8, 3179–3198 (2015).
    ADS  CAS  Google Scholar 

    91.
    Wilson, C., Chipperfield, M., Gloor, M. & Chevallier, F. Development of a variational flux inversion system (INVICAT v1. 0) using the TOMCAT chemical transport model. Geosci. Model Dev. 7, 2485–2500 (2014).
    ADS  Google Scholar 

    92.
    Patra, P. K. et al. Improved chemical tracer simulation by MIROC4.0-based atmospheric chemistry-transport model (MIROC4-ACTM). SOLA 14, 91–96 (2018).
    ADS  Google Scholar 

    93.
    Tian, H. Q. et al. The global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 99, 1231–1251 (2018).
    ADS  Google Scholar 

    94.
    Suntharalingam, P. et al. Anthropogenic nitrogen inputs and impacts on oceanic N2O fluxes in the northern Indian Ocean: the need for an integrated observation and modelling approach. Deep Sea Res. Part II 166, 104–113 (2019).
    CAS  Google Scholar 

    95.
    Battaglia, G. & Joos, F. Marine N2O emissions from nitrification and denitrification constrained by modern observations and projected in multimillennial global warming simulations. Glob. Biogeochem. Cycles 32, 92–121 (2018).
    ADS  CAS  Google Scholar 

    96.
    Galloway, J. et al. The impact of animal production systems on the nitrogen cycle. In Livestock in a Changing Landscape Vol. 1 (eds Steinfeld, H. et al.) 83–95 (Island Press, 2010).

    97.
    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nat. Geosci. 3, 332–335 (2010).
    ADS  CAS  Google Scholar 

    98.
    Wagner-Riddle, C. et al. Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nat. Geosci. 10, 279–283 (2017).
    ADS  CAS  Google Scholar 

    99.
    Suntharalingam, P. et al. Estimates of oceanic nitrous-oxide emissions from global biogeochemistry models. In American Geophysical Union, Fall Meeting 2018 B21K-2481B (2018).

    100.
    Janssens-Maenhout, G. et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 11, 959–1002 (2019).
    ADS  Google Scholar 

    101.
    Tubiello, F. et al. Estimating Greenhouse Gas Emissions in Agriculture Ch. 5, 35–115 (FAO, 2015).

    102.
    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst.Sci. Data 9, 697–720 (2017).
    Google Scholar 

    103.
    Dentener, F. Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. https://doi.org/10.3334/ORNLDAAC/830 (Oak Ridge National Laboratory, 2006).

    104.
    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
    Google Scholar  More

  • in

    Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding

    1.
    Gangloff, M. M., Edgar, G. J. & Wilson, B. Imperilled species in aquatic ecosystems: emerging threats, management and future prognosis. Aquatic Conserv. Mar. Freshw. Ecosyst. 26, 858–871 (2016).
    Article  Google Scholar 
    2.
    WWF. Living Planet Report—2018: Aiming Higher (eds Grooten, M. & Almond, R.E.A.). WWF, Gland, Switzerland (2018).

    3.
    Zhou, X. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat. Commun. 9, 1276 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Mei, Z. et al. Accelerating population decline of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Biol. Conserv. 153, 192–200 (2012).
    Article  Google Scholar 

    5.
    Wang, D., Turvey, S.T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalisssp.asiaeorientalis. The IUCN Red List of Threatened Species 2013 e.T43205774A45893487, http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T43205774A45893487.en(2013).

    6.
    Yang, J. et al. A preliminary study on diet of the Yangtze finless porpoise using next-generation sequencing techniques. Mar. Mammal Sci. 35, 1579–1586 (2019).
    CAS  Article  Google Scholar 

    7.
    Wang, D. Population status, threats and conservation of the Yangtze finless porpoise. Chin. Sci. Bull. 54, 3473–3484 (2009).
    CAS  Google Scholar 

    8.
    Wu, J. et al. Progress in studies on water ecology in Tian’e Zhou Oxbow. Acta Hydrobiol. Sin. 41, 935–946 (2017) (In Chinese).
    Google Scholar 

    9.
    Nabi, G., Hao, Y., Robeck, T. R., Zheng, J. & Wang, D. Physiological consequences of biologic state and habitat dynamics on the critically endangered Yangtze finless porpoises (Neophocaena asiaeorientalis ssp. asiaeorientalis) dwelling in the wild and semi-natural environment. Conserv. Physiol. 6, coy072 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Stewart, K., Ma, H., Zheng, J. & Zhao, J. Using environmental DNA to assess population-wide spatiotemporal reserve use. Conserv. Biol. 31, 1173–1182 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Chen, M. et al. Parentage-based group composition and dispersal pattern studies of the Yangtze Finless Porpoise population in Poyang Lake. Int. J. Mol. Sci. 17, 1268 (2016).
    PubMed Central  Article  Google Scholar 

    12.
    Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11, e0157366 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Fujii, K. et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: a comparison of capture methods. PLoS ONE 14, e0210357 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Günther, B., Knebelsberger, T., Neumann, H., Laakmann, S. & Arbizu, P. M. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 14822 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol. Oceanogr. Methods 16, 209–221 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Stewart, K. A. Understanding the biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 28, 983–1001 (2019).
    Article  Google Scholar 

    24.
    Lopes, C. M. et al. eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests. Mol. Ecol. Resour. 17, 904–914 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Hobbs, J., Helbing, C. C. & Veldhoen, N. Environmental DNA protocol for freshwater aquatic ecosystems version 2.2. Report for the BC Ministry of Environment, Victoria BC Canada (2017).

    26.
    Laramie, M.B., Pilliod, D.S., Goldberg, C.S. & Strickler, K.M. Environmental DNA sampling protocol—Filtering water to capture DNA from aquatic organisms.U.S. Geological Survey Techniques and Methods, book 2, chap. A13, 15 p. (2015).

    27.
    Ma, H. et al. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal. Conserv. Genet. Resour. 8, 561–568 (2016).
    Article  Google Scholar 

    28.
    Thomsen, P. F. et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, e41732 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Dougherty, M. M. et al. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. J. Appl. Ecol. 53, 722–732 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Evans, N. T. et al. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Can. J. Fish. Aquat. Sci. 74, 1362–1374 (2017).
    CAS  Article  Google Scholar 

    31.
    Renshaw, M. A., Olds, B. P., Jerde, C. L., Mcveigh, M. M. & Lodge, D. M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 15, 168–176 (2015).
    CAS  PubMed  Article  Google Scholar 

    32.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    34.
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Deiner, K. et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods Ecol. Evol. 8, 1888–1898 (2017).
    Article  Google Scholar 

    38.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541 (2016).
    CAS  PubMed  Article  Google Scholar 

    40.
    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Sato, H., Sogo, Y., Doi, H. & Yamanaka, H. Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Sci. Rep. 7, 14860 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
    Article  CAS  Google Scholar 

    44.
    Huson, D. H. et al. MEGAN Community Edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    DiBattista, J. D. et al. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36, 1245–1252 (2017).
    ADS  Article  Google Scholar 

    46.
    Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220 (2019).
    CAS  PubMed  Article  Google Scholar 

    47.
    Racine, J. S. RStudio: a platform-independent IDE for R and Sweave. J. Appl. Econ. 27, 167–172 (2012).
    Article  Google Scholar 

    48.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2018).

    49.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (eds Gentleman, R., Hornik, K. & Parmigiani, G.) 1–212 (Springer, 2009).

    50.
    Guevara, M. R., Hartmann, D. & Mendoza, M. diverse: an R package to analyze diversity in complex systems. R J. 8, 60–78 (2016).
    Article  Google Scholar 

    51.
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Thomsen, P. F. et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11, e0165252 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Huang, L., Wu, Z. & Li, J. Fish fauna, biogeography and conservation of freshwater fish in Poyang Lake Basin China. Environ. Biol. Fish. 96, 1229–1243 (2013).
    Article  Google Scholar 

    55.
    Gong, J. et al. Interannual variation of the fish community structure in the Tian-e-Zhou Oxbow of Yangtze River. J. Hydroecol. 39, 46–53 (2018) (In Chinese).
    Google Scholar 

    56.
    Gong, C., Chen, Z. & Cheng, F. The status and management suggestions of the Yangtze finless porpoise prey fish in the Tian-e-Zhou Oxbow of Yangtze River. China Fish. 6, 43–45 (2019) (In Chinese).
    Google Scholar 

    57.
    Wang, T., Wang, H., Sun, G., Huang, D. & Shen, J. Length–weight and length–length relationships for some Yangtze River fishes in Tian-e-zhou Oxbow China. J. Appl. Ichthyol. 28, 660–662 (2012).
    Article  Google Scholar 

    58.
    Yang, S., Li, M., Zhu, Q., Wang, M. & Liu, H. Spatial and temporal variations of fish assemblages in Poyanghu Lake. Resour. Environ. Yangtze Basin 24, 54–64 (2015) (In Chinese).
    CAS  Google Scholar 

    59.
    Jin, B. et al. Fish assemblage structure in relation to seasonal environmental variation in sub-lakes of the Poyang Lake floodplain, China. Fish. Manag. Ecol. 26, 131–140 (2019).
    Article  Google Scholar 

    60.
    Fang, C. et al. Fish resources in Poyang Lake and their utilization. Jiangsu Agric. Sci. 44, 233–243 (2016) (In Chinese).
    Google Scholar 

    61.
    Zhong, B. et al. Classification of Pelteobagrus fish in Poyang Lake based on mitochondrial COI gene sequence. Mitochondrial DNA A 27, 4635–4637 (2016).
    CAS  Article  Google Scholar 

    62.
    Xiong, G., Zhang, T., Lin, Y., Wang, W. & You, X. Analysis of some characters of fish in the inner Lake of Poyang Lake Wetland. Jiangxi Fish. Sci. Technol. 3, 10–12 (2018) (In Chinese).
    Google Scholar 

    63.
    Liu, X. et al. Biodiversity pattern of fish assemblages in Poyang Lake Basin: threat and conservation. Ecol. Evol. 9, 11672–11683 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Liu, M. et al. Species diversity of drifting fish eggs in the Yangtze River using molecular identification. PeerJ 6, e5807 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Hinlo, R., Furlan, E., Suitor, L. & Gleeson, D. Environmental DNA monitoring and management of invasive fish: comparison of eDNA and fyke netting. Manag. Biol. Invasion 8, 89–100 (2017).
    Article  Google Scholar 

    66.
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).
    CAS  Article  Google Scholar 

    67.
    Lacoursière-Roussel, A., Côté, G., Leclerc, V. & Bernatchez, L. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J. Appl. Ecol. 53, 1148–1157 (2016).
    Article  CAS  Google Scholar 

    68.
    Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Ushio, M. et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcod. Metagenom. 2, 1–15 (2018).
    Google Scholar 

    70.
    Simmons, M., Tucker, A., Chadderton, W. L., Jerde, C. L. & Mahon, A. R. Active and passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat. Sci. 73, 76–83 (2016).
    CAS  Article  Google Scholar 

    71.
    Smart, A. S., Tingley, R., Weeks, A. R., vanRooyen, A. R. & McCarthy, M. A. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol. Appl. 25, 1944–1952 (2015).
    PubMed  Article  Google Scholar 

    72.
    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Lin, Y., Gao, Z. & Zhao, A. Introduction and use of non-native species for aquaculture in China: status, risks and management solutions. Rev. Aquacult. 7, 28–38 (2015).
    Article  Google Scholar 

    74.
    Xiong, et al. Non-native freshwater fish species in China. Rev. Fish. Biol. Fish. 25, 651–687 (2015).
    Article  Google Scholar 

    75.
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol. Ecol. Resour. 14, 109–116 (2014).
    CAS  PubMed  Article  Google Scholar 

    76.
    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    77.
    Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    78.
    Fernández, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401 (2019).
    Article  Google Scholar 

    79.
    Lacoursière-Roussel, A. et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol. Evol. 8, 7763–7777 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Liu, Y. et al. Application of environmental DNA metabarcoding to spatiotemporal finfish community assessment in a temperate embayment. Front. Mar. Sci. 6, 674 (2019).
    ADS  Article  Google Scholar 

    81.
    Xie, X. et al. Are river protected areas sufficient for fish conservation? Implications from large-scale hydroacoustic surveys in the middle reach of the Yangtze River. BMC Ecol. 19, 42 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    82.
    Xinhua. China starts 10-year fishing ban on Yangtze River.China Daily;https://www.chinadaily.com.cn/a/202001/02/WS5e0d4851a310cf3e35581f65.html(2020).

    83.
    Yang, S., Xu, K., Milliman, J. D. & Wu, C. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 5, 12581 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    The global biological microplastic particle sink

    For this study we use the University of Victoria Earth System Climate Model (UVic ESCM) version 2.940,41,42. The UVic ESCM is an intermediate-complexity earth system model with a resolution of 1.8(^circ ) latitude by 3.6(^circ ) longitude and 19 ocean depth levels. The surface ocean level is 50 m deep. The model contains a two dimensional energy moisture-balance model of the atmosphere, as well as representations of sea ice, ocean circulation and sediments, and terrestrial carbon. The particular biogeochemical version used here includes three phytoplankton functional types, namely diazotrophs (DZ), mixed phytoplankton (PH), and small phytoplankton and calcifiers (CO)43. The model pre-industrial climate has been previously described43, as has its response to business-as-usual atmospheric (hbox{CO}_2) forcing44. The following sections describe the MP model. A model schematic is presented in Fig. 6.
    Figure 6

    Microplastic model schematic. Marine snow is produced as a fixed fraction of the free detritus (DET) pool. MP aggregates with this marine snow, entering the (hbox{MP}_A) (marine snow entrained MP) pool. (hbox{MP}_A) held in aggregates sinks at the aggregate rate, with a fraction reaching the seafloor considered to be lost from the ocean. Detrital remineralisation releases the (hbox{MP}_A) from marine snow aggregates at the rate of detrital remineralisation. MP is also grazed by zooplankton and excreted into a pellet-bound (hbox{MP}_Z) pool. Pellet-bound (hbox{MP}_Z) sinks and is released back to the free MP pool at the rate of detrital remineralisation, but some is also lost at the seafloor. Details on the biogeochemical aspects of the model are previously described43.

    Full size image

    Model description
    The base model43 was modified in order to quantify the roles of two of the three theorised biological export pathways on MP (aggregation in marine snow and zooplankton ingestion; for now, we neglect an explicit representation of biofouling29). We distinguish between detritus that becomes faecal pellets, and the physical aggregation of marine snow, by introducing a new faecal pellet tracer to divert 50% of zooplankton particulate losses into a separate detrital pool27. For simplicity, this new pellet detrital pool has the same sinking parameterisation as the original detritus. Using the same sinking rates for both detrital classes produces ocean biogeochemistry that is identical to the previously published versions of the model. In the model, plastic particles only interact passively with marine snow (they do not, for example, modify aggregate sinking rates), but they interact actively with zooplankton grazing (described below). Plastic particles have been observed to both increase and decrease the sinking rates of marine snow21,22 and decrease the sinking rates of faecal pellets20,38, but for simplicity and as a first approximation we neglect these effects in our model.
    Three MP compartments are introduced; “free” (unattached) microplastic (MP), microplastic aggregated in marine snow ((hbox{MP}_A)), and microplastic in zooplankton faecal pellets ((hbox{MP}_Z)). All MP are considered to represent particles within a biologically active size range, but this size (and the particles’ composition) is never made explicit. These assumptions could bias modelled MP towards polymer types favoured by generic zooplankton34 and particle sizes in the lower end33,34 of the defined range of microplastic size. However, our parameter sensitivity testing in the Supplemental Information tests various fractional uptake rates that implicitly consider size and particle composition in how biologically “active” the MP pool is. As with all model ocean tracers, microplastic concentrations (MP) vary according to:

    $$begin{aligned} frac{dmathrm {MP}}{dt} = T + S(mathrm {MP}) end{aligned}$$
    (1)

    With T including all transport terms and S representing all source minus sink terms. The source and sink terms for free microplastic are:

    $$begin{aligned} S(mathrm {MP}) = Emis – S(mathrm {MP}_A) – S(mathrm {MP}_Z) + w_p frac{delta mathrm {MP} times F_R}{delta z} end{aligned}$$
    (2)

    Microplastic is emitted to the ocean (Emis) along coastlines and major shipping routes using a scaling against regional (hbox{CO}_2) emissions (a dataset provided with the standard UVic ESCM version 2.9 package download), in order to approximate degree of industrialisation and population density in this first version of this model. The rate of emission is a proportion of the total annual plastic waste generation ((F_T))45. For now, abiotic degradation of macroplastics as a source of microplastics to the ocean is neglected to keep the model simple and focus on biological transport. The MP then exchanges with the marine snow ((hbox{MP}_A)) and zooplankton faecal pellet ((hbox{MP}_Z)) pools. A fast particle rising rate ((w_p)) of 1.9 cm per second46 is prescribed to a fraction ((F_R)) of the free MP in each grid cell below the surface level as an approximation of positive buoyancy. An alternative approach would be to assign a uniform rise rate to all MP particles, and to subject the value of the rise rate to sensitivity testing. However, a weakness of this alternative approach is that the many types of plastic in the ocean have different characteristic buoyancies, which could produce unique particle pathways18. In this alternative approach it would be more appropriate to explicitly simulate multiple MP types in the model (which we sought to avoid in this first modelling effort for the sake of simplicity). Nevertheless, we conducted a sensitivity test using several different rise rates, and the effect of reducing the mean rise rate was similar to reducing the fraction assigned a rise rate.
    In the current model version there are no abiotic breakdown rates (i.e., photo-degradation39) or respiration losses47 removing MP from circulation.
    MP is modelled to aggregate in marine snow as:

    $$begin{aligned} S(mathrm {MP}_A) = A_{upt} – A_{rel} – w_Dfrac{delta mathrm {MP}_A}{delta z} end{aligned}$$
    (3)

    MP particles are taken up ((A_{upt})) via a Monod function applied to the rate of marine snow formation (sources of detritus; (D_A) in nitrogen units, multiplied by an aggregation fraction, (F_A)) in order to approximate an increased likelihood of MP/marine snow encounter with increasing MP concentrations that approaches a level of saturation at high MP concentrations:

    $$begin{aligned} A_{upt} = frac{mathrm {MP}}{k_P + mathrm {MP}} times source(D_A) times F_A end{aligned}$$
    (4)

    The uptake constant ((k_P)) is subjected to sensitivity testing, as is the fraction of marine snow aggregation ((F_A)). In this parameterisation, the aggregation of MP in marine snow represents the net uptake of MP into aggregates by both aggregation and biofouling processes. Biofouling occurs mostly in the upper 50 m35, which is the entire surface layer grid cell in our model. The entrainment-release cycle of biofouling is implicit in our parameterisation via the microbial loop, which is temperature-dependent. Sensitivity testing of the (k_P) and (F_A) parameters therefore represent testing of the net aggregation due to non-zooplankton biological aggregation effects. MP is released ((A_{rel})) from marine snow at the rate of detrital remineralisation ((mu _D)). This rate is temperature-dependent and results in higher rates of release in the low latitudes.

    $$begin{aligned} A_{rel} = mu _D mathrm {MP}_A end{aligned}$$
    (5)

    A particle sinking term ((w_D)) applies to marine snow-associated MP, and has the same value as sinking detritus. The base unit of all MP tracers is number of plastic particles. As a first approximation we assume that all marine snow aggregates forming from free detritus have the characteristic of diatom aggregates (8.8 (upmu )g C per aggregate48). Model detritus in mmol N is converted to mmol C using Redfield stoichiometry, which is then converted to (upmu )g C to calculate the maximum number of aggregates. The maximum number of aggregates is then multiplied by the aggregation fraction (F_A), to calculate (hbox{MP}_A) source and sink rates. MP is conserved for all MP tracers when surface flux balances sedimentary loss rate. What fraction of MP particles reaching the seafloor via aggregate and faecal pellet ballasting are returned to the water column ((F_B)) is tested. For simplicity and as a first approximation, detritus ballasted by calcite, and calcite43, are assumed to not aggregate with microplastic.
    Similarly, for MP associated with zooplankton, sources and sinks are:

    $$begin{aligned} S(mathrm {MP}_Z) = P_{upt} – P_{rel} – w_Dfrac{delta mathrm {MP}_Z}{delta z} end{aligned}$$
    (6)

    The calculation of MP particle ingestion rate ((P_{upt})) is the same as for other food sources37. A grazing preference ((psi _{MP})) for MP is subjected to sensitivity testing. This sensitivity testing implicitly examines effects such as biofouling altering the grazing preference of zooplankton for MP. It is assumed that 100% of ingested MP will be egested as faecal pellets and released ((P_{rel})) to the “free” MP pool at the rate of faecal pellet remineralisation, with no plastic remaining in the gut and no plastic being metabolised by the zooplankton. Ingesting MP also results in a reduced zooplankton carbon uptake rate19, with implications for primary and export production (although, Redfield ratios are conserved). Pellet-bound (hbox{MP}_Z) is considered to sink at the rate of faecal pellets ((w_D)).
    Plastic is eaten by zooplankton in this model. The Holling II grazing formulation37 is extended to include MP. Grazing of MP ((G_{MP})) is calculated as:

    $$begin{aligned} begin{aligned} G_{MP}&= mu _Z^{max} times Z times mathrm {MP}times R_{M:P}times R_{F:MP}times R_{N:F}times psi _{MP}\&quad times ,(psi _{CO}CO+psi _{PH}PH+psi _{DZ}DZ+psi _{Detr_{tot}}Detr_{tot}\&quad +,psi_{Z}Z+psi _{MP}mathrm {MP}times R_{M:P}times R_{F:MP}times R_{N:F} + k_Z)^{-1} end{aligned} end{aligned}$$
    (7)

    The maximum potential grazing rate ((mu _Z^{max})) is scaled by zooplankton population (Z) and MP availability (MP), and weighted by a food preference ((psi _{MP})), total prey (CO, PH, DZ, (hbox{Detr}_{{tot}})), and Z representing the food sources described in44 and a half saturation constant for zooplankton ingestion ((k_z)). Grazing preferences must always sum to 1 in the model, so sensitivity testing of (psi _{MP}) requires that all grazing preferences must also be adjusted. This is done by varying (psi _{MP}) but requiring (psi _{DZ}) always be set to 0.1 (on the basis that diazotrophs are a poor food source, and to minimize disruption to the nitrogen cycle). The remaining allowance is equally split by the other (psi ) terms. The calculation occurs in N units, so MP is first converted to grams of MP using the MP particle-to-mass conversion of 236E3 tonnes MP = 51.2E12 particles MP ((R_{M:P}))4. It is assumed that 1 g MP will roughly replace 1 g of food (at Redfield ratios; (R_{N:F}) is the conversion from mol Food to mol N) in the zooplankton’s diet, and MP is thus converted to mmol N for the grazing calculation. However, we subject this ratio ((R_{F:MP})) to sensitivity testing. Zooplankton uptake of plastic is therefore:

    $$begin{aligned} P_{upt} = frac{G_{MP}}{R_{M:P}times R_{F:MP}times R_{N:F}} end{aligned}$$
    (8)

    MP particles are released from faecal pellets via remineralisation, which occurs at the same rate as the remineralisation of aggregates:

    $$begin{aligned} P_{rel} = mu _D mathrm {MP}_Z end{aligned}$$
    (9)

    Model forcing
    The model was integrated at year 1765 boundary conditions (including agricultural greenhouse forcing and land ice) for more than 10,000 years until equilibration was achieved. From year 1765 to 1950, historical (hbox{CO}_2) concentration forcing, and geostrophically adjusted wind anomalies are applied. From 1950 to 2100 the model is forced with a combination of historical (hbox{CO}_2) concentration forcing (to 2000) and a business-as-usual high atmospheric (hbox{CO}_2) concentration projection RCP8.549,50. MP emissions start from 2 million metric tonnes in year 1950 (a total plastic waste generation estimate45), increasing at a rate of 8.4% per year. (hbox{CO}_2) and MP forcing is summarized in Fig. 7. It has been estimated that about 4% of total plastic waste generated enters the ocean30, but that the microplastic mass found at the sea surface represents only about 1% of the annual plastic input to the ocean4. We test a range of input fractions (see Table 2), after applying a mass conversion from tonnes to number of MP particles4. Using a considerable over-estimation of MP pollution rate also implicitly accounts for abiotic degradation of larger plastics.
    Figure 7

    Model forcing from years 1950–2100. Atmospheric (hbox{CO}_2) follows RCP8.5 (panel a). Plastic flux into the ocean is assumed to be some fraction of the total historical and projected plastic waste generation estimate (panel b), with a continuing rate of increase of 8.4% per year45, converted to MP particles using a mass conversion4. Previous estimates of actual total plastic mass flux into the ocean is only about 4% of the total plastic waste generation30, with the MP fraction being a small proportion of that.

    Full size image

    Table 2 Microplastic model parameters and range tested.
    Full size table

    Experimental setup
    A 700-member Latin Hypercube51 was used to test the microplastic parameter space of the model using the forcing described in the previous section. While biological model parameters might also influence microplastic uptake and transport, we limited our initial tests to the new parameters introduced above. A range of values was prescribed to the parameters listed in Table 2, in which the parameter space was randomly sampled with a normal distribution. The objective was to see what can be learned about plastic accumulation in the ocean, when very little is known about plastic/particle interactions and basic processes are still poorly understood. An analysis of the full Latin Hypercube parameter search is provided as Supplemental Information.
    We adopted an incremental approach to increasing model complexity. We started with a control Hypercube where biology was not allowed to take up plastic, in order to first test the physical parameters ((F_T) and (F_R), the fraction of total annual plastic produced entering the ocean as MP, and the fraction assigned a rise rate, respectively). One hundred simulations were performed in this configuration, with the results analysed in the Supplemental Information. We next included passive plastic aggregation in marine snow (MP plus the (hbox{MP}_A) tracer) in a 300 simulation Hypercube, spread across the (k_P) (marine snow uptake coefficient) parameter space (0–1, 1–100, 100–1000 particles (hbox{m}^{-3}), each with 100 Hypercube simulations) in a normal distribution. These 300 simulations explored the 5 relevant MP model parameters: (F_T), (F_R), (F_A) (marine snow aggregation fraction), (k_P), and (F_B) (fractional return to ocean at the seafloor). These results are also provided in the Supplemental Information. Finally, we added active zooplankton-associated plastic (MP, plus (hbox{MP}_A) and (hbox{MP}_Z) tracers) as a third 300-individual Hypercube set. This third Hypercube is similarly split across the (k_P) parameter space in a normal distribution, but with the addition of grazing parameters (psi _{MP}) (MP grazing preference) and (R_{F:MP}) (the food to MP substitution ratio; 7 parameters in total). More