More stories

  • in

    Unspoilt forests fall to feed the global supply chain

    .readcube-buybox { display: none !important;}
    Agricultural expansion can plunder forests, but it is not the only human activity to do so. Researchers have found that more than one-third of the loss of Earth’s large, intact forests is driven by production for export — especially of wood, minerals and energy1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-023-00119-9

    References

    Subjects

    Conservation biology More

  • in

    Precision agriculture management based on a surrogate model assisted multiobjective algorithmic framework

    Study areaThe study area is located in Lintong District, Xi’an City, Shaanxi Province, China (34° 21′ 59.94″, 109° 12′ 51.012″) (Meteorologists, 2020b). The study area is located in northwestern China (Fig. 1), which is a Warm temperate semi-humid continental climate with distinct cold, warm, dry and wet seasons. Winter is cold, windy, foggy, and with little rain or snow. Spring is warm, dry, windy, and variable. The summer is hot and rainy, with prominent droughts and thunderstorms, and high wind. Autumn is cool, the temperature drops rapidly and autumn showers are obvious. The annual average temperature is 13.0–13.7 °C, the coldest January average temperature is −1.2–0 °C, the hottest July average temperature is 26.3–26.6 °C, the annual extreme minimum temperature is −21.2 °C, Lantian December 28, 1991, the annual extreme maximum temperature is 43.4 °C, Chang’an June 19, 1966. Annual precipitation is 522.4–719.5 mm, increasing from north to south. July and September are the two obvious peak precipitation months. The annual sunshine hours range from 1646.1 to 2114.9 h. The dominant wind direction varies from place to place, with the northeast wind in Xi’an, west wind in Zhouzhi and Huxian, east-northeast wind in Gaoling and Lintong, southeast wind in Chang’an, and northwest wind in Lantian. Meteorological disasters include drought, continuous rain, heavy rain, flooding, urban flooding, hail, gale, dry hot wind, high temperature, lightning, sand and dust, fog, haze, cold wave, and low-temperature freeze.
    Figure 1Location of the field of study (The satellite imagery supporting this study was obtained using Baidu Maps (Android version—16.4.0.1195). The URL is (https://map.baidu.com/@14256795.568410998,5210675.606268121,8.67z.).Full size imageWheat (XiNong 805) was planted on September 24, 2019 and matured for harvest on May 28, 2020 (We warrant that we have the right to collect and manage wheat (XiNong 805). In addition, the study is in compliance with relevant institutional, national, and international guidelines.). Among the six strategies in the experiment (Table 1), we focused on strategies 1 and 4, fixed irrigation dates optimization and fixed fertilizer application dates optimization. Based on the custom of the study area, three days of diffuse irrigation were selected for Strategy 1. Three days of fertilization of the urea and three days of irrigation were selected for Strategy 4. The best practice for Strategy 1 was total irrigation of 201 mm for the total season and a total of 7388 kg/ha of wheat was obtained for this simulation, while the best practice for Strategy 4 was total irrigation of 197 mm for the total season and a total fertilizer application of 282 kg/ha for the total season. A total of 7894 kg/ha of wheat was obtained for this simulation.Table 1 Details of the 6 strategies of the experimental setup.Full size tableDSSAT modelDSSAT, one of the most widely used crop growth models, is an integrated computer system developed by the University of Hawaii under the authority of the U.S. Agency for International Development (USAID). It aims to aggregate various crop models and standardize the format of model input and output variables to facilitate the diffusion and application of models7, thereby accelerating the diffusion of agricultural technology and providing decision making and countermeasures for the rational and efficient use of natural resources in developing countries.
    The DSSAT 4.5 model integrates all crop models into the simulation pathway-based CSM (Cropping System Model) farming system model, which uses a set of simulated soil moisture, nitrogen, and carbon dynamics codes, while crop growth and development are stimulated through the CERES37,38, CROPGRO39, CROPSIM, and SUBSOR modules. DSSAT is applicable to single sites or same type zones and can be extrapolated to the regional level through Geographic Information System (GIS).DSSAT–CSM simulates the growth process of crops grown on a uniform land area under prescribed or simulated management40, and the changes in soil water, carbon and nitrogen with under tillage systems. The DSSAT model is a decision support system supported by crop simulation models, which, in addition to data support, provides methods for calculating and solving problems, and provides decision-maker with the results of their decisions. It also provides scientific decisions for farmers to provide different cultivation management measures (e.g., proper fertilization and irrigation for crops) in different climatic years.Inputs and outputs of the modelThe DSSAT model has four main user-editable input files and various output files. The input files include crop management7,41, soil, weather, and cultivar parameter files; the output files include three types: (1) output files, (2) seasonal output files, and (3) diagnostic and management files.Crop management data: Crop management data provides basic information about crop growth. Detailed and accurate parameter provision is the basis for improving the accuracy of model simulation. Crop management parameters include crop variety, soil type, meteorological name, previous season crop, sowing period, sowing density, sowing depth, irrigation amount and time, fertilizer application amount and time, the initial condition of the soil, pest management, tillage frequency and method, etc. Some of these parameters are not easily available in field experiments and can be obtained from other test sites or from existing documentation. On the other hand, if there are missing values in the model, it will increase the simulation error of the model (this situation is hard to avoid). Therefore, in this study, the parameters were selected based on the principle of being both detailed and easily available.Soil data Soil data contains various parameters of the soil section plane, including soil color, soil slope, soil capacity, organic carbon, soil nitrogen content, drainage properties, the proportion of clay, particles, and stones in the soil. Similar to the governing documents, the more complete the parameters the smaller the error value of the simulation. The various physical and chemical properties of the soil for this study were obtained from the China Soil Database at the time of the study. The various physical and chemical properties of the soil for this study were obtained from the China Soil Database.Weather data The DSSAT model uses daily weather data as weather input data for the model. The model requires a minimum of four daily weather data in order to accurately simulate the water cycle in soil plants (Fig. 2). These are:(1) daily solar radiation energy (MJM); (2) daily maximum temperature (°C); (3) daily minimum temperature (°C); and (4) daily precipitation (mm). Weather data were obtained from the China Meteorological Administration. Weather data were obtained from the China Meteorological Administration.Figure 2Precipitation and maximum and minimum temperatures during 2019–2020.Full size imageModel calibration Adjusting the cultivar parameter is very important to accurately simulate the local growing environment. In this experiment, we collected field data for 2019 and 2020, and adjusted the parameters in the cultivar parameter files by trial-and-error method to make the simulation process more closely match the actual local crop growth process.Multi-objective optimization algorithmMulti-objective optimization techniques have been successfully applied in many real-world problems. In general42,43,44, MOPs produce a set of optimal solutions that together represent a trade-off between conflicting objectives, and such solutions are called Pareto optimal solutions (PS). These PS cannot make any solution better without compromising the other solutions. Therefore, when solving multi-objective problems, more PS are needed to find. Some MOPs aim to find all PS or at least a representative subset of them.A multi-objective optimization problem can be stated as follows:$$mathrm{min }Fleft(xright)={({f}_{1}left(xright),dots ,{f}_{k}(x))}^{T}$$
    (1)
    $$mathrm{subject;to};xin Omega$$
    (2)
    where (Omega) is the decision space,(F:Omega to {R}^{k}) consists of (k) real-value objective functions and ({R}^{k}) is called the objective space. The attainable objective set is defined as the set ({F(x)in Omega }).NSGA-II optimizerWe use non-dominated sorting genetic algorithm (NSGA-II) for Multiobjective optimization in R language. The NSGA-II algorithm is a classical multi-objective evolutionary algorithm with remarkable results in solving 2-objective and 3-objective problems45. It maintains the convergence speed and diversity of solutions by fast non-dominated sorting and crowding distance, selects the next population by elite selection strategy.Objective functionThe multi-objective optimization problem varies one or more variables to maximize or minimize two or more objective problems. In the case of crop production, where decision-makers change irrigation and fertilizer application to maximize benefits, this study focuses on when to apply irrigation or fertilizer on the field and how much irrigation or nitrogen fertilizer to apply.There are many crop models available that can be used as optimization objective functions, and DSSAT is definitely the best choice because it is easy to use and well-proven36. The user runs the model by entering defined soil, weather, variety, and crop management files, which are fed into the core of the model, the Crop Simulation Model (CSM). The model simulates the growth, development, and yield of crops grown on a uniform land area under management, as well as changes in soil water, carbon, and nitrogen over time under cropping systems. The CSM itself is a highly modular model system consisting of a number of sub-modules. Researchers have validated the output of these sub-modules as a whole under various crops, climate, and soil conditions.Using DSSAT, it is easy to design a set of objective functions and optimize them, as in our case.$$mathrm{Max}:Y=mathrm{DSSAT}left.left( {i}_{a0},dots ,{i}_{mathrm{aj}},{f}_{mathrm{a}0},dots ,{f}_{mathrm{ad}},{D}_{i}right.right)$$
    (3)
    $$mathrm{Min}:I=sum_{n=0}^{j}{i}_{an}$$
    (4)
    $$mathrm{Min}:F=sum_{m=0}^{d}{f}_{am}$$
    (5)
    where (Y) is yield,(I) is the total amount of irrigation, (F) is the total amount of nitrogen application, ({i}_{an}) is the amount of irrigation at one time, ({f}_{am}) is the amount of nitrogen applied at one time, (j) is a number of applications of irrigation, and (d) is a number of nitrogen applications. ({D}_{i}) is a random date combination of irrigation time and fertilizer application time.All other variables (e.g., climate, soil, location, crop variety) are kept constant during the optimization process. The irrigation unit is mm and the nitrogen application unit is kg/ha, the irrigation and nitrogen application amounts are positive integers by default (integer arithmetic reduces the program running time).Data-driven evolutionary algorithmsIn general, the key to DDEAs is to reduce the required FEs and assist evolution through data. The data is generally utilized through surrogate model. The use of suitable surrogate model can be used in place of real FEs46. Thus, DDEAs have more advantages over EAs in solving expensive problems.In terms of algorithmic framework, DDEAs contain two parts: surrogate model management (SMM) and evolutionary optimization part (EOP)47,48. The SMM part is used in order to obtain better approximations, while EOPs will use surrogate models in EAs to assist evolution. DDEAs can be divided into two types: online DDEAs and offline DDEAs23. Online DDEAs can be evaluated by real FEs with more new data. This new information can provide SMM with more information and construct a more accurate surrogate model49. Since DSSAT can obtain new data through FEs during the EOP process, the method used in this paper is online DDEAs. In contrast, offline DDEAs can only drive evolution through historical data.Radial Basis Function (RBF) network is a single hidden layer feedforward neural network that uses a radial basis function as the activation function for the hidden layer neurons, while the output layer is a linear combination of the outputs of the hidden layer neurons. RBF was used to approximate each objective function. According to the investigation of multi-objective optimization problems with high computational cost, radial basis functions are often used as the surrogate model, mainly because RBF networks can approximate arbitrary nonlinear functions with arbitrary accuracy and have global approximation capability, which fundamentally solves the local optimum problem of BP networks, and the topology is compact, the structural parameters can be learned separately, and the convergence speed is fast.In this paper, a new data-driven approach is proposed and place it in the lower-level optimization of the framework. RBF is utilized as the surrogate model and NSGA-II as the optimizer. Details are described in Algorithm 1.Data-driven method details
    In step 1, the initial parent population is generated by randomly selecting points and the size is (N). In step 2, we run DSSAT (N) times to determine the objective function values of the (N) initial population solutions. Next, the algorithm then loops through the generations. At the beginning of each loop, surrogate models, which one objective train one surrogate and denoted by ({s}_{t}^{left({f}_{1}right)}) , were trained by the already obtained objective function values (step 3.1). The trial offspring ({P}_{i}^{^{prime}}left(tright)={ {x}_{1}^{^{prime}}left(tright),dots ,{x}_{u}^{^{prime}}left(tright)}) are generated by SBX and PM (step 3.2), then the trained surrogate model is used to predict the objective function values of trial offspring (step 3.3). The predicted objective function values are sorting by Pareto non-dominated and crowding distance (step 3.4), then (r) offspring (Q_{i} left( t right) = left{ {x^{primeprime}_{1} left( t right), ldots ,x^{primeprime}_{r} left( t right)} right}) are selected from the trial offspring (step 3.5).The offspring are evaluated by the DSSAT (step 3.6), and after combining the parent population and offspring population (step 3.7), the new parent population are selected by Pareto non-dominated and crowding distance sorting (step 3.8).Maximum extension distanceMED guides a small number of individuals to approximate the entire PF. MED is defined as follow:$$mathrm{MED}left({P}_{t}^{left(qright)}right)=mathrm{ND}left({P}_{t}^{left(qright)}right)times mathrm{TD}left({P}_{t}^{left(qright)}right)$$
    (6)
    where$$mathrm{ND}left({P}_{t}^{left(qright)}right)=underset{z,qne z}{mathrm{min}}sum_{m=1}^{M}left|{f}_{m}^{left(qright)}-{f}_{m}^{left(zright)}right|$$$$mathrm{TD}left({P}_{t}^{left(qright)}right)=sum_{z=1}^{P}sum_{m=1}^{M}left|{f}_{m}^{left(qright)}-{f}_{m}^{left(zright)}right|$$({P}_{t}^{left(qright)}) is the qth individual in population Pt at the tth generation. (mathrm{ND}left({P}_{t}^{left(qright)}right)) calculates the minimum distance between ({P}_{t}^{left(qright)}) and ({P}_{t}^{left(zright)}). The larger (mathrm{ND}left({P}_{t}^{left(qright)}right)) value means a better individual diversity. (mathrm{TD}left({P}_{t}^{left(qright)}right)) calculates the summation of distance between ({P}_{t}^{left(qright)}) and ({P}_{t}^{left(zright)}). The larger (mathrm{TD}left({P}_{t}^{left(qright)}right)) value means that the solution ({P}_{t}^{left(qright)}) has moved away from other individuals. A larger MED value means that an individual extends the overall boundary and an individual acquires better diversity.Modeling processTo maximize crop yield and optimize the use efficiency of water and fertilizer in a given environment, BSBOP framework is proposed. Crop growth is simulated by DSSAT, the data-driven approach reduces the runtime of the overall framework while finding optimal management strategies. The overall framework includes four main parts: upper-level screening, upper-level optimization, lower-level optimization and lower-level screening (Fig. 3).Figure 3Proposed integrated bi-level screening, bi-level optimization and DSSAT framework.Full size imageUpper-level screening The weather file in DSSAT was loaded by R language. The data are pre-processed with precipitation and solar radiation information to narrow down the date range for irrigation and fertilizer application. In other words, the date ranges for selecting irrigation and fertilization are restricted by the ULS.Upper-level optimization Generating random combinations of dates by the Latin hypercube sampling method (LHS). The upper-level screening starts with referencing the two variables (number of irrigation and nutrient application events). LHS uses these variables to generate a series of uniformly distributed random day combinations. For example, date combinations generated by the LHS could be May 15, July 18 and August 1 for irrigation and May 30, June 30 and July 18 for nutrient application. From the series of uniformly distributed random day combinations, one will be selected and incorporated into the lower-level optimization.Lower-level optimization The agricultural management strategy is optimized by the online data-driven approach proposed in Algorithm 1. Assuming three irrigation and three nitrogen application events are given, these events will be incorporated into the LOP, which consists of the RBF and NSGA-II. The population size of this paper is 105. The number of iterations varies according to the different strategies, and the objective function values are calculated by DSSAT. The main idea of applying Evolutionary multi-objective algorithms(EMO) and RBF to DSSAT is to generate a large number of trial offspring by traditional Simulated Binary Crossover (SBX) and Polynomial Mutation (PM), and then evaluate them using the trained surrogate model50. The objective values of the evaluation were then ranked by Pareto non-dominated and crowding distance, and the top 105 individuals were selected from a large number of trial offspring, after which a small number of individuals out of 105 were selected by Maximum Extension Distance (MED) for real function evaluation, and then combine the parents and offspring to select the next generation of parents by Pareto non-dominated and crowding distance sorting. Furthermore, in the numerical experiments, to ensure the superiority of the algorithm and reduce the experimental complexity, we use a relatively simple radial basis function (RBF) surrogate. The NSGA-II algorithm can be used for both bi-objective and tri-objective problems, so it can optimize the system by starting with the most critical objective and then adding additional objectives. For each solution in the population, the objective functions (1: maximize yield, 2: minimize irrigation application, 3: minimize nitrogen fertilizer application) will be evaluated by invoking the DSSAT model for these dates and the amount of fertilizer irrigation applied. Populations will be tested against the termination criteria (maximum number of iterations allowed). If the termination criteria are not satisfied, the population evolves and is re-evaluated again. The process is repeated until the termination criterion is satisfied and then the local Pareto front of the selected day combination is stored. After each iteration of the UOP, the new local Pareto is combined with the global Pareto frontier. In the next step, if there are any remaining day combinations, the above process is repeated for each new day combination until all generated random day combinations have been processed.Lower-level screening Firstly, the K-means method is used to screen the global Pareto solutions with higher yield. Then, secondary screening takes economic efficiency as the objective and optimizes it by Differential Evolution (DE) algorithm. Finally, the locally appropriate solution is intelligently selected.Optimization strategies and configurationDue to the complexity of the problem, a BSBOP framework was proposed in this study. Due to a large number of variables behind irrigation and fertilization, traversal date for optimization appears to be particularly difficult and time-consuming, assuming that only irrigation is optimized for 120 days of the growth cycle and the decision-maker has 0-150 mm of water per day, then there are ({151}^{120}) different solutions. If both irrigation and fertilization are considered, then there are ({151}^{120}cdot {151}^{120}) different solutions. Therefore, this study tries to reduce the number of variables while minimizing the running time of the algorithm.Here we hypothesize that more precision and effective agricultural management can be implemented through the proposed framework. Not only can crop yields be increased, but also irrigation application and fertilizer application can be reduced, while the solutions obtained have important guidance for decision-makers: such as the selection of irrigation and fertilizer application dates during the growing season of the crop, the selection of irrigation and fertilizer application amounts, and the relationship between economic benefits and application costs. To test this hypothesis, different optimization strategies were developed and evaluated (Table 1). Each optimization strategy was aimed at maximizing yield while minimizing resource wastage.The various strategies are listed below (Table 1). Strategy 1—Fixed irrigation dates: Keeping the number of irrigation days and all parameters constant, only the amount of irrigation on each date is changed, trying to reduce the amount of irrigation as much as possible, make it easy to compare the results with best practices. Strategy 2—Optimal irrigation dates: Traverse through the irrigation dates to optimize irrigation, and try to find a better combination of irrigation dates (optimal dates) and better amount of irrigation over the wheat growth cycle. Strategy 3—Optimal irrigation dates based on surrogate model: RBF is added to Strategy 2, which makes it possible to reduce lots of time. Strategy 4—Fixed fertilizer application date: Using the optimal irrigation date found in Strategy 2 while keeping the number of days of fertilization and all other parameters constant, irrigation and fertilization are optimized in an attempt to minimize the amount of irrigation and fertilizer applied. Strategy 5—Optimal fertilizer application date: while ensuring the optimal irrigation date, traverse the fertilizer application date for optimization, trying to find out the potential yield of the crop. Strategy 6—Optimal fertilizer application date based on surrogate model: RBF is introduced based on Strategy 5. The time consumption was reduced.The stopping criterion in this study is when the optimization results converge visually. The algorithm population size was set to 105, and the generation of offspring used traditional polynomial Mutation. The number of hidden layers of the surrogate model is equal to the dimension of the decision variables, the learning rate is 0.01, the Gaussian kernel function is chosen as the activation function of the hidden layer in the RBF network. The neurons centers are generated by the K-means clustering method. The width parameter of the function is generated by calculating the variance of each cluster. The optimization weight parameters are selected by the recursive least square method. This is because the use of the least square method is likely to encounter situations where matrix inversion is troublesome. Therefore, recursive least squares (RLS) is often used to give a recursive form of the matrix in which the inverse needs to be found, making it computationally easier. More

  • in

    Significant changes in soil microbial community structure and metabolic function after Mikania micrantha invasion

    Runyon, J. B., Butler, J. L., Friggens, M. M., Meyer, S. E. & Sing, S. E. Invasive species and climate change. USDA For. Serv. 285, 97–115 (2012).
    Google Scholar 
    Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).Article 

    Google Scholar 
    Mollot, G., Pantel, J. H. & Romanuk, T. N. The effects of invasive species on the decline in species richness: a global meta-analysis. Adv. Ecol. Res. 56, 61–83 (2017).Article 

    Google Scholar 
    Gaertner, M., Den Breeyen, A., Hui, C. & Richardson, D. M. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: A meta-analysis. Prog. Phys. Geog. 33, 319–338 (2009).Article 

    Google Scholar 
    Vilà, M. et al. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J. Biogeogr. 33, 853–861 (2010).Article 

    Google Scholar 
    Hejda, M., Pysek, P. & Jarosik, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article 

    Google Scholar 
    Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548 (2011).Article 

    Google Scholar 
    Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6, 503–523 (2003).Article 
    CAS 

    Google Scholar 
    Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol. 177, 706–714 (2008).Article 
    CAS 

    Google Scholar 
    Chabrerie, O., Laval, K., Puget, P., Desaire, S. & Alard, D. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Appl. Soil Ecol. 24, 43–56 (2003).Article 

    Google Scholar 
    Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers?. Science 325, 573–574 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Dawson, W. & Schrama, M. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).Article 

    Google Scholar 
    Lankau, R. Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species. Biol. Invasions 12, 2059–2068 (2010).Article 

    Google Scholar 
    Siefert, A., Zillig, K. W., Friesen, M. L. & Strauss, S. Y. Soil microbial communities alter conspecific and congeneric competition consistent with patterns of field coexistence in three Trifolium congeners. J. Ecol. 106, 1876–1891 (2018).Article 
    CAS 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).Article 

    Google Scholar 
    Li, W. H., Zhang, C. B., Jiang, H. B., Xin, G. R. & Yang, Z. Y. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281, 309–324 (2006).Article 
    CAS 

    Google Scholar 
    Li, W. H., Zhang, C., Gao, G., Zan, Q. & Yang, Z. Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant Soil 296, 197–207 (2007).Article 
    CAS 

    Google Scholar 
    Chen, X. P. et al. Exotic plant Alnus trabeculosa alters the composition and diversity of native rhizosphere bacterial communities of Phragmites australis. Pedosphere 26, 108–119 (2016).Article 

    Google Scholar 
    Yin, L., Liu, B., Wang, H., Zhang, Y. & Fan, W. The rhizosphere microbiome of Mikania micrantha provides insight into adaptation and invasion. Front. Microbiol. 11, 1462 (2020).Article 

    Google Scholar 
    Griffiths, B. S., Ritz, K. & Wheatley, R. E. Relationship between functional diversity and genetic diversity in complex microbial communities. In Microbial Communities (eds Insam, H. & Rangger, A.) 1–9 (Springer, 1997). https://doi.org/10.1007/978-3-642-60694-6_1.Chapter 

    Google Scholar 
    Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C. & Steinberg, C. Response of soil microbial communities to compost amendments. Soil Biol. Biochem. 38, 460–470 (2006).Article 

    Google Scholar 
    Grime, J. P. Plant strategies and vegetation processes. Biol. Plant 23, 254–254 (1979).
    Google Scholar 
    Goldberg, D. & Novoplansky, A. On the relative importance of competition in unproductive environments. J. Ecol. 85, 409–418 (1997).Article 

    Google Scholar 
    Goldberg, D. E., Martina, J. P., Elgersma, K. J. & Currie, W. S. Plant size and competitive dynamics along nutrient gradients. Am. Nat. 190, 229–243 (2017).Article 

    Google Scholar 
    Castro-Díez, P., Godoy, O., Alonso, A., Gallardo, A. & Saldaña, A. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 17, 1–12 (2014).Article 

    Google Scholar 
    Chapuis-Lardy, L., Vanderhoeven, S., Dassonville, N., Koutika, L. S. & Meerts, P. Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol. Fertil. Soils 42, 481–489 (2006).Article 

    Google Scholar 
    Thorpe, A. S., Archer, V. & DeLuca, T. H. The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl. Soil Ecol. 32, 118–122 (2006).Article 

    Google Scholar 
    Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8, 976–985 (2005).Article 

    Google Scholar 
    Zhang, A. M., Chen, Z. H., Zhang, G. N., Chen, L. J. & Wu, Z. J. Soil phosphorus composition determined by 31P NMR spectroscopy and relative phosphatase activities influenced by land use. Eur. J. Soil Biol. 52, 73–77 (2012).Article 

    Google Scholar 
    Souza-Alonso, P., Novoa, A. & Gonzalez, L. Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biol. Biochem. 79, 100–108 (2014).Article 
    CAS 

    Google Scholar 
    Callaway, M. et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J. Ecol. 104, 994–1002 (2016).Article 

    Google Scholar 
    Zhao, M. et al. Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Sci. Total Environ. 677, 47–56 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Litton, C. M., Sandquist, D. R. & Cordell, S. Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii. For. Ecol. Manag. 231, 105–113 (2006).Article 

    Google Scholar 
    Wolkovich, E. M., Lipson, D. A., Virginia, R. A., Cottingham, K. L. & Bolger, D. T. Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob. Chang. Biol. 16, 1351–1365 (2010).Article 
    ADS 

    Google Scholar 
    Sardans, J. et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob. Chang. Biol. 23, 1282–1291 (2017).Article 
    ADS 

    Google Scholar 
    Yu, H. et al. Soil nitrogen dynamics and competition during plant invasion: insights from Mikania micrantha invasions in China. New Phytol. 229, 3440–3452 (2021).Article 
    CAS 

    Google Scholar 
    Day, M. D. et al. Biology and impacts of pacific islands invasive species. 13. Mikania micrantha Kunth (Asteraceae). Pac. Sci. 70, 257–285 (2016).Article 

    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (eds) 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. CID: 20.500.12592/drpzmz. (Auckland: Invasive Species Specialist Group, 2000).Zhang, L. Y., Ye, W. H., Cao, H. L. & Feng, H. L. Mikania micrantha H.B.K. in China: An overview. Weed Res. 44, 42–49 (2004).Article 

    Google Scholar 
    Manrique, V., Diaz, R., Cuda, J. P. & Overholt, W. A. Suitability of a new plant invader as a target for biological control in Florida. Invas. Plant Sci. Manag. 4, 1–10 (2011).Article 

    Google Scholar 
    Macanawai, A., Day, M., Tumaneng-Diete, T., Adkins, S. & Nausori, F. Impact of Mikania micrantha on crop production systems in Viti Levu, Fiji. Pak. J. Weed Sci. Res. 18, 357–365 (2012).
    Google Scholar 
    Carter, M. R. & Gregorich, E. G. (eds) Soil Sampling and Methods of Analysis 2nd edn. (CRC Press, 2007). https://doi.org/10.1201/9781420005271.Book 

    Google Scholar 
    Liu, X. et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?. Agric. For. Meteorol. 246, 78–85 (2017).Article 
    ADS 

    Google Scholar 
    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).Article 
    CAS 

    Google Scholar 
    Sun, S. & Badgley, B. D. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biol. Biochem. 135, 163–172 (2019).Article 
    CAS 

    Google Scholar 
    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).Article 
    CAS 

    Google Scholar 
    Dawkins, K. & Esiobu, N. The invasive brazilian pepper tree (Schinus terebinthifolius) is colonized by a root microbiome enriched with Alphaproteobacteria and unclassified Spartobacteria. Front. Microbiol. 9, 876 (2018).Article 

    Google Scholar 
    Carey, C. J., Beman, J. M., Eviner, V. T., Malmstrom, C. M. & Hart, S. C. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front. Microbiol. 6, 466 (2015).Article 

    Google Scholar 
    Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).Article 

    Google Scholar 
    Kanokratana, P. et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 61, 518–528 (2011).Article 

    Google Scholar 
    Margesin, R., Jud, M., Tscherko, D. & Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 67, 208–218 (2009).Article 
    CAS 

    Google Scholar 
    Xu, Z. W. et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biol. Biochem. 104, 152–163 (2017).Article 
    CAS 

    Google Scholar 
    Zhou, X. et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Sci. Total Environ. 444, 552–558 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Mao, T. & Minoru, K. Using the KEGG database resource. Curr. Protoc. Bioinform. 38, 1121–11243. https://doi.org/10.1002/0471250953.bi0112s38 (2012).Article 

    Google Scholar 
    Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D. & Bardgett, R. D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33, 533–551 (2001).Article 
    CAS 

    Google Scholar 
    Chen, W. B. & Chen, B. M. Considering the preferences for nitrogen forms by invasive plants: a case study from a hydroponic culture experiment. Weed Res. 59, 49–57 (2019).CAS 

    Google Scholar 
    Christian, J. M. & Wilson, S. D. Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology 80, 2397–2407 (1999).Article 

    Google Scholar 
    Strickland, M. S., Devore, J. L., Maerz, J. C. & Bradford, M. A. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob. Chang. Biol. 16, 1338–1350 (2010).Article 
    ADS 

    Google Scholar 
    Bradley, B. A., Houghtonw, R. A., Mustard, J. F. & Hamburg, S. P. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Biol. 12, 1815–1822 (2006).Article 
    ADS 

    Google Scholar 
    Ogle, S. M., Ojima, D. & Reiners, W. A. Modeling the impact of exotic annual brome grasses on soil organic carbon storage in a northern mixed-grass prairie. Biol. Invasions 6, 365–377 (2004).Article 

    Google Scholar 
    Ni, G. Y. et al. Mikania micrantha invasion enhances the carbon (C) transfer from plant to soil and mediates the soil C utilization through altering microbial community. Sci. Total Environ. 711, 135020. https://doi.org/10.1016/j.scitotenv.2019.135020 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 35, 895–905 (2003).Article 
    CAS 

    Google Scholar 
    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).Article 
    CAS 

    Google Scholar 
    Ehrenfeld, J. G., Kourtev, P. & Huang, W. Z. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol. Appl. 11, 1287–1300 (2001).Article 

    Google Scholar 
    Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141, 612–619 (2004).Article 
    ADS 

    Google Scholar 
    Harner, M. J. et al. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecol. Appl. 19, 1135–1146 (2009).Article 

    Google Scholar 
    Wolkovich, E. M. Nonnative grass litter enhances grazing arthropod assemblages by increasing native shrub growth. Ecology 91, 756–766 (2010).Article 

    Google Scholar 
    Yan, J. et al. Conversion of organic carbon from decayed native and invasive plant litter in Jiuduansha wetland and its implications for SOC formation and sequestration. J. Soils Sediments 20, 675–689 (2020).Article 
    CAS 

    Google Scholar 
    Aerts, R. & de Caluwe, H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils. Oikos 84, 44–54 (1999).Article 

    Google Scholar 
    Shen, C. C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).Article 
    CAS 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).Article 
    CAS 

    Google Scholar 
    Mothé, G. P. B., Quintanilha-Peixoto, G., Souza, G. R. D., Ramos, A. C. & Intorne, A. C. Overview of the role of nitrogen in copper pollution and bioremediation mediated by plant–microbe interactions. In Soil Nitrogen Ecology (eds Cruz, C. et al.) 249–264. https://doi.org/10.1007/978-3-030-71206-8_12 (Springer, 2021).Chapter 

    Google Scholar 
    Chen, B. M., Peng, S. L. & Ni, G. Y. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biol. Invasions 11, 1291–1299 (2009).Article 

    Google Scholar 
    Fan, Y. X. et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biol. Fertil. Soils 54, 149–161 (2018).Article 
    CAS 

    Google Scholar 
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).Article 
    ADS 
    CAS 

    Google Scholar 
    Khan, M. S., Zaidi, A., Ahemad, M. & Oves, M. Plant growth promotion by phosphate solubilizing fungi: Current perspective. Arch. Agron. Soil Sci. 56, 73–98 (2010).Article 
    CAS 

    Google Scholar 
    Kouas, S., Labidi, N., Debez, A. & Abdelly, C. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 25, 389–393 (2005).Article 
    CAS 

    Google Scholar 
    Bolan, N. S. et al. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv. Agron. 110, 1–75 (2011).Article 
    CAS 

    Google Scholar 
    Dail, D. B., Davidson, E. A. & Chorover, J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry 54, 131–146 (2001).Article 
    CAS 

    Google Scholar 
    Fitzhugh, R. D., Lovett, G. M. & Venterea, R. T. Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Glob. Chang. Biol. 9, 1591–1601 (2003).Article 
    ADS 

    Google Scholar  More

  • in

    Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea

    Špinar, Z. V. Revize nĕkterých moravských diskosauriscidů (Labyrinthodontia). Rozpravy Ústředního Ústavu Geologického. 15, 1–115 (1952).
    Google Scholar 
    Klembara, J. & Meszároš, Š. New finds of Discosauriscus austriacus (Makowsky 1876) from the Lower Permian of the Boskovice Furrow (Czecho-Slovakia). Geol. Carpath. 43, 305–312 (1992).
    Google Scholar 
    Klembara, J. The external gills and ornamentation of the skull roof bones of the Lower Permian tetrapod Discosauriscus austriacus (Makowsky 1876) with remarks to its ontogeny. Paläontol. Z. 69, 265–281 (1995).
    Google Scholar 
    Klembara, J. The cranial anatomy of Discosauriscus Kuhn, a seymouriamorph tetrapod from the Lower Permian of the Boskovice Furrow (Czech Republic). Philos. Trans. R. Soc. B 352, 257–302 (1997).ADS 

    Google Scholar 
    Calábková, G., Březina, J. & Madzia, D. Evidence of large terrestrial seymouriamorphs in the lowermost Permian of the Czech Republic. Pap. Palaeontol. https://doi.org/10.1002/spp2.1428 (2022).Article 

    Google Scholar 
    Makowsky, A. Über einen neuen Labyrinthodonten ‘Archegosaurus austriacus nov. spec’. Sitzungsberichte der keiserischen Akademie der Wissenschaft. 73, 155–166 (1876).
    Google Scholar 
    Fritsch, H. A. Neue Übersicht der in der Gaskohle und den Kalksteinen der Permformation in Böhmen vorgefundenen Tierreste. Sitzungsberichte der königlichen böhmische Gesellschaft der Wissenschaften in Prag 1879, 184–195 (1880).
    Google Scholar 
    Klembara, J. A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Republic. Acta Palaeontol. Pol. 50, 25–48 (2005).
    Google Scholar 
    Klembara, J. New cranial and dental features of Discosauriscus austriacus (Seymouriamorpha, Discosauriscidae) and the ontogenetic conditions of Discosauriscus. Spec. Pap. Palaeontol. 81, 61–69 (2009).
    Google Scholar 
    Klembara, J. A new find of discosauriscid seymouriamorph from the Lower Permian of Boskovice Basin in Moravia (the Czech Republic). Fossil Imprint 72, 117–121 (2016).
    Google Scholar 
    Augusta, J. Spodnopermaská zvířena a květena z nového naleziště za pilou dolu “Antonín” u Zbýšova na Moravě. Věstník Státního geologického Ústavu. 22(4), 187–224 (1947).
    Google Scholar 
    Milner, A. W., Klembara, J. & Dostál, O. A zatrachydid temnospondyl from the Lower Permian of the Boskovice Furrow in Moravia (Czech Republic). J. Vertebr. Paleontol. 27, 711–715 (2007).
    Google Scholar 
    Klembara, J. & Steyer, S. A new species of Sclerocephalus (Temnospondyli: Stereospondylomorpha) from the Early Permian of the Boskovice Basin (Czech Republic). J. Paleontol. 86, 302–310 (2012).
    Google Scholar 
    Zajíc, J. & Štamberg, S. Selected important fossiliferous horizons of the Boskovice Basin in the light of the new zoopaleontological data. Acta Musei Reginaehradecensis A 30, 5–15 (2004).
    Google Scholar 
    Štamberg, S. & Zajíc, J. Carboniferous and Permian faunas and Their Occurrence in the Limnic Basins of the Czech Republic Museum of Eastern Bohemia (Hradec Králové, 2008).Calábková, G. & Nosek, V. Stopy velkého čtvernožce z permu boskovické brázdy. Sborník Muzea Brněnska. 59–68 (2022).Calábková, G., Březina, J., Nosek, V. & Madzia, D. High diversity of tetrapods in the lower Permian of the Boskovice Basin, Czech Republic. In 21st Slovak-Czech-Polish Paleontological Conference, Bratislava, Slovakia 113–114 (2022).Fritsch, H. A. Über die Fauna der Gaskohle der Pilsner und Rakonitzer Beckens. In Věstník Královské české společnosti nauk. Třída mathematicko-přírodovědecká. 70–79. (Praha, 1875).Fritsch, A. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens. II/2. Prague: F. Řivnáč. 33–64 (1885).Fritsch, H. A. Ueber neue Wirbelthiere aus der Permformation Böhmens nebst einer Uebersicht der aus derselben bekannt gewordenen Arten. Sitzungsberichte der königl. böhmischen Gesellschaft der Wissenschaften, mathematischnaturwissenschaftliche Classe 52, 17 (1895).Švestka, F. Příspěvek k dnešní bilanci nálezů rostlinných fossilií z uhelné pánve rosicko-oslavanské a památné Rybičkové skály pod spodnopermským Konvizem u Padochova. Příroda. 35(5), 116–119 (1943).
    Google Scholar 
    Švestka, F. Druhý příspěvek k fytopaleontologickému Průzkumu spodního perrnu a permokarbonu Oslavan, Padochova a Zbýšova. Příroda. 36, 159–165 (1944).
    Google Scholar 
    Fritsch, A. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens II/4. Prague: F. Řivnáč. 93–114 (1889).Reisz, R. R. Pennsylvanian Pelycosaurs from Linton, Ohio and Nýřany, Czechoslovakia. J. Paleontol. 49, 522–527 (1975).
    Google Scholar 
    Fröbisch, J., Schoch, R. R., Müller, J., Schindler, T. & Schweiss, D. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar-Nahe Basin, Germany. Acta Palaeontol. Pol. 56, 113–120 (2011).
    Google Scholar 
    Spindler, F., Voigt, S. & Fischer, J. Edaphosauridae (Synapsida, Eupelycosauria) from Europe and their relationship to North American representatives. PalZ. 94, 125–153 (2019).
    Google Scholar 
    Jaroš, J. Litostratigrafie permokarbonu Boskovické brázdy. Věstník Ústředního ústavu geologického 38, 115–118 (1963).
    Google Scholar 
    Jaroš J. & Malý, L. Boskovická brázda. 208–223. In Geologie a ložiska svrchnopaleozoických limnických pánví České republiky (ed. PEšEK, J.) (Český geologický ústav, 2001).Pešek, J. Late Paleozoic limnic basins and coal deposits of the Czech Republic. Folia Musei Rerum Naturalium Bohemiae occidentalis: Geologica et Paleobiologica, 1 (2004).Jaroš, J. Geologický vývoj a stavba boskovické brázdy. PhD thesis, Charles University, Prague, Czech Republic (1962).Houzar, S., Hršelová, P., Gilíková, H., Buriánek, D. & Nehyba, S. Přehled historie vyzkumů permokarbonskych sedimentů jižni časti boskovicke brazdy (Čast 2. Geologie a petrografie). Acta Musei Moraviae Scientiae Geologicae. 102, 3–65 (2017).
    Google Scholar 
    Opluštil, S., Jirásek, J., Schmitz, M. & Matýsek, D. Biotic changes around the radioisotopically constrained Carboniferous-Permian boundary in the Boskovice Basin (Czech Republic). Bull. Geosci. 92, 95–122 (2017).
    Google Scholar 
    Dopita, M., Havlena, V. & Pešek, J. Ložiska fosilních paliv. Vyd. 1. Nakladatelství technické literatury, Praha (1985).Pešek, J., Holub, V., Jaroš, J., Malý, L., Martínek, K., Prouza, V., Spudil, J. & Tasler, R. Geologie a ložiska svrchnopaleozoických limnických pánví České republiky. Český geologický ústav, Praha (2001).Šimůnek, Z. & Martínek, K. A study of Late Carboniferous and Early Permian plant assemblages from the Boskovice Basin, Czech Republic. Rev. Palaeobot. Palynol. 155, 275–307 (2009).
    Google Scholar 
    Kukalová, J. On the Family Blattinopsidae Bolton, 1925 (Insecta, Protorthoptera). Rozpravy Československé akademie věd, Rada matematických a přírodních věd 69, 1–27 (1959).
    Google Scholar 
    Kukalová, J. Permian protelytroptera, coleoptera and protorthoptera (insecta) of Moravia. Sborník geologických věd, Paleontonologie. 6, 61–98 (1965).
    Google Scholar 
    Schneider, J. W. Zur Entomofauna des Jungpalaozoikums der Boskovicer Furche (ČSSR), Teil 1: Mylacridae (Insecta, Blattoidea). Freiberger Forschungshefte C 357, 43–55 (1980).
    Google Scholar 
    Schneider, J. W. Zur Entomofauna des Jungpalaozoikums der Boskovicer Furche (ČSSR), Teil 2: Phyloblattidae (Insecta, Blattoidea). Freiberger Forschungshefte C 395, 19–37 (1984).
    Google Scholar 
    Zajíc, J. Sladkovodní mikrovertebrátní společenstva svrchního Stefanu a spodního autunu Čech. Závěrečný zpráva za grant GAČR, MS, Česká geologický Ústav, 1–61. Praha (1996).Zajíc, J., Martínek, K., Šimůnek Z. & Drábková, J. Permokarbon Boskovické brázdy ve výkopu pro rozšíření tranzitního plynovodu. Zprávy o geologických výzkumech v roce 1995, 179–182. Praha. (1996).Ivanov, M. Přehled historie paleontologickeho badani v permokarbonu boskovicke brazdy na Moravě. Acta Musei Moraviae Scientiae Geologicae. 88, 3–112 (2003).
    Google Scholar 
    Zajíc, J. Vertebrate biozonation of the Permo-Carboniferous lakes of the Czech Republic: New data. Acta Musei Reginaehradecensis A 30, 15–16 (2004).
    Google Scholar 
    Zajíc, J. Permian acanthodians of the Czech Republic Czech Geological Survey Special Paper. 18, 1–42 (2005).Štamberg, S. Fossiliferous Early Permian horizons of the Krkonoše Piedmont Basin and the Boskovice Graben (Bohemian Massif) in view of the occurrence of actinopterygians. Paläontologie, Stratigraphie, Fazies (22). Freiberger Forschungshefte, C, 548, 45–60 (2014).Kukalová, J. Permian insects of Moravia. Part I: Miomoptera. Sborník geologických věd, Paleontonologie 1, 7–52 (1963).
    Google Scholar 
    Kukalová, J. Permian insects of Moravia. Part II: Liomopteridae. Sborník geologických věd, Paleontonologie. 3, 3–118 (1964).
    Google Scholar 
    Štamberg, S. Permo-Carboniferous actinopterygians of the Boskovice Graben. Part 1. Neslovicella, Bourbonnella, Letovichthys. Museum of Eastern Bohemia in Hradec Králové (2007).Klembara, J. The skeletal anatomy and relationships of a new discosauriscid seymouriamorph from the Lower Permian of Moravia (Czech Republic). Ann. Carnegie Museum 77, 451–484 (2009).
    Google Scholar 
    Klembara, J. & Mikudíková, M. New cranial material of Discosauriscus pulcherrimus (Seymouriamorpha, Discosauriscidae) from the Lower Permian of the Boskovice Basin (Czech Republic). Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 225–236 (2018).
    Google Scholar 
    Leonardi, G. Glossary and Manual of Tetrapod Footprint Palaeoichnology 1–117 (Departamento Nacional de Producao Mineral, 1987).
    Google Scholar 
    Porter, S., Roussel, M. & Soressi, M. A simple photogrammetry rig for the reliable creation of 3D artifact models in the field: Lithic examples from the early upper paleolithic sequence of Les Cottés (France). Adv. Archaeol. Pract. 4, 1–86 (2016).
    Google Scholar 
    Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. & Reynolds, J. M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012).ADS 

    Google Scholar 
    Yilmaz, H., Yakar, M., Gulec, S. & Dulgerler, O. Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 8(4), 428–433 (2007).
    Google Scholar 
    Haeckel, E. Generelle Morphologie der Organismen (Reimer, 1866).
    Google Scholar 
    Osborn, H. F. The reptilian subclasses Diapsida and Synapsida and the early history of the Diaptosauria. Mem. Am. Mus. Nat. Hist. 1, 265–270 (1903).
    Google Scholar 
    Romer, A. S. & Price, L. I. Review of the Pelycosauria. Geol. Soc. Am. Spec. Pap. 28, 1–538 (1940).
    Google Scholar 
    Geinitz, H. B. Beiträge zur Kenntnis der organischen Überreste in der Dyas (oder permischen Formation zum Theil) und über den Namen Dyas: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. 385–398 (1863).Voigt, S. & Lucas, S. G. Outline of a Permian tetrapod footprint ichnostratigraphy. 387–404. In The Permian Timescale: An Introduction (eds. Lucas, S. G. and Shen, S. Z.) 450 (Geological Society, London, Special Publications, 2016). https://doi.org/10.1144/SP450.10 (2016).Voigt, S. & Ganzelewski, M. Toward the origin of amniotes: Diadectomorph and synapsid footprints from the early Late Carboniferous of Germany. Acta Palaeontol. Pol. 55, 57–72 (2010).
    Google Scholar 
    Marchetti, L. et al. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth Sci. Rev. 193, 109–145 (2019).ADS 

    Google Scholar 
    Voigt, S. Die Tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im Thüringer Wald—Ichnotaxonomie, Paläoökologie und Biostratigraphie. Cuvillier, Göttingen (2005).Voigt, S. & Lucas, S. G. On a diverse tetrapod ichnofauna from early Permian red beds in San Miguel County, north-central New Mexico: New Mexico Geological Society. Guidebook. 66, 241–252 (2015).
    Google Scholar 
    Tilton, J. L. Permian vertebrate tracks in West Virginia. Bull. Geol. Soc. Am. 42, 547–556 (1931).
    Google Scholar 
    Van Allen, H. E. K., Calder, J. H. & Hunt, A. P. The trackway record of a tetrapod community in a walchian conifer forest from the Permo-Carboniferous of Nova Scotia. N. M. Mus. Nat. Hist. Sci. Bull. 30, 322–332 (2005).
    Google Scholar 
    Gand, G. Les traces de Vertébrés Tétrapodes du Permien français: Paléontologie, stratigraphie, paléoenvironnements (Bourgogne University, 1987).
    Google Scholar 
    Sacchi, E., Cifelli, R., Citton, P., Nicosia, U. & Romano, M. Dimetropus osageorum n. isp. from the Early Permian of Oklahoma (USA): A trace and its trackmaker. Ichnos 21, 175–192 (2014).
    Google Scholar 
    Buchwitz, M. & Voigt, S. On the morphological variability of Ichniotherium tracks and evolution of locomotion in the sistergroup of amniotes. PeerJ 6, e4346. https://doi.org/10.7717/peerj.4346 (2018).Article 
    CAS 

    Google Scholar 
    Mujal, E., Marchetti, L., Schoch, R. R. & Fortuny, J. Upper Paleozoic to lower mesozoic tetrapod ichnology revisited: Photogrammetry and relative depth pattern inferences on functional prevalence of autopodia. Front. Earth Sci. 8(248), 1–23 (2020).
    Google Scholar 
    Lucas, S. G., Kollar, A. D., Berman, D. S. & Henrici, A. C. Pelycosaurian-grade (Amniota: Synapsida) footprints from the Lower Permian Dunkard Group of Pennsylvania and West Virginia. Ann. Carnegie Mus. 83(4), 287–294 (2016).
    Google Scholar 
    Haubold, H., Hunt, A. P., Lucas, S. G. & Lockley, M. G. Wolfcampian (Early Permian) vertebrate tracks from Arizona and New Mexico. N. M. Mus. Nat. Hist. Sci. Bull. 6, 135–165 (1995).
    Google Scholar 
    Meade, L. E., Jones, A. S. & Butler, R. J. A revision of tetrapod footprints from the late Carboniferous of the West Midlands, UK. PeerJ 4, e2718. https://doi.org/10.7717/peerj.2718 (2016).Article 

    Google Scholar 
    Haubold, H. Die Tetrapodenfährten des Buntsandsteins. Paläontologische Abhandlungen A. IV, 395–548 (1971).Gand, G. & Haubold, H. Traces de Vertébrés du Permien du bassin de Saint-Affrique (Description, datation, comparaison avec celles du bassin de Lodève). Géologie Méditerranéenne 11, 321–348 (1984).
    Google Scholar 
    Voigt, S., Niedźwiedski, G., Raczyński, P., Mastaler, K. & Ptaszyński, T. Early Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 173–180 (2012).
    Google Scholar 
    Niedźwiedzki, G. & Bojanowski, M. A supposed eupelycosaur body impression from the Early Permian of the Intra-Sudetic Basin, Poland. Ichnos Int. J. Plant Anim. Traces. 19(3), 150–155 (2012).
    Google Scholar 
    Marchetti, L. New occurrences of tetrapod ichnotaxa from the Permian Orobic Basin (Northern Italy) and critical discussion of the age of the ichnoassociation. Pap. Palaeontol. 2, 363–386. https://doi.org/10.1002/spp2.1045 (2016).Article 

    Google Scholar 
    Mujal, E. et al. Palaeoenvironmental reconstruction and early Permian ichnoassemblage from the NE Iberian Peninsula (Pyrenean Basin). Geol. Mag. 153, 578–600 (2016).ADS 

    Google Scholar 
    Matamales-Andreu, R., Mujal, E., Galobart, A. & Fortuny, J. Insights on the evolution of synapsid locomotion based on tetrapod tracks from the lower Permian of Mallorca (Balearic Islands, western Mediterranean). Palaeogeogr. Palaeoclimatol. Palaeoecol. 579, 110589 (2021).
    Google Scholar 
    Matamales-Andreu, R. et al. Early–middle Permian ecosystems of equatorial Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian of Mallorca (Balearic Islands, western Mediterranean. Earth Sci. Rev. 228, 103948 (2022).
    Google Scholar 
    Voigt, S., Lagnaoui, A., Hminna, A., Saber, H. & Schneider, J. W. Revisional notes on the Permian tetrapod ichnofauna from the Tiddas Basin, central Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 474–483 (2011).
    Google Scholar 
    Voigt, S., Saber, H., Schneider, J. W., Hmich, D. & Hminna, A. Late Carboniferous-early Permian tetrapod ichnofauna from the Khenifra Basin, central Morocco. Geobios 44, 309–407 (2011).
    Google Scholar 
    Lagnaoui, A. et al. Late Carboniferous tetrapod footprints from the Souss Basin, Western High Atlas Mountains, Morocco. Ichnos https://doi.org/10.1080/10420940.2017.1320284 (2017).Article 

    Google Scholar 
    Fichter, J. Aktuopaläontologische Studien zur Lokomotion rezenter Urodelen und Lacertilier sowie paläontologische Untersuchungen an Tetrapodenfährten des Rotliegenden (Unter-Perm) SW-Deutschlands. PhD thesis. Johannes-Gutenberg University, Mainz (1979).Haubold, H. The Early Permian tetrapod ichnofauna of Tambach, the changing concepts in ichnotaxonomy. Hallesches Jahrb. Geowiss. B 20, 1–16 (1998).Haubold, H. Tetrapodenfährten aus dem Perm—Kenntnisstand und Progress 2000. Hallesches Jahrb. Geowiss. B 22, 1–16 (2000).Romano, M., Citton, P. & Nicosia, U. Corroborating trackmaker identification through footprint functional analysis: The case study of Ichniotherium and Dimetropus. Lethaia 49(1), 102–116. https://doi.org/10.1111/let.12136 (2016).Article 

    Google Scholar 
    Ford, D. P. & Benson, J. B. R. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat. Ecol. Evol. 4, 57–65. https://doi.org/10.1038/s41559-019-1047-3 (2020).Article 

    Google Scholar 
    Modesto, S. P. Rooting about reptile relationships. Nat. Ecol. Evol. 4, 10–11 (2020).
    Google Scholar 
    Spindler, F. et al. First arboreal ’pelycosaurs’ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ. 92, 315–364 (2018).
    Google Scholar 
    Haubold, H. & Sarjeant, W. A. S. Tetrapodenfährten aus den Keele und Enville Groups (Permokarbon: Stefan und Autun) von Shropshire und South Staffordshire. Großbritannien. Z. geol. Wiss 1, 895–933 (1973).
    Google Scholar 
    Kümmell, S., Abdala, F., Sassoon, J. & Abdala, V. Evolution and identity of synapsid carpal bones. Acta Palaeontol. Pol. 65(4), 649–678 (2020).
    Google Scholar 
    Berman, D. S. et al. New primitive caseid (Synapsida, Caseasauria) from the Early Permian of Germany. Ann. Carnegie Museum 86(1), 47–74 (2020).
    Google Scholar 
    Spindler, F., Falconnet, J. & Fröbisch, J. Callibrachion and Datheosaurus, Two Historical and Previously Mistaken Basal Caseasaurian Synapsids From Europe. Acta Palaeontol. Pol. 61(3), 597–616 (2016).
    Google Scholar 
    Reisz, R. R., Madin, H. C., Fröbisch, J. & Falconnet, J. A new large caseid (Synapsida, Caseasauria) from the Permian of Rodez (France), including a reappraisal of “Casea” rutena Sigogneau-Russell & Russell, 1974. Geodiversitas 33(2), 227–246. https://doi.org/10.5252/g2011n2a2 (2011).Article 

    Google Scholar 
    Voigt, S. & Lucas, S. G. Permian tetrapod ichnodiversity of the Prehistoric Trackways National Monument (south-central New Mexico, USA). N. M. Mus. Nat. Hist. Sci. Bull. 65, 153–167 (2015).
    Google Scholar 
    Brand, L. R. Variations in salamander trackways resulting from substrate differences. J. Paleontol. 70, 1004–1010 (1996).
    Google Scholar 
    Krapovickas, V., Marsicano, C. A., Mancuso, A. C., de la Fuente, M. S. & Ottone, E. G. Tetrapod and invertebrate trace fossils from aeolian deposits of the lower Permian of central-western Argentina. Hist. Biol. 27, 827–842 (2015).
    Google Scholar 
    Benson, R. B. J. Interrelationships of basal synapsids: Cranial and postcranial morphological partitions suggest different topologies. J. Syst. Paleontol. 10, 601–624 (2012).
    Google Scholar 
    Spindler, F. The basal Sphenacodontia—Systematic revision and evolutionary implications. PhD Thesis, Technische Universität Bergakademie Freiberg, Germany (2015).Spindler, F. Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England. Earth Environ. Sci. Trans. R. Soc. Edinb. 111, 27–37 (2020).
    Google Scholar 
    Reisz, R. R. & Fröbisch, J. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates. PLoS ONE 9(4), e94518. https://doi.org/10.1371/journal.pone.00945 (2014) (1–9).Article 
    ADS 

    Google Scholar 
    Werneburg, R., Spindler, F., Falconnet, J., Steyer, J.-S., Vianey-Liaud, M & Schneider, J. W. New caseid synapsid from the Permian (Guadalupian) of the Lodève basin (Occitanie, France). Palaeo Vertebrata 1–36 (2022).Ronchi, A., Sacchi, E., Romano, M. & Nicosia, U. A huge caseid pelycosaur from north-western Sardinia and its bearing on European Permian stratigraphy and palaeobiogeography. Acta Palaeontol. Pol. 56, 723–738 (2011).
    Google Scholar 
    Romano, M. & Nicosia, U. Alierasaurus ronchii, gen. et. Sp. nov., a caseid from the Permian of Sardinia, Italy. J. Vertebr. Paleontol. 34, 900–913 (2014).
    Google Scholar 
    Maddin, H. C., Sidor, C. A. & Reisz, R. R. Cranial anatomy of Ennatosaurus tecton (Synapsida: Caseidae) from the Middle Permian of Russia and the evolutionary relationships of Caseidae. J. Vertebr. Paleontol. 28, 160–180 (2008).
    Google Scholar 
    Langiaux, J., Parriat, H. & Sotty, D. Faune fossile du bassin de Blanzy-Montceau. La Physiophilie. 80, 55–67 (1974).
    Google Scholar 
    Gaudry, A. Sur un reptile très perfectionné trouvé dans le terrain permien. Comptes rendus hebdomadaires des Séances de l’Académie des Sciences. 91(16), 669–671 (1880).
    Google Scholar 
    Reisz, R. R. Handbuch der Paläoherpetologie. Teil 17A, Pelycosauria. (Gustav Fischer Verlag, 1986).Ziegler, J. et al. U-Pb ages of magmatic and detrital zircon of the Döhlen Basin: Geological history of a Permian strike-slip basin in the Elbe Zone (Germany). Int. J. Earth Sci. 108, 887–910 (2019).
    Google Scholar  More

  • in

    Food insecurity and health outcomes among community-dwelling middle-aged and older adults in India

    Food, Agricultural Organisation. The State of Food Security and Nutrition in the World 2019: Transforming Food Systems for Affordable Healthy Diets. Safeguarding against Economic Slowdowns and Downturns (2020). http://www.fao.org/documents/card/en/c/ca9692en (Accessed 12 June 2021).Rautela, G. et al. Prevalence and correlates of household food insecurity in Delhi and Chennai India. Food Secur. 12(2), 391–404. https://doi.org/10.1007/s12571-020-01015-0 (2020).Article 

    Google Scholar 
    Nagappa, B. et al. Prevalence of food insecurity at household level and its associated factors in rural Puducherry: A cross-sectional study. Indian J. Community Med. 45(3), 303–306. https://doi.org/10.4103/ijcm.IJCM_233_19 (2020).Article 

    Google Scholar 
    Schrock, J. M. et al. Food insecurity partially mediates associations between social disadvantage and body composition among older adults in india: Results from the study on global AGEing and adult health (SAGE). Am. J. Hum. Biol. https://doi.org/10.1002/ajhb.23033 (2017).Article 

    Google Scholar 
    Narayanan, S. Food security in India: The imperative and its challenges. Asia Pac. Policy Stud. 2, 197–209. https://doi.org/10.1002/app5.62 (2015).Article 

    Google Scholar 
    George, N. A. & McKay, F. H. The public distribution system and food security in India. Int. J. Environ. Res. Public Health 16(17), 3221. https://doi.org/10.3390/ijerph16173221 (2019).Article 

    Google Scholar 
    Global Food Security Index. India. https://impact.economist.com/sustainability/project/food-security-index/explore-countries/india (Accessed 12 November 2022).United Nations Population Fund 2017. Caring for Our Elders: Early Responses – India Ageing Report—2017. UNFPA, New Delhi, India.Arenas, D. J., Thomas, A., Wang, J. & DeLisser, H. M. A systematic review and meta-analysis of depression, anxiety, and sleep disorders in US adults with food insecurity. J. Gen. Intern. Med. 34(12), 2874–2882. https://doi.org/10.1007/s11606-019-05202-4 (2019).Article 

    Google Scholar 
    Pourmotabbed, A. et al. Food insecurity and mental health: A systematic review and meta-analysis. Public Health Nutr. 23(10), 1778–1790. https://doi.org/10.1017/S136898001900435X (2020).Article 

    Google Scholar 
    McMichael, A. J. et al. Food insecurity and brain health in adults: A systematic review. Crit. Rev. Food Sci. Nutr. 62, 1–16. https://doi.org/10.1080/10408398.2021.1932721 (2021).Article 

    Google Scholar 
    Smith, L. et al. Association between food insecurity and depression among older adults from low- and middle-income countries. Depress Anxiety 38(4), 439–446. https://doi.org/10.1002/da.23147 (2021).Article 

    Google Scholar 
    Muhammad, T., Sulaiman, K. M., Drishti, D. & Srivastava, S. Food insecurity and associated depression among older adults in India: Evidence from a population-based study. BMJ Open 12(4), e052718. https://doi.org/10.1136/bmjopen-2021-052718 (2022).Article 

    Google Scholar 
    Saha, S. K. et al. Magnitude of mental morbidity and its correlates with special reference to household food insecurity among adult slum dwellers of Bankura, India: A cross-sectional survey. Indian J. Psychol. Med. 41(1), 54–60. https://doi.org/10.4103/IJPSYM.IJPSYM_129_18 (2019).Article 

    Google Scholar 
    Frongillo, E. A., Nguyen, H. T., Smith, M. D. & Coleman-Jensen, A. Food insecurity is associated with subjective well-being among individuals from 138 countries in the 2014 Gallup World Poll. J. Nutr. 147(4), 680–687. https://doi.org/10.3945/jn.116.243642 (2017).Article 
    CAS 

    Google Scholar 
    Na, M. et al. Food insecurity and cognitive function in middle to older adulthood: A systematic review. Adv. Nutr. 11(3), 667–676. https://doi.org/10.1093/advances/nmz122 (2020).Article 

    Google Scholar 
    Srivastava, S. & Muhammad, T. Rural-urban differences in food insecurity and associated cognitive impairment among older adults: Findings from a nationally representative survey. BMC Geriatr. 22(1), 287. https://doi.org/10.1186/s12877-022-02984-x (2022).Article 

    Google Scholar 
    Miguel, E. D. S. et al. Association between food insecurity and cardiometabolic risk in adults and the elderly: A systematic review. J. Glob. Health 10(2), 020402. https://doi.org/10.7189/jogh.10.020402 (2020).Article 

    Google Scholar 
    Liu, Y. & Eicher-Miller, H. A. Food insecurity and cardiovascular disease risk. Curr. Atheroscler. Rep. 23(6), 24. https://doi.org/10.1007/s11883-021-00923-6 (2021).Article 
    CAS 

    Google Scholar 
    Beltrán, S. et al. Food insecurity and hypertension: A systematic review and meta-analysis. PLoS One 15(11), e0241628. https://doi.org/10.1371/journal.pone.0241628 (2020).Article 
    CAS 

    Google Scholar 
    Vaccaro, J. A. & Huffman, F. G. Sex and race/ethnic disparities in food security and chronic diseases in U.S. older adults. Gerontol. Geriatr. Med. 3, 2333721417718344. https://doi.org/10.1177/2333721417718344 (2017).Article 

    Google Scholar 
    Abdurahman, A. A., Chaka, E. E., Nedjat, S., Dorosty, A. R. & Majdzadeh, R. The association of household food insecurity with the risk of type 2 diabetes mellitus in adults: A systematic review and meta-analysis. Eur. J. Nutr. 58(4), 1341–1350. https://doi.org/10.1007/s00394-018-1705-2 (2019).Article 

    Google Scholar 
    Muhammad, T., Saravanakumar, P., Sharma, A., Srivastava, S. & Irshad, C. V. Association of food insecurity with physical frailty among older adults: Study based on LASI, 2017–18. Arch. Gerontol. Geriatr. 103, 104762. https://doi.org/10.1016/j.archger.2022.104762 (2022).Article 
    CAS 

    Google Scholar 
    Venci, B. J. & Lee, S. Y. Functional limitation and chronic diseases are associated with food insecurity among U.S. adults. Ann. Epidemiol. 28(3), 182–188. https://doi.org/10.1016/j.annepidem.2018.01.005 (2018).Article 

    Google Scholar 
    Kim-Mozeleski, J. E. & Pandey, R. The intersection of food insecurity and tobacco use: A scoping review. Health Promot. Pract. 21(1_suppl), 124S-138S. https://doi.org/10.1177/1524839919874054 (2020).Article 

    Google Scholar 
    Mendy, V. L. et al. Food insecurity and cardiovascular disease risk factors among mississippi adults. Int. J. Environ. Res. Public Health 15(9), 2016. https://doi.org/10.3390/ijerph15092016 (2018).Article 

    Google Scholar 
    Bergmans, R. S., Coughlin, L., Wilson, T. & Malecki, K. Cross-sectional associations of food insecurity with smoking cigarettes and heavy alcohol use in a population-based sample of adults. Drug Alcohol Depend. 205, 107646. https://doi.org/10.1016/j.drugalcdep.2019.107646 (2019).Article 

    Google Scholar 
    International Institute for Population Sciences (IIPS), NPHCE, MoHFW, Harvard T. H. Chan School of Public Health (HSPH) and the University of Southern California (USC). Longitudinal Ageing Study in India (LASI) Wave 1, 2017–18, India Report, International Institute for Population Sciences, Mumbai, 2020.Srivastava, S., Muhammad, T., Paul, R. & Thomas, A. R. Multivariate decomposition analysis of sex differences in functional difficulty among older adults based on Longitudinal Ageing Study in India, 2017–2018. BMJ Open 12(4), e054661. https://doi.org/10.1136/bmjopen-2021-054661 (2022).Article 

    Google Scholar 
    Schnittker, J. & Bacak, V. The increasing predictive validity of self-rated health. PLoS One 9(1), e84933. https://doi.org/10.1371/journal.pone.0084933 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Cheung, F. & Lucas, R. E. Assessing the validity of single-item life satisfaction measures: Results from three large samples. Qual. Life Res. 23(10), 2809–2818. https://doi.org/10.1007/s11136-014-0726-4 (2014).Article 

    Google Scholar 
    Diener, E., Lucas, R. E. & Oishi, S. Advances and open questions in the science of subjective well-being. Collabra Psychol. 4(1), 15. https://doi.org/10.1525/collabra.115 (2018).Article 

    Google Scholar 
    Lee, J. & Smith, J. P. Regional disparities in adult height, educational attainment and gender difference in late- life cognition: Findings from the Longitudinal Aging Study in India (LASI). J. Econ. Ageing 4, 26–34. https://doi.org/10.1016/j.jeoa.2014.02.002 (2014).Article 

    Google Scholar 
    Lee, J., Shih, R. A., Feeney, K. C. & Langa, K. M. Cognitive Health of Older Indians: Individual and Geographic Determinants of Female Disadvantage, WR-889 (RAND Corporation, 2011).Book 

    Google Scholar 
    Ganguli, M. et al. A Hindi version of the MMSE: The development of a cognitive screening instrument for a largely illiterate rural population in India. Int. Psychogeriatr. 10, 367–377 (1995).
    Google Scholar 
    Tiwari, S. C., Tripathi, R. K. & Kumar, A. Applicability of the Mini-mental State Examination (MMSE) and the Hindi Mental State Examination (HMSE) to the urban elderly in India: A pilot study. Int. Psychogeriatr. 21(1), 123–128. https://doi.org/10.1017/S1041610208007916 (2009).Article 
    CAS 

    Google Scholar 
    Mathuranath, P. S. et al. Mini mental state examination and the Addenbrooke’s cognitive examination: Effect of education and norms for a multicultural population. Neurol. India 55(2), 106–110. https://doi.org/10.4103/0028-3886.32779 (2007).Article 
    CAS 

    Google Scholar 
    Jenkins, C. D., Stanton, B. A., Niemcryk, S. J. & Rose, R. M. A scale for the estimation of sleep problems in clinical research. J. Clin. Epidemiol. 41(4), 313–321. https://doi.org/10.1016/0895-4356(88)90138-2 (1988).Article 
    CAS 

    Google Scholar 
    Cho, E. & Chen, T. Y. The bidirectional relationships between effort-reward imbalance and sleep problems among older workers. Sleep Health 6(3), 299–305. https://doi.org/10.1016/j.sleh.2020.01.008 (2020).Article 

    Google Scholar 
    Fabbri, M. et al. Measuring subjective sleep quality: A review. Int. J. Environ. Res. Public Health 18(3), 1082. https://doi.org/10.3390/ijerph18031082 (2021).Article 

    Google Scholar 
    Andresen, E. M., Malmgren, J. A., Carter, W. B. & Patrick, D. L. Screening for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am. J. Prev. Med. 10(2), 77–84 (1994).Article 
    CAS 

    Google Scholar 
    Kumar, S., Nakulan, A., Thoppil, S. P., Parassery, R. P. & Kunnukattil, S. S. Screening for depression among community-dwelling elders: Usefulness of the center for epidemiologic studies depression scale. Indian J. Psychol. Med. 38(5), 483–485. https://doi.org/10.4103/0253-7176.191380 (2016).Article 

    Google Scholar 
    Chokkanathan, S. & Mohanty, J. Factor structure of the CES-D scale among older adults in Chennai India. Aging Ment. Health 17, 517–525 (2013).Article 

    Google Scholar 
    Kessler, R. C., Andrews, A., Mroczek, D., Ustun, B. & Wittchen, H. U. The World Health Organization composite international diagnostic interview short-form (CIDI-SF). Int. J. Methods Psychiatr. Res. 7, 171–185 (1998).Article 

    Google Scholar 
    Steffick D. Documentation of affective functioning measures in the health and retirement study, 2000. http://hrsonline.isr.umich.edu/sitedocs/userg/dr-005.pdf (Accessed 2 January 2021).Trainor, K., Mallett, J. & Rushe, T. Age related differences in mental health scale scores and depression diagnosis: Adult responses to the CIDI-SF and MHI-5. J. Affect. Disord. 151(2), 639–645 (2013).Article 

    Google Scholar 
    Wen, C. P. et al. Are Asians at greater mortality risks for being overweight than Caucasians? Redefining obesity for Asians. Public Health Nutr. 12(4), 497–506. https://doi.org/10.1017/S1368980008002802 (2009).Article 

    Google Scholar 
    Dhawan, D. & Sharma, S. Abdominal Obesity, adipokines and non-communicable diseases. J. Steroid Biochem. Mol. Biol. 203, 105737. https://doi.org/10.1016/j.jsbmb.2020.105737 (2020).Article 
    CAS 

    Google Scholar 
    Rose, G. A. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull. World Health Organ. 27, 645–658 (1962).CAS 

    Google Scholar 
    Achterberg, S. et al. Prognostic value of the Rose questionnaire: A validation with future coronary events in the SMART study. Eur. J. Prev. Cardiol. 19(1), 5–14. https://doi.org/10.1177/1741826710391117 (2012).Article 
    CAS 

    Google Scholar 
    Rahman, M. A. et al. Rose Angina questionnaire: Validation with cardiologists’ diagnoses to detect coronary heart disease in Bangladesh. Indian Heart J. 65(1), 30–39. https://doi.org/10.1016/j.ihj.2012.09.008 (2013).Article 

    Google Scholar 
    Chobanian, A. V. et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42(6), 1206–52. https://doi.org/10.1161/01.HYP.0000107251.49515.c2 (2003).Article 
    CAS 

    Google Scholar 
    Katz, S., Ford, A. B., Moskowitz, R. W., Jackson, B. A. & Jaffe, M. W. Studies of illness in the aged. The index of adl: A standardized measure of biological and psychosocial function. JAMA 185, 914–9. https://doi.org/10.1001/jama.1963.03060120024016 (1963).Article 
    CAS 

    Google Scholar 
    Lawton, M. P. & Brody, E. M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 9(3), 179–186 (1969).Article 
    CAS 

    Google Scholar 
    Singh, S., Multani, S. & Verma, N. Development and validation of geriatric assessment tools: A preliminary report from Indian population. JESP 3(2), 103–110 (2007).
    Google Scholar 
    Blumberg, S. J., Bialostosky, K., Hamilton, W. L. & Briefel, R. R. The effectiveness of a short form of the household food security scale. Am. J. Public Health 89(8), 1231–1234. https://doi.org/10.2105/ajph.89.8.1231 (1999).Article 
    CAS 

    Google Scholar 
    Lee, J., Shih, R.A., Feeney, K., Langa, K.M. Cognitive health of older indians individual and geographic determinants of female disadvantage. https://www.rand.org/content/dam/rand/pubs/working_papers/2011/RAND_WR889.pdf (Accessed 5 June 2021) (2011).Coates, J. et al. Commonalities in the experience of household food insecurity across cultures: What are measures missing?. J. Nutr. 136(5), 1438S-1448S. https://doi.org/10.1093/jn/136.5.1438S (2006).Article 
    CAS 

    Google Scholar 
    Sethi, V., Maitra, C., Avula, R. & Bhalla, S. Internal validity and reliability of experience-based household food insecurity scales in Indian settings. Agric. Food Secur. 6, 21. https://doi.org/10.1186/s40066-017-0099-3 (2017).Article 

    Google Scholar 
    Berkman, L. F., Sekher, T. V., Capistrant, B. & Zheng, Y. Social networks, family, and care giving among older adults in India. In Aging in Asia: Findings From New and Emerging Data Initiatives (eds Smith, J. P. & Majmundar, M.) 261–278 (The National Academic Press, 2012).
    Google Scholar 
    Marsland, A. L., Gianaros, P. J., Abramowitch, S. M., Manuck, S. B. & Hariri, A. R. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol. Psychiatry 64(6), 484–490. https://doi.org/10.1016/j.biopsych.2008.04.016 (2008).Article 
    CAS 

    Google Scholar 
    Bruening, M., Dinour, L. M. & Chavez, J. B. R. Food insecurity and emotional health in the USA: A systematic narrative review of longitudinal research. Public Health Nutr. 20(17), 3200–3208. https://doi.org/10.1017/S1368980017002221 (2017).Article 

    Google Scholar 
    Huddleston-Casas, C., Charnigo, R. & Simmons, L. A. Food insecurity and maternal depression in rural, low-income families: A longitudinal investigation. Public Health Nutr. 12(8), 1133–1140. https://doi.org/10.1017/S1368980008003650 (2009).Article 

    Google Scholar 
    Leung, C. W., Epel, E. S., Willett, W. C., Rimm, E. B. & Laraia, B. A. Household food insecurity is positively associated with depression among low-income supplemental nutrition assistance program participants and income-eligible nonparticipants. J. Nutr. 145(3), 622–627. https://doi.org/10.3945/jn.114.199414 (2015).Article 
    CAS 

    Google Scholar 
    Laraia, B. A. Food insecurity and chronic disease. Adv. Nutr. 4(2), 203–212. https://doi.org/10.3945/an.112.003277 (2013).Article 

    Google Scholar 
    Vercammen, K. A. et al. Food security and 10-year cardiovascular disease risk among U.S. adults. Am. J. Prev. Med. 56(5), 689–697. https://doi.org/10.1016/j.amepre.2018.11.016 (2019).Article 

    Google Scholar 
    Chakraborty R, Kundu J, Jana A. Factors associated with food insecurity among older adults in India: Impacts of functional impairments and chronic diseases. Ageing International, 1–24 (2022).
    Jackson, J. A., Branscum, A., Tang, A. & Smit, E. Food insecurity and physical functioning limitations among older U.S. adults. Prev. Med. Rep. 14, 100829. https://doi.org/10.1016/j.pmedr.2019.100829 (2019).Article 

    Google Scholar 
    Sreeramareddy, C. T. & Ramakrishnareddy, N. Association of adult tobacco use with household food access insecurity: Results from Nepal demographic and health survey, 2011. BMC Public Health 18(1), 48. https://doi.org/10.1186/s12889-017-4579-y (2017).Article 

    Google Scholar 
    Mayer, M., Gueorguieva, R., Ma, X. & White, M. A. Tobacco use increases risk of food insecurity: An analysis of continuous NHANES data from 1999 to 2014. Prev. Med. 126, 105765. https://doi.org/10.1016/j.ypmed.2019.105765 (2019).Article 

    Google Scholar 
    Kim-Mozeleski, J. E., Poudel, K. C. & Tsoh, J. Y. Examining reciprocal effects of cigarette smoking, food insecurity and psychological distress in the U.S.. J. Psychoact. Drugs 53(2), 177–184. https://doi.org/10.1080/02791072.2020.1845419 (2021).Article 

    Google Scholar 
    Dewing, S., Tomlinson, M., le Roux, I. M., Chopra, M. & Tsai, A. C. Food insecurity and its association with co-occurring postnatal depression, hazardous drinking, and suicidality among women in peri-urban South Africa. J. Affect. Disord. 150(2), 460–465. https://doi.org/10.1016/j.jad.2013.04.040 (2013).Article 

    Google Scholar  More

  • in

    Soil organic carbon, total nitrogen stocks and CO2 emissions in top- and subsoils with contrasting management regimes in semi-arid environments

    Lal, R. Soil Carbon sequestration impacts on global climate change and food security. Science 30, 1623–1627 (2004).ADS 

    Google Scholar 
    Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99 (2013).CAS 

    Google Scholar 
    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47(2), 151–163 (1996).CAS 

    Google Scholar 
    Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen: A synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).
    Google Scholar 
    Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 

    Google Scholar 
    Song, M. H. et al. Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage. Glob. Chang. Biol. 24, 4160–4172 (2018).ADS 

    Google Scholar 
    Okolo, C. C. et al. Priming effect in semi-arid soils of northern Ethiopia under different land use types. Biogeochemistry https://doi.org/10.1007/s10533-022-00905-z (2022).Article 

    Google Scholar 
    Eze, P. N., Udeigwe, T. K. & Stietiya, M. H. Distribution and potential source evaluation of heavy metals in prominent soils of Accra plains, Ghana. Geoderma 156(3–4), 357–362 (2010).ADS 
    CAS 

    Google Scholar 
    Eze, P. N., Mbakwe, I. & Okolo, C. C. Ecosystem functions of the soil highlighted in Igbo proverbs. In IUSS Global Soil Proverbs: Cultural Language of the Soil (eds Yang, J. E. et al.) (Schweizerbart and Borntraeger Science Publishers, 2019).
    Google Scholar 
    Nottingham, A. T. et al. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. Chang. Biol. 25, 827–838 (2019).ADS 

    Google Scholar 
    Paul, K. I., Polglase, P. J., Nyakuengama, J. G. & Khanna, P. K. Change in soil carbon following afforestation. Forest Ecol. Manag. 168, 241–257 (2002).
    Google Scholar 
    Batjes, N. H. Options for increasing carbon sequestration in West Africa soils: An exploratory study with special focus on Senegal. Land Degrad. Dev. 12, 131–142 (2001).
    Google Scholar 
    Powlson, D. S., Whitmore, A. P. & Goulding, K. W. T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 42–55 (2011).CAS 

    Google Scholar 
    Zhang, K., Dang, H., Zhang, Q. & Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: Evidence from stable isotopes. Glob. Chang. Biol. 21, 2762–2772 (2015).ADS 

    Google Scholar 
    Gebresamuel, G. et al. Nutrient Balance of farming systems in tigray, Northern Ethiopia. J. Soil Sci. Plant Nutr. 21, 315–328 (2021).CAS 

    Google Scholar 
    IPCC, Climate Change: The physical science basis. Contribution of working Group I to the Fourth Assessment. In Report of the Intergovernmental Panel on Climate Change (Eds. Solomon, S., Quin, D and Manning, M). (Cambridge University Press, Cambridge, UK) (2007).Yang, Y. S., Xie, J. S. & Sheng, H. The impact of land use/cover change on storage and quality of soil organic carbon in mid-subtropical mountainous area of southern China. J. Geo. Sci. 19, 49–57 (2009).
    Google Scholar 
    Akinyemi, F. O., Tlhalerwa, L. T. & Eze, P. N. Land degradation assessment in an African dryland context based on the composite Land Degradation Index and mapping method. Geocarto Int. 36(16), 1838–1854 (2021).
    Google Scholar 
    Button, E. S. et al. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biol. Biochem. 170, 108697 (2022).CAS 

    Google Scholar 
    Rumpel, C. & Kögel-Knabner, I. Deep soil organic matter: A key but poorly understood component of terrestrial C cycle. Plant Soil 338(1), 143–158 (2011).CAS 

    Google Scholar 
    Lal, R., Lorenz, K., Huttle, R. F., Schneider, B. U. & Von, B. J. Terrestrial biosphere as a source and sink of atmospheric carbon dioxide. In Recarbonization of the Biosphere: Ecosystems and the Global Cycle (eds Lal, R. et al.) (Springer, 2012).
    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).ADS 
    CAS 

    Google Scholar 
    Salome, C., Nunan, N., Pouteau, V., Lerchw, T. Z. & Chenu, C. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob. Chang. Biol. 16, 416–426 (2010).ADS 

    Google Scholar 
    Sithole, N. J., Magwaza, L. S. & Thibaud, G. R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 190, 147–156 (2019).
    Google Scholar 
    Tashi, S., Singh, B., Keitel, C. & Adams, M. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Glob. Chang. Biol. 22, 2255–2268 (2016).ADS 

    Google Scholar 
    Zhou, Z., Wang, C. & Luo, Y. Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis. Global Ecol. Biogeography 27, 110–124 (2018).
    Google Scholar 
    Mhete, M., Eze, P. N., Rahube, T. O. & Akinyemi, F. O. Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Sci. African 7, e00246 (2020).
    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–889 (2018).ADS 
    CAS 

    Google Scholar 
    Murty, D., Kirschbaum, M. U. F., Mcmurtrie, R. E. & Mcgilvray, H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Chang. Biol. 8, 105–123 (2002).ADS 

    Google Scholar 
    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).ADS 

    Google Scholar 
    Kebonye, N. M., Eze, P. N., Ahado, S. K. & John, K. Structural equation modeling of the interactions between trace elements and soil organic matter in semiarid soils. Intl. J. Environ. Sci. Technol. 17(4), 2205–2214 (2020).CAS 

    Google Scholar 
    Del Galdo, L., Six, J., Peressotti, A. & Cotrufo, M. F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fraction and stable C isotopes. Glob. Chang. Biol. 9, 1204–1213 (2003).ADS 

    Google Scholar 
    Lal, R. Carbon sequestration in dry land ecosystems of West Asia and North Africa. Land Degrad. Dev. 13, 45–59 (2002).
    Google Scholar 
    Gebresamuel, G., Singh, B. R., Mitiku, H., Borresen, T. & Lal, R. Carbon Stocks in Ethiopian Soils in relation to land use and soil management. Land Degrad. Dev. 19(4), 351–367 (2008).
    Google Scholar 
    Fisseha, I., Mats, O. & Karl, S. Effect of land use changes on soil carbon status of some soil types in the Ethiopian Rift Valley. J. Drylands 4(1), 289–299 (2011).
    Google Scholar 
    Shiferaw, A., Hans, H. & Gete, Z. A review on soil carbon sequestration in Ethiopia to Mitigate land degradation and climate change. J. Environ. Earth Sci. 3(12), 187–201 (2013).
    Google Scholar 
    Bazezew, M. N., Teshome, S. & Eyale, B. Above- and below-ground reserved carbon in danaba community forest of Oromia Region, Ethiopia: Implications for CO2 emission balance. Am. J. Environ. Prot. 4(2), 75–82 (2015).
    Google Scholar 
    Berihu, T. et al. Soil carbon and nitrogen losses following deforestation in Ethiopia. Agron. Sust. Dev. 37, 1 (2017).CAS 

    Google Scholar 
    Gebresamuel, G. et al. Changes in soil organic carbon stock and nutrient status after conversion of pasture land to cultivated land in semi-arid areas of northern Ethiopia. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2020.1823372 (2022).Article 

    Google Scholar 
    Hoyle, F. C., Baldock, J. A. & Murphy, D. V. Soil organic carbon: Role in rainfed farming systems: With particular reference to Australian Conditions. In Rainfed Farming Systems (eds Tow, P. et al.) (Springer, 2011). https://doi.org/10.1007/978-1-4020-9132-2_14.Chapter 

    Google Scholar 
    Mekuria, W. et al. Restoration of degraded landscapes for ecosystem services in North-Western Ethiopia. Heliyon 4, e00764. https://doi.org/10.1016/j.heliyon.2018 (2018).Article 

    Google Scholar 
    Okolo, C. C. et al. Assessing the sustainability of land use management of Northern Ethiopian drylands by various indicators for soil health. Ecol. Indic. 112, 106092. https://doi.org/10.1016/j.ecolind.2020.106092 (2020).Article 
    CAS 

    Google Scholar 
    WRB. International Union of Soil Science Working Group. In World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome (2014).NMA 2018. National Metrological Agency (NMA), 2018. The National Metrological Agency of Ethiopia Mekelle center, Tigray Regional State, Mekelle, Ethiopia.Anikwe, M. A. N., Obi, M. E. & Agbim, N. N. Effect of crop and soil management practices soil compactibility in maize and groundnut plots in a Paleustult in Southeastern Nigeria. Plant Soils. 253, 457–465 (2003).CAS 

    Google Scholar 
    Anikwe, M. A. N. Carbon storage in soils of southeastern Nigeria under different management practices. Carbon Bal. Manag. https://doi.org/10.1186/1750-0680-5-5 (2010).Article 

    Google Scholar 
    IPCC Guidelines for National Greenhouse Gas Inventories. In Vol. 4: Agriculture, Forestry and other Land Use (eds. Eggleston, S., Buendia, K., Miwa, K., Ngara, T. and Tanabe, K.) (Institute for Global Environmental Strategies, 2006).McKenzie, N., Ryan, P., Fogarty, P. & Wood, J. Sampling, measurement and analytical protocols for carbon estimation in soil, litter and coarse woody debris. National Carbon Accounting System Technical Report No. 14. Australian Greenhouse Office, Canberra (2000).Nelson, D. W. & Sommers, L. E. Total carbon, total organic carbon and organic matter. In Methods of Soil Analysis. Part 3: Chemical Methods. Agronomy Monograph No. 9 (Ed. Sparks, D.L) 961–1010. (American Society of Agronomy, 1996).Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Chemical and Microbiological Properties (eds Keeney, D. R. et al.) 595–624 (American Society of Agronomy and Soil Science Society of America, 1982).
    Google Scholar 
    McLean, E. O. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd edn. Agronomy monograph No. 9 (Eds. Page, A.L., Miller, R.H and Keeney, D.R). 199–224. (American Society of Agronomy, 1982).Rhoades, J. D. Cation exchange capacity. In Methods of Soil Analysis: Part 2 Chemical and Microbial Properties. Agronomy Monograph No. 9. (Eds. Page, A.L., Miller, R.H and Keeney, D.R) pp. 149–157 (American Society of Agronomy, 1982).Blake, G. R. & Hartge, K. H. Bulk density. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Properties. 2nd edn. Agronomy Monograph No. 9 (ed. Klute, A) 363–382. (American Society of Agronomy, 1986).Gee, G. W. & Bauder, J. W. Particle size analysis. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Properties. 2nd edn. Agronomy Monograph No. 9. (Ed. A Klute) 91–100. (American Society of Agronomy, 1986).Gelaw, A. M., Singh, B. R. & Lal, R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 188, 256–263 (2014).
    Google Scholar 
    Puget, P. & Lal, R. Soil organic carbon and nitrogen in a Mollisol in Central Ohio as affected by tillage and land use. Soil Tillage Res. 80, 201–213 (2005).
    Google Scholar 
    Chan, Y. Increasing soil organic carbon of agricultural land. Primefact 735, 1–5 (2008).
    Google Scholar 
    Worku, G., Bantider, A. & Temesgen, H. Effects of land use/land cover change on some soil physical and chemical properties in Ameleke micro-watershed Gedeo and Borena Zones. South Ethiopia. J. Environ. Earth Sci. 4, 13–24 (2014).
    Google Scholar 
    Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. CATENA 153, 89–99 (2017).CAS 

    Google Scholar 
    Gessesse, T. A., Khamzina, A., Gebresamuel, G. & Amelung, W. Terrestrial carbon stocks following 15 years of integrated watershed management intervention in semi-arid Ethiopia. CATENA 190, 104543 (2020).CAS 

    Google Scholar 
    Haileslassie, A., Priess, J., Veldkamp, E., Teketay, D. & Lesschen, J. P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 108, 1–16 (2005).
    Google Scholar 
    Lemenih, M., Lemma, B. & Teketay, D. Changes in soil carbon and total nitrogen following reforestation of previously cultivated land in the highlands of Ethiopia. Ethiopian J. Sci. 28(2), 99–108 (2005).
    Google Scholar 
    Lemenih, M., Karltun, E. & Olsson, M. Soil organic matter dynamics after deforestation along a farm field chronosequences in southern highlands of Ethiopia. Agric. Ecosyst. Environ. 109, 9–19 (2005).
    Google Scholar 
    Okebalama, C. B., Igwe, C. A. & Okolo, C. C. Soil organic carbon levels in soils of contrasting land uses in Southeastern Nigeria. Trop. Subtrop. Agroecosyst. 20, 493–504 (2017).CAS 

    Google Scholar 
    Nwite, J. N., Orji, J. E. & Okolo, C. C. Effect of different land use systems on soil carbon storage and structural indices in Abakaliki, Nigeria. Indian J. Ecol. 45(3), 522–527 (2018).
    Google Scholar 
    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).ADS 

    Google Scholar 
    Zinn, Y. L., Marrenjo, G. J. & Silva, C. A. Soil C: N ratos are unresponsive to land use change in Brazil: A comparative analysis. Agric. Ecosyst. Environ. 255, 62–72 (2018).CAS 

    Google Scholar 
    Lou, Y. L., Xu, M. G., Chen, X. N., He, X. H. & Zhao, K. Stratification of soil organic C, N and C: N ratio as affected by conservation tillage in two maize fields of China. CATENA 95, 124–130 (2012).CAS 

    Google Scholar 
    Xiao, X., Kuang, X., Sauer, T. J., Heitman, J. L. & Horton, R. Bare soil carbon dioxide fluxes with time and depth determined by high-resolution gradient-based measurements and surface chambers. Soil Sci. Soc. Am. 79, 1073–1083 (2015).CAS 

    Google Scholar 
    Wang, X. et al. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 Flux. Forests 10, 192 (2019).
    Google Scholar 
    Bates, C. T. et al. Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption. ISME J. 16, 10 (2021).
    Google Scholar 
    Slessarev, E. W. et al. Quantifying the effects of switchgrass (Panicum virgatum) on deep organic C stocks using natural abundance 14C in three marginal soils. GCB Bioenergy 12, 834–847 (2020).CAS 

    Google Scholar 
    Balesdent, J., Besnard, E., Arrouays, D. & Chenu, C. The dynamics of carbon in particle size fractions of soil in a forest-cultivation sequence. Plant Soil 201, 49–57 (1998).CAS 

    Google Scholar 
    Birch, H. F. & Friend, M. T. The organ matter and nitrogen status of east African soils. J. Soil Sci. 7, 156–167 (1956).CAS 

    Google Scholar 
    Deng, L., Zhu, G., Tang, Z. & Shangguan, Z. Global patterns of the effects of land-usechanges on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
    Google Scholar 
    Post, W. M. & Kwon, K. C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 6, 317–327 (2000).ADS 

    Google Scholar 
    Feng, X. & Simpson, M. J. Temperature responses of individual soil organic matter components. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2008JG000743 (2008).Article 

    Google Scholar 
    Chen, S., Huang, Y., Zou, J. & Shi, Y. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Glob. Planet. Chang. 100, 99–108 (2013).ADS 

    Google Scholar 
    Alemayehu, K. & Sheleme, B. Effects of different land use systems on selected soi properties in South Ethiopia. J. Soil Sci. Environ. Manag. 4(5), 100–107 (2013).
    Google Scholar 
    Bockheim, J. G. Soil endemism and its relation to soil formation theory. Geoderma 129, 109–124 (2005).ADS 

    Google Scholar 
    Ukaegbu, E. P., Osuaku, S. K. & Okolo, C. C. Suitability assessment of soils supporting oilpalm plantations in the coastal plains sand, Imo State Nigeria. Int. J. Agric. For. 5(2), 113–120 (2015).
    Google Scholar 
    Okolo, C. C. et al. Impact of open cast mine land use on soil physical properties in Enyigba, Southeastern Nigeria and the implication for sustainable land use management. Niger. J. Soil Sci. 25(1), 95–101 (2015).
    Google Scholar 
    Nwite, J. N. & Okolo, C. C. Soil water relations of an Ultisol amended with agro-wastes and its effect on grain yield of maize (Zea Mays L.) in Abakaliki, Southeastern Nigeria. Eur. J. Sci. Res. 141, 126–140 (2016).
    Google Scholar 
    Nwite, J. N. & Okolo, C. C. Organic carbon dynamics and changes in some physical properties of soil and their effect on grain yield of maize under conservative tillage practices in Abakaliki, Nigeria. Afr. J. Agric. Res. 12(26), 2215–2222 (2017).CAS 

    Google Scholar 
    Mbah, C. N., Njoku, C., Okolo, C. C., Attoe, E. & Osakwe, U. C. Amelioration of a degraded Ultisol with hardwood biochar: Effects on soil physico-chemical properties and yield of cucumber (Cucumis sativus L). Afr. J. Agric. Res. 12(21), 1781–1792 (2017).CAS 

    Google Scholar 
    Nandan, R. et al. Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 340, 104–114 (2019).ADS 
    CAS 

    Google Scholar 
    Sharma, K.L. Effect of agroforestry systems on soil quality–monitoring and assessment. Central Research Institute for Dryland Agriculture. 2011. http://www.crida.in/DRM1-WinterSchool/KLS.pdf/. Accessed on 30 Dec 2018.Okolo, C. C., Gebresamuel, G., Zenebe, A., Haile, M. & Eze, P. N. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agric. Ecosyst. Environ. 297, 106924. https://doi.org/10.1016/j.agee.2020.106924 (2020).Article 
    CAS 

    Google Scholar 
    Okolo, C. C., Gebresamuel, G., Retta, A. N., Zenebe, A. & Haile, M. Advances in quantifying soil organic carbon under different land uses in Ethiopia: A review and synthesis. Bull. Natl. Res. Cent. 43(99), 2019. https://doi.org/10.1186/s42269-019-0120-z (2019).Article 

    Google Scholar  More

  • in

    Synthesis of heat-resistant and water/oil-repellent aromatic polyketones bearing tetrakis(nonafluorobutyl)-p-terphenylene units

    Hou J, Sun J, Fang Q. A fluorinated low dielectric polymer at high frequency derived from allylphenol and benzocyclobutene by a facile route. Eur Polym J. 2022;163:110943–9.Article 
    CAS 

    Google Scholar 
    Qiu Z, Wu S, Li Z, Zhang S, Xing W, Liu S. Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules 2006;39:6425–32.Article 
    CAS 

    Google Scholar 
    Schönberger F, Chromik A, Kerres J. Synthesis and characterization of novel (sulfonated) poly(arylene ether)s with pendent trifluoromethyl groups. Polymer 2009;50:2010–24.Article 

    Google Scholar 
    Chen JC, Liu YC, Ju JJ, Chiang CJ, Chern YT. Synthesis, characterization and hydrolysis of aromatic polyazomethines containing non-coplanar biphenyl structures. Polymer 2011;52:954–64.Article 
    CAS 

    Google Scholar 
    Liaw DJ, Huang CC, Chen WH. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2’-dimethyl-4,4’-biphenylene units. Polymer 2006;47:2337–48.Article 
    CAS 

    Google Scholar 
    Shohbuke E, Kobayashi Y, Okubayashi S. Effects of acrylate monomers containing alkyl groups on water and oil repellent treatments of polyester fabrics. Colloids. Surf. A: Physicochem Eng Asp. 2021;631:127632–9.Article 
    CAS 

    Google Scholar 
    Sun Y, Zhao X, Liu R, Chen G, Zhou X. Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog Org Coat. 2018;123:306–13.Article 
    CAS 

    Google Scholar 
    Tang W, Huang Y, Qing FL. Synthesis and characterization of fluorinated polyacrylate graft copolymers capable as water and oil repellent finishing agents. J Appl Polym Sci. 2011;119:84–92.Article 
    CAS 

    Google Scholar 
    Jiang J, Zhang G, Wang Q, Zhang Q, Zhan X, Chen F. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates. ACS Appl Mater Interfaces. 2016;8:10513–23.Article 
    CAS 

    Google Scholar 
    Honda K, Morita M, Otsuka H, Takahara A. Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films. Macromolecules 2005;38:5699–705.Article 
    CAS 

    Google Scholar 
    Shaver AT, Yin K, Borjigin H, Zhang W, Choudhury SR, Baer E, Mecham SJ, Riffle JS, McGrath JE. Fluorinated poly(arylene ether ketone)s for high temperature dielectrics. Polymer 2016;83:199–204.Article 
    CAS 

    Google Scholar 
    Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer. 1981;22:1096–103.Article 
    CAS 

    Google Scholar 
    Yonezawa N, Okamoto A. Synthesis of Wholly Aromatic Polyketones. Polym J. 2009;41:899–928.Article 
    CAS 

    Google Scholar 
    Maeyama K, Ito S. Synthesis of aromatic poly(ether ketone)s bearing 9,9-dialkylfuorene-2,7-diyl units through nucleophilic aromatic substitution polymerization. Polym Bull.2018;75:5763–76.Article 
    CAS 

    Google Scholar 
    Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether ketone). Polymer 1983;24:953–8.Article 
    CAS 

    Google Scholar 
    Maeyama K, Hikiji I, Ogura K, Okamoto A, Ogino K, Saito H, Yonezawa N. Synthesis of Optically Active Aromatic Poly(ether ketone)s via Nucleophilic Aromatic Substitution Polymerization. Polym J. 2005;37:707–10.Article 
    CAS 

    Google Scholar 
    Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Effect of pendent phenyl and bis-phthalazinone moieties on the properties of N-heterocyclic poly(aryl ether ketone ketone)s. Polymer 2020;198:122525–34.Article 
    CAS 

    Google Scholar 
    Eaton PE, Carlson GR, Lee JT. Phosphorus Pentoxide-Methanesulfonic Acid. A Convenient Alternative to Polyphosphoric Acid. J Org Chem. 1973;38:4071–3.Article 
    CAS 

    Google Scholar 
    Nowacki B, Iamazaki E, Cirpan A, Karasz F, Atvars TDZ, Akcelrud L. Highly efficient polymer blends from a polyfluorene derivative and PVK for LEDs. Polymer 2009;50:6057–64.Article 
    CAS 

    Google Scholar 
    Wang TQ, Zhao SL, Zhang WM, Lin HX, Cui YM. Synthesis, X-ray crystal structure, and optical properties of novel 9,9-diethyl-1,2-diaryl-1,9-dihydrofluoreno[2,3-d]imidazoles. Monatsh Chem. 2016;147:1991–9.Article 
    CAS 

    Google Scholar 
    Chen J, Onogi S, Hsieh YC, Hsiao CC, Higashibayashi S, Sakurai H, Wu YT. Palladium-Catalyzed Arylation of Methylene-Bridged Polyarenes: Synthesis and Structures of 9-Arylfluorene Derivatives. Adv Synth Catal. 2012;354:1551–8.Article 
    CAS 

    Google Scholar 
    Manuel S, Anne S, Larissa AC, Stefan M. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nat Commun.2019;10:2592.Article 

    Google Scholar 
    Lee KS, Lee JS. Synthesis of Highly Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguides. Chem Mater. 2006;18:4519–25.Article 
    CAS 

    Google Scholar 
    Natarajan P, Vagicherla VD, Vijayan MT. A mild oxidation of deactivated naphthalenes and anthracenes to corresponding para-quinones by N-bromosuccinimide. Tetrahedron Lett. 2014;55:3511–5.Article 
    CAS 

    Google Scholar 
    Faury T, Dumur F, Clair S, Abel M, Porte L, Gigmes D. Side functionalization of diboronic acid precursors for covalent organic frameworks. Cryst Eng Comm. 2013;15:2067–75.Article 
    CAS 

    Google Scholar 
    Shaposhnikova VV, Tkachenko AS, Zvukova ND, Peregudov AS, Klemenkova ZS, Ponomarev AF, Il´yasov VK, Lachinov AN, Salazkin SN. New possibilities for the effective influence on the charge transport in poly(arylene ether ketones) without using phthalide-containing fragments in the polymer chains. Rus Chem Bull Int Ed. 2016;65:502–6.Article 
    CAS 

    Google Scholar 
    Owens DK, Wendt RC. Estimation of the Surface Free Energy of Polymers. J Appl Polym Sci. 1969;13:1741–7.Article 
    CAS 

    Google Scholar 
    Fox HW, Zisman WA. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci. 1950;5:514–31.Article 
    CAS 

    Google Scholar  More

  • in

    Sleep deprivation among adolescents in urban and indigenous-rural Mexican communities

    Our main objective was to test the SJH (positing that adolescents living in “traditional”, non-industrial environments will more closely fulfil their “biological/natural” sleep requirements25,26) by comparing sleep deprivation among adolescents in rural and urban societies. The SJH argues that adolescent “biological/natural” sleep quotas and circadian cycles can be ascertained from free days, when sleep patterns are minimally shaped by social commitments5,37. Therefore, we predicted that sleep deprivation would be rare in the more rural agricultural settings of Puebla and Campeche but more frequent among participants in Mexico City. Likewise, we predicted that we would not see sleep deprivation on free days among any of the rural participants.Our predictions were not supported, instead, we found that short sleep quotas during school nights are common in both rural agricultural settings, with over 75% of adolescents in each group sleeping  More