More stories

  • in

    Response of cyanobacterial mats to ambient phosphate fluctuations: phosphorus cycling, polyphosphate accumulation and stoichiometric flexibility

    Our findings highlight the critical role of polyP in Sodalinema stali-formed cyanobacterial mats, as it was dynamically accumulated and recycled during acclimation to P fluctuations.Cellular response to progressive P starvationAnalogous to planktonic cyanobacteria, growth under low P availability could be sustained by recycling polyP, which acted as a primary P source (Fig. 2a) [16, 23, 24]. We further attribute the rapid reduction of easily dispensable cellular P-containing compounds to the substitution of cellular phospholipids with S- or N-containing membrane lipids to maintain growth at the onset of P stress (Fig. 2a) [15, 23]. However, the exhaustion of this easily dispensable P pool limited proliferation in Phase 2, and the metabolic strategy switched from a focus on growth towards maintenance (Fig. 5). The interpretation of prevailing cellular processes based on our results is graphically summarized and explained in detail below (Fig. 5).Fig. 5: Schematic interpretation of cellular phosphorus (P) cycling in a cyanobacterial mat, based on significant changes of the monitored parameters (arbitrary units).a At low P availability, initially contained polyphosphate (polyP) was recycled simultaneously with phosphate uptake to sustain growth at constant C:N:P ratios. Further proliferation at the onset of P stress in Phase 1 was sustained by mobilization of cellular P, e.g. phospholipids, which led to rapidly increasing C:N:P ratios. Severe P stress in Phase 2, indicated by increasing APase activity, prevented proliferation and photosynthesis, indicated by a loss of green chlorophyll pigments. PolyP accumulation by deficiency response occurs with severely increasing P stress, whereby globular DNA accumulation indicates the allocation of P contained in DNA into polyP. P re-addition to the P-stressed cells in Phase 3 triggered overplus uptake and narrow C:N:P ratios, transitioning to luxury uptake at higher C:N:P ratios following polyP recycling. b At high P availability, polyP in Phase 1 was accumulated by overplus uptake at narrow C:N:P ratios, transitioning to luxury uptake at higher C:N:P ratios during polyP recycling in Phase 2. P-deprivation in Phase 3 did not affect the cells, which we attributed to a sufficient amount of phosphate in the residual medium or within the biofilm matrix. Arrows indicate phosphorus transformation processes, whereby arrows pointing towards DNA represent cell growth. Yellow granules = polyP, blue granules = globular DNA spheres, P = phospholipids, S = substitute lipids.Full size imageSevere P stress in Phase 2 was indicated by the colour change from green towards yellow-green (Fig. S1) and increasing APase activity (Fig. 2a). The colour change suggested the loss of photosynthetic pigments [40], but we could not clarify whether this occurred through active cellular pigment reduction or degradation of available chlorophyll e.g., by oxidation. The increasing APase activity (Fig. 2a) suggested that Sodalinema stali is capable of hydrolysing organic P [14]. Even though APase expression did not trigger proliferation, it likely hydrolysed a potentially available organic P pool, as increasing DIC, NH4 and decreasing pH indicated progressive decay and remineralisation of organic matter (Fig. 1a). This suggests that in analogous oligotrophic environments with often fluctuating conditions, the strategy has to be maximizing the utilization of external P sources contained in organic and inorganic sediment particles that get trapped in the EPS [41]. The sediment can contain large amounts of organic P [42] and the fluctuating physico-chemical gradients in the EPS matrix due to high daytime pH and low oxygen conditions at night, facilitate P desorption from metal oxides, leading to higher dissolved phosphate concentrations within the mat, compared to the overlying water body [3]. However, alternating redox conditions at the SWI could also trigger polyP release from benthic microorganisms to the sediments, where it could act as a P source for the benthic food-chain, or ultimately trigger the formation of mineral P phases [32], to sustainably remove P from the aquatic cycle. Either way, we suggest that polyP-containing cyanobacterial mats critically impact P fluxes at the SWI.With persisting severe P stress and increasing APase activity in Phase 2, polyP accumulation as a deficiency response was observed (Fig. 2a), which has been reported from planktonic cyanobacteria of different habitats [24, 29, 23], as well as stream periphyton [28]. However, the reasons causing this deficiency response remain unresolved. In marine phytoplankton of the oligotrophic Sargasso Sea, Martin et al. [23] excluded that polyP-rich cells were in a perpetual overplus state with ‘undetectable’ pulses driving this state and suggested that polyP accumulation occurred as a cellular stress response. In other studies, reduced biosynthesis of P-rich rRNA coincided with deficiency responses [26, 28] and led to the suggestion that polyP accumulation at P concentrations below a certain threshold required for growth occurs because of P allocation changes away from growth and towards storage. Further, APase can hydrolytically cleave phosphate groups from nucleic acids and convert DNA-lipid-P to DNA-lipids, which were shown to self-assemble into globular lipid-based DNA micelles [43]. These preferentially anchor on cell membranes [44], and indeed, such DNA spheres were found to accumulate at the cell’s polar membranes in our experiments adjacent to polyP during deficiency response (Fig. 4a: Phase 2,c). Therefore, we suggest that intracellular P recovery by cleavage from P-rich DNA and reallocation to polyP, and potentially reduced rRNA synthesis [31], is also a strategy in benthic mats of Sodalinema stali as a response to severe P stress when P availability is too low to sustain growth. This supports the theory of a reallocation of resources away from growth towards flexibly available P and energy storage. Such direct intracellular P cycling could be beneficial to help retain P within the cyanobacterial population; while external P moieties such as dissolved organic P within the matrix can act as an additional P source, they are also likely to be subject to nutrient competition between cyanobacteria and other organisms inhabiting the matrix.Such effects of potential interactions in terms of nutrient competition or provision between cyanobacteria and mutualistic microorganisms contained within the same EPS matrix are difficult to assess and we cannot exclude some potential effects on our results. However, mutualistic microorganisms that are naturally contained in many cyanobacterial or algal cultures are often critical for metacommunity functioning and hence, working with axenic mat-forming strains may even further falsify any obtained results. Furthermore, microscopic analyses revealed that Sodalinema always dominated the biomass and hence, it is here considered reasonable to work with a non-axenic culture.Cellular response to a simulated P pulseIn P-deficient cells, the affinity of the P uptake system is typically increased to maximize P uptake for future pulses [13, 45]. The simulated P pulse to the P-stressed cells in Phase 3 led to a rapid increase of the cellular P content by 1260% relative to C within 3 days (Fig. 2a), whereby P was accumulated to a significant part as polyP, which is characteristic for overplus uptake [25]. Many different types of oligotrophic aquatic habitats experience only temporal P pulses, e.g., from redox changes at the benthic interface leading to P release from the sediment [32], storm run-off [28], upwelling [46], or excretions of aquatic animals [47]. The capability of microorganisms to immediately take up, store, and efficiently re-use this P by overplus uptake is hence of critical importance for a population to sustain a potential subsequent period of low P availability. Overplus uptake is typically accompanied by the overall slow growth of the population and cellular recovery from P starvation, including ultrastructural organization and recovery of the photosynthetic apparatus [48]. This took one week after re-feeding of P-starved Nostoc sp. PCC 7118 cells [48]—a timeframe very similar to the delayed onset of photosynthesis observed in our study, indicated by the elevated pH at day 9 (Fig. 1a). Regarding overplus-triggering mechanisms following P pulses, Solovochenko et al. [48] suggested that overplus uptake occurs due to a delayed down-regulation of high-affinity Pi transporters, which are active during P starvation, and emphasized the simultaneous advantage of osmotically inert polyP accumulation as a response to dramatically high phosphate concentrations in the cells. Even though APase levels declined following our experimental P re-addition, they were significantly elevated for at least 9 days (Fig. 2a). As our experimental design involved replacing the medium with APase-free, BG11 + medium after Phase 2, we assume that the APase detected in Phase 3 was actively produced, and we conclude that previously relevant, low-P response mechanisms are slowly disengaged with some sort of lag, even when ambient P is repleted. Following cellular recovery, Sodalinema now recycled stored polyP instead of further accumulating it during the transition from overplus-to luxury uptake, which was reflected in the increasing C:N:P molar ratios and decreasing polyP levels without significant additional phosphate uptake (Figs. 1a, 2a, 5).Qualitative observations on polyP distributionMost methods applied to analyse polyP in microorganisms are quantitative and do not contain information on its spatial distribution within a population. The here observed variable distribution of polyP between the cells during luxury uptake and deficiency response, as well as the retention of polyP in few individual filaments during polyP recycling in Phase 1 of the low P experiment (Fig. 4) suggests strategies of either slow growth with a retention of polyP, or of high growth with polyP recycling. This was also suggested for cells of a unicellular Synechocystis sp. PCC 6803 population during overplus uptake [47]. In contrast, polyP in our experiment was distributed homogeneously between all cyanobacterial cells during overplus uptake (Fig. 4a: Phase 3, Fig. 4b: Phase 1). Yet, we are unaware of any polyP distribution study in multicellular or mat-forming cyanobacteria and hence, further mechanisms of interactions, e.g., cell-to-cell communication [49, 50], might also contribute to purposeful differentiation of cells or filaments within a common matrix.In summary, our study shows that the mat-forming Sodalinema stali (1) is capable of luxury uptake, overplus uptake and deficiency response with a heterogenous polyP distribution during polyP recycling, luxury uptake and deficiency response, while (2) dynamically adjusting cellular P content to changing phosphate concentrations. (3) Proliferation is sustained under the expense of polyP, followed by P acquisition from other easily dispensable cellular P-containing compounds under the onset of P stress. (4) Further, biosynthetic allocation changes away from growth towards maintenance with relative polyP accumulation at the expense of P-rich DNA are conducted under severe P stress. Our findings demonstrate the extraordinary capabilities of mat-forming cyanobacteria to adapt their P acquisition strategies to strong P fluctuations. While lasting proliferation under P limitation requires the mobilization of additional P sources through regeneration of P from particulate matter, the transition to net P accumulation under excess ambient P is rapid and effective. Since current projections of climate and land use change include intensified pulses of P load to aquatic ecosystems [50], e.g., through external input from surplus of agriculture fertilizer, inefficient wastewater treatment plants, and internal loads via the mobilization of legacy P, these P ‘bioaccumulators’ could form an important component in P remediation by temporarily accumulating P within the mat, and synthesizing polyP that could ultimately stimulate the formation of mineral P phases to sustainably remove P from the aquatic cycle. More

  • in

    Diversity enables the jump towards cooperation for the Traveler’s Dilemma

    Game theory is a framework for analysing the outcome of the strategic interaction between decision makers1. The fundamental concept is that of a Nash equilibrium where no player can improve her payoff by a unilateral strategy change. Typically, the Nash equilibrium is considered to be the optimal outcome of a game, however in social dilemmas the individual optimal outcome is at odds with the collective optimal outcome2. This means that one player can improve her payoff at the expense of the other by unilaterally deviating, but if both deviate, they end up with lower payoffs. In this type of games, the mutually beneficial, but non-Nash equilibrium strategy is called cooperation. However, in this context cooperation should not be interpreted as an interest in the welfare of others, as players only aim to secure a high payoff for themselves.In this framework, payoff maximisation is considered to be rational, but when such rational players then seize every opportunity to gain at the opponent’s expense, they may counterintuitively both end up with low payoffs. A game that clearly exhibits this contradiction is the Traveler’s Dilemma. Since its formulation in 1994 by the economist Kaushik Basu3, the game has become one of the most studied in the economics literature. Additionally, it has been discussed in theoretical biology in the context of evolutionary game theory.In general, the dilemma relies on the individuals’ incentive to undercut the opponent. To be more specific, players are motivated to claim a lower value than their opponent to reach a higher payoff at the opponent’s expense. Such incentive leads players to a systematic mutual undercutting until the lowest possible payoff is reached, which is the unique Nash equilibrium. It seems paradoxical that players defined as rational in a game theoretical sense end up with such a poor outcome. Therefore, the question that naturally arises is how can this poor outcome be prevented and how cooperation can be achieved.To address these questions, it can be helpful to better understand price wars, which consist in the mutual undercutting of prices to gain market share. In addition, it can provide information about human behaviour, because economic experiments have shown that individuals prefer to choose the cooperative high payoff action, instead of the Nash equilibrium4.Our analysis focuses on showing that the Traveler’s Dilemma can be decomposed into a local and a global game. If the payoff optimisation is constrained to the local game, then players will inevitably end up in the Nash equilibrium. However, if players escape the local maximisation and optimise their payoff for the global game, they can reach the cooperative high payoff equilibrium.Here, we show that the cooperative equilibrium can be reached in a game like the Traveler’s Dilemma due to diversity, which we define as the presence of suboptimal strategies. The appearance of strategies far from those of the residents allows for the local maximisation process to be escaped, such that an optimisation at a global level takes place. Overall this can lead to cooperation because by considering “suboptimal strategies” that play against each other it is possible to reach higher payoffs, both collectively and individually.GameThe Traveler’s Dilemma is a two-player game. Player i has to choose a claim, (n_i), from the action space, consisting of all integers on the interval [L, U], where (0 le L < U). The payoffs are determined as follows: If both players, i and j, choose the same value ((n_i = n_j)), both get paid that value. There is a reward parameter (R >1), such that if (n_i < n_j), then i receives (n_i + R) and j gets (n_i- R) Thus, the payoff of player i playing against player j is$$begin{aligned} pi _{ij} = {left{ begin{array}{ll} n_i& text { if } n_i = n_j\ n_i + R& text { if } n_i < n_j\ n_j - R& text { if } n_i > n_j end{array}right. } end{aligned}$$
    (1)
    Thus, a player is better off by choosing a slightly lower value than the opponent: when j plays (n_j), then it is best for i to play (n_j-1). The iteration of this reasoning, which we will call the stairway to hell, leads to the only Nash equilibrium of the game, ({L,L}), where both players choose the lowest possible claim. The classical game theory method to arrive to this equilibrium is called iterative elimination of dominated strategies5.The game can be visualised through its payoff matrix (Fig. 1). For simplicity, we use the values from the original formulation: (L=2), (U=100) and (R=2). The payoff matrix shows that the Traveler’s Dilemma can be decomposed into a local and a global game. Let us begin with the local game. When the action space of the game is reduced to two adjacent actions n and (n+1) (black boxes in Fig. 1), the Traveler’s Dilemma with (R=2) is equivalent to the Prisoner’s Dilemma6. In general, for any value of R, the Traveler’s Dilemma becomes a Prisoner’s Dilemma for any pair of actions n and (n+s), where ( 1 le s le R-1 ). For example, for (R=4) the pair of actions n and (n+1), n and (n+2), n and (n+3) follow the same game structure as the Prisoner’s Dilemma. Therefore, the Traveler’s Dilemma consists of many embedded Prisoners’ Dilemmas. This means that at a local level the game is a Prisoner’s Dilemma.If we now consider actions that are distant from each other in the action space, e.g. 2 and 100, we can observe a coordination game structure (gray boxes in Fig. 1), where ({100,100}) is payoff and risk dominant7,8. In general, any pair of actions n and (n+s), where ( R le s le U-n), construct a coordination game. As a result, the Traveler’s Dilemma becomes a coordination game at a global level, which has different equilibria than the local game.Figure 1Payoff matrix of the Traveler’s Dilemma. Visualisation of the payoff scheme described by Eq. (1). For simplicity, the action space is ( {n_i in {mathbb {N}} mid 2 le n_i le 100}) and the reward parameter is (R=2). The Traveler’s Dilemma can be decomposed into a local and a global game. At a local level the game is a Prisoner’s Dilemma (black boxes). This happens when the action space is reduced to any pair of actions n and (n+s), where ( 1 le s le R-1 ). While at the global level, we can observe a coordination game (gray boxes). This level is defined as any pair of actions n and (n+s), where ( R le s le U-n).Full size imageParadoxSocial dilemmas appear paradoxical in the sense that self-interested competing players, when rationally playing the Nash equilibrium, end up with a payoff that clearly goes against their self-interest. But with the Traveler’s Dilemma, the paradox goes further, as suggested in its original formulation3. Classical game theory proposes ({L,L}) as the Nash equilibrium of the game. However, it seems unlikely and implausible that, with R being moderately low, say (R=2), for individuals to play the Nash equilibrium. This has been confirmed in economic experiments where individuals rather choose values close to the upper bound of the interval. Such experiments have also shown that the chosen value depends on the reward parameter (R), where an increasing value of R shifts players’ decision towards ({L,L})4. Nonetheless, classical game theory states that the Nash equilibrium of the game is independent of R.Consequently, the aim of this paper is to seek and explore simple mechanisms through which the apparent non-rational cooperative behaviour can come about. We also examine the effect of the reward parameter on the game’s outcome. Given that the Traveler’s Dilemma paradox emerges in the classical game theory framework, we analyse the game using evolutionary game theory tools5,9,10. This dynamical approach allows us to explore adaptive behaviour outside of the stationary classical game theory framework. To be more precise, for this approach individuals dynamically adjust their actions according to their payoffs.The key point of course is to understand how the system can converge to high claims. We show that this behaviour is possible because the Traveler’s Dilemma can be decomposed into a local and a global game. If the payoff maximisation is constrained to the local level, then the stairway to hell leads the system to the Nash equilibrium; given that locally the game is a Prisoner’s Dilemma. On the other hand, at a global level the game follows a coordination game structure, where the high claim actions are payoff dominant. Thus, for the system to reach a high claim equilibrium the maximisation process needs to jump from the local to the global level.Our analysis led us to identify the mechanism of diversity as responsible for enabling this jump and preventing players from going down the stairway to hell. This mechanism works on the idea that to reach a high claim equilibrium, players have to benefit from playing a high claim. For a population setting, it means that players need to have the chance to encounter opponents also playing high. From a learning model point of view, it refers to the belief that the opponent will also play high, at least with a certain probability. If the belief is shared by both players, they should both play high and reach the cooperative equilibrium. Here, we explore these two types of models to unveil the mechanism leading to cooperation.Population based models unveil diversity as the cooperative mechanism via the effect of mutations on the game’s outcome. This is shown for the replicator-mutator equation and the Wright–Fisher model. Similarly, a two-player learning model approach, more in line with human reasoning, shows that if players are free to adopt a higher payoff action from a diverse action set during their introspection process, they can reach the cooperative equilibrium. This result is obtained using introspection dynamics.Finally, we explain how diversity is the underlying mechanism that enables the convergence to high claims in previously proposed models. To be more precise, we show that diversity is required because it allows for the maximisation process to jump from the local to the global level. More

  • in

    Triassic stem caecilian supports dissorophoid origin of living amphibians

    Pardo, J. D., Lennie, K. & Anderson, J. S. Can we reliably calibrate deep nodes in the tetrapod tree? Case studies in deep tetrapod divergences. Front. Genet. 11, 1159 (2020).Article 

    Google Scholar 
    Rage, J.-C. & Roček, Z. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the early Triassic. Palaeontographica A 206, 1–16 (1989).
    Google Scholar 
    Evans, S. E. & Borsuk-Białynicka, M. A stem-group frog from the Early Triassic of Poland. Acta Palaeontol. Pol. 43, 573–580 (1998).Article 

    Google Scholar 
    Heckert, A. B., Mitchell, J. S., Schneider, V. P. & Olsen, P. E. Diverse new microvertebrate assemblage from the Upper Triassic Cumnock Formation, Sanford Subbasin, North Carolina, USA. J. Paleontol. 86, 368–390 (2012).Article 

    Google Scholar 
    Stocker, M. R. et al. The earliest equatorial record of frogs from the Late Triassic of Arizona. Biol. Lett. 15, 20180922 (2019).Article 

    Google Scholar 
    Schoch, R. R., Werneburg, R. & Voigt, S. A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. Proc. Natl Acad. Sci. USA 117, 11584–11588 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B. & Sumida, S. S. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 453, 515–518 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. S. Focal review: the origin(s) of modern amphibians. Evol. Biol. 35, 231–247 (2008).Article 

    Google Scholar 
    Sigurdsen, T. & Bolt, J. R. The Lower Permian amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians. J. Vertebr. Paleontol. 30, 1360–1377 (2010).Article 

    Google Scholar 
    Schoch, R. R. The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls. J. Paleontol. 93, 137–156 (2019).Article 

    Google Scholar 
    Jenkins, P. A. & Walsh, D. M. An Early Jurassic caecilian with limbs. Nature 365, 246–250 (1993).Article 
    ADS 

    Google Scholar 
    Jenkins, F. A., Walsh, D. M. & Carroll, R. L. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull. Mus. Comp. Zool. 158, 285–365 (2007).Article 

    Google Scholar 
    Maddin, H. C., Jenkins, F. A. Jr & Anderson, J. S. The braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the origin of caecilians. PLoS ONE 7, e50743 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Pardo, J. D., Small, B. J. & Huttenlocker, A. K. Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia. Proc. Natl Acad. Sci. USA 114, E5389–E5395 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Nussbaum, R. A. The evolution of a unique dual jaw‐closing mechanism in caecilians: (Amphibia: Gymnophiona) and its bearing on caecilian ancestry. J. Zool. 199, 545–554 (1983).Article 

    Google Scholar 
    Kleinteich, T., Haas, A. & Summers, A. P. Caecilian jaw-closing mechanics: integrating two muscle systems. J. R. Soc. Interface 5, 1491–1504 (2008).Article 

    Google Scholar 
    Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).Article 

    Google Scholar 
    Schmidt, A. & Wake, M. H. Olfactory and vomeronasal systems of caecilians (Amphibia: Gymnophiona). J. Morphol. 205, 255–268 (1990).Article 

    Google Scholar 
    Pincheira‐Donoso, D., Meiri, S., Jara, M., Olalla‐Tárraga, M. Á. & Hodgson, D. J. Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography 42, 1682–1690 (2019).Article 

    Google Scholar 
    San Mauro, D., Vences, M., Alcobendas, M., Zardoya, R. & Meyer, A. Initial diversification of living amphibians predated the breakup of Pangaea. Am. Nat. 165, 590–599 (2005).Article 

    Google Scholar 
    Padian, K. & Sues, H.-D. in Great Transformations in Vertebrate Evolution (eds Dial, K. P., Shubin, N. & Brainerd, E. L.) 351–374 (Univ. Chicago Press, 2021).Santos, R. O., Laurin, M. & Zaher, H. A review of the fossil record of caecilians (Lissamphibia: Gymnophionomorpha) with comments on its use to calibrate molecular timetrees. Biol. J. Linn. Soc. 131, 737–755 (2020).Article 

    Google Scholar 
    Evans, S. E. & Sigogneau‐Russell, D. A stem‐group caecilian (Lissamphibia: Gymnophiona) from the Lower Cretaceous of North Africa. Palaeontology 44, 259–273 (2001).Article 

    Google Scholar 
    Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. GSA Bull. 123, 2142–2159 (2011).Article 
    CAS 

    Google Scholar 
    Rasmussen, C. et al. U-Pb zircon geochronology and depositional age models for the Upper Triassic Chinle Formation (Petrified Forest National Park, Arizona, USA): implications for Late Triassic paleoecological and paleoenvironmental change. GSA Bull. 133, 539–558 (2021).Article 
    CAS 

    Google Scholar 
    Nordt, L., Atchley, S. & Dworkin, S. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. GSA Bull. 127, 1798–1815 (2015).Article 
    CAS 

    Google Scholar 
    Martz, J. W. & Parker, W. G. in Terrestrial Depositional Systems (eds Zeigler, K. E. & Parker, W. G.) 39–125 (Elsevier, 2017).Daza, J. D. et al. Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic feeders. Science 370, 687–691 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Gardner, J. D. Monophyly and affinities of albanerpetontid amphibians (Temnospondyli; Lissamphibia). Zool. J. Linn. Soc. 131, 309–352 (2001).Article 

    Google Scholar 
    Bolt, J. R. Lissamphibian origins: possible protolissamphibian from the Lower Permian of Oklahoma. Science 166, 888–891 (1969).Article 
    ADS 
    CAS 

    Google Scholar 
    Gardner, J. D. & Averianov, A. O. Albanerpetontid amphibians from the Upper Cretaceous of Middle Asia. Acta Palaeontol. Pol. 43, 453–476 (1998).
    Google Scholar 
    Carroll, R. L. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zool. J. Linn. Soc. 150, 1–140 (2007).Article 

    Google Scholar 
    Müller, H., Oommen, O. V. & Bartsch, P. Skeletal development of the direct-developing caecilian Gegeneophis ramaswamii (Amphibia: Gymnophiona: Caeciliidae). Zoomorphology 124, 171–188 (2005).Article 

    Google Scholar 
    Ahlberg, P. E. & Clack, J. A. Lower jaws, lower tetrapods—a review based on the Devonian genus Acanthostega. Earth Environ. Sci. Trans. R. Soc. Edinb. 89, 11–46 (1998).Article 

    Google Scholar 
    Bolt, J. R. & Lombard, R. E. The mandible of the primitive tetrapod Greererpeton, and the early evolution of the tetrapod lower jaw. J. Paleontol. 75, 1016–1042 (2001).Article 

    Google Scholar 
    Shishkin, M. A. & Sulej, T. The Early Triassic temnospondyls of the Czatkowice 1 tetrapod assemblage. Acta Palaeontol. Pol. 65, 31–77 (2009).
    Google Scholar 
    Anderson, J. S., Scott, D. & Reisz, R. R. The anatomy of the dermatocranium and mandible of Cacops aspidephorus Williston, 1910 (Temnospondyli: Dissorophidae), from the Lower Permian of Texas. J. Vertebr. Paleontol. 40, e1776720 (2020).Article 

    Google Scholar 
    Wilkinson, M., San Mauro, D., Sherratt, E. & Gower, D. J. A nine-family classification of caecilians (Amphibia: Gymnophiona). Zootaxa 2874, 41–64 (2011).Article 

    Google Scholar 
    Jared, C. et al. Skin gland concentrations adapted to different evolutionary pressures in the head and posterior regions of the caecilian Siphonops annulatus. Sci. Rep. 8, 3576 (2018).Article 
    ADS 

    Google Scholar 
    O’Reilly, J. C., Ritter, D. A. & Carrier, D. R. Hydrostatic locomotion in a limbless tetrapod. Nature 386, 269–272 (1997).Article 
    ADS 

    Google Scholar 
    Muttoni, G. & Kent, D. V. Jurassic monster polar shift confirmed by sequential paleopoles from Adria, promontory of Africa. J. Geophys. Res. 124, 3288–3306 (2019).Article 
    ADS 

    Google Scholar 
    Parsons, T. S. & Williams, E. E. The relationships of the modern Amphibia: a re-examination. Q. Rev. Biol. 38, 26–53 (1963).Article 

    Google Scholar 
    Marjanović, D. & Laurin, M. A reevaluation of the evidence supporting an unorthodox hypothesis on the origin of extant amphibians. Contrib. Zool. 77, 149–199 (2008).Article 

    Google Scholar 
    Jenkins, X. A. et al. Using manual ungual morphology to predict substrate use in the Drepanosauromorpha and the description of a new species. J. Vertebr. Paleontol. 40, e1810058 (2020).Article 

    Google Scholar 
    Kligman, B. T., Marsh, A. D., Nesbitt, S. J., Parker, W. G. & Stocker, M. R. New trilophosaurid species demonstrates a decline in allokotosaur diversity across the Adamanian–Revueltian boundary in the Late Triassic of western North America. Palaeodiversity 13, 25–37 (2020).Article 

    Google Scholar 
    Marsh, A. D., Smith, M. E., Parker, W. G., Irmis, R. B. & Kligman, B. T. Skeletal anatomy of Acaenasuchus geoffreyi Long and Murry, 1995 (Archosauria: Pseudosuchia) and its implications for the origin of the aetosaurian carapace. J. Vertebr. Paleontol. 40, e1794885 (2020).Article 

    Google Scholar 
    Marsh, A. D. & Parker, W. G. New dinosauromorph specimens from Petrified Forest National Park and a global biostratigraphic review of Triassic dinosauromorph body fossils. PaleoBios https://doi.org/10.5070/P9371050859 (2020).Kligman, B. T., Marsh, A. D., Sues, H.-D. & Sidor, C. A. A new non-mammalian eucynodont from the Chinle Formation (Triassic: Norian), and implications for the early Mesozoic equatorial cynodont record. Biol. Lett. 16, 20200631 (2020).Article 

    Google Scholar 
    Huttenlocker, A. K., Pardo, J. D., Small, B. J. & Anderson, J. S. Cranial morphology of recumbirostrans (Lepospondyli) from the Permian of Kansas and Nebraska, and early morphological evolution inferred by micro-computed tomography. J. Vertebr. Paleontol. 33, 540–552 (2013).Article 

    Google Scholar 
    Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, e5565 (2019).Article 

    Google Scholar 
    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).Article 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).Article 
    CAS 

    Google Scholar 
    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).Article 
    CAS 

    Google Scholar 
    Eltink, E., Schoch, R. R. & Langer, M. C. Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli). J. Iber. Geol. 45, 251–267 (2019).Article 

    Google Scholar 
    Bystrow, A. Dvinosaurus als neotenische Form der Stegocephalen. Acta Zool. 19, 209–295 (1938).Article 

    Google Scholar 
    Dutuit, J.-M. Introduction à l’étude paléontologique du Trias continental Marocain. Description des premiers stegocephales recueillis dans le couloir d’Argana (Atlas Occidental). Mémoires du Muséum National d’Histoire 36, 1–253 (1976).
    Google Scholar 
    Dias, E. V., Dias-da-Silva, S. & Schultz, C. L. A new short-snouted rhinesuchid from the Permian of southern Brazil. Revista Brasileira de Paleontologia 23, 98–122 (2020).Article 

    Google Scholar 
    Damiani, R. J. & Kitching, J. W. A new brachyopid temnospondyl from the Cynognathus Assemblage Zone, Upper Beaufort Group, South Africa. J. Vertebr. Paleontol. 23, 67–78 (2003).Article 

    Google Scholar 
    Schoch, R. R. & Witzmann, F. Cranial morphology of the plagiosaurid Gerrothorax pulcherrimus as an extreme example of evolutionary stasis. Lethaia 45, 371–385 (2012).Article 

    Google Scholar 
    Schoch, R. R. Studies on braincases of early tetrapods: Structure, morphological diversity, and phylogeny-1 Trimerorhacis and other prmitive temnospondyls. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 213, 233–259 (1999).Article 

    Google Scholar 
    Ruta, M. & Bolt, J. R. The brachyopoid Hadrokkosaurus bradyi from the early Middle Triassic of Arizona, and a phylogenetic analysis of lower jaw characters in temnospondyl amphibians. Acta Palaeontol. Pol. 53, 579–592 (2008).Article 

    Google Scholar 
    Bystrow, A. & Efremov, J. Benthosuchus sushkini Efr.—a labyrinthodont from the Eotriassic of Sharzhenga River. Trudy Paleontol. Inst. 10, 1–152 (1940).
    Google Scholar 
    Warren, A. Karoo tupilakosaurid: a relict from Gondwana. Earth Environ. Sci. Trans. R. Soc. Edinb. 89, 145–160 (1998).Article 

    Google Scholar 
    Holmes, R. B., Carroll, R. L. & Reisz, R. R. The first articulated skeleton of Dendrerpeton acadianum (Temnospondyli, Dendrerpetontidae) from the Lower Pennsylvanian locality of Joggins, Nova Scotia, and a review of its relationships. J. Vertebr. Paleontol. 18, 64–79 (1998).Article 

    Google Scholar 
    Steyer, J. S. The first articulated trematosaur ‘amphibian’ from the Lower Triassic of Madagascar: implications for the phylogeny of the group. Palaeontol. 45, 771–793 (2002).Article 

    Google Scholar 
    Englehorn, J., Small, B. J. & Huttenlocker, A. A redescription of Acroplous vorax (Temnospondyli: Dvinosauria) based on new specimens from the Early Permian of Nebraska and Kansas, USA. J. Vertebr. Paleontol. 28, 291–305 (2008).Article 

    Google Scholar 
    Warren, A. Laidleria uncovered: a redescription of Laidleria gracilis Kitching (1957), a temnospondyl from the Cynognathus Zone of South Africa. Zool. J. Linn. Soc. 122, 167–185 (1998).Article 

    Google Scholar 
    Bolt, J. R. & Chatterjee, S. A new temnospondyl amphibian from the Late Triassic of Texas. J. Paleontol. 74, 670–683 (2000).Article 

    Google Scholar 
    Milner, A. & Sequeira, S. The temnospondyl amphibians from the Viséan of east Kirkton, West Lothian, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 84, 331–361 (1993).
    Google Scholar 
    Schoch, R. R. & Milner, A. R. Encyclopedia of Paleoherpetology, Part 3A. Temnospondyli (Verlag Dr. Friedrich Pfeil, 2014).Damiani, R., Schoch, R. R., Hellrung, H., Werneburg, R. & Gastou, S. The plagiosaurid temnospondyl Plagiosuchus pustuliferus (Amphibia: Temnospondyli) from the Middle Triassic of Germany: anatomy and functional morphology of the skull. Zool. J. Linn. Soc. 155, 348–373 (2009).Article 

    Google Scholar 
    Chernin, S. A new brachyopid, Batrachosuchus concordi sp. nov. from the Upper Luangwa Valley, Zambia with a redescription of Batrachosuchus browni Broom, 1903. Palaeontol. Afr. 20, 87–109 (1977).
    Google Scholar 
    Sulej, T. Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Acta Palaeontol. Pol. 64, 29–139 (2007).
    Google Scholar  More

  • in

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Bradford, M. A. et al. Soil carbon science for policy and practice. Nat. Sustain. 2, 1070–1072 (2019).Article 

    Google Scholar 
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).Article 

    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).Article 

    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).Article 

    Google Scholar 
    Wang, B. R., An, S. S., Liang, C., Liu, Y. & Kuzyakov, Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 162, 108422 (2021).Article 

    Google Scholar 
    Kästner, M. & Miltner, A. in The Future of Soil Carbon (eds Garcia, C. et al.) Ch. 5 (Academic Press, 2018).Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).Article 

    Google Scholar 
    Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).Article 

    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).Article 

    Google Scholar 
    Emerson, J. B. et al. Schrödinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).Article 

    Google Scholar 
    Zhang, Y. et al. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model. Biogeosciences 18, 3147–3171 (2021).Article 

    Google Scholar 
    Ackermann, M., Stearns Stephen, C. & Jenal, U. Senescence in a bacterium with asymmetric division. Science 300, 1920–1920 (2003).Article 

    Google Scholar 
    Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nyström, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).Article 

    Google Scholar 
    Maheshwari, R. & Navaraj, A. Senescence in fungi: the view from Neurospora. FEMS Microbiol. Lett. 280, 135–143 (2008).Article 

    Google Scholar 
    See, C. R. et al. Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. 28, 2527–2540 (2022).Article 

    Google Scholar 
    Pusztahelyi, T. et al. Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiologica 51, 547–554 (2006).Article 

    Google Scholar 
    Bartoszewska, M. & Kiel, J. A. The role of macroautophagy in development of filamentous fungi. Antioxid. Redox Signal. 14, 2271–2287 (2011).Article 

    Google Scholar 
    Josefsen, L. et al. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 8, 326–337 (2012).Article 

    Google Scholar 
    Heaton, L. L., Jones, N. S. & Fricker, M. D. Energetic constraints on fungal growth. Am. Nat. 187, E27–E40 (2016).Article 

    Google Scholar 
    Taiz, L. & Zeiger, E. Plant Physiology 4th edn (Spektrum Akademischer Verlag, 2008).Bowman, E. J. & Bowman, B. J. in Cellular and Molecular Biology of Filamentous Fungi (eds Borkovich, K. & Ebbole, D.) 179–190 (ASM Press, 2010).Voigt, O. & Pöggeler, S. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl. Microbiol. Biotechnol. 97, 9277–9290 (2013).Article 

    Google Scholar 
    Grimmett, I. J., Shipp, K. N., Macneil, A. & Barlocher, F. Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol. 6, 493–500 (2013).Article 

    Google Scholar 
    Camenzind, T., Philipp Grenz, K., Lehmann, J. & Rillig, M. C. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol. Lett. 24, 208–218 (2021).Article 

    Google Scholar 
    Mason-Jones, K., Robinson, S. L., Veen, G. F., Manzoni, S. & van der Putten, W. H. Microbial storage and its implications for soil ecology. ISME J. 16, 617–629 (2022).Article 

    Google Scholar 
    Gow, N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5, FUNK-0035–2016 (2017).Article 

    Google Scholar 
    Steiner, U. K. Senescence in bacteria and its underlying mechanisms. Front. Cell Dev. Biol. 9, 668915 (2021).Article 

    Google Scholar 
    Allocati, N., Masulli, M., Di Ilio, C. & De Laurenzi, V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6, e1609 (2015).Article 

    Google Scholar 
    Peeters, S. H. & de Jonge, M. I. For the greater good: programmed cell death in bacterial communities. Microbiol. Res. 207, 161–169 (2018).Article 

    Google Scholar 
    Wang, J. & Bayles, K. W. Programmed cell death in plants: lessons from bacteria? Trends Plant Sci. 18, 133–139 (2013).Article 

    Google Scholar 
    Nagamalleswari, E., Rao, S., Vasu, K. & Nagaraja, V. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 45, 8423–8434 (2017).Article 

    Google Scholar 
    Kysela, D. T., Brown, P. J. B., Huang, K. C. & Brun, Y. V. Biological consequences and advantages of asymmetric bacterial growth. Annu. Rev. Microbiol. 67, 417–435 (2013).Article 

    Google Scholar 
    Bayles, K. W. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12, 63–69 (2014).Article 

    Google Scholar 
    Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).Article 

    Google Scholar 
    Coleman, D. C. & Wall, D. H. in Soil Microbiology, Ecology and Biochemistry 4th edn (ed. Paul, E. A.) Ch. 5 (Academic Press, 2015).Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021).Article 

    Google Scholar 
    Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).Article 

    Google Scholar 
    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).Article 

    Google Scholar 
    Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).Article 

    Google Scholar 
    Bonkowski, M. & Clarholm, M. J. A. P. Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool. 51, 237–247 (2012).
    Google Scholar 
    Potapov, A. M., Pollierer, M. M., Salmon, S., Šustr, V. & Chen, T.-W. Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. J. Anim. Ecol. 90, 1919–1933 (2021).Article 

    Google Scholar 
    Esteban, G. F. & Fenchel, T. M. in Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists (eds Esteban, G. F. & Fenchel, T. M.) 33–54 (Springer, 2020).Koksharova, O. A. Bacteria and phenoptosis. Biochemistry 78, 963–970 (2013).
    Google Scholar 
    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).Boddy, L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31, 185–194 (2000).Article 

    Google Scholar 
    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).Article 

    Google Scholar 
    Müller, S. et al. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl. Environ. Microbiol. 81, 203–210 (2015).Article 

    Google Scholar 
    Laskowska, E. & Kuczynska-Wisnik, D. New insight into the mechanisms protecting bacteria during desiccation. Curr. Genet. 66, 313–318 (2020).Article 

    Google Scholar 
    Rillig, M. C., Ryo, M. & Lehmann, A. Classifying human influences on terrestrial ecosystems. Glob. Change Biol. 27, 2273–2278 (2021).Article 

    Google Scholar 
    Dörr, T., Moynihan, P. J. & Mayer, C. Bacterial cell wall structure and dynamics. Front. Microbiol. 10, 02051 (2019).Article 

    Google Scholar 
    Corredor, B., Lang, B. & Russell, D. Effects of nitrogen fertilization on soil fauna in a global meta-analysis. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-1438491/v1 (2022).Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).Article 

    Google Scholar 
    Manzoni, S., Chakrawal, A., Spohn, M. & Lindahl, B. D. Modeling microbial adaptations to nutrient limitation during litter decomposition. Front. For. Glob. Change 4, 686945 (2021).Article 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article 

    Google Scholar 
    Gunina, A. & Kuzyakov, Y. From energy to (soil organic) matter. Glob. Change Biol. 28, 2169–2182 (2022).Article 

    Google Scholar 
    Fernandez, C. W. & Koide, R. T. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol. Biochem. 77, 150–157 (2014).Article 

    Google Scholar 
    Kästner, M., Miltner, A., Thiele-Bruhn, S. & Liang, C. Microbial necromass in soils—linking microbes to soil processes and carbon turnover. Front. Environ. Sci. 9, 756378 (2021).Article 

    Google Scholar 
    Buckeridge, K. M., Creamer, C. & Whitaker, J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Funct. Ecol. 36, 1396–1410 (2022).Article 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).Article 

    Google Scholar 
    Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 14, 1520–1532 (2020).Article 

    Google Scholar 
    Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E. & Grandy, A. S. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019).Article 

    Google Scholar 
    Liang, C. Soil microbial carbon pump: mechanism and appraisal. Soil Ecol. Lett. 2, 241–254 (2020).Article 

    Google Scholar 
    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).Article 

    Google Scholar 
    van Groenigen, J. W. et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ. Sci. Technol. 51, 4738–4739 (2017).Article 

    Google Scholar 
    Greenlon, A. et al. Quantitative stable-isotope probing (qSIP) with metagenomics links microbial physiology and activity to soil moisture in Mediterranean-climate grassland ecosystems (in the press).Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).Article 

    Google Scholar 
    Schaible, G. A., Kohtz, A. J., Cliff, J. & Hatzenpichler, R. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME Commun. 2, 52 (2022).Article 

    Google Scholar 
    See, C. R. et al. Distinct carbon fractions drive a generalisable two-pool model of fungal necromass decomposition. Funct. Ecol. 35, 796–806 (2021).Article 

    Google Scholar 
    Wang, C. et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol. Biochem. 141, 107687 (2020).Article 

    Google Scholar 
    Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).Article 

    Google Scholar 
    Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).Article 

    Google Scholar 
    Trap, J., Bonkowski, M., Plassard, C., Villenave, C. & Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 398, 1–24 (2016).Article 

    Google Scholar 
    Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).Article 

    Google Scholar 
    Muñoz-Leoz, B., Ruiz-Romera, E., Antigüedad, I. & Garbisu, C. Tebuconazole application decreases soil microbial biomass and activity. Soil Biol. Biochem. 43, 2176–2183 (2011).Article 

    Google Scholar 
    Meyer, M., Diehl, D., Schaumann, G. E. & Muñoz, K. Agricultural mulching and fungicides—impacts on fungal biomass, mycotoxin occurrence, and soil organic matter decomposition. Environ. Sci. Pollut. Res. 28, 36535–36550 (2021).Article 

    Google Scholar 
    Thiery, S. & Kaimer, C. The predation strategy of Myxococcus xanthus. Front. Microbiol. 11, 2 (2020).Article 

    Google Scholar 
    Laloux, G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus. Front. Microbiol. 10, 3136 (2020).Article 

    Google Scholar  More

  • in

    Fine-resolution global maps of root biomass carbon colonized by arbuscular and ectomycorrhizal fungi

    To calculate total root biomass C colonized by AM and EcM fungi, we developed a workflow that combines multiple publicly available datasets to ultimately link fine root stocks to mycorrhizal colonization estimates (Fig. 1). These estimates were individually derived for 881 different spatial units that were constructed by combining 28 different ecoregions, 15 land cover types and six continents. In a given spatial unit, the relationship between the proportion of AM- and EcM-plants aboveground biomass and the proportion of AM- and EcM-associated root biomass depends on the prevalence of distinct growth forms. Therefore, to increase the accuracy of our estimates, calculations were made separately for woody and herbaceous vegetation and combined in the final step and subsequently mapped. Below we detail the specific methodologies we followed within the workflow and the main assumptions and uncertainties associated.Fig. 1Workflow used to create maps of mycorrhizal fine root biomass carbon. The workflow consists of two main steps: (1) Estimation of total fine root stock capable to form mycorrhizal associations with AM and EcM fungi and (2) estimation of the proportion of fine roots colonized by AM and EcM fungi.Full size imageDefinition of spatial unitsAs a basis for mapping mycorrhizal root abundances at a global scale, we defined spatial units based on a coarse division of Bailey’s ecoregions23 After removing regions of permanent ice and water bodies, we included 28 ecoregions defined according to differences in climatic regimes and elevation (deposited at Dryad-Table S1). A map of Bailey’s ecoregions was provided by the Oak Ridge National Laboratory Distributed Active Archive Center24 at 10 arcmin spatial resolution. Due to potential considerable differences in plant species identities, ecoregions that extended across multiple continents were split for each continent. The continent division was based upon the FAO Global Administrative Unit Layers (http://www.fao.org/geonetwork/srv/en/). Finally, each ecoregion-continent combination was further divided according to differences in land cover types using the 2015 Land Cover Initiative map developed by the European Space Agency at 300 m spatial resolution (https://www.esa-landcover-cci.org/). To ensure reliability, non-natural areas (croplands and urban areas), bare areas and water bodies were discarded (Table 1). In summary, a combination of 28 ecoregions, 15 land cover types and six continents were combined to define a total of 881 different spatial units (deposited at Dryad-Table S2). The use of ecoregion/land cover/continent combination provided a much greater resolution than using a traditional biome classification and allowed to account for human-driven transformations of vegetation, the latter based on the land cover data.Table 1 List of land cover categories within the ESA CCI Land Cover dataset, used to assemble maps of mycorrhizal root biomass.Full size tableMycorrhizal fine root stocksTotal root C stocksEstimation of the total root C stock in each of the spatial units was obtained from the harmonized belowground biomass C density maps of Spawn et al.20. These maps are based on continental-to-global scale remote sensing data of aboveground biomass C density and land cover-specific root-to-shoot relationships to generate matching belowground biomass C maps. This product is the best up-to-date estimation of live root stock available. For subsequent steps in our workflow, we distinguished woody and herbaceous belowground biomass C as provided by Spawn et al.20. As the tundra belowground biomass C map was provided without growth form distinction, it was assessed following a slightly different workflow (see Section 2.2.3 for more details). To match the resolution of other input maps in the workflow, all three belowground biomass C maps were scaled up from the original spatial resolution of 10-arc seconds (approximately 300 m at the equator) to 10 arc‐minutes resolution (approximately 18.5 km at the equator) using the mean location of the raster cells as aggregation criterion.As the root biomass C maps do not distinguish between fine and coarse roots and mycorrhizal fungi colonize only the fine fractions of the roots, we considered the fine root fraction to be 88,5% and 14,1% of the total root biomass for herbaceous and woody plants, respectively. These constants represent the mean value of coarse/fine root mass ratios of herbaceous and woody plants provided by the Fine-Root Ecology Database (FRED) (https://roots.ornl.gov/)25 (deposited at Dryad-Table S3). Due to the non-normality of coarse/fine root mass ratios, mean values were obtained from log-transformed data and then back-transformed for inclusion into the workflow.Finally, the belowground biomass C maps consider the whole root system, but mycorrhizal colonization occurs mainly in the upper 30 cm of the soil18. Therefore, we estimated the total fine root stocks in the upper 30 cm by applying the asymptotic equation of vertical root distribution developed by Gale & Grigal26:$$y=1-{beta }^{d}$$where y is the cumulative root fraction from the soil surface to depth d (cm), and β is the fitted coefficient of extension. β values of trees (β = 0.970), shrubs (β = 0.978) and herbs (β = 0.952) were obtained from Jackson et al.27. A mean value was then calculated for trees and shrubs to obtain a woody vegetation β value of 0.974. As a result, we estimated that 54.6% of the total live root of woody vegetation and 77.1% of herbaceous vegetation is stored in the upper 30 cm of the soil. In combination, this allowed deriving fine root C stocks in the upper 30 cm of woody and herbaceous vegetation.The proportion of root stocks colonized by AM and EcMThe proportion of root stock that forms associations with AM or EcM fungi was obtained from the global maps of aboveground biomass distribution of dominant mycorrhizal types published by Soudzilovskaia et al.14. These maps provide the relative abundance of EcM and AM plants based on information about the biomass of grass, shrub and tree vegetation at 10arcmin resolution. To match with belowground root woody plants biomass data, proportions of AM trees and shrubs underlying the maps of Soudzilovskaia et al.14 were summed up to obtain the proportion of AM woody vegetation. The same was done for EcM trees and shrubs.Our calculations are subjected to the main assumption that, within each growth form, the proportion of aboveground biomass associated with AM and EcM fungi reflects the proportional association of AM and EM fungi to belowground biomass. We tested whether root:shoot ratios were significantly different between AM and EcM woody plants (the number of EcM herbaceous plants is extremely small17). Genera were linked to growth form based on the TRY database (https://www.try-db.org/)19 and the mycorrhizal type association based on the FungalRoots database17. Subsequently, it was tested whether root:shoot ratios of genera from the TRY database (https://www.try-db.org/)19 were significantly different for AM vs EcM woody plants. No statistically significant differences (ANOVA-tests p-value = 0.595) were found (Fig. 2).Fig. 2Mean and standar error of root to shoot ratios of AM and EcM woody plant species.Full size imageEstimation of mycorrhizal fine root stocksWe calculated the total biomass C of fine roots that can potentially be colonized by AM or EcM fungi by multiplying the total woody and herbaceous fine root C biomass in the upper 30 cm of the soil by the proportion of AM and EcM of woody and herbaceous vegetation. In the case of tundra vegetation, fine root C stocks were multiplied by the relative abundance of AM and EcM vegetation without distinction of growth forms (for simplicity, this path was not included in Fig. 1, but can be seen in Fig. 3. As tundra vegetation consists mainly of herbs and small shrubs, the distinction between woody and herbaceous vegetation is not essential in this case.Fig. 3Workflow used to create mycorrhizal fine root biomass C maps specific for tundra areas.Full size imageFinally, we obtained the mean value of mycorrhiza growth form fine root C stocks in each of the defined spatial units. These resulted in six independent estimations: AM woody, AM herbaceous, EcM woody, EcM herbaceous, AM tundra and EcM tundra total fine root biomass C (Fig. 4).Fig. 4Fine root biomass stocks capable to form association with AM (a) and EcM (b) fungi for woody, herbaceous and tundra vegetation. Final AM and EcM stock result from the sum of the growth form individual maps. There were no records of fine root biomass of EcM herbaceous vegetation.Full size imageThe intensity of root colonization by mycorrhizal fungiColonization databaseThe FungalRoot database is the largest up-to-date compilation of intensity of root colonization data, providing 36303 species observations for 14870 plant species. Colonization data was filtered to remove occurrences from non-natural conditions (i.e., from plantations, nurseries, greenhouses, pots, etc.) and data collected outside growing seasons. Records without explicit information about habitat naturalness and growing season were maintained as colonization intensity is generally recorded in the growing season of natural habitats. When the intensity of colonization occurrences was expressed in categorical levels, they were converted to percentages following the transformation methods stated in the original publications. Finally, plant species were distinguished between woody and herbaceous species using the publicly available data from TRY (https://www.trydb.org/)19. As a result, 9905 AM colonization observations of 4494 species and 521 EcM colonization observations of 201 species were used for the final calculations (Fig. 5).Fig. 5Number of AM (a) and EcM (b) herbaceous and woody plant species and total observations obtained from FungalRoot database.Full size imageThe use of the mean of mycorrhizal colonization intensity per plant species is based on two main assumptions:

    1)

    The intensity of root colonization is a plant trait: It is known that the intensity of mycorrhizal infections of a given plant species varies under different climatic and soil conditions28,29, plant age30 and the identity of colonizing fungal species31. However, Soudzilovskaia et al.9 showed that under natural growth conditions the intraspecific variation of root mycorrhizal colonization is lower than interspecific variation, and is within the range of variations in other plant eco-physiological traits. Moreover, recent literature reported a positive correlation between root morphological traits and mycorrhizal colonization, with a strong phylogenetic signature of these correlations32,33. These findings provide support for the use of mycorrhizal root colonization of plants grown in natural conditions as a species-specific trait.

    2)

    The percentage of root length or root tips colonized can be translated to the percentage of biomass colonized: intensity of root colonization is generally expressed as the proportion of root length colonized by AM fungi or proportion of root tips colonized by EcM fungi (as EcM infection is restricted to fine root tips). Coupling this data with total root biomass C stocks requires assuming that the proportion of root length or proportion of root tips colonized is equivalent to the proportion of root biomass colonized. While for AM colonization this equivalence can be straightforward, EcM colonization can be more problematic as the number of root tips varies between tree species. However, given that root tips represent the terminal ends of a root network34, the proportion of root tips colonized by EcM fungi can be seen as a measurement of mycorrhizal infection of the root system and translated to biomass independently of the number of root tips of each individual. Yet, it is important to stress that estimations of fine root biomass colonized by AM and EcM as provided in this paper might not be directly comparable.

    sPlot databaseThe sPlotOpen database21 holds information about the relative abundance of vascular plant species in 95104 different vegetation plots spanning 114 countries. In addition, sPlotOpen provides three partially overlapping resampled subset of 50000 plots each that has been geographically and environmentally balanced to cover the highest plant species variability while avoiding rare communities. From these three available subsets, we selected the one that maximizes the number of spatial units that have at least one vegetation plot. We further checked if any empty spatial unit could be filled by including sPlot data from other resampling subsets.Plant species in the selected subset were classified as AM and EcM according to genus-based mycorrhizal types assignments, provided in the FungalRoot database17. Plant species that could not be assigned to any mycorrhizal type were excluded. Facultative AM species were not distinguished from obligated AM species, and all were considered AM species. The relative abundance of species with dual colonization was treated as 50% AM and 50% ECM. Plant species were further classified into woody and herbaceous species using the TRY database.Estimation of the intensity of mycorrhizal colonizationThe percentage of AM and EcM root biomass colonized per plant species was spatially upscaled by inferring the relative abundance of AM and EcM plant species in each plot. For each mycorrhizal-growth form and each vegetation plot, the relative abundance of plant species was determined to include only the plant species for which information on the intensity of root colonization was available. Then, a weighted mean intensity of colonization per mycorrhizal-growth form was calculated according to the relative abundance of the species featuring that mycorrhizal-growth form in the vegetation plot. Lastly, the final intensity of colonization per spatial unit was calculated by taking the mean value of colonization across all plots within that spatial unit. These calculations are based on 38127 vegetation plots that hold colonization information, spanning 384 spatial units.The use of vegetation plots as the main entity to estimate the relative abundance of AM and EcM plant species in each spatial unit assumes that the plant species occurrences and their relative abundances in the selected plots are representative of the total spatial unit. This is likely to be true for spatial units that are represented by a high number of plots. However, in those spatial units where the number of plots is low, certain vegetation types or plant species may be misrepresented. We addressed this issue in our uncertainty analysis. Details are provided in the Quality index maps section.Final calculation and maps assemblyThe fraction of total fine root C stocks that is colonized by AM and EcM fungi was estimated by multiplying fine root C stocks by the mean root colonization intensity in each spatial unit. This calculation was made separately for tundra, woody and herbaceous vegetation.To generate raster maps based on the resulting AM and EcM fine root biomass C data, we first created a 10 arcmin raster map of the spatial units. To do this, we overlaid the raster map of Bailey ecoregions (10 arcmin resolution)24, the raster of ESA CCI land cover data at 300 m resolution aggregated to 10 arcmin using a nearest neighbour approach (https://www.esa-landcover-cci.org/) and the FAO polygon map of continents (http://www.fao.org/geonetwork/srv/en/), rasterized at 10 arcmin. Finally, we assigned to each pixel the corresponding biomass of fine root colonized by mycorrhiza, considering the prevailing spatial unit. Those spatial units that remained empty due to lack of vegetation plots or colonization data were filled with the mean value of the ecoregion x continent combination.Quality index mapsAs our workflow comprises many different data sources and the extracted data acts in distinct hierarchical levels (i.e plant species, plots or spatial unit level), providing a unified uncertainty estimation for our maps is particularly challenging. Estimates of mycorrhizal fine root C stocks are related mainly to belowground biomass C density maps and mycorrhizal aboveground biomass maps, which have associated uncertainties maps provided by the original publications. In contrast, estimates of the intensity of root colonization in each spatial unit have been associated with three main sources of uncertainties:

    1)

    The number of observations in the FungalRoot database. The mean species-level intensity of mycorrhizal colonization in the vegetation plots has been associated with a number of independent observations of root colonization for each plant species. We calculated the mean number of observations of each plant species for each of the vegetation plots and, subsequently the mean number of observations (per plant species) from all vegetation plots in each spatial unit. These spatial unit averaged number of observations ranged from 1 to 14 in AM and from 1 to 26 in EcM. A higher number of observations would indicate that the intraspecific variation in the intensity of colonization is better captured and, therefore, the species-specific colonization estimates are more robust.

    2)

    The relative plant coverage that was associated with colonization data. From the selected vegetation plots, only a certain proportion of plant species could be associated with the intensity of colonization data in FungalRoot database. The relative abundance of the plant species with colonization data was summed up in each vegetation plot. Then, we calculated the average values for each spatial unit. Mean abundance values ranged from 0.3 to 100% in both AM and EcM spatial units. A high number indicates that the dominant plant species of the vegetation plots have colonization data associated and, consequently, the community-averaged intensity of colonization estimates are more robust.

    3)

    The number of vegetation plots in each spatial unit. Each of the spatial units differs in the number of plots used to calculate the mean intensity of colonization, ranging from 1 to 1583 and from 1 to 768 plots in AM and EcM estimations, respectively. A higher number of plots is associated with a better representation of the vegetation variability in the spatial units, although this will ultimately depend on plot size and intrinsic heterogeneity (i.e., a big but homogeneous spatial unit may need fewer vegetation plots for a good representation than a small but very heterogeneous spatial unit).

    We provide independent quality index maps of the spatial unit average of these three sources of uncertainty. These quality index maps can be used to locate areas where our estimates have higher or lower robustness. More

  • in

    Marine protected areas, marine heatwaves, and the resilience of nearshore fish communities

    Lauchlan, S. S. & Nagelkerken, I. Species range shifts along multistressor mosaics in estuarine environments under future climate. Fish Fish. 21, 32–46 (2020).Article 

    Google Scholar 
    Gao, G., Zhao, X., Jiang, M. & Gao, L. Impacts of marine heatwaves on algal structure and carbon sequestration in conjunction with ocean warming and acidification. Front. Mar. Sci. 8, 758651 (2021).Article 

    Google Scholar 
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. 112, E4065–E4074 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).Article 

    Google Scholar 
    Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13, e0196127 (2018).Article 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).Article 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. https://doi.org/10.1126/sciadv.abh0895 (2021).Article 

    Google Scholar 
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Pessarrodona, A. et al. Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Funct. Ecol. 36, 659–673 (2022).Article 

    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).Article 
    ADS 

    Google Scholar 
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).Article 
    ADS 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).Article 
    ADS 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Garrabou, J. et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Change Biol. 28, 5708–5725 (2022).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).Article 
    ADS 

    Google Scholar 
    Cure, K. et al. Distributional responses to marine heat waves: insights from length frequencies across the geographic range of the endemic reef fish Choerodon rubescens. Mar. Biol. 165, 1 (2018).Article 

    Google Scholar 
    Jacox, M. G., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. A. Predicting the evolution of the 2014–2016 California current system marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00497 (2019).Article 

    Google Scholar 
    Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).Article 
    ADS 

    Google Scholar 
    Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and baja California to a multiyear heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00413 (2019).Article 

    Google Scholar 
    Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography 29, 273–285 (2016).Article 

    Google Scholar 
    Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Thompson, A. R. et al. Putting the Pacific marine heatwave into perspective: The response of larval fish off southern California to unprecedented warming in 2014–2016 relative to the previous 65 years. Glob. Change Biol. 28, 1766–1785 (2022).Article 
    CAS 

    Google Scholar 
    Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).Article 
    ADS 

    Google Scholar 
    Behrens, M. & Lafferty, K. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).Article 
    ADS 

    Google Scholar 
    Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).Article 

    Google Scholar 
    Caselle, J. E., Davis, K. & Marks, L. M. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 21, 43–53 (2018).Article 

    Google Scholar 
    Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS ONE 7, e40832 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Olds, A. D. et al. Marine reserves help coastal ecosystems cope with extreme weather. Glob. Change Biol. 20, 3050–3058 (2014).Article 
    ADS 

    Google Scholar 
    Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10, 21081 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Cons. 236, 305–314 (2019).Article 

    Google Scholar 
    Kirlin, J. et al. California’s Marine Life Protection Act Initiative: Supporting implementation of legislation establishing a statewide network of marine protected areas. Ocean Coast. Manag. 74, 3–13 (2013).Article 

    Google Scholar 
    Saarman, E. T. et al. An ecological framework for informing permitting decisions on scientific activities in protected areas. PLoS ONE 13, e0199126 (2018).Article 

    Google Scholar 
    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. PNAS 107, 18272–18277 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Wendt, D. E. & Starr, R. M. Collaborative research: An effective way to collect data for stock assessments and evaluate marine protected areas in California. Mar. Coast. Fish. 1, 315–324 (2009).Article 

    Google Scholar 
    Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).Article 

    Google Scholar 
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    Li, L. et al. Subregional differences in groundfish distributional responses to anomalous ocean bottom temperatures in the northeast Pacific. Glob. Change Biol. 25, 2560–2575 (2019).Article 
    ADS 

    Google Scholar 
    Dawson, M. N. Phylogeography in coastal marine animals: A solution from California?. J. Biogeogr. 28, 723–736 (2001).Article 

    Google Scholar 
    Horn, M. H., Allen, L. G. & Lea, R. N. Biogeography. In The Ecology of Marine Fishes: California and Adjacent Waters (ed. Allen, L.) 3–25 (University of California Press, 2006). https://doi.org/10.1525/california/9780520246539.003.0001.Chapter 

    Google Scholar 
    Horn, M. H. & Allen, L. G. A distributional analysis of California coastal marine fishes. J. Biogeogr. 5, 23–42 (1978).Article 

    Google Scholar 
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).Article 
    ADS 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280, 20122829 (2013).Article 

    Google Scholar 
    O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).Article 

    Google Scholar 
    California Department of Fish and Wildlife. California Sheephead, Bodianus (formerly Semicossyphus) pulcher, Enhanced Status Report. (2021).Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).Article 

    Google Scholar 
    Francour, P., Mangialajo, L. & Pastor, J. Mediterranean marine protected areas and non-indigenous fish spreading. In Fish Invasions of the Mediterranean Sea: Change and Renewal (eds Golani, D. & Appelbaum-Golani, B.) 127–144 (Pensoft Publisher, 2010).
    Google Scholar 
    Couce, E., Ridgwell, A. & Hendy, E. J. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob. Change Biol. 19, 3592–3606 (2013).Article 
    ADS 

    Google Scholar 
    Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).Article 

    Google Scholar 
    Trainer, V. L. et al. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae 91, 101591 (2020).Article 

    Google Scholar 
    Gliwicz, Z. M., Babkiewicz, E., Kumar, R., Kunjiappan, S. & Leniowski, K. Warming increases the number of apparent prey in reaction field volume of zooplanktivorous fish. Limnol. Oceanogr. 63, S30–S43 (2018).Article 
    ADS 

    Google Scholar 
    Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several Northeast Pacific marine ecosystems. Glob. Change Biol. 27, 506–520 (2021).Article 
    ADS 

    Google Scholar 
    du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).Article 
    ADS 

    Google Scholar 
    Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol. 27, 1859–1878 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Oken, K. L., Essington, T. E. & Fu, C. Variability and stability in predation landscapes: A cross-ecosystem comparison on the potential for predator control in temperate marine ecosystems. Fish Fish. 19, 489–501 (2018).Article 

    Google Scholar 
    Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).Article 

    Google Scholar 
    Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California current system: Early assessment and comparison to past events. Geophys. Res. Lett. 43, 7072–7080 (2016).Article 
    ADS 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00212 (2019).Article 

    Google Scholar 
    Field, J. C. et al. Spatiotemporal patterns of variability in the abundance and distribution of winter-spawned pelagic juvenile rockfish in the California Current. PLoS ONE 16, e0251638 (2021).Article 
    CAS 

    Google Scholar 
    Schroeder, I. D. et al. Source water variability as a driver of rockfish recruitment in the California current ecosystem: Implications for climate change and fisheries management. Can. J. Fish. Aquat. Sci. 76, 950–960 (2019).Article 
    CAS 

    Google Scholar 
    Echeverria, T. W. Thirty-four species of California rockfishes: Maturity and seasonality of reproduction. Fish. Bull. 85, 229–250 (1987).
    Google Scholar 
    Miller, A. & Sydeman, W. Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Mar. Ecol. Prog. Ser. 281, 207–216 (2004).Article 
    ADS 

    Google Scholar 
    Johnson, K. F. et al. Status of lingcod (Ophiodon elongatus) along the southern U.S. west coast in 2021. 195 p. (2021).Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560, 92–96 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Starr, R. M. et al. Variation in responses of fishes across multiple reserves within a network of marine protected areas in temperate waters. PLoS ONE 10, e0118502 (2015).Article 

    Google Scholar 
    Ziegler, S. L. et al. External fishing effort regulates positive effects of no-take marine protected areas. Biol. Cons. 269, 109546 (2022).Article 

    Google Scholar 
    Jarvis, E. T. & Lowe, C. G. The effects of barotrauma on the catch-and-release survival of southern California nearshore and shelf rockfish (Scorpaenidae, Sebastes spp.). Can. J. Fish. Aquat. Sci. 65, 1286–1296 (2008).Article 

    Google Scholar 
    Brooks, R. et al. Nearshore Fishes Abundance and Distribution Data, California Collaborative Fisheries Research Program (CCFRP). (2022).García-Reyes, M. & Sydeman, W. J. California multivariate ocean climate indicator (MOCI) and marine ecosystem dynamics. Ecol. Ind. 72, 521–529 (2017).Article 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).Oksanen, J. et al. vegan: Community Ecology Package. (2020).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2021). More

  • in

    Ingestion of rubber tips of artificial turf fields by goldfish

    StatementsWe report our study in accordance with ARRIVE guidelines.Structure of artificial turf of ICUA schematic illustration of a ground plan of the artificial turf sports field of the ICU is shown in Fig. 1. This artificial turf was installed in 2013 by Japanese company B. The field is surrounded by ditches, and there are three drains that connect to sewer pipes. The artificial turf field of TGU was installed in 2011 by Japanese company C.Characterization of rubber tips of artificial turf field of ICU and TGURT were collected from the artificial fields of ICU and TGU. RT for the artificial turf field of ICU were made of residual part of rubber for making tires, window frames and windshields of automobiles. RT of ICU consists of a mixture of EPDM (ethylene-propylene-diene) and SBR (styrene-butadiene rubber) (personal communication from a Japanese company B). The RT of TGU was made of rubber of the residual part of rubber for making tires, window frames, etc. (personal communication from a Japanese company C). Information on raw material of the RT was not manifested.RT collected from the fields (ICU and TGU) was sieved to estimate the particle sizes. The RT of the ICU varied from 0.053 to 3.35 mm, and that of TGU varied from 0.212 to 3.35 mm. The specific gravity of the RT was obtained as follows: A certain amount of RT was weighed and poured into a 10 ml graduated cylinder containing some water. The total volume of the RT was obtained by measuring the rise in the meniscus of the water. The specific gravities of the tested RT were 1.28 (ICU) and 1.28 (TGU). Elemental analyses of RT (ICU and TGU) were conducted using micro-PIXE line analysis47, and calcium, sulfur, zinc, and iron were detected, but lead was under the detection limit from the RT of both ICU and TGU.Sampling of sediments in the ditches of the fieldTo examine the migration of RT from the field to the ditches, approximately 200 g of sediments in the ditches was sampled at four different sites, D1–D4 (Fig. 1), in the ICU. The ditch surrounding the field is made by connecting U-shaped concrete blocks and concrete lids. The inner width, length, and depth of the block are 24, 60, and 24 cm, respectively. The size of the lid is 33 × 60 × 4.5 cm with 1.5 × 9.0 cm snicks at short sides, which make an opening of the ditch of 3.0 × 9.0 cm size between two lids.Each sample was weighed (wet weight) and washed with water using a fine sieve to remove the soil. After the removal of the soil, the sediment was dried, and RT was collected manually. The collected RT was weighed, and the percentages of RT in the sediments were calculated (weight/weight).Goldfish and crucian carpA common variety of goldfish C. auratus of different sizes were obtained from a fish merchant in Saitama Prefecture and from a pet shop in Tokyo and then kept in the ICU. Approximately 200 fish of four different sizes (large, body weight (BW) ~ 100 g; medium, BW, ~ 30 g; small-medium, BW, ~ 15 g; small, BW ~ 4.0 g) were kept in three 800-L stock tanks maintained at 20 °C under a 16-h light/8-h dark (16 L/8 D) photoperiod (lights on at 06:00). Small body size fish were kept in a floating cage in one of the stock tanks. The fish were fed commercial floating goldfish feed (Itosui) once a day ad libitum. The fish stock tanks had circulation filtration systems equipped with sand filters. The filter was cleaned every week to maintain the water quality. The health condition of the fish was judged by their appetite. All the experimental fish (mixed sex) in the present study were kept in stock tanks for over two weeks before they were used for experiments. A total of 127 goldfish were used for the present study. The sample size of each experiment was determined by the results of preliminary experiments. Our preliminary survey confirmed that the fish feed we used did not contain RT-like substances. Therefore, the sample sizes of the control groups (goldfish) were smaller than those of the experimental groups to sacrifice fewer fish. All goldfish and crucian carp experiments were conducted in the ICU.Approximately 30 wild juvenile crucian carp C. auratus subsp. 2 weighing 1.4–4.6 g were obtained from a fish merchant in Saitama Prefecture and kept in an 800-L stock tank in the same conditions as that for goldfish. A total of 16 crucian carp were used for the present study.For the experiments, fish were transferred from the stock tanks to experimental 60-L glass aquaria, which were maintained at 20 °C under a 16-h light/8-h dark (16 L/8 D) photoperiod (lights on at 06:00). The experimental aquaria had a running water system, and dechlorinated tap water was added at 20 ml/min. Plastic box filters were also set to each experimental aquarium to maintain water quality. When stock fish were transferred to experimental aquaria, fish were randomly allocated to the aquaria. All the methods for using goldfish and crucian carp were performed in accordance with the guidelines of the Animal Experimentation Committee of International Christian University. The conduct of the present study was approved by the Animal Experimentation Committee of International Christian University.Co-ingestion of feed and RT by goldfish of three different body sizesWe examined whether RT are ingested by goldfish with feed and whether the body size of fish affects the ingestion of RT using three different body sizes of fish, large, medium, and small. First, we conducted an experiment using large body size fish (N = 24; BW, 91.9 ± 21.6 g, mean and SD). Three goldfish of large body size were transferred from the stock tank to the experimental 60-L glass aquarium and kept for three days for acclimation of the environment and sinking fish feed. Fish were fed 3.0 g of large-size feed (Japan Pet Design Co. Ltd.) once a day. On the fourth day, fish were fed a mixture of RT collected from the field (ICU, 300 mg) and large feed (3.0 g). Control fish were fed only fish feed. At 90 min after feeding, the fish were transferred to a pail containing 0.05% 2-phenoxyethanol solution and deeply anesthetized. After body weight measurement, fish were dissected. We observed the intestine to determine whether RT was ingested. When RT was observed in the intestine, we collected the tips and counted the number of tips in each fish. The experimental tests were repeated eight times, and the data were combined.Second, we conducted an experiment using medium body size fish (N = 24; BW, 30.4 ± 12.4 g). Three goldfish of medium body size were transferred from the stock tank to the experimental 60-L glass aquarium and kept for three days for acclimation. Fish were fed 1.0 g of medium-size feed (Kyorin) once a day. On the fourth day, fish were fed a mixture of RT (ICU, 300 mg) and medium feed (1.0 g). Control fish were fed only fish feed. At 90 min after feeding, fish were anesthetized and dissected, and then the intestine was observed as described above. The experimental tests were repeated eight times, and the data were combined.Third, we conducted an experiment using small body size fish (N = 40; BW, 4.4 ± 1.5 g). Four goldfish of small body size were transferred from the stock tank to the experimental 60-L glass aquarium and kept for three days for acclimation. Fish were fed 0.5 g of small-size feed (Kyorin) once a day. On the fourth day, fish were fed a mixture of RT (ICU, 300 mg) and small feed (0.5 g). Because of the small size of fish, RT of small size particles (212–500 µm) were collected with sieves and used for the tests. Control fish were fed only fish feed. At 90 min after feeding, fish were anesthetized and dissected, and then the intestine was observed as described above. The experimental tests were repeated ten times, and the data were combined.In the first three experiments, all three control groups showed no ingestion of RT. From the results of the three experiments, it was clear that our experimental system was not contaminated with RT. Therefore, we omitted making control groups for further experiments to decrease the number of fish sacrificed from the standpoint of fish welfare.Fourth, we examined whether RT collected from TGU was ingested by goldfish. We conducted an experiment using large body size fish (N = 12; BW, 140.3 ± 27.0 g). Three goldfish of large body size were transferred from the stock tank to the experimental 60-L glass aquarium and kept for three days for acclimation. Fish were fed 3.0 g of large-size feed once a day. On the fourth day, fish were fed a mixture of RT (TGU, 300 mg) and large feed (3.0 g). At 90 min after feeding, fish were anesthetized and dissected, and then the intestine was observed as described above. The experimental tests were repeated four times, and the data were combined.We conducted an additional experiment with a similar design to those of the four experiments to take photographs of the fish and RT using fish of small-medium body size (N = 9; BW, 12.8 ± 2.7 g). Three fish were transferred from the stock tank to the experimental 60-L glass aquarium and kept for two days for acclimation. Fish were given 0.5 g of medium-size feed once a day. On the third day, fish were given a mixture of RT of ICU (30 pieces; size 0.5–1.0 mm) and medium feed (0.5 g). At 60 min after feeding, fish were anesthetized and dissected, and photographs of RT in the intestine were taken. The experimental tests were repeated three times, and the data were combined.Active ingestion of RT by goldfishWe examined whether goldfish actively ingest RT when RT are given without fish feed using large body size fish (N = 9; BW, 122.4 ± 20.8 g). Three fish were transferred from the stock tank to the experimental 60-L glass aquarium and kept for three days for acclimation. Fish were fed 3.0 g of large-size feed once a day. On the fourth day, fish were given 300 mg of RT (ICU) on the bottom of the aquarium. At 90 min after the placement of RT, fish were anesthetized and dissected, and then the intestine was observed as described above. The experimental tests were repeated three times, and the data were combined.Retention and elimination of ingested RT in the intestine of goldfishWe examined how long RT was retained in the intestine using large body size goldfish (N = 9; BW, 101.6 ± 11.4 g). Three goldfish were transferred from the stock tank to the experimental 60-L glass aquarium and kept for three days for acclimation. Fish were fed 3.0 g of large-size feed once a day. On Day 4, fish were given 1.0 g of RT (ICU). At 90 min after the placement of RT, each fish was individually transferred to three experimental 60-L glass aquaria. Then, each fish was fed 1.0 g of the feed. At 24 and 48 h (Day 5 and Day 6) after the transfer, we collected feces from fish and some water from the bottom of the aquaria. We observed whether RT was eliminated from the fish into the aquaria. When RT was observed in the feces and the bottom of the aquarium, we collected the RT and counted the number of RT. On Day 5, after the RT observation, each fish was fed 1.0 g of the feed. On Day 6, after RT observation in feces and water, the fish were anesthetized and dissected. We observed whether the intestine retained RT. The experimental tests were repeated three times, and the data were combined.Ingestion of RT by wild crucian carpWe examined whether wild Japanese crucian carp ingest RT. The experiment was conducted using juvenile crucian carp (N = 16, BW, 2.8 ± 0.9 g). Sixteen fish were transferred from the stock tank to three experimental 60-L glass aquaria (5 or 6 fish per aquarium) and kept for six days for acclimation. Fish were fed with 0.2 g of small-size feed once a day. On the seventh day, fish were fed a mixture of RT (ICU, 30 mg) and the small feed (0.2 g) or RT alone (30 mg). Because of the small size of fish, RT of small size particles (212–500 µm) were collected with sieves and used for the test. Control fish were fed only fish feed (0.2 g). At 6 h after feeding, fish were anesthetized and dissected, and then the intestine was observed as described above. More

  • in

    Pulsed, continuous or somewhere in between? Resource dynamics matter in the optimisation of microbial communities

    There is a growing impetus to leverage our fundamental understanding of microbial community assembly towards applied problems. With microbes contributing to diverse physiological, biogeochemical, and agricultural processes, the potential to control and optimise microbial communities holds promise for interventions ranging from industrial and environmental remediation to human medicine and biofuel production [1, 2]. Realising this goal is contingent on high fidelity between theory, experiments, and the natural dynamics of target systems.Theoretical and experimental research in microbial community optimisation has largely proceeded along two parallel paths. Theoretical approaches leverage mathematical models and metabolic networks to predict which species combinations are stable and how they can optimise a given function (e.g., maximum biomass, waste degradation or host health) [3,4,5,6,7]. Experimental studies often take a combinatorial approach, iteratively assembling different species combinations in vitro and evaluating their stability and functional attributes [8,9,10,11]. Both theory and experiments are valuable but they are also susceptible to their own modus operandi that may limit their correspondence and their translation to real-world systems. On the one hand, theoretical approaches typically adopt the analytical tractability of steady state dynamics, where microbial consumers and the resources on which they depend are assumed to establish a stable equilibrium. On the other hand, experimental approaches almost exclusively embrace the high-throughput efficiency of serial-batch culture, where consumers and resources are made to fluctuate over several orders of magnitude with each serial passage. This raises an important question: should we expect unity in the composition of optimised communities emerging under continuous resource supply (e.g., chemostat) versus the discrete pulsed resource supply of, for example, serial-batch culture?To explore how microbial community composition varies under contrasting resource supply dynamics, we performed simulations of a classical resource-competition model:$$frac{{dN_i}}{{dt}} = N_ileft( {mathop {sum}limits_{j = 1}^n {mu _{ij}left( {R_j} right) – m} } right)$$
    (1)
    $$frac{{dR_j}}{{dt}} = {Psi}_jleft( {R_j} right) – mathop {sum }limits_{i = 1}^n Q_{ij}mu _{ij}left( {R_j} right)N_i,$$
    (2)
    where Ni is the population density of consumer i, Rj is the concentration of resource j, μij(Rj) is the per capita functional response of consumer i, m is the per capita mortality rate due to dilution, Ψj(Rj) is the resource supply function, and Qij is the resource quota of consumer i on resource j (amount of resource per unit consumer). The consumer functional response is given by the Monod function, (mu _{ij}(R_j) = mu _{max_{ij}}frac{{R_j}}{{K_{s_{ij}} + R_j}}) , where (mu _{max_{ij}}) is the maximum growth rate and (K_{s_{ij}}) is the half saturation constant for consumer i on resource j.To set up the simulations, we randomly sampled the parameters of the Monod growth functions, (μmax and Ks) for five species competing for five substitutable resources (essential resources are treated separately in the supplementary information, with similar findings). In one set of parametrisations (n = 100 unique competitor combinations) we used both random μmax and Ks, and in another set (n = 100) we imposed a trade-off in maximum growth rate and substrate affinity (( {frac{{mu _{max}}}{{K_s}}} )) (Fig. 1a). The rationale for imposing a trade-off is that metabolic theory predicts that organisms that invest energy into a high maximum growth rate will have lower substrate affinities and vice versa [12, 13]. To ensure reasonable growth rates relative to the time-scale of resource pulsing, we sampled μmax such that minimum doubling times spanned from 21 to 52 min (when all resources are non-limiting). For each of the random competitor combinations, we simulated resources under continuous or pulsed resource supply with resource replenishment every 1/2, 1, 2, 4, 12, or 24 h. Under pulsed resource supply, Ψj(Rj) and m are removed from Eq. (1) and (2) and replaced by discontinuous resource pulsing and cell transfer at fixed intervals. The total resource flux (and mortality) was held constant under all frequencies of resource supply i.e., less frequent replenishment corresponds to larger resource pulses (see Supplementary Information for full model/simulation specifications).Fig. 1: Quantifying compositional overlap between communities assembled under continuous vs. pulsed resource supply.a Per capita growth responses (Monod functions) from a single iteration of the model assuming a trade-off between maximum growth rate and resource affinity (colours correspond to individual consumers). b Time series of consumers in a under different resource supply regimes. Numbers above individual panels reflect pulsing intervals in hours. The amplitude of population fluctuations increases with longer intervals between pulses, with distinct phases of growth, saturation, and instantaneous mortality visible at a finer temporal resolution (Fig. S10). c Example measure of compositional overlap (Jaccard similarity index) between communities assembled under continuous resource supply (far left panel in b) vs. pulsing every two hours (centre panel in b).Full size imageAfter allowing the competitors to reach a steady state (time-averaged over 24 h under pulsed treatments), we quantified the correspondence between the continuous supply treatment and the pulsed treatments using the Jaccard similarity index, (Jleft( {A,B} right) = frac{{left| {A cap B} right|}}{{left| {A cup B} right|}}) (0 ≤ J(A,B) ≤ 1), where the numerator gives the number of species (max = 5) that persist under continuous (A) and pulsed (B) resource supply, and the denominator gives the number of species (max = 5) that persist under continuous or pulsed resource supply (Fig. 1b, c).Under both sets of simulations (with and without enforcing a trade-off between maximal growth rate and resource affinity), we observe that the similarity in final community composition between continuous and pulsed resource supply decays with increasingly large intervals between resource replenishment (Fig. 2a). When no trade-off is imposed between maximum growth rate and resource affinity (orange line in Fig. 2a) the mean compositional similarity is only 0.68 when resources are pulsed every 2 h and down to 0.41 when resources are pulsed every 24 h (typical of serial-batch culture). The rate of decay in the Jaccard index is more severe when a trade-off is imposed between maximum growth rate and substrate affinity, to the extent that once pulsing intervals reach four hours there is almost zero overlap in community composition (blue line in Fig. 2a).Fig. 2: Impact of resource supply regime on community composition and abundance weighted mean trait values.a Compositional overlap (Jaccard similarity) between communities under continuous versus pulsed resource supply. Orange lines, points and circles denote model parametrisations with random sampling of both μmax and Ks; blue lines, points and circles denote model parametrisations with a trade-off imposed between μmax and resource affinity (( {frac{{mu _{max}}}{{K_s}}} )). Simulation parameters provided in the Supplementary Information. b Mean trait values for affinity and μmax averaged for each consumer across the five resources and weighted by their final abundance at the end of a simulation (cont. = continuous). In both a and b, small points (jittered for clarity) give the result of an individual simulation; large circles indicate the corresponding mean.Full size imageEcological theory provides an intuitive explanation for these observations. When resources are more continuously supplied, the better competitor is the one that can sustain a positive growth rate at the lowest concentrations of a limiting resource (i.e., has a higher resource affinity or lower R* in the language of resource competition theory [14]). In contrast, under increasingly pulsed resource supply, the better competitor is the one that can grow rapidly at higher resource concentrations. Having a high resource affinity (low R*) is of little benefit if resource concentrations fluctuate over large amplitudes because it only confers an ephemeral competitive advantage in the brief period before the resource is completely depleted (ahead of the next resource pulse). Instead, a high maximum growth rate is optimal because it allows the consumer to grow rapidly and quickly deplete a shared limiting resource. This high maximum growth strategy is, however, sub-optimal under continuous resource supply because a low R* strategist can draw the resource down and hold it at a concentration at which the maximum growth strategist is unable to maintain a positive growth rate.Looking at the mean trait values for resource affinity and μmax weighted by each consumer’s final abundance, it is indeed apparent that consumers with a higher affinity (averaged across the five resources) are favoured under continuous resource supply, while consumers with high maximum growth rates are favoured under pulsing intervals of increasing length (Fig. 2b). Enforcing this trade-off, therefore, leads to the rapid decline in compositional similarity we observe under resource pulsing. Notably, it also leads to a richness peak at intermediate pulsing intervals, where these alternative strategies have a higher probability of coexisting [15] (Fig. S1). At the same time, we still observe a decline in compositional similarity when μmax and Ks are randomly sampled independently of each other simply because the trade-off between maximum growth and resource affinity will emerge occasionally by chance. Two experimental tests of microbial community composition under continuous versus pulsed resource supply are consistent with these observations [16, 17].To evaluate the sensitivity of these observations to different assumptions, we ran additional simulations under various alternative model parameterisations and formulations. In brief, comparable trends to those described above are observed when: i) maximum growth rates are faster or slower than those presented in the main text (Figs. S2, S3); ii) all resources are assumed to be essential to growth (following Liebig’s law of the minimum) (Fig. S4); iii) a weaker trade-off is imposed between maximum growth and affinity (Figs. S5, S6); or iv) mortality is continuous rather than intermittent (Figs. S7, S8). We also investigated the relationship between observed compositional overlap and the dynamical stability under continuous resource supply, anticipating that more stable communities would tend to be more resistant to compositional shifts under resource pulsing. The reality appears more nuanced, namely that weaker dynamical stability at the limit of constant resource supply is associated with higher variance in compositional overlap under continuous vs. pulsed conditions (Fig. S9). In other words, systems with weaker stability are less predictable. A wide range of other microbial traits and trade-offs may interact unpredictably with the relationship between resource supply and community composition. The potential modulating role of system instabilities generated by cross-feeding interactions, non-convex trade-off functions, and the evolution of specialist versus generalist strategies present several especially valuable lines of enquiry [18,19,20].Although these observations are germane to any consumer-resource system, our emphasis here is on the emerging field of microbial community optimisation, where the practical implications are especially timely and important; namely, the resource supply regime must be tailored to the community being optimised. For example, wastewater treatment might be more appropriately modelled under continuous resource supply [21], whereas fermented food and beverage production may be more closely allied to the pulsed resource dynamics observed in batch culture [22]. Resource supply might also be manipulated to favourably modify the competitive hierarchy in an existing community (e.g., by regulating the rate of nutrient supply to the gut through meal timing). Indeed, there is emerging evidence that feeding frequency can drive significant changes in gut microbiota composition [23, 24]. Thus, resource supply dynamics should be considered both a constraint in the design of novel microbial communities and as a tuning mechanism for the optimisation of preexisting communities like those found in the human gut. More