More stories

  • in

    A pluralistic and integrated approach to action-oriented knowledge for sustainability

    1.
    Ferrier, S. et al. IPBES Summary for Policymakers of the Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).
    2.
    Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P. & Moomaw, W. R. World scientists’ warning of a climate emergency. BioScience 70, 8–12 (2020).
    Google Scholar 

    3.
    IPCC in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Summary for Policymakers (WMO, 2018).

    4.
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    Google Scholar 

    5.
    Fazey, I. et al. Ten essentials for action-oriented and second order energy transitions, transformations and climate change research. Energy Res. Soc. Sci. 40, 54–70 (2018).
    Google Scholar 

    6.
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
    Google Scholar 

    7.
    Turnhout, E., Metze, T., Wyborn, C., Klenk, N. & Louder, E. The politics of co-production: participation, power, and transformation. Curr. Opin. Environ. Sustain. 42, 15–21 (2020).
    Google Scholar 

    8.
    Wolfram, M. Conceptualizing urban transformative capacity: a framework for research and policy. Cities 51, 121–130 (2016).
    Google Scholar 

    9.
    Etzion, D. Management for sustainability. Nat. Sustain. 1, 744–749 (2018).
    Google Scholar 

    10.
    Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl Acad. Sci. USA 104, 15181–15187 (2007).
    CAS  Google Scholar 

    11.
    Jerneck, A. et al. Structuring sustainability science. Sustain. Sci. 6, 69–82 (2011).
    Google Scholar 

    12.
    Kates, R. W. What kind of a science is sustainability science? Proc. Natl Acad. Sci. USA 108, 19449–19450 (2011).
    CAS  Google Scholar 

    13.
    Cash, D. W. et al. Knowledge systems for sustainable development. Proc. Natl Acad. Sci. USA 100, 8086–8091 (2003).
    CAS  Google Scholar 

    14.
    Cumming, G. S., Olsson, P., Chapin, F. S. & Holling, C. S. Resilience, experimentation, and scale mismatches in social-ecological landscapes. Landsc. Ecol. 28, 1139–1150 (2013).
    Google Scholar 

    15.
    Mitchell, S. D. Unsimple Truths: Science, Complexity, and Policy (Univ. Chicago Press, 2009).

    16.
    Davidson, D. Actions, reasons, and causes. J. Philos. 60, 685–700 (1963).
    Google Scholar 

    17.
    Anscombe, G. E. M. Intention (Harvard Univ. Press, 1957).

    18.
    Dewey, J. The Quest for Certainty: A Study of the Relation of Knowledge and Action (Minton, Balch, 1929).

    19.
    Lubchenco, J. Entering the century of the environment: a new social contract for science. 279, 491–497 (1998).

    20.
    Nowotny, H., Scott, P., Gibbons, M. & Scott, P. B. Re-thinking Science: Knowledge and the Public in an Age of Uncertainty (SciELO Argentina, 2001).

    21.
    Ravetz, J. R. What is post-normal science. Futures 31, 647–653 (1999).
    Google Scholar 

    22.
    König, A. Sustainability Science: Key Issues (Routledge, 2018).

    23.
    Wyborn, C. et al. Co-producing sustainability: reordering the governance of science, policy, and practice. Annu. Rev. Environ. Resour. 44, 319–346 (2019).
    Google Scholar 

    24.
    Lang, D. J. et al. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain. Sci. 7, 25–43 (2012).
    Google Scholar 

    25.
    Umpleby, S. A. Second-order cybernetics as a fundamental revolution in science. Constr. Found. 11, 455–465 (2016).
    Google Scholar 

    26.
    Irwin, E. G. et al. Bridging barriers to advance global sustainability. Nat. Sustain. 1, 324–326 (2018).
    Google Scholar 

    27.
    Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).
    Google Scholar 

    28.
    Scoones, I. et al. Transformations to sustainability: combining structural, systemic and enabling approaches. Curr. Opin. Environ. Sustain. 42, 65–75 (2020).
    Google Scholar 

    29.
    Clark, W. C., van Kerkhoff, L., Lebel, L. & Gallopin, G. Crafting usable knowledge for sustainable development. Proc. Natl Acad. Sci. USA 113, 4570–4578 (2016).
    CAS  Google Scholar 

    30.
    Norton, B. G. Sustainability: A Philosophy of Adaptive Ecosystem Management (Univ. Chicago Press, 2005).

    31.
    Popa, F., Guillermin, M. & Dedeurwaerdere, T. A pragmatist approach to transdisciplinarity in sustainability research: from complex systems theory to reflexive science. Futures 65, 45–56 (2015).
    Google Scholar 

    32.
    Ansell, C. K. & Bartenberger, M. Varieties of experimentalism. Ecol. Econ. 130, 64–73 (2016).
    Google Scholar 

    33.
    Caniglia, G. et al. Experiments and evidence in sustainability science: a typology. J. Clean. Prod. 169, 39–47 (2017).
    Google Scholar 

    34.
    Wiek, A., Ness, B., Schweizer-Ries, P., Brand, F. S. & Farioli, F. From complex systems analysis to transformational change: a comparative appraisal of sustainability science projects. Sustain. Sci. 7, 5–24 (2012).
    Google Scholar 

    35.
    Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. Ecol. Soc. 23, 46 (2018).
    Google Scholar 

    36.
    Grunwald, A. Working towards sustainable development in the face of uncertainty and incomplete knowledge. J. Environ. Policy Plan. 9, 245–262 (2007).
    Google Scholar 

    37.
    Bratman, M. Intention, Plans, and Practical Reason (Harvard Univ. Press, 1987).

    38.
    Midgley, G. in Systemic Intervention 113–133 (Springer, 2000).

    39.
    Tengö, M., Brondizio, E. S., Elmqvist, T., Malmer, P. & Spierenburg, M. Connecting diverse knowledge systems for enhanced ecosystem governance: the multiple evidence base approach. Ambio 43, 579–591 (2014).
    Google Scholar 

    40.
    Sperling, G. B., Winthrop, R., Kwauk, C. & Yousafzai, M. What Works in Girls’ Education (The Brookings Institution, 2016).

    41.
    Jones, T. M. Ethical decision making by individuals in organizations: an issue-contingent model. Acad. Manag. Rev. 16, 366–395 (1991).
    Google Scholar 

    42.
    Pelenc, J., Bazile, D. & Ceruti, C. Collective capability and collective agency for sustainability: a case study. Ecol. Econ. 118, 226–239 (2015).
    Google Scholar 

    43.
    Farjoun, M., Ansell, C. & Boin, A. PERSPECTIVE—Pragmatism in organization studies: meeting the challenges of a dynamic and complex world. Organ. Sci. 26, 1787–1804 (2015).
    Google Scholar 

    44.
    Djoudi, H. et al. Beyond dichotomies: gender and intersecting inequalities in climate change studies. Ambio 45, 248–262 (2016).
    Google Scholar 

    45.
    Schlüter, M. et al. Capturing emergent phenomena in social-ecological systems: an analytical framework. Ecol. Soc. 24, 11 (2019).
    Google Scholar 

    46.
    von Wirth, T., Fuenfschilling, L., Frantzeskaki, N. & Coenen, L. Impacts of urban living labs on sustainability transitions: mechanisms and strategies for systemic change through experimentation. Eur. Plan. Stud. 27, 229–257 (2019).
    Google Scholar 

    47.
    Luederitz, C. et al. Learning through evaluation – a tentative evaluative scheme for sustainability transition experiments. J. Clean. Prod. 169, 61–76 (2017).
    Google Scholar 

    48.
    Berkhout, F. et al. Sustainability experiments in Asia: innovations shaping alternative development pathways? Environ. Sci. Policy 13, 261–271 (2010).
    Google Scholar 

    49.
    Freeth, R. & Caniglia, G. Learning to collaborate while collaborating: advancing interdisciplinary sustainability research. Sustain. Sci. 15, 247–261 (2020).
    Google Scholar 

    50.
    Polanyi, M. The Tacit Dimension (Univ. Chicago Press, 2009).

    51.
    Lansing, J. S. Priests and Programmers: Technologies of Power in the Engineered Landscape of Bali (Princeton Univ. Press, 2009).

    52.
    Nonaka, I. & Takeuchi, H. The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation (Oxford Univ. Press, 1995).

    53.
    Lam, D. P. M. et al. Indigenous and local knowledge in sustainability transformations research: a literature review. Ecol. Soc. 25, 3 (2020).
    Google Scholar 

    54.
    Ryle, G. Knowing how and knowing that: the presidential address. Proc. Aristot. Soc. 46, 1–16 (1945).
    Google Scholar 

    55.
    Sahni, U. From Learning Outcomes to Life Outcomes: What Can You Do and Who Can You Be? A Case Study in Girls’ Education in India (Center for Universal Education at Brookings, 2012).

    56.
    Luederitz, C., Abson, D. J., Audet, R. & Lang, D. J. Many pathways toward sustainability: not conflict but co-learning between transition narratives. Sustain. Sci. 12, 393–407 (2017).
    Google Scholar 

    57.
    Messerli, P. et al. Expansion of sustainability science needed for the SDGs. Nat. Sustain. 2, 892–894 (2019).
    Google Scholar 

    58.
    Balvanera, P. et al. Key features for more successful place-based sustainability research on social-ecological systems: a programme on ecosystem change and society (PECS) perspective. Ecol. Soc. 22, 14 (2017).
    Google Scholar 

    59.
    Schäpke, N. et al. Jointly experimenting for transformation? Shaping real-world laboratories by comparing them. GAIA 27, 85–96 (2018).
    Google Scholar 

    60.
    Brundiers, K., Wiek, A. & Redman, C. L. Real-world learning opportunities in sustainability: from classroom into the real world. Int. J. Sustain. High. Educ. 11, 308–324 (2010).
    Google Scholar 

    61.
    Ploum, L., Blok, V., Lans, T. & Omta, O. Toward a validated competence framework for sustainable entrepreneurship. Organ. Environ. 31, 113–132 (2018).
    Google Scholar 

    62.
    Blok, V., Gremmen, B. & Wesselink, R. Dealing with the wicked problem of sustainability in advance. Bus. Prof. Ethics J. https://doi.org/10.5840/bpej201621737 (2016). More

  • in

    Soil-microorganism-mediated invasional meltdown in plants

    1.
    van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).
    Article  Google Scholar 
    2.
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).
    PubMed  Article  Google Scholar 

    4.
    Elton, C. S. The Ecology of Invasion by Animals and Plants (Univ. of Chicago Press, 1958).

    5.
    Kuebbing, S. E. & Nunez, M. A. Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nat. Plants 2, 16134 (2016).
    PubMed  Article  Google Scholar 

    6.
    Golivets, M. & Wallin, K. F. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. Ecol. Lett. 21, 745–759 (2018).
    PubMed  Article  Google Scholar 

    7.
    Zhang, Z. & van Kleunen, M. Common alien plants are more competitive than rare natives but not than common natives. Ecol. Lett. 22, 1378–1386 (2019).
    PubMed  Article  Google Scholar 

    8.
    White, E. M., Wilson, J. C. & Clarke, A. R. Biotic indirect effects: a neglected concept in invasion biology. Divers. Distrib. 12, 443–455 (2006).
    Article  Google Scholar 

    9.
    Sotomayor, D. A. & Lortie, C. J. Indirect interactions in terrestrial plant communities: emerging patterns and research gaps. Ecosphere 6, art103 (2015).
    Article  Google Scholar 

    10.
    Aschehoug, E. T. & Callaway, R. M. Diversity increases indirect interactions, attenuates the intensity of competition, and promotes coexistence. Am. Nat. 186, 452–459 (2015).
    PubMed  Article  Google Scholar 

    11.
    Feng, Y. & van Kleunen, M. Phylogenetic and functional mechanisms of direct and indirect interactions among alien and native plants. J. Ecol. 104, 1136–1148 (2016).
    Article  Google Scholar 

    12.
    Stotz, G. C. et al. Not a melting pot: plant species aggregate in their non‐native range. Glob. Ecol. Biogeogr. 29, 482–490 (2019).
    Article  Google Scholar 

    13.
    Wardle, D. A. & Peltzer, D. A. Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biol. Invasions 19, 3301–3316 (2017).
    Article  Google Scholar 

    14.
    Kulmatiski, A., Beard, K. H. & Stark, J. M. Soil history as a primary control on plant invasion in abandoned agricultural fields. J. Appl. Ecol. 43, 868–876 (2006).
    Article  Google Scholar 

    15.
    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).
    Article  Google Scholar 

    16.
    Simberloff, D. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol. Lett. 9, 912–919 (2006).
    PubMed  Article  Google Scholar 

    17.
    Braga, R. R., Gómez-Aparicio, L., Heger, T., Vitule, J. R. S. & Jeschke, J. M. Structuring evidence for invasional meltdown: broad support but with biases and gaps. Biol. Invasions 20, 923–936 (2018).
    Article  Google Scholar 

    18.
    Maynard, D. S., Miller, Z. R. & Allesina, S. Predicting coexistence in experimental ecological communities. Nat. Ecol. Evol. 4, 91–100 (2020).
    PubMed  Article  Google Scholar 

    19.
    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Godoy, O., Stouffer, D. B., Kraft, N. J. B. & Levine, J. M. Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. Ecology 98, 1193–1200 (2017).
    PubMed  Article  Google Scholar 

    21.
    Vandermeer, J. H. The competitive structure of communities: an experimental approach with protozoa. Ecology 50, 362–371 (1969).
    Article  Google Scholar 

    22.
    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
    Article  Google Scholar 

    23.
    Case, T. J. & Bender, E. A. Testing for higher order interactions. Am. Nat. 118, 920–929 (1981).
    Article  Google Scholar 

    24.
    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).
    CAS  PubMed  Article  Google Scholar 

    25.
    Prince, E. K., Myers, T. L., Naar, J. & Kubanek, J. Competing phytoplankton undermines allelopathy of a bloom-forming dinoflagellate. Proc. R. Soc. B 275, 2733–2741 (2008).
    PubMed  Article  Google Scholar 

    26.
    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

    27.
    Dawson, W., Fischer, M. & van Kleunen, M. Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. Ecol. Lett. 15, 873–880 (2012).
    PubMed  Article  Google Scholar 

    28.
    Godoy, O., Valladares, F. & Castro-Díez, P. Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct. Ecol. 25, 1248–1259 (2011).
    Article  Google Scholar 

    29.
    Liu, Y. J. & van Kleunen, M. Nitrogen acquisition of Central European herbaceous plants that differ in their global naturalization success. Funct. Ecol. 33, 566–575 (2019).
    Article  Google Scholar 

    30.
    Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).
    CAS  PubMed  Article  Google Scholar 

    31.
    Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85, 561–573 (1997).
    Article  Google Scholar 

    32.
    Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).
    PubMed  Article  Google Scholar 

    33.
    Lekberg, Y. et al. Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).
    PubMed  Article  Google Scholar 

    34.
    Latz, E. et al. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J. Ecol. 100, 597–604 (2012).
    Article  Google Scholar 

    35.
    Kardol, P., Cornips, N. J., van Kempen, M. M. L., Bakx-Schotman, J. M. T. & van der Putten, W. H. Microbe-mediated plant–soil feedback causes historical contingency effects in plant community assembly. Ecol. Monogr. 77, 147–162 (2007).
    Article  Google Scholar 

    36.
    Dawson, W., Schrama, M. & Austin, A. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).
    Article  Google Scholar 

    37.
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).

    38.
    Ke, P. J. & Wan, J. Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecol. Monogr. 90, e01391 (2020).
    Article  Google Scholar 

    39.
    Kuebbing, S. E., Classen, A. T., Call, J. J., Henning, J. A. & Simberloff, D. Plant–soil interactions promote co-occurrence of three nonnative woody shrubs. Ecology 96, 2289–2299 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Callaway, R. M. et al. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89, 1043–1055 (2008).
    PubMed  Article  Google Scholar 

    41.
    Darwin, C. On the Origin of Species (J. Murray, 1859).

    42.
    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).
    Article  Google Scholar 

    43.
    Mangla, S. & Callaway, R. M. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol. 96, 58–67 (2008).
    Google Scholar 

    44.
    Saul, W. C. & Jeschke, J. M. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18, 236–245 (2015).
    PubMed  Article  Google Scholar 

    45.
    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).
    PubMed  Article  CAS  Google Scholar 

    46.
    Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).
    Article  Google Scholar 

    47.
    Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS 11, plz051 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).
    CAS  PubMed  Article  Google Scholar 

    49.
    Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).
    PubMed  Article  Google Scholar 

    50.
    Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).
    CAS  PubMed  Article  Google Scholar 

    51.
    Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).
    PubMed  Article  Google Scholar 

    52.
    Reinhart, K. O., Packer, A., Van der Putten, W. H. & Clay, K. Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol. Lett. 6, 1046–1050 (2003).
    Article  Google Scholar 

    53.
    Liu, H. & Stiling, P. Testing the enemy release hypothesis: a review and meta-analysis. Biol. Invasions 8, 1535–1545 (2006).
    Article  Google Scholar 

    54.
    Zhang, Z. et al. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology 99, 866–875 (2018).
    PubMed  Article  Google Scholar 

    55.
    Chun, Y. J., van Kleunen, M. & Dawson, W. The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol. Lett. 13, 937–946 (2010).
    PubMed  Google Scholar 

    56.
    Dickie, I. A. et al. The emerging science of linked plant–fungal invasions. New Phytol. 215, 1314–1332 (2017).
    CAS  PubMed  Article  Google Scholar 

    57.
    Shipunov, A., Newcombe, G., Raghavendra, A. K. H. & Anderson, C. L. Hidden diversity of endophytic fungi in an invasive plant. Am. J. Bot. 95, 1096–1108 (2008).
    PubMed  Article  Google Scholar 

    58.
    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Busby, P. E., Peay, K. G. & Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 209, 1681–1692 (2016).
    CAS  PubMed  Article  Google Scholar 

    60.
    Großkopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Feng, Y., Fouqueray, T. D., van Kleunen, M. & Cornelissen, H. Linking Darwin’s naturalisation hypothesis and Elton’s diversity–invasibility hypothesis in experimental grassland communities. J. Ecol. 107, 794–805 (2019).
    Article  Google Scholar 

    63.
    Li, S. P. et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).
    PubMed  Article  Google Scholar 

    64.
    van Kleunen, M., Dawson, W., Bossdorf, O. & Fischer, M. The more the merrier: multi-species experiments in ecology. Basic Appl. Ecol. 15, 1–9 (2014).
    Article  Google Scholar 

    65.
    FloraWeb (Bundesamt für Naturschutz, 2003); http://www.floraweb.de/

    66.
    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
    Article  Google Scholar 

    67.
    Brinkman, E. P., Van der Putten, W. H., Bakker, E.-J. & Verhoeven, K. J. F. Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 98, 1063–1073 (2010).
    Article  Google Scholar 

    68.
    Rinella, M. J. & Reinhart, K. O. Toward more robust plant–soil feedback research. Ecology 99, 550–556 (2018).
    PubMed  Article  Google Scholar 

    69.
    Zhang, Z., Liu, Y., Brunel, C. & van Kleunen, M. Evidence for Elton’s diversity–invasibility hypothesis from belowground. Ecology https://doi.org/10.1002/ecy.3187 (accepted).

    70.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Article  Google Scholar 

    71.
    Orgiazzi, A. et al. Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7, e34847 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–13 (2011).
    Article  Google Scholar 

    73.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    75.
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Article  Google Scholar 

    76.
    R: A language and environment for statistical computing v.3.6.1 (R Foundation for Statistical Computing, 2019); http://www.R-project.org/

    77.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effect s models. R package version 3.1-140 (2019).

    78.
    Gibson, D., Connolly, J., Hartnett, D. & Weidenhamer, J. Designs for greenhouse studies of interactions between plants. J. Ecol. 87, 1–16 (1999).
    Article  Google Scholar 

    79.
    Aschehoug, E. T., Brooker, R., Atwater, D. Z., Maron, J. L. & Callaway, R. M. The mechanisms and consequences of interspecific competition among plants. Annu. Rev. Ecol. Syst. 47, 263–281 (2016).
    Article  Google Scholar 

    80.
    Hart, S. P., Burgin, J. R. & Marshall, D. J. Revisiting competition in a classic model system using formal links between theory and data. Ecology 93, 2015–2022 (2012).
    PubMed  Article  Google Scholar 

    81.
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    82.
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
    Article  Google Scholar 

    83.
    Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol. 222, 91–96 (2019).
    PubMed  Article  Google Scholar 

    84.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6 (2019).

    85.
    Wei, T. & Simko, V. corrplot: Visualization of a correlation matrix. R package version 0.84 (2017). More

  • in

    Shifting fish distributions in warming sub-Arctic oceans

    Ocean temperature
    The independent bottom water temperature estimates all showed variable but increasing autumn temperatures from 1996 to 2010, followed by a decline through to 2018 in the mid-depth offshore stations and the survey, but less of a decline in the inshore or deep offshore stations (Fig. 1, 2a). Both deep offshore stations warmed by ~ 0.2 °C over the time series. The ~ 1 °C temperature range evident in the southwestern mid-depth offshore FX8 autumn hydrographic series was larger than that of the less variable northern mid-depth offshore SI7 hydrographic station, but neither of the mid-depth offshore stations showed any net warming over the 22-year period. The shallow inshore stations both warmed considerably (1.5–2 °C) over the time series. Although no net increase was apparent in either of the mid-depth offshore hydrographic station autumn time series, 0.25–0.40 °C increases were observed in both the winter and spring measurement time series at both mid-depth hydrographic stations.
    Figure 1

    Map of 245 autumn groundfish survey core stations (black dots) sampled around Iceland every October between 1996 and 2018 (except 2011). Bottom-temperature profiles were collected independently at hydrographic stations FX3, FX8 and FX9 (red triangles) and SI1, SI7 and SI8 (blue triangles). Depth contours are 200, 500 and 1000 m.

    Full size image

    The mean environmental temperature from the autumn survey (Tempe) lay midway between that of the two mid-depth offshore hydrographic stations, over a similar ~ 1 °C temperature range. Based on a fitted regression to the environmental temperature time series, there was a net warming of 0.33 °C across the survey area over the 22-year time period, although the increase was certainly not linear (Fig. 2c). There were large differences in both the temperature range and temperature-at-depth among some of the regions (Fig. 2b). Bottom water temperatures at 200 m depth were 3–4 °C warmer in the south (SW = 7.3 °C; SE = 8.2 °C) than in the north (NW = 5.4 °C; NE = 4.5 °C), and 4–5 °C warmer at a depth of 500 m (NW = 1.4 °C; NE = −0.5 °C; SW = 6.6 °C; SE = 3.9 °C). Although most stations deeper than 500 m in the NE were  3 °C.
    Figure 2

    Bottom-temperatures from hydrographic stations (A: left panel) and from the autumn groundfish survey (B: top right and C: bottom right panel). (A) Near-bottom temperatures at hydrographic stations FX3 and SI1 (~ 70 m), FX8 and SI7 (~ 400 m), and FX9 and SI8 (~ 1000 m) between 1996 and 2018 are shown for winter (January–March), spring (May–June) and autumn (October–December). A geometric smooth has been fitted to the annual means. Note different scales on the y-axes. (B) Mean depth-temperature profiles for each region based on bottom temperatures from the autumn survey. Fitted lines are loess regressions. (C) The mean annual environmental temperature time series estimated from a GLM of the autumn survey bottom temperature measurements (see text for details). The linear regression fitted to the annual means is intended only to show the overall rate of warming through the time series.

    Full size image

    Survey catches
    A total of 5390 tows were fished over the 22-year time series. Station depths ranged from 26 to 1203 m (mean of 377 m) while bottom temperatures ranged between − 2 and 11 °C (mean of 4.85 °C). Of the 7,246,474 fish representing 200 species that were caught, 82 species were caught during at least 19 of the survey years, and thus are the primary subject of this analysis (Suppl. Table 1). The mean standardized annual abundance of these 82 species ranged between 1 and 27,513 fish, with an overall mean across species of 4096; 70% of the species had a mean standardized annual abundance of less than 100.
    There was no clear identifier of species that were rare, and thus caught sporadically, versus those that were newly immigrated to the survey area in response to the warming environment. Nor was it possible to exclude the possibility that certain rare species were incorrectly identified in some survey years. However, there were 6 species that were never caught prior to 1998, yet appeared in increasing numbers in subsequent years (Table 1). All of these species were caught in at least 8 survey years, and as many as 19. However, three of the species were deepwater ( > 800 m), and thus unlikely to have been subject to temperature increases of > 0.2 °C. Of the remaining three species, Atlantic mackerel (Scomber scombrus), blackbelly rosefish (Helicolenus dactylopterus) and hollowsnout grenadier (Coelorinchus caelorhincus) were all warmwater (TB  > 2) and stenothermal (Steno  More

  • in

    Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning

    1.
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant diversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).
    CAS  PubMed  Google Scholar 
    2.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but no systematic loss. Science 344, 296–299 (2014).
    CAS  PubMed  Google Scholar 

    3.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    CAS  PubMed  Google Scholar 

    4.
    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).
    PubMed  Google Scholar 

    5.
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    6.
    Schroeder-Georgi, T. et al. From pots to plots: hierarchical trait-based prediction of plant performance in a mesic grassland. J. Ecol. 104, 206–218 (2016).
    Google Scholar 

    7.
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 

    8.
    Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).
    PubMed  Google Scholar 

    9.
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    PubMed  Google Scholar 

    10.
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
    Google Scholar 

    11.
    Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).
    CAS  PubMed  Google Scholar 

    12.
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
    PubMed  Google Scholar 

    13.
    Grigulis, K. et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J. Ecol. 101, 47–57 (2013).
    Google Scholar 

    14.
    Liu, J. et al. Explaining maximum variation in productivity requires phylogenetic diversity and single functional traits. Ecology 96, 176–183 (2015).
    PubMed  Google Scholar 

    15.
    Yuan, Z. et al. Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia 182, 1175–1185 (2016).
    PubMed  Google Scholar 

    16.
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
    CAS  Google Scholar 

    17.
    Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).
    Google Scholar 

    18.
    Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
    Google Scholar 

    19.
    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).
    CAS  PubMed  Google Scholar 

    20.
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).
    CAS  Google Scholar 

    21.
    Butterfield, B. J. & Suding, K. N. Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. J. Ecol. 101, 9–17 (2013).
    Google Scholar 

    22.
    Gustafsson, C. & Norkko, A. Quantifying the importance of functional traits for primary production in aquatic plant communities. J. Ecol. 107, 154–166 (2018).
    Google Scholar 

    23.
    Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).
    PubMed  Google Scholar 

    24.
    Clark, C. M., Flynn, D. F. B., Butterfield, B. J. & Reich, P. B. Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS ONE 7, e52821 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Flombaum, P. & Sala, O. E. Effects of plant species traits on ecosystem processes: experiments in Patagonian steppe. Ecology 93, 227–234 (2012).
    PubMed  Google Scholar 

    26.
    Laliberté, E. & Tylianikis, J. M. Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. Ecology 93, 145–155 (2012).
    PubMed  Google Scholar 

    27.
    Lienin, P. & Kleyer, M. Plant trait responses to the environment and effects on ecosystem properties. Basic Appl. Ecol. 13, 301–311 (2012).
    Google Scholar 

    28.
    Chanteloup, P. & Bonis, A. Functional diversity in root and above-ground traits in a fertile grassland shows a detrimental effect on productivity. Basic Appl. Ecol. 14, 208–216 (2013).
    Google Scholar 

    29.
    Jiang, J. et al. Litter species traits, but not richness, contribute to carbon and nitrogen dynamics in an alpine meadow on the Tibetan Plateau. Plant Soil 373, 931–941 (2013).
    CAS  Google Scholar 

    30.
    Lavorel, S. et al. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 24, 942–948 (2013).
    Google Scholar 

    31.
    Makkonen, M., Berg, M. P., van Logtestijn, R. S. P., van Hal, J. R. & Aerts, R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987–997 (2013).
    Google Scholar 

    32.
    Ziter, C., Bennett, E. M. & Gonzalez, A. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4, 1–21 (2013).

    33.
    Barrufol, M. et al. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8, e81246 (2014).
    Google Scholar 

    34.
    Bu, W., Zang, R. & Ding, Y. Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest. Acta Oecol. (Montrouge) 55, 1–7 (2014).
    Google Scholar 

    35.
    Carvalho, G. H., Batalha, M. A., Silva, I. A., Cianciaruso, M. V. & Petchey, O. L. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savannah? Oecologia 175, 923–935 (2014).
    PubMed  Google Scholar 

    36.
    Cavanaugh, K. C. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 23, 563–573 (2014).
    Google Scholar 

    37.
    Hantsch, L. et al. No plant functional diversity effects of foliar fungal pathogens in experimental tree communities. Fungal Divers. 66, 139–151 (2014).
    Google Scholar 

    38.
    Lasky, J. R. et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 17, 1158–1167 (2014).
    PubMed  Google Scholar 

    39.
    Milcu, A. et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecol. Lett. 17, 435–444 (2014).
    PubMed  Google Scholar 

    40.
    Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr. 23, 311–322 (2014).
    Google Scholar 

    41.
    Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).
    Google Scholar 

    42.
    Schuldt, A. et al. Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytol. 202, 864–873 (2014).
    PubMed  PubMed Central  Google Scholar 

    43.
    Álvarex-Yépiz, J. C. & Dovĉiak, M. Enhancing ecosystem function through conservation: threatened plants increase local carbon storage in tropical dry forests. Trop. Conserv. Sci. 8, 999–1008 (2015).
    Google Scholar 

    44.
    Debouk, H., de Bello, F. & Sebastià, M.-T. Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming. PLoS ONE 10, e0141899 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.
    Deraison, H., Badenhausser, I., Loeuille, N., Scherber, C. & Gross, N. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass. Ecol. Lett. 18, 1346–1355 (2015).
    PubMed  Google Scholar 

    46.
    Frainer, A., Moretti, M. S., Xu, W. & Gessner, M. O. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96, 550–561 (2015).
    PubMed  Google Scholar 

    47.
    Haase, J. et al. Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos 124, 1674–1685 (2015).
    Google Scholar 

    48.
    Kröber, W. et al. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecol. Evol. 5, 3541–3556 (2015).
    PubMed  PubMed Central  Google Scholar 

    49.
    Lohbeck, M., Poorter, L., Martínez-Ramos, M. & Bongers, F. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252 (2015).
    PubMed  Google Scholar 

    50.
    Paquette, A., Joly, S. & Messier, C. Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale? Ecol. Evol. 5, 1774–1783 (2015).
    PubMed  PubMed Central  Google Scholar 

    51.
    Rivest, D., Paquette, A., Shipley, B., Reich, P. B. & Messier, C. Tree communities rapidly alter soil microbial resistance and resilience to drought. Funct. Ecol. 29, 570–578 (2015).
    Google Scholar 

    52.
    Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).
    Google Scholar 

    53.
    Schwarz, B. et al. Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Eur. J. Soil Biol. 67, 17–26 (2015).
    Google Scholar 

    54.
    Tardif, A. & Shipley, B. The relationship between functional dispersion of mixed-leaf litter mixtures and species’ interactions during decomposition. Oikos 124, 1050–1057 (2015).
    Google Scholar 

    55.
    Valencia, E. et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol. 206, 660–671 (2015).
    PubMed  Google Scholar 

    56.
    Van Rooijen, N. M. et al. Plant species diversity mediates ecosystem stability of natural dune grasslands in response to drought. Ecosystems 18, 1383–1394 (2015).
    Google Scholar 

    57.
    Zhang, Y., Wang, R., Kaplan, D. & Liu, J. Which components of plant diversity are most correlated with ecosystem properties? A case study in a restored wetland in northern China. Ecol. Indic. 49, 228–236 (2015).
    Google Scholar 

    58.
    Barkaoui, K., Roumet, C. & Volaire, F. Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agric. Ecosyst. Environ. 231, 122–132 (2016).
    Google Scholar 

    59.
    Chiang, J.-M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).
    PubMed  Google Scholar 

    60.
    De Vries, F. T. & Bardgett, R. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).
    PubMed  PubMed Central  Google Scholar 

    61.
    Jewell, M. D. et al. Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos 126, 959–971 (2016).
    Google Scholar 

    62.
    Lin, D. et al. Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409, 435–446 (2016).
    CAS  Google Scholar 

    63.
    Mason, N. W. H. et al. Leaf economics spectrum-productivity relationships in intensively grazed pastures depend on dominant species identity. Ecol. Evol. 6, 3079–3091 (2016).
    PubMed  PubMed Central  Google Scholar 

    64.
    Mensah, S., Veldtman, R., Assogbadjo, A. E., Kakaï, R. G. & Seifert, T. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 6, 7546–7557 (2016).
    PubMed  PubMed Central  Google Scholar 

    65.
    Milcu, A. et al. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modelling approach. Ecology 97, 2044–2054 (2016).
    PubMed  Google Scholar 

    66.
    Na, Z., Zhengwen, W., Xinqing, S. & Kun, W. Diversity components and assembly patterns of plant functional traits determine community spatial stability under resource gradients in a desert steppe. Rangel. J. 38, 511–521 (2016).
    Google Scholar 

    67.
    Ouyang, S. et al. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. For. Ecol. Manage. 372, 291–302 (2016).
    Google Scholar 

    68.
    Prado-Junior, J. A. et al. Conservative species drive biomass productivity in tropical dry forests. J. Ecol. 104, 817–827 (2016).
    Google Scholar 

    69.
    Ratcliffe, S. et al. Modes of functional biodiversity control on tree productivity across the European continent. Glob. Ecol. Biogeogr. 25, 251–262 (2016).
    Google Scholar 

    70.
    Roscher, C. et al. Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. Perspect. Plant Ecol. Evol. Syst. 20, 32–45 (2016).
    Google Scholar 

    71.
    Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).
    Google Scholar 

    72.
    Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).
    PubMed  Google Scholar 

    73.
    Wu, J., Wurst, S. & Zhang, X. Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands. Sci. Rep. 6, 35649 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Zhu, J., Jiang, L. & Zhang, Y. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci. Rep. 6, 34105 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Zuo, X. et al. Testing associations of plant functional diversity with carbon and nitrogen storage along a restoration gradient of sandy grassland. Front. Plant Sci. 7, 189 (2016).
    PubMed  PubMed Central  Google Scholar 

    76.
    Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).
    Google Scholar 

    77.
    Ali, A. & Yan, E.-R. Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest. Ecol. Indic. 83, 158–168 (2017).
    Google Scholar 

    78.
    Ali, H. E., Reineking, B. & Münkemüller, T. Effects of plant functional traits on soil stability: intraspecific variability matters. Plant Soil 411, 359–375 (2017).
    CAS  Google Scholar 

    79.
    Barbe, L. et al. Functionally dissimilar neighbors accelerate litter decomposition in two grass species. New Phytol. 214, 1092–1102 (2017).
    PubMed  Google Scholar 

    80.
    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).
    PubMed  Google Scholar 

    81.
    Chillo, V., Ojeda, R. A., Capmourteres, V. & Anand, M. Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa. J. Appl. Ecol. 54, 986–996 (2017).
    Google Scholar 

    82.
    Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).
    Google Scholar 

    83.
    Fornoff, F. et al. Functional flower traits and their diversity drive pollinator visitation. Oikos 126, 1020–1030 (2017).
    CAS  Google Scholar 

    84.
    Fujii, S. et al. Disentangling relationships between plant diversity and decomposition processes under forest restoration. J. Appl. Ecol. 54, 80–90 (2017).
    Google Scholar 

    85.
    Grace, J. B., Harrison, S. & Cornell, H. Is biotic resistance enhanced by natural variation in diversity? Oikos 126, 1484–1492 (2017).
    Google Scholar 

    86.
    Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).
    PubMed  PubMed Central  Google Scholar 

    87.
    Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).
    PubMed  Google Scholar 

    88.
    Henneron, L. et al. Plant interactions as biotic drivers of plasticity in leaf litter traits and decomposability of Quercus petraea. Ecol. Monogr. 87, 321–340 (2017).
    Google Scholar 

    89.
    Hertzog, L. R., Ebeling, A., Weisser, W. W. & Meyer, S. T. Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere 8, e01990 (2017).
    Google Scholar 

    90.
    Khlifa, R., Paquette, A., Messier, C., Reich, P. B. & Munson, A. D. Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecol. Evol. 7, 7965–7974 (2017).
    PubMed  PubMed Central  Google Scholar 

    91.
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).
    CAS  PubMed  Google Scholar 

    92.
    Laird-Hopkins, B. C., Bréchet, L. M., Trujillo, B. C. & Sayer, E. J. Tree functional diversity affects litter decomposition and arthropod community composition in a tropical forest. Biotropica 49, 903–911 (2017).
    Google Scholar 

    93.
    Li, W. et al. Community-level trait responses and intra-specific trait variability play important roles in driving community productivity in an alpine meadow on the Tibetan Plateau. J. Plant Ecol. 10, 592–600 (2017).
    Google Scholar 

    94.
    Mao, W., Felton, A. J. & Zhang, T. Linking changes to intraspecific trait diversity to community functional diversity and biomass in response to snow and nitrogen addition within an Inner Mongolian grassland. Front. Plant Sci. 8, 339 (2017).
    PubMed  PubMed Central  Google Scholar 

    95.
    Meyer, S. T. et al. Consistent increase in herbivory along two experimental plant diversity gradients over multiple years. Ecosphere 8, e01876 (2017).
    Google Scholar 

    96.
    Mori, A. S., Osono, T., Cornelissen, J. H. C., Craine, J. & Uchida, M. Biodiversity ecosystem function relationships change through primary succession. Oikos 126, 1637–1649 (2017).
    Google Scholar 

    97.
    Pan, Y. et al. Climatic and geographic factors affect ecosystem multifunctionality through biodiversity in the Tibetan alpine grasslands. J. Mt. Sci. 14, 1604–1614 (2017).
    Google Scholar 

    98.
    Peco, B., Navarro, E., Carmona, C. P., Medina, N. G. & Marques, M. J. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agric. Ecosyst. Environ. 249, 215–225 (2017).
    Google Scholar 

    99.
    Pérez-Ramos, I. M. et al. Climate variability and community stability in Mediterranean shrublands: the role of functional diversity and soil environment. J. Ecol. 105, 1335–1346 (2017).
    Google Scholar 

    100.
    Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017).
    Google Scholar 

    101.
    Refsland, T. K. & Fraterrigo, J. M. Both canopy and understory traits act as response–effect traits in fire-managed forests. Ecosphere 8, e02036 (2017).
    Google Scholar 

    102.
    Sasaki, T. et al. Differential responses and mechanisms of productivity following experimental species loss scenarios. Oecologia 183, 785–795 (2017).
    PubMed  Google Scholar 

    103.
    Shihan, A. et al. Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biol. Fertil. Soils 53, 171–185 (2017).
    Google Scholar 

    104.
    Steinauer, K., Fischer, F. M., Roscher, C., Scheu, S. & Eisenhauer, N. Spatial plant resource acquisition traits explain plant community effects on soil microbial communities. Pedobiologia (Jena) 65, 50–57 (2017).
    Google Scholar 

    105.
    Sun, Z. et al. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J. Plant Ecol. 10, 146–157 (2017).
    Google Scholar 

    106.
    van der Sande, M. T. et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 105, 1223–1234 (2017).
    Google Scholar 

    107.
    Wei, X., Reich, P. B., Hobbie, S. E. & Kazanski, C. E. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Glob. Change Biol. 23, 4717–4727 (2017).
    Google Scholar 

    108.
    Zhang, Q. et al. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol. Evol. 7, 1605–1615 (2017).
    PubMed  PubMed Central  Google Scholar 

    109.
    Zirbel, C. R., Bassett, T., Grman, E. & Brudvig, L. A. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. J. Appl. Ecol. 54, 1070–1079 (2017).
    Google Scholar 

    110.
    Blesh, J. Functional traits in cover crop mixtures: biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 55, 38–48 (2018).
    Google Scholar 

    111.
    Chillo, V., Vázquez, D. P., Amoroso, M. M. & Bennett, E. M. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Funct. Ecol. 32, 1390–1399 (2018).
    Google Scholar 

    112.
    Fu, H. et al. Hydrological gradients and functional diversity of plants drive ecosystem processes on Poyang Lake wetland. Ecohydrology 11, e1950 (2018).
    Google Scholar 

    113.
    Hao, M., Zhang, C., Zhao, X. & von Gadow, K. Functional and phylogenetic diversity determine wood productivity in temperate forest. Ecol. Evol. 8, 2395–2406 (2018).
    PubMed  PubMed Central  Google Scholar 

    114.
    Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).
    Google Scholar 

    115.
    Navarro-Cano, J. A., Verdú, M. & Goberna, M. Trait-based selection of nurse plants to restore ecosystem functions in mine tailings. J. Appl. Ecol. 55, 1195–1206 (2018).
    Google Scholar 

    116.
    Orwin, K. H. et al. Season and dominant species effects on plant trait–ecosystem function relationships in intensively grazed grassland. J. Appl. Ecol. 55, 236–245 (2018).
    Google Scholar 

    117.
    Roscher, C. et al. Origin context of trait data matters for predictions of community performance of a grassland biodiversity experiment. Ecology 99, 1214–1226 (2018).
    PubMed  Google Scholar 

    118.
    Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).
    Google Scholar 

    119.
    Xie, G., Lundholm, J. T. & MacIvor, J. S. Phylogenetic diversity and plant trait composition predict multiple ecosystem functions in green roofs. J. Total Environ. 628–629, 1017–1026 (2018).
    Google Scholar 

    120.
    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).
    CAS  PubMed  Google Scholar 

    121.
    Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).
    Google Scholar 

    122.
    Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).
    Google Scholar 

    123.
    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
    Google Scholar 

    124.
    Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).
    Google Scholar 

    125.
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
    Google Scholar 

    126.
    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
    PubMed  Google Scholar 

    127.
    Sørenson, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K. Dan. Vid. Selsk. 5, 1–34 (1948).
    Google Scholar 

    128.
    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–191 (2007).
    CAS  PubMed  Google Scholar 

    129.
    Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).
    PubMed  Google Scholar 

    130.
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2017).
    PubMed  Google Scholar 

    131.
    Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol. Rev. 94, 648–661 (2019).
    PubMed  Google Scholar 

    132.
    Roscher, C. et al. Interspecific trait differences rather than intraspecific trait variation increase the extent and filling of plant community space with increasing plant diversity in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 33, 42–50 (2018).
    Google Scholar 

    133.
    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).
    PubMed  Google Scholar 

    134.
    Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Global quantitative synthesis of ecosystem functioning across climatic zones and ecosystem types. Glob. Ecol. Biogeogr. 29, 1139–1176 (2020).

    135.
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
    Google Scholar 

    136.
    Reich, P. B. et al. Relationship of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114, 471–482 (1998).
    PubMed  Google Scholar 

    137.
    Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).
    Google Scholar 

    138.
    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
    PubMed  Google Scholar 

    139.
    Millenium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis (Island Press, 2005).

    140.
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

    141.
    Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. J. Ecol. 105, 298–309 (2016).
    Google Scholar 

    142.
    Ellenberg, H. Vegetation Mitteleuropas mit den Alpen. In ökologischer, dynamischer und historischer Sicht 5th edn (Ulmer, 1996).

    143.
    Jochum, M. et al. The results of biodiversity-ecosystem functioning experiments are realistic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1280-9 (2020).

    144.
    de Groot, R., Wilson, M. & Boumans, R. A typology for the classification description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408 (2002).
    Google Scholar 

    145.
    Gotschall, F. et al. Tree species identity determines wood decomposition via microclimatic effects. Ecol. Evol. 9, 12113–12127 (2019).
    Google Scholar 

    146.
    Salamanca, F., Kaneko, N. & Katagiri, S. Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Appl. Soil Ecol. 22, 271–281 (2003).
    Google Scholar 

    147.
    Hu, W. et al. Nitrogen along the hydrological gradient of marsh sediments in a subtropical estuary: pools, processes and fluxes. Int. J. Environ. Res. Public Health 16, 2043 (2019).
    CAS  PubMed Central  Google Scholar 

    148.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

    149.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    150.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 

    151.
    Bartón, K. Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.0.2. (2018); https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

    152.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans

    1.
    Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. Nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649 (2013).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Chaturvedi, V. & Chaturvedi, S. Editorial: What is in a Name? A proposal to use geomycosis instead of white nose syndrome (WNS) to describe bat infection caused by geomyces destructans. Mycopathologia 171, 231–233. https://doi.org/10.1007/s11046-010-9385-3 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Frick, W. F., Puechmaille, S. J. & Willis, C. K. Bats in the Anthropocene: Conservation of Bats in a Changing World 245–262 (Springer, Berlin, 2016).
    Google Scholar 

    5.
    Bandouchova, H. et al. Alterations in the health of hibernating bats under pathogen pressure. Sci. Rep. 8, 6067 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Zukal, J. et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 6, 19829 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Drees, K. P. et al. Phylogenetics of a fungal invasion: Origins and widespread dispersal of white-nose syndrome. mBio 8, 11941–11917 (2017).
    Article  Google Scholar 

    8.
    Leopardi, S., Blake, D. & Puechmaille, S. J. White-nose syndrome fungus introduced from Europe to North America. Curr. Biol. 25, 217–219 (2015).
    Article  CAS  Google Scholar 

    9.
    Palmer, J. M. et al. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3 Genes Genomes Genet. 4, 1755–1763 (2014).
    Google Scholar 

    10.
    Trivedi, J. N. Population genomics and mutational history of the invasive, epidemic clone of Pseudogymnoascus destructans, causal agent of White-nose Syndrome in bats (University of Toronto, Toronto, 2017).
    Google Scholar 

    11.
    Rajkumar, S. S. et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis 17, 1273–1276 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lorch, J. M. et al. First detection of bat white-nose syndrome in western North America. mSphere 1, e00148-e1116 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Forsythe, A., Giglio, V., Asa, J. & Xu, J. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose syndrome pathogen, Pseudogymnoascus destructans, North America. Appl. Environ. Microbiol. 84, e00863-e1818. https://doi.org/10.1128/aem.00863-18 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Khankhet, J. et al. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS ONE 9, e104684 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Cryan, P. M., Meteyer, C. U., Boyles, J. G. & Blehert, D. S. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8, 1–8. https://doi.org/10.1186/1741-7007-8-135 (2010).
    Article  Google Scholar 

    16.
    Meteyer, C. U. et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 21, 411–414. https://doi.org/10.1177/104063870902100401 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    17.
    Pikula, J. et al. White-nose syndrome pathology grading in nearctic and palearctic bats. PLoS ONE 12, e0180435 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. 109, 6999–7003 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Flieger, M. et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep. 6, 33200 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Hayman, D. T. S., Pulliam, J. R. C., Marshall, J. C., Cryan, P. M. & Webb, C. T. Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Sci. Adv. 2, e1500831. https://doi.org/10.1126/sciadv.1500831 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Vol. 9 (2013).

    22.
    Wibbelt, G. in Emerging and Epizootic Fungal Infections in Animals 289–307 (Springer, Berlin, 2018).
    Google Scholar 

    23.
    Achterman, R. R. & White, T. C. Dermatophyte virulence factors: Identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J. Microbiol. 20, 12 (2011).
    Google Scholar 

    24.
    Chinnapun, D. Virulence factors involved in pathogenicity of dermatophytes. Walailak J. Sci. Technol. (WJST) 12, 573–580 (2015).
    Google Scholar 

    25.
    Pannkuk, E. L., Risch, T. S. & Savary, B. J. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans. PLoS ONE 10, e0120508. https://doi.org/10.1371/journal.pone.0120508 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Raudabaugh, D. B. & Miller, A. N. Nutritional capability of and substrate suitability for Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE 8, e78300. https://doi.org/10.1371/journal.pone.0078300 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Mascuch, S. J. et al. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS ONE 10, e0119668. https://doi.org/10.1371/journal.pone.0119668 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    van Burik, J. A. H. & Magee, P. T. Aspects of fungal pathogenesis in humans. Annu. Rev. Microbiol. 55, 743–772 (2001).
    PubMed  Article  Google Scholar 

    29.
    Donaldson, M. E. et al. Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: Implications in identifying virulence factors. Mycologia 110, 300–315 (2018).
    CAS  PubMed  Article  Google Scholar 

    30.
    Field, K. A. et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 11, e1005168. https://doi.org/10.1371/journal.ppat.1005168 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Reeder, S. M. et al. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections. Virulence 8, 1695–1707 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Lorch, J. M. et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105, 237–252. https://doi.org/10.3852/12-207 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Meyer, A. D., Stevens, D. F. & Blackwood, J. C. Predicting bat colony survival under controls targeting multiple transmission routes of white-nose syndrome. J. Theor. Biol. 409, 60–69 (2016).
    MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

    35.
    Gargas, A., Trest, M., Christensen, M., Volk, T. J. & Blehert, D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).
    Article  Google Scholar 

    36.
    Chaturvedi, V. et al. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with white nose syndrome (WNS). PLoS ONE 5, e10783 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Verant, M. L., Boyles, J. G., Waldrep, W. Jr., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Palmer, J. M., Drees, K. P., Foster, J. T. & Lindner, D. L. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat. Commun. 9, 35. https://doi.org/10.1038/s41467-017-02441-z (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Campbell, L. J., Walsh, D. P., Blehert, D. S. & Lorch, J. M. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildlife Dis. 56, 278–287 (2020).
    Article  Google Scholar 

    40.
    Reynolds, H. T. & Barton, H. A. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity. PLoS ONE 9, e86437. https://doi.org/10.1371/journal.pone.0086437 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Smyth, C., Schlesinger, S., Overton, B. & Butchkoski, C. The alternative host hypothesis and potential virulence genes in Geomyces destructans. Bat Res. News 54, 17–24 (2013).
    Google Scholar 

    42.
    Chaturvedi, V., DeFiglio, H. & Chaturvedi, S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Research 7, 2 (2018).
    Article  CAS  Google Scholar 

    43.
    Vanderwolf, K. J., Malloch, D., McAlpine, D. F. & Forbes, G. J. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 42, 9 (2013).
    Article  Google Scholar 

    44.
    Wilson, M. B., Held, B. W., Freiborg, A. H., Blanchette, R. A. & Salomon, C. E. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS ONE 12, e0178968. https://doi.org/10.1371/journal.pone.0178968 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Gabriel, K. T., Neville, J. J., Pierce, G. E. & Cornelison, C. T. Lipolytic activity and the utilization of fatty acids associated with bat sebum by Pseudogymnoascus destructans. Mycopathologia 184, 625–636. https://doi.org/10.1007/s11046-019-00381-4 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Park, M., Do, E. & Jung, W. H. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41, 67–72. https://doi.org/10.5941/myco.2013.41.2.67 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Carlini, C. R. & Ligabue-Braun, R. Ureases as multifunctional toxic proteins: A review. Toxicon 110, 90–109 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Cox, G. M., Mukherjee, J., Cole, G. T., Casadevall, A. & Perfect, J. R. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 68, 443–448 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Vylkova, S. & Lorenz, M. C. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 10, e1003995. https://doi.org/10.1371/journal.ppat.1003995 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Vylkova, S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 13, e1006149. https://doi.org/10.1371/journal.ppat.1006149 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Shawcross, D. L. et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 48, 1202–1212 (2008).
    CAS  PubMed  Article  Google Scholar 

    52.
    O’Donoghue, A. J. et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PNAS 112, 7478–7483. https://doi.org/10.1073/pnas.1507082112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    53.
    Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of humidity on development of Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 24, 54–64 (2017).
    Article  Google Scholar 

    54.
    Kolařík, M. et al. Geosmithia associated with bark beetles and woodborers in the western USA: Taxonomic diversity and vector specificity. Mycologia 109, 185–199. https://doi.org/10.1080/00275514.2017.1303861 (2017).
    CAS  Article  PubMed  Google Scholar 

    55.
    Garland, J. L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28, 213–221. https://doi.org/10.1016/0038-0717(95)00112-3 (1996).
    CAS  Article  Google Scholar 

    56.
    Dobranic, J. K. & Zak, J. C. A microtiter plate procedure for evaluating fungal functional diversity. Mycologia 91, 756–765 (1999).
    Article  Google Scholar 

    57.
    Harch, B. D., Correll, R. L., Meech, W., Kirkby, C. A. & Pankhurst, C. E. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J. Microbiol. Methods 30, 91–101. https://doi.org/10.1016/s0167-7012(97)00048-1 (1997).
    CAS  Article  Google Scholar 

    58.
    Sobek, E. A. & Zak, J. C. The Soil FungiLog procedure: Method and analytical approaches toward understanding fungal functional diversity. Mycologia 95, 590–602 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Kouker, G. & Jaeger, K.-E. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53, 211–213 (1987).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Lupan, D. M. & Nziramasanga, P. Collagenolytic activity of Coccidioides immitis. Infect. Immun. 51, 360–361 (1986).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Saleh-Rastin, N., Petersen, M., Coleman, S. & Hubbell, D. The rhizosphere and plant growth 188–188 (Springer, Berlin, 1991).
    Google Scholar 

    62.
    NziramasangaM, P. & Lupan, D. Elastase activity of Coccidioides immitis. J. Med. Microbiol. 19, 109–114 (1985).
    Article  Google Scholar 

    63.
    Dietz, M. & Kalko, E. K. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B. 176, 223–231 (2006).
    PubMed  Article  Google Scholar 

    64.
    Sephton-Clark, P. C. S. & Voelz, K. In Advances in applied microbiology (eds Sima, S. & Geoffrey, M. G.) 117–157 (Academic Press, New York, 2018).
    Google Scholar 

    65.
    Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    66.
    Martínková, N. et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE 5, e13853 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Větrovský, T., Kolařík, M., Žifčáková, L., Zelenka, T. & Baldrian, P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 16, 388–401 (2016).
    PubMed  Article  CAS  Google Scholar 

    68.
    Crous, P. et al. Fungal planet description sheets: 558–624. Persoonia 38, 240 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Hubka, V. et al. A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Syst. Evol. 302, 1267–1299 (2016).
    CAS  Article  Google Scholar 

    70.
    Kubátová, A., Hujslová, M., Frisvad, J. C., Chudíčková, M. & Kolařík, M. Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils. Mycol. Progr. 18, 215–228 (2019).
    Article  Google Scholar 

    71.
    Gabrielová, A. et al. The oomycete Pythium oligandrum can suppress and kill the causative agents of dermatophytoses. Mycopathologia 183, 751–764 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Plant agrodiversity to the rescue

    1.
    FAO. In World Food Summit — Food for All Ch. 2 (FAO, 1996).
    2.
    Challinor, A. J. et al. Nat. Clim. Change 4, 287–291 (2014).
    Article  Google Scholar 

    3.
    Myers, S. S. et al. Annu. Rev. Publ. Health 38, 259–277 (2017).
    Article  Google Scholar 

    4.
    Woolfe, J. A. Sweet Potato: An Untapped Food Resource (Cambridge Univ. Press, 1992).

    5.
    Heider, B. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00924-4 (2020).

    6.
    Meyer, R. S. & Purugganan, M. D. Nat. Rev. Genet. 14, 840–852 (2013).
    CAS  Article  Google Scholar 

    7.
    Pironon, S. et al. Nat. Clim. Change 9, 758–763 (2019).
    Article  Google Scholar 

    8.
    Borrell, J. S. et al. Environ. Exp. Bot. 170, 103872 (2020).
    CAS  Article  Google Scholar 

    9.
    Wu, S. et al. Nat. Commun. 9, 4580 (2018).
    Article  Google Scholar 

    10.
    Khoury, C. K. et al. Front. Plant Sci. 6, 251 (2015).
    Article  Google Scholar 

    11.
    Shiotani, I., Huang, Z. Z., Sakamoto, S. & Miyazaki, T. Acta Hortic. 380, 388–398 (1994).
    Article  Google Scholar 

    12.
    Dempewolf, H. et al. Crop Sci. 57, 1070–1082 (2017).
    Article  Google Scholar 

    13.
    Castañeda-Álvarez, N. P. et al. Nat. Plants 2, 16022 (2016).
    Article  Google Scholar 

    14.
    Cámara-Leret, R., Fortuna, M. A. & Bascompte, J. Proc. Natl Acad. Sci. USA 116, 9913–9918 (2019).
    Article  Google Scholar 

    15.
    McCouch, S. et al. Nature 499, 23–24 (2013).
    CAS  Article  Google Scholar  More

  • in

    Crowding and the shape of COVID-19 epidemics

    Epidemiological data
    No officially reported line list was available for cases in China. We used a standardized protocol43 to extract individual-level data from December 1, 2019, to March 30, 2020. Sources were mainly official reports from provincial, municipal or national health governments. Data included basic demographics (age and sex), travel histories and key dates (dates of onset of symptoms, hospitalization and confirmation). Data were entered by a team of data curators on a rolling basis, and technical validation and geo-positioning protocols were applied continuously to ensure validity. A detailed description of the methodology is available22. Lastly, total numbers were matched with officially reported data from China and other government reports. Daily case counts from Italian provinces (n = 107) were extracted from the Presidenza del Consiglio dei Ministri Dipartimento della Protezione Civile (https://github.com/pcm-dpc/COVID-19).
    Estimating epidemic peakedness
    Epidemic peakedness was estimated for each prefecture by calculating the inverse Shannon entropy of the distribution of COVID-19 cases. Inverse Shannon entropy was used to fit time series of other respiratory infections (influenza)13. The inverse Shannon entropy of incidence for a given prefecture in 2020 is then given by (v_j = left( { – mathop {sum}nolimits_i {p_{ij}log p_{ij}} } right)^{ – 1}). Because vj is a function of incidence distribution in each location rather than raw incidence, it is invariant under differences in overall reporting rates between cities or attack rates. We then assessed how peakedness ({it{v}} propto mathop {sum}nolimits_j {v_j}) varied across geographic areas in China. As an alternative measure of temporal clustering of cases, we estimated the proportion of cases at the peak ± 1 d (Extended Data Fig. 2).
    Proxies for COVID-19 interventions using within-city human mobility data from China
    Estimates of within-city reductions of human mobility between the period before and after the lockdown was implemented on January 23, 2020, were extracted from Lai et al.36. Daily measures of human mobility were extracted from the Baidu Qianxi web platform to estimate the proportion of daily movement within prefectures in China. Relative mobility volume was available from January 2, 2020, to January 25, 2020. For each city, change in relative mobility was defined by mi=mil(lockdown)/mib(baseline), where mi is defined as mobility in prefecture i. Baidu’s mapping service is estimated to have a 30% market share in China, and more data can be found5,6.
    Data on drivers of transmission of COVID-19
    Prefecture-specific population counts and densities were derived from the 2020 Gridded Population of The World, a modeled continuous surface of population estimated from national census data and the United Nations World Population Prospectus44. Population counts are defined at a 30-arc-second resolution (approximately 1 km × 1 km at the equator) and extracted within administrative 2 level cartographic boundaries defined by the National Bureau of Statistics of China. Lloyd’s mean crowding, (frac{{left[ {mathop {sum }nolimits_i left( {q_i – 1} right)q_i} right]}}{{mathop {sum }nolimits_i q_i}}), was estimated for each prefecture, where qi represents the population count of each non-zero pixel within a prefecture’s boundary and the resulting value estimates an individual’s mean number of expected neighbors13,45. When fitting the models, we consider the numerator (left[ {mathop {sum}nolimits_i {left( {q_i – 1} right)q_i} } right]), which we refer to as ‘contacts’, and the denominator (mathop {sum}nolimits_i {q_i}) (that is, population size) as separate predictors. We note that a negative slope for ‘contacts’ and a positive slope for ‘population’ support a negative coefficient for Lloyd’s mean crowding.
    Daily temperature (°F), relative humidity (%) and atmospheric pressure (Pa) at the centroid of each prefecture was provided by The Dark Sky Company via the Dark Sky API and aggregated across a variety of data sources. Specific humidity (kg/kg) was then calculated using the R package humidity16. Meteorological variables for each prefecture were then averaged across the entirety of the study period.
    Statistical analysis
    We normalized the values of epidemic peakedness between 0 and 1 and, for all non-zero values, fit a generalized linear model of the form

    $${mathrm{log}}left( {Y_j} right)sim beta _0 + beta _1{mathrm{log}}left( {C_j} right) + beta _2{mathrm{log}}left({h_j}right) + beta _3{mathrm{log}}left( {P_j} right) + beta _4{mathrm{log}}left( {f_j} right) + beta _5{mathrm{log}}left( {t_j} right)$$

    where, for each prefecture j, Y is the scaled inverse Shannon entropy measure of epidemic peakedness derived from the COVID-19 time series; C is the mean number of contacts26,46; h is the mean specific humidity over the reporting period in kg/kg; P is the estimated population density; f is the relative change in population flows within each prefecture; and t is daily mean temperature.
    Projecting epidemic peakedness in cities around the world
    We selected 310 urban centers from the European Commission Global Human Settlement Urban Centre Database and their included cartographic boundaries47. To ensure global coverage, up to the five most populous cities in each country were selected from the 1,000 most populous urban centers recorded in the database. Population count, crowding and meteorological variables were then estimated following identical procedures used to calculate these variables in the Chinese prefectures. Weather measurements were averaged over the 2-month period starting on February 1, 2020.
    The parameters from the model of epidemic peakedness predicted by humidity, crowding and population size (Supplementary Table 1, model 6) were used to estimate relative peakedness in the 310 urban centers. A full list of predicted epidemic peakedness values can be found in Supplementary Table 3.
    Global human mobility data
    We used the Google COVID-19 Aggregated Mobility Research Dataset, which contains anonymized relative mobility flows aggregated over users who have turned on the Location History setting, which is off by default. This is similar to the data used to show how busy certain types of places are in Google Maps, helping identify when a local business tends to be the most crowded. The mobility flux is aggregated per week, between pairs of approximately 5-km2 cells worldwide, and for the purpose of this study aggregated for 310 cities worldwide. We calculated both mobility within each city’s shapefile and mobility coming into each city. For each city, change in relative mobility was defined by mi = mil(April)/mib(December), where mi is defined as mobility in city i.
    To produce this data set, machine learning was applied to log data to automatically segment it into semantic trips48. To provide strong privacy guarantees, all trips were anonymized and aggregated using a differentially private mechanism49 to aggregate flows over time (https://policies.google.com/technologies/anonymization). This research is done on the resulting heavily aggregated and differentially private data. No individual user data were ever manually inspected; only heavily aggregated flows of large populations were handled.
    All anonymized trips were processed in aggregate to extract their origin and destination location and time. For example, if users traveled from location a to location b within time interval t, the corresponding cell (a, b, t) in the tensor would be n ± err, where err is Laplacian noise. The automated Laplace mechanism adds random noise drawn from a zero-mean Laplace distribution and yields (𝜖, δ)-differential privacy guarantee of 𝜖 = 0.66 and δ = 2.1 × 10−29. The parameter 𝜖 controls the noise intensity in terms of its variance, whereas δ represents the deviation from pure 𝜖-privacy. The closer they are to zero, the stronger the privacy guarantees. Each user contributes, at most, one increment to each partition. If they go from a region a to another region b multiple times in the same week, they contribute only once to the aggregation count.
    These results should be interpreted in light of several important limitations. First, the Google mobility data are limited to smartphone users who have opted in to Google’s Location History feature, which is off by default. These data might not be representative of the population as whole, and, furthermore, their representativeness might vary by location. Importantly, these limited data are viewed only through the lens of differential privacy algorithms, specifically designed to protect user anonymity and obscure fine detail. Moreover, comparisons across, rather than within, locations are descriptive only because these regions can differ in substantial ways.
    Simulating epidemic dynamics
    We simulated a simple stochastic SIR model of infection spread on weighted networks created to represent hierarchically structured populations. Individuals were first assigned to households using the distribution of household sizes in China (data from the United Nations Population Division; mean, 3.4 individuals). Households were then assigned to ‘neighborhoods’ of ~100 individuals, and all neighborhood members were connected with a lower weight. A randomly chosen 10% of individuals were given ‘external’ connections to individuals outside the neighborhood. The total population size was n = 1,000. Simulations were run for 300 d, and averages were taken over 20 iterations. The SIR model used a per-contact transmission rate of 𝛽 = 0.15 per day and recovery rate 𝛾 = 0.1 per day. For the simulations without interventions, the weights were wHH = 1, wNH = 0.01 and wEX = 0.001 for the crowded prefecture and wEX = 0.0001 for the less crowded prefecture. For the simulations with interventions, the household and neighborhood weights were the same, but we used wEX = 0.01 for the crowded prefecture and wEX = 0.001 for the ‘sparse’ prefecture. The intervention reduced the weight of all connections outside the household by 75%.
    Reporting Summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Phage gene expression and host responses lead to infection-dependent costs of CRISPR immunity

    1.
    van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB, Barbu EM, et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio. 2015;6:e01796–15.
    2.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2019;18:1–17.

    3.
    Portillo MC, Gonzalez JM. CRISPR elements in the Thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus. J Appl Genet. 2009;50:421–30.
    CAS  PubMed  Article  Google Scholar 

    4.
    Watson BN, Staals RH, Fineran, PC. CRISPR-Cas-mediated phage resistance enhances horizontal gene transfer by transduction. MBio. 2018;9:e02406–17.

    5.
    Varble A, Meaden S, Barrangou R, Westra ER, Marraffini LA. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. Nat Microbiol. 2019;4:956–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Levin BR. Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria. PLoS Genet. 2010;6:e1001171.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Rollie C, Chevallereau A, Watson BN, Chyou TY, Fradet O, McLeod I, et al. Targeting of temperate phages drives loss of type I CRISPR-Cas systems. Nature. 2020;578:149–53.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Westra ER, van Houte S, Oyesiku-Blakemore S, Makin B, Broniewski JM, Best A, et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol. 2015;25:1043–9.
    CAS  PubMed  Article  Google Scholar 

    10.
    Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc R Soc B: Biol Sci. 2015;282:20151270.
    Article  CAS  Google Scholar 

    11.
    van Houte S, Ekroth AK, Broniewski JM, Chabas H, Ashby B, Bondy-Denomy J, et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature. 2016;532:385–8.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 2010;26:335–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature. 2015;520:505–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 2013;9:e1003454.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Staals RH, Jackson SA, Biswas A, Brouns SJ, Brown CM, Fineran PC. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–Cas system. Nat Commun. 2016;7:1–13.
    Article  CAS  Google Scholar 

    16.
    Weissman JL, Stoltzfus A, Westra ER, Johnson PL. Avoidance of Self during CRISPR immunization. Trends Microbiol. 2020;28:543–53.

    17.
    Koonin EV. Open questions: CRISPR biology. BMC Biol. 2018;16:1–3.
    Article  CAS  Google Scholar 

    18.
    Patterson AG, Yevstigneyeva MS, Fineran PC. Regulation of CRISPR–Cas adaptive immune systems. Curr Opin Microbiol. 2017;37:1–7.
    CAS  PubMed  Article  Google Scholar 

    19.
    Quax TE, Voet M, Sismeiro O, Dillies MA, Jagla B, Coppee JY, et al. Massive activation of archaeal defense genes during viral infection. J Virol. 2013;87:8419–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, Shah M, et al. Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. PloS ONE. 2012;7:e38077.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J Mol Biol. 2010;395:270–81.
    CAS  PubMed  Article  Google Scholar 

    22.
    Chabas H, van Houte S, Høyland-Kroghsbo NM, Buckling A, Westra ER. Immigration of susceptible hosts triggers the evolution of alternative parasite defence strategies. Proc R Soc B: Biol Sci. 2016;283:20160721.
    Article  Google Scholar 

    23.
    Pawluk A, Staals RH, Taylor C, Watson BN, Saha S, Fineran PC, et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol. 2016;1:1–6.
    Article  CAS  Google Scholar 

    24.
    Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature. 2015;526:136–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Stanley SY, Borges AL, Chen KH, Swaney DL, Krogan NJ, Bondy-Denomy J, et al. Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription. Cell. 2019;178:1452–64.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR, O’Toole GA. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J Bacteriol. 2012;194:5728–38.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Chevallereau A, Meaden S, Fradet O, Landsberger M, Maestri A, Biswas A, et al. Exploitation of the cooperative behaviors of anti-CRISPR phages. Cell Host Microbe. 2020;27:189–98.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
    Article  Google Scholar 

    29.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.
    CAS  PubMed  Article  Google Scholar 

    31.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
    CAS  PubMed  Article  Google Scholar 

    32.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ. 2015;3:e1420.
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–70.

    35.
    Biswas A, Staals RH, Morales SE, Fineran PC, Brown CM. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17:1–14.
    Article  CAS  Google Scholar 

    36.
    Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013;10:817–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Joshi N. & Fass J. Sickle: A sliding-window, adaptive, quality-based trimming tool for fastQ files (version 1.33) [software]. 2011. https://github.com/najoshi/sickle.

    38.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31:3718–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Richter C, Dy RL, McKenzie RE, Watson BN, Taylor C, Chang JT, et al. Priming in the Type IF CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 2014;42:8516–26.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Fineran PC, Gerritzen MJ, Suárez-Diez M, Künne T, Boekhorst J, van Hijum SA, et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci USA. 2014;111:E1629–38.
    CAS  PubMed  Article  Google Scholar 

    44.
    Xue C, Seetharam AS, Musharova O, Severinov K, Brouns J, Severin SJ, et al. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res. 2015;43:10831–47.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Wortham BW, Oliveira MA, Patel CN. Polyamines in bacteria: pleiotropic effects yet specific mechanisms. In: (eds Perry RD, Fetherston JD). The genus Yersinia. New York, NY: Springer; 2007. p. 106–15.

    46.
    Bru JL, Rawson B, Trinh C, Whiteson K, Høyland-Kroghsbo NM, Siryaporn A. PQS produced by the Pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics. J Bacteriol. 2019;201:e00383–19.

    47.
    Doron S, Fedida A, Hernández-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.
    CAS  PubMed  Article  Google Scholar 

    48.
    Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A, Chabas H, et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell. 2018;174:908–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Wei Y, Terns RM, Terns MP. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev. 2015;29:356–61.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Fokine A, Rossmann MG. Common evolutionary origin of procapsid proteases, phage tail tubes, and tubes of bacterial type VI secretion systems. Structure. 2016;24:1928–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Modell JW, Jiang W, Marraffini LA. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature. 2017;544:101–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    van Sluijs L, van Houte S, van Der Oost J, Brouns SJ, Buckling A, Westra ER. Addiction systems antagonize bacterial adaptive immunity. FEMS Microbiol Lett. 2019;366:fnz047.
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Wagemans J, Blasdel BG, Van den Bossche A, Uytterhoeven B, De Smet J, Paeshuyse J, et al. Functional elucidation of antibacterial phage ORFans targeting Pseudomonas aeruginosa. Cell Microbiol. 2014;16:1822–35.
    CAS  PubMed  Article  Google Scholar 

    54.
    van Houte S, Ros VI, van Oers MM. Walking with insects: molecular mechanisms behind parasitic manipulation of host behaviour. Mol Ecol. 2013;22:3458–75.
    PubMed  Article  Google Scholar 

    55.
    Taylor TB, Buckling A. Bacterial motility confers fitness advantage in the presence of phages. J Evolut Biol. 2013;26:2154–60.
    CAS  Article  Google Scholar 

    56.
    Heussler GE, Cady KC, Koeppen K, Bhuju S, Stanton BA, O’Toole GA. Clustered regularly interspaced short palindromic repeat-dependent, biofilm-specific death of Pseudomonas aeruginosa mediated by increased expression of phage-related genes. MBio. 2015;6:e00129–15.

    57.
    Hernandez CA, Koskella B. Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant‐bacteria‐phage system. Evolution. 2019;73:2461–75.
    CAS  PubMed  Article  Google Scholar 

    58.
    Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature. 2019;574:549–52.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Westra E, Levin BR. How important is CRISPR-Cas for protecting natural populations of bacteria against infections with badass DNAs? BioRxiv. 2020. https://www.biorxiv.org/content/10.1101/2020.02.05.935965v2. More