More stories

  • in

    As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network “RootDetector”

    DatasetsImage acquisitionFor this study, we assembled three datasets: one for training of the RootDetector Convolutional Neural Network (Training-Set), one for a performance comparison between humans and RootDetector in segmenting roots in minirhizotron images (Comparison-Set), and one for the validation of the algorithm (Validation-Set). The Training-Set contained 129 images comprised of 17 randomly selected minirhizotron images sampled in a mesocosm experiment (see “Mesocosm sampling” Section), 47 randomly selected minirhizotron images sampled in a field study (see “Field sampling” Section) as well as the 65 minirhizotron images of soy roots published by Wang et al.15. The Comparison-Set contained 25 randomly selected minirhizotron images from the field-study which all were not part of the images included in the Training- and Validation-Sets. The Validation-Set contained 10 randomly selected minirhizotron images from the same field study, which had not been used in the Training-Set. All images were recorded with 2550 ✕ 2273 pixels at 300 dpi with a CI-600 In-Situ Root Imager (CID Bio-Science Inc., Camas, WA, USA) and stored as .tiff files to reduce compression loss. For all training and evaluation purposes we used raw, unprocessed output images from the CI-600.Mesocosm samplingThe mesocosm experiment was established in 2018 on the premises of the Institute for Botany and Landscape Ecology of the University of Greifswald (Fig. S1). It features 108 heavy duty plastic buckets of 100 l each, filled to two thirds of their height with moderately decomposed sedge fen peat. Each mesocosm contained one minirhizotron (inner diameter: 64 mm, outer diameter: 70 mm, length: 650 mm) installed at a 45°angle and capped in order to avoid penetration by light. The mesocosms were planted with varying compositions of plant species that typically occur in north-east German sedge fens (Carex rostrata, Carex acutiformis, Glyceria maxima, Equisetum fluviatile, Juncus inflexus, Mentha aquatica, Acorus calamus and Lycopus europaeus). The mesocosms were subjected to three different water table regimes: stable at soil surface level, stable at 20 cm below soil surface and fluctuating between the two levels every two weeks. The minirhizotrons were scanned weekly at two levels of soil depth (0–20 cm and 15–35 cm) between April 2019 and December 2021, resulting in roughly 9500 minirhizotron images of 216 × 196 mm. Manual quantification of root length would, based on own experience, take approximately three hours per image, resulting in approximately 28,500 h of manual processing for the complete dataset. Specimens planted were identified by author Dr. Blume-Werry, however no voucher specimen were deposited. All methods were carried out in accordance with relevant institutional, national, and international guidelines and legislation.Field samplingThe field study was established as part of the Wetscapes project in 201716. The study sites were located in Mecklenburg-Vorpommern, Germany, in three of the most common wetland types of the region: alder forest, percolation fen and coastal fen (Fig. S2). For each wetland type, a pair of drained versus rewetted study sites was established. A detailed description of the study sites and the experimental setup can be found in Jurasinski et al.16. At each site, 15 minirhizotrons (same diameter as above, length: 1500 mm) were installed at 45° angle along a central boardwalk. The minirhizotrons have been scanned biweekly since April 2018, then monthly since January 2019 at two to four levels of soil depth (0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm), resulting in roughly 12,000 minirhizotron images of 216 × 196 cm, i.e. an estimated 36,000 h of manual processing for the complete dataset. Permission for the study was obtained from the all field owners. Figure 1Overview of the RootDetector system. The main component is a semantic segmentation network based on the U-Net architecture. The root length is estimated by skeletonizing the segmentation output and applying the formula introduced by Kimura et al.17. During training only, a weight map puts more emphasis on fine roots.Full size imageThe CNN RootDetectorImage annotationFor the generation of training data for the CNN, human analysts manually masked all root pixels in the 74 images of the Training-Set using GIMP 2.10.12. The resulting ground truth data are binary, black-and-white images in Portable Network Graphics (.png) format, where white pixels represent root structures and black pixels represent non-root objects and soil (Fig. 2b). All training data were checked and, if required, corrected by an expert (see “Selection of participants” for definition). The Validation-Set was created in the same way but exclusively by experts.Figure 2Example of segmentation and result of skeletonization. A 1000 by 1000 pixel input image (a), the manually annotated ground truth image (b), the RootDetector estimation image (c), the combined representation image (error map, d with green indicating true positives, red indicating false positive, blue indicating false negatives), the skeletonized RootDetector estimation image (e), and the skeletonized ground truth image (f).Full size imageArchitectureRootDetector’s core consists of a Deep Neural Network (DNN) based on the U-Net image segmentation architecture[27]nd is implemented in TensorFlow and Keras frameworks18. Although U-Net was originally developed for biomedical applications, it has since been successfully applied to other domains due to its generic design.RootDetector is built up of four down-sampling blocks, four up-sampling blocks and a final output block (Fig. 1). Every block contains two 3 × 3 convolutional layers, each followed by rectified linear units (ReLU). The last output layer instead utilizes Sigmoid activation. Starting from initial 64 feature channels, this number is doubled in every down-block and the resolution is halved via 2 × 2 max-pooling. Every up-block again doubles the resolution via bilinear interpolation and a 1 × 1 convolution which halves the number of channels. Importantly, after each up-sampling step, the feature map is concatenated with the corresponding feature map from the down-sampling path. This is crucial to preserve fine spatial details.Our modifications from the original architecture include BatchNormalization19 after each convolutional layer which significantly helps to speed up the training process and zero-padding instead of cropping as suggested by Ronneberger, Fischer, & Brox20 to preserve the original image size.In addition to the root segmentation network, we trained a second network to detect foreign objects, specifically the adhesive tape that is used as a light barrier on the aboveground part of the minirhizotrons. We used the same network architecture as above and trained in a supervised fashion with the binary cross-entropy loss. During inference, the result is thresholded (predefined threshold value: 0.5) and used without post-processing.TrainingWe pre-trained RootDetector on the COCO dataset21 to generate a starting point. Although the COCO dataset contains a wide variety of image types and classes not specifically related to minirhizotron images, Majurski et al.22 showed, that for small annotation counts, transfer-learning even from unrelated datasets may improve a CNNs performance by up to 20%. We fine-tuned for our dataset with the Adam optimizer23 for 15 epochs and trained on a total of 129 images from the Training-Set (17 mesocosm images, 47 field-experiment images, 65 soy root images). To enhance the dataset size and reduce over-fitting effects, we performed a series of augmentation operations as described by Shorten & Khoshgoftaar24. In many images, relatively coarse roots ( > 3 mm) occupied a major part of the positive (white) pixel space, which might have caused RootDetector to underestimate fine root details overall. Similarly, negative space (black pixels) between tightly packed, parallel roots was often very small and might have impacted the training process to a lesser extent when compared to large areas with few or no roots (Fig. 2). To mitigate both effects, we multiplied the result of the cross-entropy loss map with a weight map which emphasizes positive–negative transitions. This weight map is generated by applying the following formula to the annotated ground truth images:$$omega left( x right) = 1 – left( {tanh left( {2tilde{x} – 1} right)} right)^{2}$$
    (1)
    where ω(x) is the average pixel value of the annotated weight map in a 5 × 5 neighborhood around pixel x. Ronneberger, Fischer, & Brox20 implemented a similar weight map, however with stronger emphasis on space between objects. As this requires computation of distances between two comparatively large sets of points, we adapted and simplified their formula to be computable in a single 5 × 5 convolution.For the loss function we applied a combination of cross-entropy and Dice loss 25:$${mathcal{L}} = {mathcal{L}}_{CE} + lambda {mathcal{L}}_{Dice} = – frac{1}{N}sumnolimits_{i} {wleft( {x_{i} } right)y_{i} log left( {x_{i} } right) + lambda frac{{2sumnolimits_{i} {x_{i} y_{i} } }}{{sumnolimits_{i} {x_{i}^{2} sumnolimits_{i} {y_{i}^{2} } } }}}$$
    (2)

    where x are the predicted pixels, y the corresponding ground truth labels, N the number of pixels in an image and λ a balancing factor which we set to 0.01. This value was derived empirically. The Dice loss is applied per-image to counteract the usually high positive-to-negative pixel imbalance. Since this may produce overly confident outputs and restrict the application of weight maps, we used a relatively low value for λ.Output and post-processingRootDetector generates two types of output. The first type of output are greyscale .png files in which white pixels represent pixels associated with root structures and black pixels represent non-root structures and soil (Fig. 2c). The advantage of .png images is their lossless ad artifact-free compression at relatively small file sizes. RootDetector further skeletonizes the output images and reduces root-structures to single-pixel representations using the skeletonize function of scikit-image v. 0.17.1 (26; Fig. 2e,f). This helps to reduce the impact of large diameter roots or root-like structures such as rhizomes in subsequent analyses and is directly comparable to estimations of root length. The second type of output is a Comma-separated values (.csv) file, with numerical values indicating the number of identified root pixels, the number of root pixels after skeletonization, the number of orthogonal and diagonal connections between pixels after skeletonization and an estimation of the physical combined length of all roots for each processed image. The latter is a metric commonly used in root research as in many species, fine roots provide most vital functions such as nutrient and water transport3. Therefore, the combined length of all roots in a given space puts an emphasis on fine roots as they typically occupy a relatively smaller fraction of the area in a 2D image compared to often much thicker coarse roots. To derive physical length estimates from skeletonized images, RootDetector counts orthogonal- and diagonal connections between pixels of skeletonized images and employs the formula proposed by Kimura et al.17 (Eq. 3).$$L = left[ {N_{d}^{2} + left( {N_{d} + N_{o} /2} right)^{2} } right]^{{1/2}} + N_{o} /2$$
    (3)
    where Nd is the number of diagonally connected and No the number of orthogonally connected skeleton pixels. To compute Nd we convolve the skeletonized image with two 2 × 2 binary kernels, one for top-left-to-bottom-right connections and another for bottom-left-to-top-right connections and count the number of pixels with maximum response in the convolution result. Similarly, No is computed with a 1 × 2 and a 2 × 1 convolutional kernels.Performance comparisonSelection of participantsFor the performance comparison, we selected 10 human analysts and divided them into three groups of different expertise levels in plant physiology and with the usage of digital root measuring tools. The novice group consisted of 3 ecology students (2 bachelor’s, 1 master’s) who had taken or were taking courses in plant physiology but had no prior experience with minirhizotron images or digital root measuring tools. This group represents undergraduate students producing data for a Bachelor thesis or student assistants employed to process data. The advanced group consisted of 3 ecology students (1 bachelor’s, 2 master’s) who had already taken courses in plant physiology and had at least 100 h of experience with minirhizotron images and digital root measuring tools. The expert group consisted of 4 scientists (2 PhD, 2 PhD candidates) who had extensive experience in root science and at least 250 h of experience with digital root measuring tools. All methods were carried out in accordance with relevant institutional, national, and international guidelines and legislation and informed consent was obtained from all participants.Instruction and root tracingAll three groups were instructed by showing them a 60 min live demo of an expert tracing roots in minirhizotron images, during which commonly encountered challenges and pitfalls were thoroughly discussed. Additionally, all participants were provided with a previously generated, in-depth manual containing guidelines on the identification of root structures, the correct operation of the root tracing program and examples of often encountered challenges and suggested solutions. Before working on the Comparison-Set, all participants traced roots in one smaller-size sample image and received feedback from one expert.Image preparation and root tracingBecause the minirhizotron images acquired in the field covered a variety of different substrates, roots of different plant species, variance in image quality, and because tracing roots is very time consuming, we decided to maximize the number of images by tracing roots only in small sections, in order to cover the largest number of cases possible. To do this, we placed a box of 1000 × 1000 pixels (8.47 × 8.47 cm) at a random location in each of the images in the Comparison-Set and instructed participants to trace only roots within that box. Similarly, we provided RootDetector images where the parts of the image outside the rectangle were occluded. All groups used RootSnap! 1.3.2.25 (CID Bio-Science Inc., Camas, WA, USA;27), a vector based tool to manually trace roots in each of the 25 images in the comparison set. We decided on RootSnap! due to our previous good experience with the software and its’ relative ease of use. The combined length of all roots was then exported as a csv file for each person and image and compared to RootDetector’s output of the Kimura root length.ValidationWe tested the accuracy of RootDetector on a set of 10 image segments of 1000 by 1000 pixels cropped from random locations of the 10 images of the Validation-Set. These images were annotated by a human expert without knowledge of the estimations by the algorithm and were exempted from the training process. As commonly applied in binary classification, we use the F1 score as a metric to evaluate the performance RootDetector. F1 is calculated from precision (Eq. 4) and recall (Eq. 5) and represents their harmonic mean (Eq. 6). Ranging from 0 to 1, higher values indicate high classification (segmentation) performance. As one of the 10 image sections contained no roots and thus no F1 Score was calculable, it was excluded from the validation. We calculated the F1 score for each of the nine remaining image sections and averaged the values as a metric for overall segmentation performance.$$Precision;(P) = frac{{tp}}{{tp + fp}}$$
    (4)
    $$Recall;(R) = frac{{tp}}{{tp + fn}}$$
    (5)
    $$F1 = 2*frac{{P*R}}{{P + R}}$$
    (6)
    where P = precision, R = recall, tp = true positives; fp = false positives, fn = false negatives.Statistical analysisWe used R Version 4.1.2 (R Core Team, 2021) for all statistical analyses and R package ggplot2 Version 3.2.128 for visualizations. Pixel identification-performance comparisons were based on least-squares fit and the Pearson method. Root length estimation-performance comparisons between groups of human analysts (novice, advanced, expert) and RootDetector were based on the respective estimates of total root length plotted over the minirhizotron images in increasing order of total root length. Linear models were calculated using the lm function for each group of analysts. To determine significant differences between the groups and the algorithm, 95% CIs as well as 83% CIs were displayed and RootDetector root length outside the 95% CI were considered significantly different from the group estimate at α = 0.0529. The groups of human analysts were considered significantly different if their 83% CIs did not overlap, as the comparison of two 83% CIs approximates an alpha level of 5%30,31.This study is approved by Ethikkommission der Universitätsmedizin Greifswald, University of Greifswald, Germany. More

  • in

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Bradford, M. A. et al. Soil carbon science for policy and practice. Nat. Sustain. 2, 1070–1072 (2019).Article 

    Google Scholar 
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).Article 

    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).Article 

    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).Article 

    Google Scholar 
    Wang, B. R., An, S. S., Liang, C., Liu, Y. & Kuzyakov, Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 162, 108422 (2021).Article 

    Google Scholar 
    Kästner, M. & Miltner, A. in The Future of Soil Carbon (eds Garcia, C. et al.) Ch. 5 (Academic Press, 2018).Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).Article 

    Google Scholar 
    Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).Article 

    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).Article 

    Google Scholar 
    Emerson, J. B. et al. Schrödinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).Article 

    Google Scholar 
    Zhang, Y. et al. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model. Biogeosciences 18, 3147–3171 (2021).Article 

    Google Scholar 
    Ackermann, M., Stearns Stephen, C. & Jenal, U. Senescence in a bacterium with asymmetric division. Science 300, 1920–1920 (2003).Article 

    Google Scholar 
    Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nyström, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).Article 

    Google Scholar 
    Maheshwari, R. & Navaraj, A. Senescence in fungi: the view from Neurospora. FEMS Microbiol. Lett. 280, 135–143 (2008).Article 

    Google Scholar 
    See, C. R. et al. Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. 28, 2527–2540 (2022).Article 

    Google Scholar 
    Pusztahelyi, T. et al. Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiologica 51, 547–554 (2006).Article 

    Google Scholar 
    Bartoszewska, M. & Kiel, J. A. The role of macroautophagy in development of filamentous fungi. Antioxid. Redox Signal. 14, 2271–2287 (2011).Article 

    Google Scholar 
    Josefsen, L. et al. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 8, 326–337 (2012).Article 

    Google Scholar 
    Heaton, L. L., Jones, N. S. & Fricker, M. D. Energetic constraints on fungal growth. Am. Nat. 187, E27–E40 (2016).Article 

    Google Scholar 
    Taiz, L. & Zeiger, E. Plant Physiology 4th edn (Spektrum Akademischer Verlag, 2008).Bowman, E. J. & Bowman, B. J. in Cellular and Molecular Biology of Filamentous Fungi (eds Borkovich, K. & Ebbole, D.) 179–190 (ASM Press, 2010).Voigt, O. & Pöggeler, S. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl. Microbiol. Biotechnol. 97, 9277–9290 (2013).Article 

    Google Scholar 
    Grimmett, I. J., Shipp, K. N., Macneil, A. & Barlocher, F. Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol. 6, 493–500 (2013).Article 

    Google Scholar 
    Camenzind, T., Philipp Grenz, K., Lehmann, J. & Rillig, M. C. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol. Lett. 24, 208–218 (2021).Article 

    Google Scholar 
    Mason-Jones, K., Robinson, S. L., Veen, G. F., Manzoni, S. & van der Putten, W. H. Microbial storage and its implications for soil ecology. ISME J. 16, 617–629 (2022).Article 

    Google Scholar 
    Gow, N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5, FUNK-0035–2016 (2017).Article 

    Google Scholar 
    Steiner, U. K. Senescence in bacteria and its underlying mechanisms. Front. Cell Dev. Biol. 9, 668915 (2021).Article 

    Google Scholar 
    Allocati, N., Masulli, M., Di Ilio, C. & De Laurenzi, V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6, e1609 (2015).Article 

    Google Scholar 
    Peeters, S. H. & de Jonge, M. I. For the greater good: programmed cell death in bacterial communities. Microbiol. Res. 207, 161–169 (2018).Article 

    Google Scholar 
    Wang, J. & Bayles, K. W. Programmed cell death in plants: lessons from bacteria? Trends Plant Sci. 18, 133–139 (2013).Article 

    Google Scholar 
    Nagamalleswari, E., Rao, S., Vasu, K. & Nagaraja, V. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 45, 8423–8434 (2017).Article 

    Google Scholar 
    Kysela, D. T., Brown, P. J. B., Huang, K. C. & Brun, Y. V. Biological consequences and advantages of asymmetric bacterial growth. Annu. Rev. Microbiol. 67, 417–435 (2013).Article 

    Google Scholar 
    Bayles, K. W. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12, 63–69 (2014).Article 

    Google Scholar 
    Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).Article 

    Google Scholar 
    Coleman, D. C. & Wall, D. H. in Soil Microbiology, Ecology and Biochemistry 4th edn (ed. Paul, E. A.) Ch. 5 (Academic Press, 2015).Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021).Article 

    Google Scholar 
    Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).Article 

    Google Scholar 
    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).Article 

    Google Scholar 
    Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).Article 

    Google Scholar 
    Bonkowski, M. & Clarholm, M. J. A. P. Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool. 51, 237–247 (2012).
    Google Scholar 
    Potapov, A. M., Pollierer, M. M., Salmon, S., Šustr, V. & Chen, T.-W. Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. J. Anim. Ecol. 90, 1919–1933 (2021).Article 

    Google Scholar 
    Esteban, G. F. & Fenchel, T. M. in Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists (eds Esteban, G. F. & Fenchel, T. M.) 33–54 (Springer, 2020).Koksharova, O. A. Bacteria and phenoptosis. Biochemistry 78, 963–970 (2013).
    Google Scholar 
    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).Boddy, L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31, 185–194 (2000).Article 

    Google Scholar 
    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).Article 

    Google Scholar 
    Müller, S. et al. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl. Environ. Microbiol. 81, 203–210 (2015).Article 

    Google Scholar 
    Laskowska, E. & Kuczynska-Wisnik, D. New insight into the mechanisms protecting bacteria during desiccation. Curr. Genet. 66, 313–318 (2020).Article 

    Google Scholar 
    Rillig, M. C., Ryo, M. & Lehmann, A. Classifying human influences on terrestrial ecosystems. Glob. Change Biol. 27, 2273–2278 (2021).Article 

    Google Scholar 
    Dörr, T., Moynihan, P. J. & Mayer, C. Bacterial cell wall structure and dynamics. Front. Microbiol. 10, 02051 (2019).Article 

    Google Scholar 
    Corredor, B., Lang, B. & Russell, D. Effects of nitrogen fertilization on soil fauna in a global meta-analysis. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-1438491/v1 (2022).Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).Article 

    Google Scholar 
    Manzoni, S., Chakrawal, A., Spohn, M. & Lindahl, B. D. Modeling microbial adaptations to nutrient limitation during litter decomposition. Front. For. Glob. Change 4, 686945 (2021).Article 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article 

    Google Scholar 
    Gunina, A. & Kuzyakov, Y. From energy to (soil organic) matter. Glob. Change Biol. 28, 2169–2182 (2022).Article 

    Google Scholar 
    Fernandez, C. W. & Koide, R. T. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol. Biochem. 77, 150–157 (2014).Article 

    Google Scholar 
    Kästner, M., Miltner, A., Thiele-Bruhn, S. & Liang, C. Microbial necromass in soils—linking microbes to soil processes and carbon turnover. Front. Environ. Sci. 9, 756378 (2021).Article 

    Google Scholar 
    Buckeridge, K. M., Creamer, C. & Whitaker, J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Funct. Ecol. 36, 1396–1410 (2022).Article 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).Article 

    Google Scholar 
    Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 14, 1520–1532 (2020).Article 

    Google Scholar 
    Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E. & Grandy, A. S. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019).Article 

    Google Scholar 
    Liang, C. Soil microbial carbon pump: mechanism and appraisal. Soil Ecol. Lett. 2, 241–254 (2020).Article 

    Google Scholar 
    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).Article 

    Google Scholar 
    van Groenigen, J. W. et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ. Sci. Technol. 51, 4738–4739 (2017).Article 

    Google Scholar 
    Greenlon, A. et al. Quantitative stable-isotope probing (qSIP) with metagenomics links microbial physiology and activity to soil moisture in Mediterranean-climate grassland ecosystems (in the press).Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).Article 

    Google Scholar 
    Schaible, G. A., Kohtz, A. J., Cliff, J. & Hatzenpichler, R. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME Commun. 2, 52 (2022).Article 

    Google Scholar 
    See, C. R. et al. Distinct carbon fractions drive a generalisable two-pool model of fungal necromass decomposition. Funct. Ecol. 35, 796–806 (2021).Article 

    Google Scholar 
    Wang, C. et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol. Biochem. 141, 107687 (2020).Article 

    Google Scholar 
    Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).Article 

    Google Scholar 
    Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).Article 

    Google Scholar 
    Trap, J., Bonkowski, M., Plassard, C., Villenave, C. & Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 398, 1–24 (2016).Article 

    Google Scholar 
    Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).Article 

    Google Scholar 
    Muñoz-Leoz, B., Ruiz-Romera, E., Antigüedad, I. & Garbisu, C. Tebuconazole application decreases soil microbial biomass and activity. Soil Biol. Biochem. 43, 2176–2183 (2011).Article 

    Google Scholar 
    Meyer, M., Diehl, D., Schaumann, G. E. & Muñoz, K. Agricultural mulching and fungicides—impacts on fungal biomass, mycotoxin occurrence, and soil organic matter decomposition. Environ. Sci. Pollut. Res. 28, 36535–36550 (2021).Article 

    Google Scholar 
    Thiery, S. & Kaimer, C. The predation strategy of Myxococcus xanthus. Front. Microbiol. 11, 2 (2020).Article 

    Google Scholar 
    Laloux, G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus. Front. Microbiol. 10, 3136 (2020).Article 

    Google Scholar  More

  • in

    City comfort: weaker metabolic response to changes in ambient temperature in urban red squirrels

    Speakman, J. R. The cost of living: Field metabolic rates of small mammals. Adv. Ecol. Res. 30, 177–297 (1999).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metaboolic theory of ecology. Ecology 85(7), 1771–1789. https://doi.org/10.1890/03-9000 (2004).Article 

    Google Scholar 
    Larivée, M. L., Boutin, S., Speakman, J. R., McAdam, A. G. & Humphries, M. M. Associations between over-winter survival and resting metabolic rate in juvenile North American red squirrels. Funct. Ecol. 24(3), 597–607. https://doi.org/10.1111/j.1365-2435.2009.01680.x (2010).Article 

    Google Scholar 
    Corp, N., Gorman, M. L. & Speakman, J. R. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart. J. Comp. Physiol. B 167(3), 229–239. https://doi.org/10.1007/s003600050069 (1997).Article 
    CAS 

    Google Scholar 
    Lehto Hürlimann, M., Martin, J. G. A. & Bize, P. Evidence of phenotypic correlation between exploration activity and resting metabolic rate among populations across an elevation gradient in a small rodent species. Behav. Ecol. Sociobiol. 73(9), 131. https://doi.org/10.1007/s00265-019-2740-6 (2019).Article 

    Google Scholar 
    Reher, S., Rabarison, H., Montero, B. K., Turner, J. M. & Dausmann, K. H. Disparate roost sites drive intraspecific physiological variation in a Malagasy bat. Oecologia 198(1), 35–52. https://doi.org/10.1007/s00442-021-05088-2 (2022).Article 
    ADS 

    Google Scholar 
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. https://doi.org/10.1038/s41893-019-0436-6 (2019).Article 

    Google Scholar 
    Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21(4), 186–191. https://doi.org/10.1016/j.tree.2005.11.019 (2006).Article 

    Google Scholar 
    United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2018: Highlights. https://population.un.org/wup/Publications/ (2018).Alberti, M. et al. The complexity of urban eco-evolutionary dynamics. Bioscience 70(9), 772–793. https://doi.org/10.1093/biosci/biaa079 (2020).Article 

    Google Scholar 
    Birnie-Gauvin, K., Peiman, K. S., Gallagher, A. J., de Bruijn, R. & Cooke, S. J. Sublethal consequences of urban life for wild vertebrates. Environ. Rev. 24(4), 416–425. https://doi.org/10.1139/er-2016-0029 (2016).Article 

    Google Scholar 
    Diamond, S. E. & Martin, R. A. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J. Exp. Biol. 224((Suppl_1)), jeb22336. https://doi.org/10.1242/jeb.229336 (2021).Article 

    Google Scholar 
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319(5864), 756–760. https://doi.org/10.1126/science.1150195 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    McDonnell, M. J. & Pickett, S. T. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71(4), 1232–1237. https://doi.org/10.2307/1938259 (1990).Article 

    Google Scholar 
    Francis, R. A. & Chadwick, M. A. What makes a species synurbic?. Appl. Geogr. 32(2), 514–521. https://doi.org/10.1016/j.apgeog.2011.06.013 (2012).Article 

    Google Scholar 
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proc. 4th Int. Symposium Urban Wildl. Conserv (Tucson, University of Arizona, 2004).Coogan, S. C. P., Raubenheimer, D., Zantis, S. P. & Machovsky-Capuska, G. E. Multidimensional nutritional ecology and urban birds. Ecosphere 9(4), e02177. https://doi.org/10.1002/ecs2.2177 (2018).Article 

    Google Scholar 
    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. Camb. Philos. Soc. 88(3), 537–549. https://doi.org/10.1111/brv.12012 (2013).Article 

    Google Scholar 
    Łopucki, R., Klich, D., Ścibior, A. & Gołębiowska, D. Hormonal adjustments to urban conditions: Stress hormone levels in urban and rural populations of Apodemus agrarius. Urban Ecosyst. 22(3), 435–442. https://doi.org/10.1007/s11252-019-0832-8 (2019).Article 

    Google Scholar 
    McCleery, R. in Urban mammals in Urban Ecosystem Ecology (eds. Aitkenhead-Peterson, J., Volder, A.) 87–102 (American Society of Agronomy, 2010). https://doi.org/10.2134/agronmonogr55.c52010Uchida, K., Suzuki, K., Shimamoto, T., Yanagawa, H. & Koizumi, I. Seasonal variation of flight initiation distance in Eurasian red squirrels in urban versus rural habitat. J. Zool. 298(3), 225–231. https://doi.org/10.1111/jzo.12306 (2016).Article 

    Google Scholar 
    Kleerekoper, L., van Esch, M. & Salcedo, T. B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recyl. 64, 30–38. https://doi.org/10.1016/j.resconrec.2011.06.004 (2012).Article 

    Google Scholar 
    Pickett, S. T. et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 92(3), 331–362. https://doi.org/10.1016/j.jenvman.2010.08.022 (2011).Article 
    CAS 

    Google Scholar 
    Rizwan, A. M., Dennis, L. Y. & Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20(1), 120–128 (2008).Article 
    CAS 

    Google Scholar 
    Isaksson, C. Urban ecophysiology: Beyond costs, stress and biomarkers. J. Exp. Biol. 223(22), jeb203794. https://doi.org/10.1242/jeb.203794 (2020).Article 

    Google Scholar 
    Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14(1), 3–11. https://doi.org/10.1111/eva.13165 (2020).Article 

    Google Scholar 
    Gavett, A. P. & Wakeley, J. S. Blood constituents and their relation to diet in urban and rural house sparrows. Condor 88(3), 279–284. https://doi.org/10.2307/1368873 (1986).Article 

    Google Scholar 
    Murray, M. et al. Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography 38(12), 1235–1242. https://doi.org/10.1111/ecog.01128 (2015).Article 

    Google Scholar 
    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7(1), 5014. https://doi.org/10.1038/s41598-017-04575-y (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Schulte-Hostedde, A. I., Mazal, Z., Jardine, C. M. & Gagnon, J. Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conserv. Physiol. 6(1), coy026. https://doi.org/10.1093/conphys/coy026 (2018).Article 
    CAS 

    Google Scholar 
    Fingland, K., Ward, S. J., Bates, A. J. & Bremner-Harrison, S. A systematic review into the suitability of urban refugia for the Eurasian red squirrel Sciurus vulgaris. Mamm. Rev. 52(1), 26–38. https://doi.org/10.1111/mam.12264 (2021).Article 

    Google Scholar 
    Jokimäki, J., Selonen, V., Lehikoinen, A. & Kaisanlahti-Jokimäki, M.-L. The role of urban habitats in the abundance of red squirrels (Sciurus vulgaris, L.) in Finland. Urban For. Urban Green. 27, 100–108. https://doi.org/10.1016/j.ufug.2017.06.021 (2017).Article 

    Google Scholar 
    Dausmann, K. H., Wein, J., Turner, J. M. & Glos, J. Absence of heterothermy in the European red squirrel (Sciurus vulgaris). Mammal. Biol. 78(5), 332–335. https://doi.org/10.1016/j.mambio.2013.01.004 (2013).Article 

    Google Scholar 
    Turner, J. M., Reher, S., Warnecke, L. & Dausmann, K. H. Eurasian red squirrels show little seasonal variation in metabolism in food-enriched habitat. Physiol. Biochem. Zool. 90(6), 655–662. https://doi.org/10.1086/694847 (2017).Article 

    Google Scholar 
    McNab, B. K. On the comparative ecological and evolutionary significance of total and mass-specific rates of metabolism. Physiol. Biochem. Zool. 72(5), 642–644 (1999).Article 
    CAS 

    Google Scholar 
    Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34(11), 2292–2301. https://doi.org/10.1111/1365-2435.13640 (2020).Article 

    Google Scholar 
    Wauters, L. & Dhondt, A. Activity budget and foraging behaviour of the red squirrel (Sciurus vulgaris Linnaeus, 1758) in a coniferous habitat. Z. Säugetierkd. 52(6), 341–353 (1987).
    Google Scholar 
    Wauters, L., Swinnen, C. & Dhondt, A. A. Activity budget and foraging behaviour of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. J. Zool. 227(1), 71–86. https://doi.org/10.1111/j.1469-7998.1992.tb04345.x (1992).Article 

    Google Scholar 
    Reher, S., Dausmann, K. H., Warnecke, L. & Turner, J. M. Food availability affects habitat use of Eurasian red squirrels (Sciurus vulgaris) in a semi-urban environment. J. Mammal. 97(6), 1543–1554. https://doi.org/10.1093/jmammal/gyw105 (2016).Article 

    Google Scholar 
    Moller, H. Foods and foraging behavior of red (Sciurus vulgaris) and grey (Sciurus carolinensis) squirrels. Mammal. Rev. 13(2–4), 81–98. https://doi.org/10.1111/j.1365-2907.1983.tb00270.x (1983).Article 

    Google Scholar 
    Krauze-Gryz, D. & Gryz, J. in A review of the diet of the red squirrel (Sciurus vulgaris) in different types of habitats in Red squirrels: Ecology, conservation & management in Europe (eds. Shuttleworth, C. M., Lurz, P. W. W., Hayward, M. W.) 39–50 (European Squirrel Initiative, London, 2015)Shuttleworth, C. M. in The effect of supplemental feeding on the red squirrel (Sciurus vulgaris), Doctoral dissertation (University of London, London, 1996).Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. https://doi.org/10.1093/conphys/cox030 (2017).Article 

    Google Scholar 
    Wist, B., Stolter, C. & Dausmann, K. H. Sugar addicted in the city: Impact of urbanisation on food choice and diet composition of the Eurasian red squirrel (Sciurus vulgaris). J. Urban Ecol. 8(1), juac012. https://doi.org/10.1093/jue/juac012 (2022).Article 

    Google Scholar 
    Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc. Biol. Sci. 278(1724), 3465–3473. https://doi.org/10.1098/rspb.2011.1778 (2011).Article 
    CAS 

    Google Scholar 
    Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18(11), 573–581. https://doi.org/10.1016/j.tree.2003.08.007 (2003).Article 

    Google Scholar 
    Lovegrove, B. G. The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. J. Comp. Physiol. B 173(2), 87–112. https://doi.org/10.1007/s00360-002-0309-5 (2003).Article 
    CAS 

    Google Scholar 
    McNab, B. K. The energetics of endotherms. Ohio J. Sci. 74(6), 370–380 (1974).
    Google Scholar 
    Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr. Physiol. 2(3), 2151–2202 (2012).Article 

    Google Scholar 
    Broggi, J. et al. Sources of variation in winter basal metabolic rate in the great tit. Funct. Ecol. 21(3), 528–533. https://doi.org/10.1111/j.1365-2435.2007.01255.x (2007).Article 

    Google Scholar 
    Schlünzen, K. H., Hoffmann, P., Rosenhagen, G. & Riecke, W. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatol. 30(8), 1121–1136. https://doi.org/10.1002/joc.1968 (2010).Article 

    Google Scholar 
    Reher, S. & Dausmann, K. H. Tropical bats counter heat by combining torpor with adaptive hyperthermia. Proc. R. Soc. B Biol. Sci. 288(1942), 20202059. https://doi.org/10.1098/rspb.2020.2059 (2021).Article 

    Google Scholar 
    Rezende, E. L. & Bacigalupe, L. D. Thermoregulation in endotherms: Physiological principles and ecological consequences. J. Comp. Physiol. B 185(7), 709–727. https://doi.org/10.1007/s00360-015-0909-5 (2015).Article 
    CAS 

    Google Scholar 
    Scholander, P. F., Hock, R., Walters, V., Johnson, F. & Irving, L. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99(2), 237–258. https://doi.org/10.2307/1538741 (1950).Article 
    CAS 

    Google Scholar 
    Terblanche, J. S., Clusella-Trullas, S., Deere, J. A., Van Vuuren, B. J. & Chown, S. L. Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate. Physiol. Biochem. Zool. 82(5), 495–503. https://doi.org/10.1086/605361 (2009).Article 

    Google Scholar 
    Gallo, K. P., Easterling, D. R. & Peterson, T. C. The influence of land use/land cover on climatological values of the diurnal temperature range. J. Clim. 9(11), 2941–2944. https://doi.org/10.1175/1520-0442(1996)009%3c2941:TIOLUC%3e2.0.CO;2 (1996).Article 
    ADS 

    Google Scholar 
    Wang, K. et al. Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening. J. Clim. 25(3), 1022–1027. https://doi.org/10.1175/jcli-d-10-05030.1 (2012).Article 
    ADS 

    Google Scholar 
    Fristoe, T. S. et al. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals. Proc. Natl. Acad. Sci. USA 112(52), 15934–15939. https://doi.org/10.1073/pnas.1521662112 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Sándor, K. et al. Urban nestlings have reduced number of feathers in Great Tits (Parus major). Ibis 163(4), 1369–1378. https://doi.org/10.1111/ibi.12948 (2021).Article 

    Google Scholar 
    Beliniak, A., Krauze-Gryz, D., Jasińska, K., Jankowska, K. & Gryz, J. Contrast in daily activity patterns of red squirrels inhabiting urban park and urban forest. Hystrix https://doi.org/10.4404/hystrix-00476-2021 (2021).Article 

    Google Scholar 
    Thomas, L. S., Teich, E., Dausmann, K., Reher, S. & Turner, J. M. Degree of urbanisation affects Eurasian red squirrel activity patterns. Hystrix 29(2), 175–180. https://doi.org/10.4404/hystrix-00065-2018 (2018).Article 

    Google Scholar 
    Krauze-Gryz, D., Gryz, J. & Brach, M. Spatial organization, behaviour and feeding habits of red squirrels: Differences between an urban park and an urban forest. J. Zool. 315(1), 69–78. https://doi.org/10.1111/jzo.12905 (2021).Article 

    Google Scholar 
    Jarman, T. E., Gartrell, B. D. & Battley, P. F. Differences in body composition between urban and rural mallards Anas platyrhynchos. J. Urban Ecol. 6(1), juaa011. https://doi.org/10.1093/jue/juaa011 (2020).Article 

    Google Scholar 
    Cruz-Neto, A. P. & Bozinovic, F. The relationship between diet quality and basal metabolic rate in endotherms: Insights from intraspecific analysis. Physiol. Biochem. Zool. 77(6), 877–889 (2004).Article 

    Google Scholar 
    Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. 72(2), 189–197 (1999).Article 
    CAS 

    Google Scholar 
    Seebacher, F. Is endothermy an evolutionary by-product?. Trends Ecol. Evol. 35(6), 503–511. https://doi.org/10.1016/j.tree.2020.02.006 (2020).Article 

    Google Scholar 
    Perissinotti, P. P., Antenucci, C. D., Zenuto, R. & Luna, F. Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp. Biochem. Physiol. Mol. Integr. Physiol. 154(3), 298–307. https://doi.org/10.1016/j.cbpa.2009.05.013 (2009).Article 
    CAS 

    Google Scholar 
    Thorp, C. R., Ram, P. K. & Florant, G. L. Diet alters metabolic rate in the yellow-bellied marmot (Marmota flaviventris) during hibernation. Physiol. Zool. 67(5), 1213–1229. https://doi.org/10.1086/physzool.67.5.30163890 (1994).Article 

    Google Scholar 
    Silva, S. I., Jaksic, F. M. & Bozinovic, F. Interplay between metabolic rate and diet quality in the South American fox Pseudalopex culpaeus. Comp. Biochem. Physiol. Mol Integr. Physiol. 137(1), 33–38. https://doi.org/10.1016/j.cbpb.2003.09.022 (2004).Article 
    CAS 

    Google Scholar 
    Rewkiewicz-Dziarska, A., Wielopolska, A. & Gill, J. Hematological indices of Apodemus agrarius (Pallas, 1771) from different urban environments. Bull. Acad. Polon. Sci. Ser. Sci. Biol. 25(4), 261–268 (1977).CAS 

    Google Scholar 
    Ohrnberger, S. A., Hambly, C., Speakman, J. R. & Valencak, T. G. Limits to sustained energy intake XXXII: Hot again: Dorsal shaving increases energy intake and milk output in golden hamsters (Mesocricetus auratus). J Exp. Biol. https://doi.org/10.1242/jeb.230383 (2020).Article 

    Google Scholar 
    Speakman, J. R. & Król, E. The heat dissipation limit theory and evolution of life histories in endotherms—Time to dispose of the disposable soma theory?. Integr. Comp. Biol. 50(5), 793–807. https://doi.org/10.1093/icb/icq049 (2010).Article 

    Google Scholar 
    Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: Parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B Biol. Sci. 285(1882), 20180036. https://doi.org/10.1098/rspb.2018.0036 (2018).Article 

    Google Scholar 
    Isaksson, C. & Hahs, A. Urbanization, oxidative stress and inflammation: A question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29(7), 913–923. https://doi.org/10.1111/1365-2435.12477 (2015).Article 

    Google Scholar 
    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change. Clim. Res. 37(2–3), 181–201 (2008).Article 

    Google Scholar 
    Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83(4), 1153–1181 (2003).Article 
    CAS 

    Google Scholar 
    Pereira, M. E., Aines, J. & Scheckter, J. L. Tactics of heterothermy in eastern gray squirrels (Sciurus carolinensis). J. Mammal. 83(2), 467–477 (2002).Article 

    Google Scholar 
    Breuner, C. W., Wingfield, J. C. & Romero, L. M. Diel rhythms of basal and stress-induced corticosterone in a wild, seasonal vertebrate. Gambel’s white-crowned sparrow. J Exp. Zool. 284(3), 334–342. https://doi.org/10.1002/(SICI)1097-010X(19990801)284:3%3c334::AID-JEZ11%3e3.0.CO;2-# (1999).Article 
    CAS 

    Google Scholar 
    Careau, V., Thomas, D., Humphries, M. M. & Réale, D. Energy metabolism and animal personality. Oikos 117(5), 641–653. https://doi.org/10.1111/j.0030-1299.2008.16513.x (2008).Article 

    Google Scholar 
    Fletcher, Q. E. et al. Seasonal stage differences overwhelm environmental and individual factors as determinants of energy expenditure in free-ranging red squirrels. Funct. Ecol. 26(3), 677–687. https://doi.org/10.1111/j.1365-2435.2012.01975.x (2012).Article 

    Google Scholar 
    Barthel, L. & Berger, A. Unexpected gene-flow in urban environments: The example of the European Hedgehog. Animals 10(12), 2315. https://doi.org/10.3390/ani10122315 (2020).Article 

    Google Scholar 
    Fusco, N. A., Carlen, E. J. & Munshi-South, J. Urban landscape genetics: are biologists keeping up with the pace of urbanization?. Current Landsc. Ecol. Rep. 6(2), 35–45. https://doi.org/10.1007/s40823-021-00062-3 (2021).Article 

    Google Scholar 
    Ziege, M. et al. Population genetics of the European rabbit along a rural-to-urban gradient. Sci. Rep. 10(1), 2448. https://doi.org/10.1038/s41598-020-57962-3 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Morash, A. J., Neufeld, C., MacCormack, T. J. & Currie, S. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species. J. Exp. Biol. 221(14), jeb164673. https://doi.org/10.1242/jeb.164673 (2018).Article 

    Google Scholar 
    Pörtner, H.-O., et al. Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report (2022).Anderies, J. M., Katti, M. & Shochat, E. Living in the city: Resource availability, predation, and bird population dynamics in urban areas. J. Theor. Biol. 247(1), 36–49. https://doi.org/10.1016/j.jtbi.2007.01.030 (2007).Article 
    ADS 
    MATH 

    Google Scholar 
    Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106(3), 622–626. https://doi.org/10.1111/j.0030-1299.2004.13159.x (2004).Article 

    Google Scholar 
    Koprowski, J. L. Handling tree squirrels with a safe and efficient restraint. Wildl. Soc. B 30(1), 101–103. https://doi.org/10.2307/3784642 (2002).Article 

    Google Scholar 
    Magris, L. & Gurnell, J. Population ecology of the red squirrel (Sciurus vulgaris) in a fragmented woodland ecosystem on the Island of Jersey Channel Islands. J. Zool. 256(1), 99–112. https://doi.org/10.1017/s0952836902000134 (2002).Article 

    Google Scholar 
    Bethge, J., Wist, B., Stalenberg, E. & Dausmann, K. Seasonal adaptations in energy budgeting in the primate Lepilemur leucopus. J Comp. Physiol. B 187(5–6), 827–834. https://doi.org/10.1007/s00360-017-1082-9 (2017).Article 

    Google Scholar 
    Dausmann, K. H., Glos, J. & Heldmaier, G. Energetics of tropical hibernation. J Comp. Physiol. B 179(3), 345–357. https://doi.org/10.1007/s00360-008-0318-0 (2009).Article 
    CAS 

    Google Scholar 
    Kobbe, S., Nowack, J. & Dausmann, K. H. Torpor is not the only option: Seasonal variations of the thermoneutral zone in a small primate. J. Comp. Physiol. B 184(6), 789–797. https://doi.org/10.1007/s00360-014-0834-z (2014).Article 

    Google Scholar 
    Lighton, J. R. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2018).Book 

    Google Scholar 
    Bethge, J., Razafimampiandra, J. C., Wulff, A. & Dausmann, K. H. Sportive lemurs elevate their metabolic rate during challenging seasons and do not enter regular heterothermy. Conserv. Physiol. 9(1), coab075. https://doi.org/10.1093/conphys/coab075 (2021).Article 

    Google Scholar 
    Reher, S., Ehlers, J., Rabarison, H. & Dausmann, K. H. Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms. J. Comp. Physiol. B 188(6), 1015–1027. https://doi.org/10.1007/s00360-018-1171-4 (2018).Article 
    CAS 

    Google Scholar 
    Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J Stat. Softw. 40(3), 1–25 (2011).Article 

    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. RStudio. dplyr: A Grammar of Data Manipulation (1.0. 7) (2021).Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14(6), 1–27. https://doi.org/10.18637/jss.v014.i06 (2005).Article 

    Google Scholar 
    Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer Science & Business Media, New York, 2008).Book 
    MATH 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 8(15), 1–27 (2003).Article 

    Google Scholar 
    Garamszegi, L. Z. et al. Changing philosophies and tools for statistical inferences in behavioral ecology. Behav. Ecol. 20(6), 1363–1375. https://doi.org/10.1093/beheco/arp137 (2009).Article 

    Google Scholar 
    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65(1), 13–21. https://doi.org/10.1007/s00265-010-1037-6 (2010).Article 

    Google Scholar 
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75(5), 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x (2006).Article 

    Google Scholar 
    Barton, K. & Barton, M. K. MuMIn: Multi-Model Inference. R package version 1.43.17; https://CRAN.R-project.org/package=MuMIn (2020).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R ( Springer Science & Business Media 2009).Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Soc. Method. Res. 33(2), 261–304 (2004).Article 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19(2), 101–108. https://doi.org/10.1016/j.tree.2003.10.013 (2004).Article 

    Google Scholar 
    Lorah, J. Effect size measures for multilevel models: Definition, interpretation, and TIMSS example. Large-scale Assess. Educ. 6(1), 8. https://doi.org/10.1186/s40536-018-0061-2 (2018).Article 

    Google Scholar 
    Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D. & Mermelstein, R. J. A practical guide to calculating cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 3, 111–111. https://doi.org/10.3389/fpsyg.2012.00111 (2012).Article 

    Google Scholar 
    Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version 2.8.5 2020; https://CRAN.R-project.org/package=sjPlot (2020).Nakagawa, S., Johnson, P. C. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14(134), 20170213 (2017).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 85(4), 935–956. https://doi.org/10.1111/j.1469-185X.2010.00141.x (2010).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8(11), 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar  More

  • in

    Marine protected areas, marine heatwaves, and the resilience of nearshore fish communities

    Lauchlan, S. S. & Nagelkerken, I. Species range shifts along multistressor mosaics in estuarine environments under future climate. Fish Fish. 21, 32–46 (2020).Article 

    Google Scholar 
    Gao, G., Zhao, X., Jiang, M. & Gao, L. Impacts of marine heatwaves on algal structure and carbon sequestration in conjunction with ocean warming and acidification. Front. Mar. Sci. 8, 758651 (2021).Article 

    Google Scholar 
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. 112, E4065–E4074 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).Article 

    Google Scholar 
    Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13, e0196127 (2018).Article 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).Article 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. https://doi.org/10.1126/sciadv.abh0895 (2021).Article 

    Google Scholar 
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Pessarrodona, A. et al. Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Funct. Ecol. 36, 659–673 (2022).Article 

    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).Article 
    ADS 

    Google Scholar 
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).Article 
    ADS 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).Article 
    ADS 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Garrabou, J. et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Change Biol. 28, 5708–5725 (2022).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).Article 
    ADS 

    Google Scholar 
    Cure, K. et al. Distributional responses to marine heat waves: insights from length frequencies across the geographic range of the endemic reef fish Choerodon rubescens. Mar. Biol. 165, 1 (2018).Article 

    Google Scholar 
    Jacox, M. G., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. A. Predicting the evolution of the 2014–2016 California current system marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00497 (2019).Article 

    Google Scholar 
    Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).Article 
    ADS 

    Google Scholar 
    Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and baja California to a multiyear heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00413 (2019).Article 

    Google Scholar 
    Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography 29, 273–285 (2016).Article 

    Google Scholar 
    Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Thompson, A. R. et al. Putting the Pacific marine heatwave into perspective: The response of larval fish off southern California to unprecedented warming in 2014–2016 relative to the previous 65 years. Glob. Change Biol. 28, 1766–1785 (2022).Article 
    CAS 

    Google Scholar 
    Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).Article 
    ADS 

    Google Scholar 
    Behrens, M. & Lafferty, K. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).Article 
    ADS 

    Google Scholar 
    Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).Article 

    Google Scholar 
    Caselle, J. E., Davis, K. & Marks, L. M. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 21, 43–53 (2018).Article 

    Google Scholar 
    Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS ONE 7, e40832 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Olds, A. D. et al. Marine reserves help coastal ecosystems cope with extreme weather. Glob. Change Biol. 20, 3050–3058 (2014).Article 
    ADS 

    Google Scholar 
    Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10, 21081 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Cons. 236, 305–314 (2019).Article 

    Google Scholar 
    Kirlin, J. et al. California’s Marine Life Protection Act Initiative: Supporting implementation of legislation establishing a statewide network of marine protected areas. Ocean Coast. Manag. 74, 3–13 (2013).Article 

    Google Scholar 
    Saarman, E. T. et al. An ecological framework for informing permitting decisions on scientific activities in protected areas. PLoS ONE 13, e0199126 (2018).Article 

    Google Scholar 
    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. PNAS 107, 18272–18277 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Wendt, D. E. & Starr, R. M. Collaborative research: An effective way to collect data for stock assessments and evaluate marine protected areas in California. Mar. Coast. Fish. 1, 315–324 (2009).Article 

    Google Scholar 
    Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).Article 

    Google Scholar 
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    Li, L. et al. Subregional differences in groundfish distributional responses to anomalous ocean bottom temperatures in the northeast Pacific. Glob. Change Biol. 25, 2560–2575 (2019).Article 
    ADS 

    Google Scholar 
    Dawson, M. N. Phylogeography in coastal marine animals: A solution from California?. J. Biogeogr. 28, 723–736 (2001).Article 

    Google Scholar 
    Horn, M. H., Allen, L. G. & Lea, R. N. Biogeography. In The Ecology of Marine Fishes: California and Adjacent Waters (ed. Allen, L.) 3–25 (University of California Press, 2006). https://doi.org/10.1525/california/9780520246539.003.0001.Chapter 

    Google Scholar 
    Horn, M. H. & Allen, L. G. A distributional analysis of California coastal marine fishes. J. Biogeogr. 5, 23–42 (1978).Article 

    Google Scholar 
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).Article 
    ADS 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280, 20122829 (2013).Article 

    Google Scholar 
    O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).Article 

    Google Scholar 
    California Department of Fish and Wildlife. California Sheephead, Bodianus (formerly Semicossyphus) pulcher, Enhanced Status Report. (2021).Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).Article 

    Google Scholar 
    Francour, P., Mangialajo, L. & Pastor, J. Mediterranean marine protected areas and non-indigenous fish spreading. In Fish Invasions of the Mediterranean Sea: Change and Renewal (eds Golani, D. & Appelbaum-Golani, B.) 127–144 (Pensoft Publisher, 2010).
    Google Scholar 
    Couce, E., Ridgwell, A. & Hendy, E. J. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob. Change Biol. 19, 3592–3606 (2013).Article 
    ADS 

    Google Scholar 
    Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).Article 

    Google Scholar 
    Trainer, V. L. et al. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae 91, 101591 (2020).Article 

    Google Scholar 
    Gliwicz, Z. M., Babkiewicz, E., Kumar, R., Kunjiappan, S. & Leniowski, K. Warming increases the number of apparent prey in reaction field volume of zooplanktivorous fish. Limnol. Oceanogr. 63, S30–S43 (2018).Article 
    ADS 

    Google Scholar 
    Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several Northeast Pacific marine ecosystems. Glob. Change Biol. 27, 506–520 (2021).Article 
    ADS 

    Google Scholar 
    du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).Article 
    ADS 

    Google Scholar 
    Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol. 27, 1859–1878 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Oken, K. L., Essington, T. E. & Fu, C. Variability and stability in predation landscapes: A cross-ecosystem comparison on the potential for predator control in temperate marine ecosystems. Fish Fish. 19, 489–501 (2018).Article 

    Google Scholar 
    Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).Article 

    Google Scholar 
    Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California current system: Early assessment and comparison to past events. Geophys. Res. Lett. 43, 7072–7080 (2016).Article 
    ADS 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00212 (2019).Article 

    Google Scholar 
    Field, J. C. et al. Spatiotemporal patterns of variability in the abundance and distribution of winter-spawned pelagic juvenile rockfish in the California Current. PLoS ONE 16, e0251638 (2021).Article 
    CAS 

    Google Scholar 
    Schroeder, I. D. et al. Source water variability as a driver of rockfish recruitment in the California current ecosystem: Implications for climate change and fisheries management. Can. J. Fish. Aquat. Sci. 76, 950–960 (2019).Article 
    CAS 

    Google Scholar 
    Echeverria, T. W. Thirty-four species of California rockfishes: Maturity and seasonality of reproduction. Fish. Bull. 85, 229–250 (1987).
    Google Scholar 
    Miller, A. & Sydeman, W. Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Mar. Ecol. Prog. Ser. 281, 207–216 (2004).Article 
    ADS 

    Google Scholar 
    Johnson, K. F. et al. Status of lingcod (Ophiodon elongatus) along the southern U.S. west coast in 2021. 195 p. (2021).Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560, 92–96 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Starr, R. M. et al. Variation in responses of fishes across multiple reserves within a network of marine protected areas in temperate waters. PLoS ONE 10, e0118502 (2015).Article 

    Google Scholar 
    Ziegler, S. L. et al. External fishing effort regulates positive effects of no-take marine protected areas. Biol. Cons. 269, 109546 (2022).Article 

    Google Scholar 
    Jarvis, E. T. & Lowe, C. G. The effects of barotrauma on the catch-and-release survival of southern California nearshore and shelf rockfish (Scorpaenidae, Sebastes spp.). Can. J. Fish. Aquat. Sci. 65, 1286–1296 (2008).Article 

    Google Scholar 
    Brooks, R. et al. Nearshore Fishes Abundance and Distribution Data, California Collaborative Fisheries Research Program (CCFRP). (2022).García-Reyes, M. & Sydeman, W. J. California multivariate ocean climate indicator (MOCI) and marine ecosystem dynamics. Ecol. Ind. 72, 521–529 (2017).Article 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).Oksanen, J. et al. vegan: Community Ecology Package. (2020).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2021). More

  • in

    Complete chloroplast genome molecular structure, comparative and phylogenetic analyses of Sphaeropteris lepifera of Cyatheaceae family: a tree fern from China

    Singh, J. S. The biodiversity crisis: A multifaceted review. Curr. Sci. 82(6), 638–647 (2002).
    Google Scholar 
    Mateo-Tomás, P. & López-Bao, J. V. A nuclear future for biodiversity conservation?. Biol. Conserv. 270, 109559. https://doi.org/10.1016/j.biocon.2022.109559 (2022).Article 

    Google Scholar 
    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3(7), 1043–1047. https://doi.org/10.1038/s41559-019-0906-2 (2019).Article 

    Google Scholar 
    Larsen, B. B., Miller, E. C., Rhodes, M. K. & Wiens, J. J. Inordinate fondness multiplied and redistributed: The number of species on earth and the new pie of life. Q. Rev. Biol. 92(3), 229–265. https://doi.org/10.1086/693564 (2017).Article 

    Google Scholar 
    Lewin, H. A. et al. The earth BioGenome project 2020: Starting the clock. Proc. Natl. Acad. Sci. 119(4), e2115635118. https://doi.org/10.1073/pnas.211563511 (2022).Article 
    CAS 

    Google Scholar 
    Prugh, L. R., Sinclair, A. R. E., Hodges, K. E., Jacob, A. L. & Wilcove, D. S. Reducing threats to species: Threat reversibility and links to industry. Conserv. Lett. 3(4), 267–276. https://doi.org/10.1111/j.1755-263X.2010.00111.x (2010).Article 

    Google Scholar 
    McCune, J. L. et al. Threats to Canadian species at risk: An analysis of finalized recovery strategies. Biol. Cons. 166, 254–265. https://doi.org/10.1016/j.biocon.2013.07.006 (2013).Article 

    Google Scholar 
    Dong, S. Y. Hainan tree ferns (Cyatheaceae), morphological, ecological and phytogeographical observations. Ann. Bot. Fenn. 46(5), 381–388. https://doi.org/10.5735/085.046.0502 (2009).Article 

    Google Scholar 
    Liu, Y., Wujisguleng, W. & Long, C. Food uses of ferns in China: A review. Acta Soc. Bot. Pol. 81(4), 263–270. https://doi.org/10.5586/asbp.2012.046 (2012).Article 

    Google Scholar 
    Korall, P., Pryer, K. M., Metzgar, J. S., Schneider, H. & Conant, D. S. Tree ferns: monophyletic groups and their relationships as revealed by four protein-coding plastid loci. Mol. Phylogenet. Evol. 39(3), 830–845. https://doi.org/10.1016/j.ympev.2006.01.001 (2006).Article 
    CAS 

    Google Scholar 
    Gu, Y. F., Jiang, R. H., Liu, B. D. & Yan, Y. H. Sphaeropteris guangxiensis YF Gu & YH Yan (Cyatheaceae), a new species of tree fern from Southern China. Phytotaxa 518(1), 69–74. https://doi.org/10.11646/phytotaxa.518.1.8 (2021).Article 

    Google Scholar 
    Ho, Y. W., Huang, Y. L., Chen, J. C. & Chen, C. T. Habitat environment data and potential habitat interpolation of Cyathea lepifera at the Tajen Experimental Forest Station in Taiwan. Trop. Conserv. Sci. 9(1), 153–166. https://doi.org/10.1177/194008291600900108 (2016).Article 

    Google Scholar 
    Wei, X. et al. Inferring the potential geographic distribution and reasons for the endangered status of the tree fern, Sphaeropteris lepifera, in Lingnan, China using a small sample size. Horticulturae 7(11), 496. https://doi.org/10.3390/horticulturae7110496 (2021).Article 

    Google Scholar 
    Ida, N., Iwasaki, A., Teruya, T., Suenaga, K. & Kato-Noguchi, H. Tree fern Cyathea lepifera may survive by its phytotoxic property. Plants 9(1), 46. https://doi.org/10.3390/plants9010046 (2019).Article 
    CAS 

    Google Scholar 
    Huang, Y. M., Ying, S. S. & Chiou, W. L. Morphology of gametophytes and young sporophytes of Sphaeropteris lepifera. Am. Fern J. 90(4), 127–137. https://doi.org/10.2307/1547489 (2000).Article 

    Google Scholar 
    Fu, C. H. et al. Ophiodiaporthe cyatheae gen. et sp. Nov., a diaporthalean pathogen causing a devastating wilt disease of Cyathea lepifera in Taiwan. Mycologia 105(4), 861–872. https://doi.org/10.3852/12-346 (2013).Article 

    Google Scholar 
    Kirschner, R., Lee, P. H. & Huang, Y. M. Diversity of fungi on Taiwanese fern plants: Review and new discoveries. Taiwania 64(2), 163–175. https://doi.org/10.6165/tai.2019.64.163 (2019).Article 

    Google Scholar 
    Farrar, D. R. Gametophyte morphology and breeding systems in ferns. In Pteridology in the New Millennium Vol. 30 (eds Chandra, S. & Srivastava, M.) 447–454 (Springer, 2003). https://doi.org/10.1007/978-94-017-2811-9_30.Chapter 

    Google Scholar 
    Kuriyama, A., Kobayashi, T. & Maeda, M. Production of sporophytic plants of Cyathea lepifera, a tree fern, from in vitro cultured gametophyte. Eng. Gakkai zasshi 73(2), 140–142. https://doi.org/10.2503/jjshs.73.140 (2008).Article 

    Google Scholar 
    García, M. B. Demographic viability of a relict population of the critically endangered plant Borderea chouardii. Conserv. Biol. 17(6), 1672–1680. https://doi.org/10.1111/j.1523-1739.2003.00030.x (2003).Article 

    Google Scholar 
    Chen, Y. S., Deng, T., Zhou, Z. & Sun, H. Is the East Asian flora ancient or not?. Natl. Sci. Rev. 5(6), 920–932. https://doi.org/10.1093/nsr/nwx156 (2018).Article 

    Google Scholar 
    Fennessy, J. et al. Response to “How many species of giraffe are there?”. Curr. Biol. 27(4), 137–138. https://doi.org/10.1016/j.cub.2016.12.045 (2017).Article 
    CAS 

    Google Scholar 
    Daniell, H., Lin, C. S., Yu, M. & Chang, W. J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 17(1), 1–29. https://doi.org/10.1186/s13059-016-1004-2 (2016).Article 
    CAS 

    Google Scholar 
    Asaf, S. et al. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front. Plant Sci. 7, 843. https://doi.org/10.3389/fpls.2016.00843 (2016).Article 

    Google Scholar 
    Daniell, H. et al. Green giant: A tiny chloroplast genome with mighty power to produce high-value proteins—History and phylogeny. Plant Biotechnol. J. 19(3), 430–447. https://doi.org/10.1111/pbi.13556 (2021).Article 
    CAS 

    Google Scholar 
    Martin, G. E. et al. The first complete chloroplast genome of the Genistoid legume Lupinus luteus: Evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann. Bot. 113(7), 1197–1210. https://doi.org/10.1093/aob/mcu050 (2014).Article 
    CAS 

    Google Scholar 
    Xu, C. et al. Comparative analysis of six Lagerstroemia complete chloroplast genomes. Front. Plant Sci. 8, 15. https://doi.org/10.3389/fpls.2017.00015 (2017).Article 

    Google Scholar 
    Henriquez, C. L. et al. Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). Planta 251(3), 1–16. https://doi.org/10.1007/s00425-020-03365-7 (2020).Article 
    CAS 

    Google Scholar 
    Huang, X. et al. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nat. Plants 8(5), 500–512. https://doi.org/10.1038/s41477-022-01146-6 (2022).Article 
    CAS 

    Google Scholar 
    Dobrogojski, J., Adamiec, M. & Luciński, R. The chloroplast genome: A review. Acta Physiol. Plant. 42(6), 1–13. https://doi.org/10.1007/s11738-020-03089-x (2020).Article 
    CAS 

    Google Scholar 
    Oda, K. et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: A primitive form of plant mitochondrial genome. J. Mol. Biol. 223(1), 1–7. https://doi.org/10.1016/0022-2836(92)90708-R (1992).Article 
    CAS 

    Google Scholar 
    Ohyama, K. et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322(6079), 572–574. https://doi.org/10.1038/322572a0 (1986).Article 
    ADS 
    CAS 

    Google Scholar 
    Gao, L., Yi, X., Yang, Y. X., Su, Y. J. & Wang, T. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol. Biol. 9(1), 1–14. https://doi.org/10.1186/1471-2148-9-130 (2009).Article 
    CAS 

    Google Scholar 
    Wang, T., Hong, Y., Wang, Z. & Su, Y. Characterization of the complete chloroplast genome of Alsophila gigantea (Cyatheaceae), an ornamental and CITES giant tree fern. Mitochondrial DNA Part B 4(1), 967–968. https://doi.org/10.1080/23802359.2019.1580162 (2019).Article 

    Google Scholar 
    Jia, Q. et al. A “GC-rich” method for mammaliangene expression: A dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci. China Life Sci. 53, 94–100. https://doi.org/10.1007/s11427-010-0003-x (2010).Article 
    CAS 

    Google Scholar 
    Liu, H. et al. Comparative analyses of chloroplast genomes provide comprehensive insights into the adaptive evolution of Paphiopedilum (Orchidaceae). Horticulturae 8(5), 391. https://doi.org/10.3390/horticulturae8050391 (2022).Article 

    Google Scholar 
    Liu, C. K., Lei, J. Q., Jiang, Q. P., Zhou, S. D. & He, X. J. The complete plastomes of seven Peucedanum plants: Comparative and phylogenetic analyses for the Peucedanum genus. BMC Plant Biol. 22(1), 1–14. https://doi.org/10.1186/s12870-022-03488-x (2022).Article 
    CAS 

    Google Scholar 
    Han, H. et al. Analysis of chloroplast genomes provides insights into the evolution of agropyron. Front. Genet. 13, 832809. https://doi.org/10.3389/fgene.2022.832809 (2022).Article 
    CAS 

    Google Scholar 
    Hanaoka, M., Kanamaru, K., Takahashi, H. & Tanaka, K. Molecular genetic analysis of chloroplast gene promoters dependent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase Arabidopsis thaliana. Nucleic Acids Res. 31(24), 7090–7098. https://doi.org/10.1093/nar/gkg935 (2003).Article 
    CAS 

    Google Scholar 
    Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E. & Tabata, S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6(5), 283–290. https://doi.org/10.1093/dnares/6.5.283 (1999).Article 
    CAS 

    Google Scholar 
    Tian, S. et al. Repeated range expansions and inter-/postglacial recolonization routes of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (Lardizabalaceae) in subtropical China revealed by chloroplast phylogeography. Mol. Phylogenet. Evol. 85, 238–246. https://doi.org/10.1016/j.ympev.2015.02.016 (2015).Article 

    Google Scholar 
    Ohme, M., Kamogashira, T., Shinozaki, K. & Sugiura, M. Structure and cotranscription of tobacco chloroplast genes for tRNA Glu (UUC), tRNA Tyr (GUA) and tRNA Asp (GUC). Nucleic Acids Res. 13(4), 1045–1056. https://doi.org/10.1093/nar/13.4.1045 (1985).Article 
    CAS 

    Google Scholar 
    Wang, Z. et al. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ 8, 8251. https://doi.org/10.7717/peerj.8251 (2020).Article 

    Google Scholar 
    Pop, C. et al. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 10(12), 770. https://doi.org/10.15252/msb.20145524 (2014).Article 
    CAS 

    Google Scholar 
    Verma, D. & Daniell, H. Chloroplast vector systems for biotechnology applications. Plant Physiol. 145(4), 1129–1143. https://doi.org/10.1104/pp.107.106690 (2007).Article 
    CAS 

    Google Scholar 
    Bock, R. Engineering plastid genomes: Methods, tools, and applications in basic research and biotechnology. Annu. Rev. Plant Biol. 66(1), 211–241. https://doi.org/10.1146/annurev-arplant-050213-040212 (2015).Article 
    CAS 

    Google Scholar 
    Tang, D. et al. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth. Dev. Genes. Evol. 231(1), 1–9. https://doi.org/10.1007/s00427-020-00670-9 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Codon usage patterns across seven Rosales species. BMC Plant Biol. 22(1), 1–10. https://doi.org/10.1186/s12870-022-03450-x (2022).Article 
    CAS 

    Google Scholar 
    Li, B., Lin, F., Huang, P., Guo, W. & Zheng, Y. Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing. Biol. Res. 53(1), 1–12. https://doi.org/10.1186/s40659-020-00289-0 (2020).Article 
    CAS 

    Google Scholar 
    Wang, R. et al. Genome survey sequencing of Acer truncatum Bunge to identify genomic information, simple sequence repeat (SSR) markers and complete chloroplast genome. Forests 10(2), 87. https://doi.org/10.3390/f10020087 (2019).Article 

    Google Scholar 
    Zhu, M. et al. Phylogenetic significance of the characteristics of simple sequence repeats at the genus level based on the complete chloroplast genome sequences of Cyatheaceae. Ecol. Evol. 11(20), 14327–14340. https://doi.org/10.1002/ece3.8151 (2021).Article 

    Google Scholar 
    Hong, Z. et al. Comparative analyses of five complete chloroplast genomes from the genus Pterocarpus (Fabacaeae). Int. J. Mol. Sci. 21(11), 3758. https://doi.org/10.3390/ijms21113758 (2020).Article 
    CAS 

    Google Scholar 
    Ping, J. et al. Molecular evolution and SSRs analysis based on the chloroplast genome of Callitropsis funebris. Ecol. Evol. 11(9), 4786–4802. https://doi.org/10.1002/ece3.7381 (2021).Article 

    Google Scholar 
    Kim, Y., Park, J. & Chung, Y. Comparative analysis of chloroplast genome of Dysphania ambrosioides (L.) Mosyakin & Clemants understanding phylogenetic relationship in genus Dysphania R. B.. Korean J. Plant Resour. 32(6), 644–668. https://doi.org/10.7732/kjpr.2019.32.6.644 (2019).Article 

    Google Scholar 
    Guo, Y. Y., Yang, J. X., Li, H. K. & Zhao, H. S. Chloroplast genomes of two species of Cypripedium: Expanded genome size and proliferation of AT-biased repeat sequences. Front. Plant Sci. 12, 609729. https://doi.org/10.3389/fpls.2021.609729 (2021).Article 

    Google Scholar 
    Henriquez, C. L. et al. Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics 112(3), 2349–2360. https://doi.org/10.1016/j.ygeno.2020.01.006 (2020).Article 
    CAS 

    Google Scholar 
    Dong, S. et al. Nuclear loci developed from multiple transcriptomes yield high resolution in phylogeny of scaly tree ferns (Cyatheaceae) from China and Vietnam. Mol. Phylogenet. Evol. 139, 106567. https://doi.org/10.1016/j.ympev.2019.106567 (2019).Article 
    CAS 

    Google Scholar 
    Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 65, 514–527. https://doi.org/10.2307/3545569(1992) (1992).Article 

    Google Scholar 
    Raven, J. A., Beardall, J., Larkum, A. W. D. & Sánchez-Baracaldo, P. Interactions of photosynthesis with genome size and function. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120264. https://doi.org/10.1098/rstb.2012.0264 (2013).Article 
    CAS 

    Google Scholar 
    Barber, J., Nield, J., Morris, E. P., Zheleva, D. & Hankamer, B. The structure, function and dynamics of photosystem two. Physiol. Plant. 100(4), 817–827. https://doi.org/10.1111/j.1399-3054.1997.tb00008.x (1997).Article 
    CAS 

    Google Scholar 
    Yang, Z., Wong, W. S. & Nielsen, R. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22(4), 1107–1118. https://doi.org/10.1093/molbev/msi097 (2005).Article 
    CAS 

    Google Scholar 
    Li, W. et al. Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros. BMC Plant Biol. 18(1), 1–11. https://doi.org/10.1186/s12870-018-1421-3 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Duan, H. et al. Comparative chloroplast genomics of the genus Taxodium. BMC Genom. 21(1), 1–14. https://doi.org/10.1186/s12864-020-6532-1 (2020).Article 
    CAS 

    Google Scholar 
    Jiao, Y. et al. Complete chloroplast genomes of 14 subspecies of D. glomerata: Phylogenetic and comparative genomic analyses. Genes 13(9), 1621. https://doi.org/10.3390/genes13091621 (2022).Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).Article 
    CAS 

    Google Scholar 
    Boetzer, M. & Pirovano, W. Toward almost closed genomes with GapFiller. Genome Biol. 13(6), 1–9. https://doi.org/10.1186/gb-2012-13-6-r56 (2012).Article 

    Google Scholar 
    Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8), 1596–1599. https://doi.org/10.1093/molbev/msm092 (2007).Article 
    CAS 

    Google Scholar  More

  • in

    Multifunctionality of temperate alley-cropping agroforestry outperforms open cropland and grassland

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).Article 
    CAS 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 

    Google Scholar 
    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).Article 
    CAS 

    Google Scholar 
    Zhang, W., Ricketts, T. H., Kremen, C., Carney, K. & Swinton, S. M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64, 253–260 (2007).Article 

    Google Scholar 
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).Article 
    CAS 

    Google Scholar 
    Helming, K. et al. Managing soil functions for a sustainable bioeconomy-assessment framework and state of the art. Land Degrad. Dev. 29, 3112–3126 (2018).Article 

    Google Scholar 
    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).Article 

    Google Scholar 
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).Article 

    Google Scholar 
    Smith, J., Pearce, B. D. & Wolfe, M. S. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew. Agric. Food Syst. 28, 80–92 (2013).Article 

    Google Scholar 
    European Commission. A Greener and Fairer CAP (EC, 2021).Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).Article 
    CAS 

    Google Scholar 
    Mayer, S. et al. Soil organic carbon sequestration in temperate agroforestry systems – a meta-analysis. Agric. Ecosyst. Environ. 323, 107689 (2022).Article 
    CAS 

    Google Scholar 
    Pardon, P. et al. Juglans regia (walnut) in temperate arable agroforestry systems: effects on soil characteristics, arthropod diversity and crop yield. Renew. Agric. Food Syst. 35, 533–549 (2020).Article 

    Google Scholar 
    Schmidt, M. et al. Nutrient saturation of crop monocultures and agroforestry indicated by nutrient response efficiency. Nutr. Cycl. Agroecosyst. 119, 69–82 (2021).Article 
    CAS 

    Google Scholar 
    Beule, L. & Karlovsky, P. Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities. PLoS ONE 16, e0246919 (2021).Article 
    CAS 

    Google Scholar 
    Palma, J. H. N. et al. Modeling environmental benefits of silvoarable agroforestry in Europe. Agric. Ecosyst. Environ. 119, 320–334 (2007).Article 

    Google Scholar 
    Kay, S. et al. Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforest Syst. 92, 1075–1089 (2018).Article 

    Google Scholar 
    Swieter, A., Langhof, M., Lamerre, J. & Greef, J. M. Long-term yields of oilseed rape and winter wheat in a short rotation alley cropping agroforestry system. Agroforest Syst. 93, 1853–1864 (2019).Article 

    Google Scholar 
    Ivezić, V., Yu, Y. & van der Werf, W. Crop yields in European agroforestry systems: a meta-analysis. Front. Sustain. Food Syst. 5, 606631 (2021).Article 

    Google Scholar 
    Cardinael, R. et al. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – combining experimental and modeling approaches. Biogeosciences 15, 297–317 (2018).Article 
    CAS 

    Google Scholar 
    Smith, P. Carbon sequestration in croplands: the potential in Europe and the global context. Eur. J. Agron. 20, 229–236 (2004).Article 
    CAS 

    Google Scholar 
    Kay, S. et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 83, 581–593 (2019).Article 

    Google Scholar 
    Cardinael, R. et al. Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon — a case study in a Mediterranean context. Geoderma 259–260, 288–299 (2015).Article 

    Google Scholar 
    Cardinael, R. et al. Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry. Biol. Fertil. Soils 55, 171–183 (2019).Article 
    CAS 

    Google Scholar 
    Boinot, S. et al. Alley cropping agroforestry systems: reservoirs for weeds or refugia for plant diversity? Agric. Ecosyst. Environ. 284, 106584 (2019).Article 

    Google Scholar 
    Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).Article 

    Google Scholar 
    Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).Article 

    Google Scholar 
    DuPont, S. T., Culman, S. W., Ferris, H., Buckley, D. H. & Glover, J. D. No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric. Ecosyst. Environ. 137, 25–32 (2010).Article 
    CAS 

    Google Scholar 
    Bengtsson, J. et al. Grasslands-more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).Article 

    Google Scholar 
    Beule, L. et al. Conversion of monoculture cropland and open grassland to agroforestry alters the abundance of soil bacteria, fungi and soil-N-cycling genes. PLoS ONE 14, e0218779 (2019).Article 
    CAS 

    Google Scholar 
    Borrelli, P., Ballabio, C., Panagos, P. & Montanarella, L. Wind erosion susceptibility of European soils. Geoderma 232–234, 471–478 (2014).Article 

    Google Scholar 
    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 12610711–12610716 (2015).Article 

    Google Scholar 
    Olson, K. R., Al-Kaisi, M., Lal, R. & Cihacek, L. Impact of soil erosion on soil organic carbon stocks. J. Soil Water Conserv. 71, 61A–67A (2016).Article 

    Google Scholar 
    Larney, F. J., Bullock, M. S., Janzen, H. H., Ellert, B. H. & Olson, E. C. S. Wind erosion effects on nutrient redistribution and soil productivity. J. Soil Water Conserv. 53, 133–140 (1998).
    Google Scholar 
    de Jong, E. & Kowalchuk, T. E. The effect of shelterbelts on erosion and soil properties. Soil Sci. 159, 337–345 (1995).Article 

    Google Scholar 
    Deutsch, M. & Otter, V. Nachhaltigkeit und förderung? Akzeptanzfaktoren im Entscheidungsprozess deutscher Landwirte zur Anlage von Agroforstsystemen. Berichte über Landwirtschaft – Zeitschrift für Agrarpolitik und Landwirtschaft Aktuelle Beiträge (2021).Tsonkova, P., Böhm, C., Quinkenstein, A. & Freese, D. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agroforest Syst. 85, 133–152 (2012).Article 

    Google Scholar 
    Lehmann, J., Weigl, D., Droppelmann, K., Huwe, B. & Zech, W. Nutrient cycling in an agroforestry system with runoff irrigation in Northern Kenya. Agroforestry Syst. 43, 49–70 (1998).Article 

    Google Scholar 
    Shao, G. et al. Impacts of monoculture cropland to alley cropping agroforestry conversion on soil N2O emissions. GCB Bioenergy https://doi.org/10.1111/gcbb.13007 (2022).Isaac, M. E. & Borden, K. A. Nutrient acquisition strategies in agroforestry systems. Plant Soil 444, 1–19 (2019).Article 
    CAS 

    Google Scholar 
    Cannell, M. G. R., van Noordwijk, M. & Ong, C. K. The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire. Agroforestry Syst. 34, 27–31 (1996).Article 

    Google Scholar 
    Beule, L., Vaupel, A. & Moran-Rodas, V. E. Abundance, diversity, and function of soil microorganisms in temperate alley-cropping agroforestry systems: a review. Microorganisms 10, 616 (2022).Article 
    CAS 

    Google Scholar 
    Thevathasan, N. V. & Gordon, A. M. in New Vistas in Agroforestry, Vol. 1 (eds Nair, P. K. R., Rao, M. R. & Buck, L. E.) 257–268 (Springer Netherlands, 2004).Veldkamp, E. & Keller, M. Fertilizer-induced nitric oxide emissions from agricultural soils. Nutr. Cycling Agroecosyst. 48, 69–77 (1997).Article 
    CAS 

    Google Scholar 
    Luo, J., Beule, L., Shao, G., Veldkamp, E. & Corre, M. D. Reduced soil gross N2O emission driven by substrates rather than denitrification gene abundance in cropland agroforestry and monoculture. JGR Biogeosciences 127, e2021JG006629 (2022).Article 
    CAS 

    Google Scholar 
    Langenberg, J., Feldmann, M. & Theuvsen, L. Alley cropping agroforestry systems: using Monte-Carlo simulation for a risk analysis in comparison with arable farming systems. German J. Agric. Econ. 67, 95–112 (2018).
    Google Scholar 
    Otter, V. & Langenberg, J. Willingness to pay for environmental effects of agroforestry systems: a PLS-model of the contingent evaluation from German taxpayers’ perspective. Agroforest Syst. 94, 811–829 (2020).Article 

    Google Scholar 
    Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).Article 

    Google Scholar 
    Markwitz, C., Knohl, A. & Siebicke, L. Evapotranspiration over agroforestry sites in Germany. Biogeosciences 17, 5183–5208 (2020).Article 

    Google Scholar 
    Pardon, P. et al. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric. Ecosyst. Environ. 247, 98–111 (2017).Article 
    CAS 

    Google Scholar 
    European Commission. Commission regulation (EC) No 1120/2009 (EC, 2009).Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).Article 

    Google Scholar 
    Kay, S. et al. Agroforestry is paying off – economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosyst. Serv. 36, 100896 (2019).Article 

    Google Scholar 
    European Council. Council agrees its position on the next EU common agricultural policy. Press release. https://www.consilium.europa.eu/en/press/press-releases/2020/10/21/council-agrees-its-position-on-the-next-eu-common-agricultural-policy/ (2020).IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, 2014).Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: a review. J. Ecol. 109, 600–613 (2021).Article 

    Google Scholar 
    Naumann, C. & Bassler, R. Die Chemische Untersuchung von Futtermitteln 3. Auflage (Chemical Analysis of Feedstuff 3rd Edition) (VDLUFA-Verlag, 1976).Beule, L., Lehtsaar, E., Rathgeb, A. & Karlovsky, P. Crop diseases and mycotoxin accumulation in temperate agroforestry systems. Sustainability 11, 2925 (2019).Article 
    CAS 

    Google Scholar 
    Verwijst, T. & Telenius, B. Biomass estimation procedures in short rotation forestry. For. Ecol. Manag. 121, 137–146 (1999).Article 

    Google Scholar 
    Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).Article 
    CAS 

    Google Scholar 
    Blake, G. & Hartge, K. in Methods of Soil Analysis: Part 1 – Physical and Mineralogical Methods 363–375 (Americal Society of Agronomy, Inc., 1995).Davidson, E. A., Hart, S. C., Shanks, C. A. & Firestone, M. K. Measuring gross nitrogen mineralization, and nitrification by 15N isotopic pool dilution in intact soil cores. J. Soil Sci. 42, 335–349 (1991).Article 
    CAS 

    Google Scholar 
    Tiessen, H. & Moir, J. O. in Soil Sampling and Methods of Analysis Ch. 25 (CRC Press, 1993).Beule, L. et al. Poplar rows in temperate agroforestry croplands promote bacteria, fungi, and denitrification genes in soils. Front. Microbiol. 10, 3108 (2020).Article 

    Google Scholar 
    Ando, S. et al. Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). Soil Sci. Plant Nutr. 51, 303–308 (2005).Article 
    CAS 

    Google Scholar 
    Singh, J., Singh, S. & Vig, A. P. Extraction of earthworm from soil by different sampling methods: a review. Environ. Dev. Sustain. 18, 1521–1539 (2016).Article 

    Google Scholar 
    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).Article 
    CAS 

    Google Scholar 
    Shen, S. M., Pruden, G. & Jenkinson, D. S. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol. Biochem. 16, 437–444 (1984).Article 
    CAS 

    Google Scholar 
    Marx, M.-C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).Article 
    CAS 

    Google Scholar 
    Matson, A. L., Corre, M. D., Langs, K. & Veldkamp, E. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama. Biogeosciences 14, 3509–3524 (2017).Article 
    CAS 

    Google Scholar 
    Wen, Y., Corre, M. D., Schrell, W. & Veldkamp, E. Gross N2O emission and gross N2O uptake in soils under temperate spruce and beech forests. Soil Biol. Biochem. 112, 228–236 (2017).Article 
    CAS 

    Google Scholar 
    McKenzie, N. J., Green, T. W. & Jacquier, D. W. in Soil Physical Measurement and Interpretation for Land Evaluation 150–162 (Csiro Publishing, 2002).Priesack, E. Expert-N model library documentation. https://expert-n.uni-hohenheim.de/en/documentation (2005).Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A. & Corre, M. D. Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation. Biogeosciences 17, 5243–5262 (2020).Article 
    CAS 

    Google Scholar 
    Kroetsch, D. & Wang, C. in Soil sampling and methods of analysis (eds Angers, D. A. & Larney, F. J.) 713–725 (CRC Press, 2008).Kurniawan, S. et al. Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences 15, 5131–5154 (2018).Article 
    CAS 

    Google Scholar 
    Markwitz, C. Micrometeorological Measurements and Numerical Simulations of Turbulence and Evapotranspiration over Agroforestry (University of Göttingen, 2021).Jarrah, M., Mayel, S., Tatarko, J., Funk, R. & Kuka, K. A review of wind erosion models: data requirements, processes, and validity. Catena 187, 104388 (2020).Article 

    Google Scholar 
    van Ramshorst, J. G. V. et al. Reducing wind erosion through agroforestry: a case study using large eddy simulations. Sustainability 14, 13372 (2022).Article 

    Google Scholar 
    Kanzler, M., Böhm, C., Mirck, J., Schmitt, D. & Veste, M. Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agroforest Syst. 93, 1821–1841 (2019).Article 

    Google Scholar 
    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    Similarities in biomass and energy reserves among coral colonies from contrasting reef environments

    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Ellis, J. I. et al. Multiple stressor effects on coral reef ecosystems. Glob. Change Biol. 25, 4131–4146 (2019).Article 
    ADS 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Selkoe, K. A. et al. A map of human impacts to a “pristine” coral reef ecosystem, the Papahānaumokuākea Marine National Monument. Coral Reefs 28, 635–650 (2009).Article 
    ADS 

    Google Scholar 
    Golbuu, Y. et al. Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26, 319–332 (2007).Article 

    Google Scholar 
    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).Article 
    ADS 

    Google Scholar 
    Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance?. Coral Reefs 30, 429–440. https://doi.org/10.1007/s00338-011-0721-y (2011).Article 
    ADS 

    Google Scholar 
    van Woesik, R. et al. Climate-change refugia in the sheltered bays of Palau: Analogs of future reefs. Ecol. Evol. 2, 2474–2484 (2012).Article 

    Google Scholar 
    Hoadley, K. D. et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci. Rep. 9, 1–15 (2019).Article 
    CAS 

    Google Scholar 
    Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    Putnam, H. M. Avenues of reef-building coral acclimatization in response to rapid environmental change. J. Exp. Biol. 224, jeb239319 (2021).Article 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 1–8 (2017).Article 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).Article 
    ADS 

    Google Scholar 
    Houlbrèque, F., Tambutté, E. & Ferrier-Pagès, C. Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J. Exp. Mar. Biol. Ecol. 296, 145–166 (2003).Article 

    Google Scholar 
    Hoogenboom, M. O., Connolly, S. R. & Anthony, K. R. N. Biotic and abiotic correlates of tissue quality for common scleractinian corals. Mar. Ecol. Prog. Ser. 438, 119–128 (2011).Article 
    ADS 

    Google Scholar 
    Fitt, W. K., McFarland, F. K., Warner, M. E. & Chilcoat, G. C. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 45, 677–685 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Aichelman, H. E. et al. Exposure duration modulates the response of Caribbean corals to global change stressors. Limnol. Oceanogr. 66, 3100–3115 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B. https://doi.org/10.1098/rspb.2015.1887 (2015).Article 

    Google Scholar 
    Lesser, M. P. Using energetic budgets to assess the effects of environmental stress on corals: Are we measuring the right things?. Coral Reefs 32, 25–33 (2013).Article 
    ADS 

    Google Scholar 
    Harland, A. D., Navarro, J. C., Davies, P. S. & Fixter, L. M. Lipids of some Caribbean and Red Sea corals: Total lipid, wax esters, triglycerides and fatty acids. Mar. Biol. 117, 113–117. https://doi.org/10.1007/BF00346432 (1993).Article 
    CAS 

    Google Scholar 
    Yamashiro, H., Oku, H., Higa, H., Chinen, I. & Sakai, K. Composition of lipids, fatty acids and sterols in Okinawan corals. Comp. Biochem. Phys. B. 122, 397–407. https://doi.org/10.1016/S0305-0491(99)00014-0 (1999).Article 

    Google Scholar 
    Gnaiger, E. & Bitterlich, G. Proximate biochemical composition and caloric content calculated from elemental CHN analysis: A stoichiometric concept. Oecologia 62, 289–298 (1984).Article 
    ADS 
    CAS 

    Google Scholar 
    Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).Article 
    ADS 

    Google Scholar 
    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).Article 
    ADS 

    Google Scholar 
    Golbuu, Y., Gouezo, M., Kurihara, H., Rehm, L. & Wolanski, E. Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35, 909–918. https://doi.org/10.1007/s00338-016-1457-5 (2016).Article 
    ADS 

    Google Scholar 
    Barkley, H. C. et al. Changes in coral reef communities across a natural gradient in seawater pH. Sci. Adv. 1, e1500328. https://doi.org/10.1126/sciadv.1500328 (2015).Article 
    ADS 

    Google Scholar 
    Shamberger, K. E. F. et al. Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys. Res. Lett. 41, 499–504 (2013).Article 
    ADS 

    Google Scholar 
    Hoadley, K. D. et al. Different functional traits among closely related algal symbionts dictate stress endurance for vital Indo-Pacific reef-building corals. Glob. Change Biol. 27, 5295–5309 (2021).Article 
    CAS 

    Google Scholar 
    Fabricius, K. E., Mieog, J. C., Colin, P. L., Idip, D. & van Oppen, H. M. J. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol. Ecol. 13, 2445–2458 (2004).Article 
    CAS 

    Google Scholar 
    Kemp, D. W. et al. Corals respond to environmental extremes with trophic plasticity (in revision).Enochs, I. C. et al. Effects of light and elevated pCO2 on the growth and photochemical efficiency of Acropora cervicornis. Coral Reefs 33, 477–485 (2014).ADS 

    Google Scholar 
    Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).Article 
    CAS 

    Google Scholar 
    Conlan, J. A., Jones, P. L., Turchini, G. M., Hall, M. R. & Francis, D. S. Changes in the nutritional composition of captive early-mid stage Panulirus ornatus phyllosoma over ecdysis and larval development. Aquaculture 434, 159–170 (2014).Article 
    CAS 

    Google Scholar 
    Conlan, J. A., Humphrey, C. A., Severati, A. & Francis, D. S. Influence of different feeding regimes on the survival, growth, and biochemical composition of Acropora coral recruits. PLoS ONE 12, e0188568 (2017).Article 

    Google Scholar 
    Nichols, P. D., Mooney, B. D. & Elliott, N. G. Unusually high levels of non-saponifiable lipids in the fishes escolar and rudderfish: Identification by gas and thin-layer chromatography. J. Chromatogr. A 936, 183–191 (2001).Article 
    CAS 

    Google Scholar 
    Parrish, C. C., Bodennec, G. & Gentien, P. Determination of glycoglycerolipids by Chromarod thin-layer chromatography with Iatroscan flame ionization detection. J. Chromatogr. A 741, 91–97 (1996).Article 
    CAS 

    Google Scholar 
    McLachlan, R., Price, H., Dobson, K., Weisleder, N. & Grottoli, A. G. Microplate assay for quantification of soluble protein in ground coral samples. Protocolsio (2020).Masuko, T. et al. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 339, 69–72 (2005).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550. https://doi.org/10.1111/j.1365-2435.2008.01531.x (2009).Article 

    Google Scholar 
    Rodrigues, L. J., Grottoli, A. G. & Pease, T. K. Lipid class composition of bleached and recovering Porites compressa Dana, 1846 and Montipora capitata Dana, 1846 corals from Hawaii. J. Exp. Mar. Biol. Ecol. 358, 136–143. https://doi.org/10.1016/j.jembe.2008.02.004 (2008).Article 
    CAS 

    Google Scholar 
    Kochman, N.A.-R., Grover, R., Rottier, C., Ferrier-Pages, C. & Fine, M. The reef building coral Stylophora pistillata uses stored carbohydrates to maintain ATP levels under thermal stress. Coral Reefs 40, 1473–1485 (2021).Article 

    Google Scholar 
    Loya, Y. et al. Coral bleaching: The winners and the losers. Eco. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    Thornhill, D. J. et al. A connection between colony biomass and death in Caribbean reef-building corals. PLoS ONE 6, e29535. https://doi.org/10.1371/journal.pone.0029535 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Porter, J. W., Fitt, W. K., Spero, H. J., Rogers, C. S. & White, M. W. Bleaching in reef corals: physiological and stable isotopic responses. Proc. Natl. Acad. Sci. USA 86, 9342–9346 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, S129–S138 (1997).Article 

    Google Scholar 
    Fitt, W. K. et al. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J. Exp. Mar. Biol. Ecol. 373, 102–110. https://doi.org/10.1016/j.jembe.2009.03.011 (2009).Article 

    Google Scholar 
    Stimson, J. S. Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. B. Mar. Sci. 41, 889–904 (1987).ADS 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. https://doi.org/10.1007/s00227-004-1337-3 (2004).Article 

    Google Scholar 
    Yamashiro, H., Oku, H. & Onaga, K. Effect of bleaching on lipid content and composition of Okinawan corals. Fish. Sci. 71, 448–453. https://doi.org/10.1111/j.1444-2906.2005.00983.x (2005).Article 
    CAS 

    Google Scholar 
    Fitt, W. K., Spero, H. J., Halas, J., White, M. W. & Porter, J. W. Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean “bleaching event”. Coral Reefs 12, 57–64 (1993).Article 
    ADS 

    Google Scholar 
    DeSalvo, M. K. et al. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol. Ecol. 17, 3952–3971. https://doi.org/10.1111/j.1365-294X.2008.03879.x (2008).Article 
    CAS 

    Google Scholar 
    Kenkel, C. D., Meyer, E. & Matz, M. V. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol. Ecol. 22, 4322–4334. https://doi.org/10.1111/mec.12390 (2013).Article 
    CAS 

    Google Scholar 
    van Woesik, R. et al. Coral-bleaching responses to climate change across biological scales. Glob. Change Biol. 28, 4229–4250 (2022).Article 

    Google Scholar 
    Brown, B. E., Downs, C. A., Dunne, R. P. & Gibb, S. W. Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar. Ecol. Prog. Ser. 242, 119–129 (2002).Article 
    ADS 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17. https://doi.org/10.1111/j.1469-185X.2008.00058.x (2009).Article 

    Google Scholar 
    Ferrier-Pages, C., Witting, J., Tambutte, E. & Sebens, K. P. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22, 229–240 (2003).Article 

    Google Scholar 
    Solomon, S. L. et al. Lipid class composition of annually bleached Caribbean corals. Mar. Biol. 167, 1–15 (2020).
    Google Scholar 
    Matsuya, Z. Some hydrographical studies of the water of Iwayama Bay in the South Seas Islands. Palao Trop. Biol. Stat. St. 1, 95–135 (1937).
    Google Scholar 
    Tokioka, T. Systematic studies of the plankton organisms occurring in Iwayama Bay, Palao. I. Introductory Notes, with Some References to the Surface Water Temperature and the Settling Volume of Planktons in the Bay. Palao Trop. Biol. Stn Stud. 2, 507–519 (1942).Kurihara, H. et al. Potential local adaptation of corals at acidified and warmed Nikko Bay. Palau. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    Allemand, D., Tambutté, É., Zoccola, D. & Tambutté, S. Coral Calcification, Cells to Reefs (Springer, 2011).Book 

    Google Scholar 
    Pan, T. C. F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Nat. Acad. Sci.-Biol. 112, 4696–4701 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Wall, C. B., Mason, R. A. B., Ellis, W. R., Cunning, R. & Gates, R. D. Elevated pCO2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. R. Soc. Open Sci. 4, 170683. https://doi.org/10.1098/rsos.170683 (2017).Article 
    CAS 

    Google Scholar 
    Drenkard, E. J. et al. Juveniles of the Atlantic coral, Favia fragum (Esper, 1797) do not invest energy to maintain calcification under ocean acidification. J. Exp. Mar. Biol. Ecol. 507, 61–69 (2018).Article 
    CAS 

    Google Scholar 
    Parkinson, J. E., Banaszak, A. T., Altman, N. S., LaJeunesse, T. C. & Baums, I. B. Intraspecific diversity among partners drives functional variation in coral symbioses. Sci. Rep. 5, 1–12 (2015).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci.-Biol. 110, 1387–1392. https://doi.org/10.1073/pnas.1210224110 (2013).Article 
    ADS 

    Google Scholar 
    Bhattacharya, D. et al. Comparative genomics explains the evolutionary success of reef-forming corals. Elife 5, e13288 (2016).Article 

    Google Scholar 
    Rivera, H. E. et al. Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats. Commun. Biol. 5, 1–12 (2022).Article 

    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00434 (2018).Article 

    Google Scholar 
    Manzello, D. P. et al. Role of host genetics and heat-tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob. Change Biol. 25, 1016–1031. https://doi.org/10.1111/gcb.14545 (2019).Article 
    ADS 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. USA 112, 2307–2313 (2015).Article 
    ADS 

    Google Scholar 
    Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evol. 32, 735–745. https://doi.org/10.1016/j.tree.2017.07.013 (2017).Article 

    Google Scholar 
    Nitschke, M. R. et al. The Diversity and Ecology of Symbiodiniaceae: A Traits-Based Review. (Academic Press, 2022).Battista, T. A., Costa, B. M. & Anderson, S. M. Shallow-Water Benthic Habitats of the Republic of Palau. (US Department of Commerce, National Oceanic and Atmospheric Administration, 2007).Anderson, M. NCCOS Benthic Habitats of Palau Derived From IKONOS Imagery, 2003–2006. (2007). More

  • in

    Pulsed, continuous or somewhere in between? Resource dynamics matter in the optimisation of microbial communities

    There is a growing impetus to leverage our fundamental understanding of microbial community assembly towards applied problems. With microbes contributing to diverse physiological, biogeochemical, and agricultural processes, the potential to control and optimise microbial communities holds promise for interventions ranging from industrial and environmental remediation to human medicine and biofuel production [1, 2]. Realising this goal is contingent on high fidelity between theory, experiments, and the natural dynamics of target systems.Theoretical and experimental research in microbial community optimisation has largely proceeded along two parallel paths. Theoretical approaches leverage mathematical models and metabolic networks to predict which species combinations are stable and how they can optimise a given function (e.g., maximum biomass, waste degradation or host health) [3,4,5,6,7]. Experimental studies often take a combinatorial approach, iteratively assembling different species combinations in vitro and evaluating their stability and functional attributes [8,9,10,11]. Both theory and experiments are valuable but they are also susceptible to their own modus operandi that may limit their correspondence and their translation to real-world systems. On the one hand, theoretical approaches typically adopt the analytical tractability of steady state dynamics, where microbial consumers and the resources on which they depend are assumed to establish a stable equilibrium. On the other hand, experimental approaches almost exclusively embrace the high-throughput efficiency of serial-batch culture, where consumers and resources are made to fluctuate over several orders of magnitude with each serial passage. This raises an important question: should we expect unity in the composition of optimised communities emerging under continuous resource supply (e.g., chemostat) versus the discrete pulsed resource supply of, for example, serial-batch culture?To explore how microbial community composition varies under contrasting resource supply dynamics, we performed simulations of a classical resource-competition model:$$frac{{dN_i}}{{dt}} = N_ileft( {mathop {sum}limits_{j = 1}^n {mu _{ij}left( {R_j} right) – m} } right)$$
    (1)
    $$frac{{dR_j}}{{dt}} = {Psi}_jleft( {R_j} right) – mathop {sum }limits_{i = 1}^n Q_{ij}mu _{ij}left( {R_j} right)N_i,$$
    (2)
    where Ni is the population density of consumer i, Rj is the concentration of resource j, μij(Rj) is the per capita functional response of consumer i, m is the per capita mortality rate due to dilution, Ψj(Rj) is the resource supply function, and Qij is the resource quota of consumer i on resource j (amount of resource per unit consumer). The consumer functional response is given by the Monod function, (mu _{ij}(R_j) = mu _{max_{ij}}frac{{R_j}}{{K_{s_{ij}} + R_j}}) , where (mu _{max_{ij}}) is the maximum growth rate and (K_{s_{ij}}) is the half saturation constant for consumer i on resource j.To set up the simulations, we randomly sampled the parameters of the Monod growth functions, (μmax and Ks) for five species competing for five substitutable resources (essential resources are treated separately in the supplementary information, with similar findings). In one set of parametrisations (n = 100 unique competitor combinations) we used both random μmax and Ks, and in another set (n = 100) we imposed a trade-off in maximum growth rate and substrate affinity (( {frac{{mu _{max}}}{{K_s}}} )) (Fig. 1a). The rationale for imposing a trade-off is that metabolic theory predicts that organisms that invest energy into a high maximum growth rate will have lower substrate affinities and vice versa [12, 13]. To ensure reasonable growth rates relative to the time-scale of resource pulsing, we sampled μmax such that minimum doubling times spanned from 21 to 52 min (when all resources are non-limiting). For each of the random competitor combinations, we simulated resources under continuous or pulsed resource supply with resource replenishment every 1/2, 1, 2, 4, 12, or 24 h. Under pulsed resource supply, Ψj(Rj) and m are removed from Eq. (1) and (2) and replaced by discontinuous resource pulsing and cell transfer at fixed intervals. The total resource flux (and mortality) was held constant under all frequencies of resource supply i.e., less frequent replenishment corresponds to larger resource pulses (see Supplementary Information for full model/simulation specifications).Fig. 1: Quantifying compositional overlap between communities assembled under continuous vs. pulsed resource supply.a Per capita growth responses (Monod functions) from a single iteration of the model assuming a trade-off between maximum growth rate and resource affinity (colours correspond to individual consumers). b Time series of consumers in a under different resource supply regimes. Numbers above individual panels reflect pulsing intervals in hours. The amplitude of population fluctuations increases with longer intervals between pulses, with distinct phases of growth, saturation, and instantaneous mortality visible at a finer temporal resolution (Fig. S10). c Example measure of compositional overlap (Jaccard similarity index) between communities assembled under continuous resource supply (far left panel in b) vs. pulsing every two hours (centre panel in b).Full size imageAfter allowing the competitors to reach a steady state (time-averaged over 24 h under pulsed treatments), we quantified the correspondence between the continuous supply treatment and the pulsed treatments using the Jaccard similarity index, (Jleft( {A,B} right) = frac{{left| {A cap B} right|}}{{left| {A cup B} right|}}) (0 ≤ J(A,B) ≤ 1), where the numerator gives the number of species (max = 5) that persist under continuous (A) and pulsed (B) resource supply, and the denominator gives the number of species (max = 5) that persist under continuous or pulsed resource supply (Fig. 1b, c).Under both sets of simulations (with and without enforcing a trade-off between maximal growth rate and resource affinity), we observe that the similarity in final community composition between continuous and pulsed resource supply decays with increasingly large intervals between resource replenishment (Fig. 2a). When no trade-off is imposed between maximum growth rate and resource affinity (orange line in Fig. 2a) the mean compositional similarity is only 0.68 when resources are pulsed every 2 h and down to 0.41 when resources are pulsed every 24 h (typical of serial-batch culture). The rate of decay in the Jaccard index is more severe when a trade-off is imposed between maximum growth rate and substrate affinity, to the extent that once pulsing intervals reach four hours there is almost zero overlap in community composition (blue line in Fig. 2a).Fig. 2: Impact of resource supply regime on community composition and abundance weighted mean trait values.a Compositional overlap (Jaccard similarity) between communities under continuous versus pulsed resource supply. Orange lines, points and circles denote model parametrisations with random sampling of both μmax and Ks; blue lines, points and circles denote model parametrisations with a trade-off imposed between μmax and resource affinity (( {frac{{mu _{max}}}{{K_s}}} )). Simulation parameters provided in the Supplementary Information. b Mean trait values for affinity and μmax averaged for each consumer across the five resources and weighted by their final abundance at the end of a simulation (cont. = continuous). In both a and b, small points (jittered for clarity) give the result of an individual simulation; large circles indicate the corresponding mean.Full size imageEcological theory provides an intuitive explanation for these observations. When resources are more continuously supplied, the better competitor is the one that can sustain a positive growth rate at the lowest concentrations of a limiting resource (i.e., has a higher resource affinity or lower R* in the language of resource competition theory [14]). In contrast, under increasingly pulsed resource supply, the better competitor is the one that can grow rapidly at higher resource concentrations. Having a high resource affinity (low R*) is of little benefit if resource concentrations fluctuate over large amplitudes because it only confers an ephemeral competitive advantage in the brief period before the resource is completely depleted (ahead of the next resource pulse). Instead, a high maximum growth rate is optimal because it allows the consumer to grow rapidly and quickly deplete a shared limiting resource. This high maximum growth strategy is, however, sub-optimal under continuous resource supply because a low R* strategist can draw the resource down and hold it at a concentration at which the maximum growth strategist is unable to maintain a positive growth rate.Looking at the mean trait values for resource affinity and μmax weighted by each consumer’s final abundance, it is indeed apparent that consumers with a higher affinity (averaged across the five resources) are favoured under continuous resource supply, while consumers with high maximum growth rates are favoured under pulsing intervals of increasing length (Fig. 2b). Enforcing this trade-off, therefore, leads to the rapid decline in compositional similarity we observe under resource pulsing. Notably, it also leads to a richness peak at intermediate pulsing intervals, where these alternative strategies have a higher probability of coexisting [15] (Fig. S1). At the same time, we still observe a decline in compositional similarity when μmax and Ks are randomly sampled independently of each other simply because the trade-off between maximum growth and resource affinity will emerge occasionally by chance. Two experimental tests of microbial community composition under continuous versus pulsed resource supply are consistent with these observations [16, 17].To evaluate the sensitivity of these observations to different assumptions, we ran additional simulations under various alternative model parameterisations and formulations. In brief, comparable trends to those described above are observed when: i) maximum growth rates are faster or slower than those presented in the main text (Figs. S2, S3); ii) all resources are assumed to be essential to growth (following Liebig’s law of the minimum) (Fig. S4); iii) a weaker trade-off is imposed between maximum growth and affinity (Figs. S5, S6); or iv) mortality is continuous rather than intermittent (Figs. S7, S8). We also investigated the relationship between observed compositional overlap and the dynamical stability under continuous resource supply, anticipating that more stable communities would tend to be more resistant to compositional shifts under resource pulsing. The reality appears more nuanced, namely that weaker dynamical stability at the limit of constant resource supply is associated with higher variance in compositional overlap under continuous vs. pulsed conditions (Fig. S9). In other words, systems with weaker stability are less predictable. A wide range of other microbial traits and trade-offs may interact unpredictably with the relationship between resource supply and community composition. The potential modulating role of system instabilities generated by cross-feeding interactions, non-convex trade-off functions, and the evolution of specialist versus generalist strategies present several especially valuable lines of enquiry [18,19,20].Although these observations are germane to any consumer-resource system, our emphasis here is on the emerging field of microbial community optimisation, where the practical implications are especially timely and important; namely, the resource supply regime must be tailored to the community being optimised. For example, wastewater treatment might be more appropriately modelled under continuous resource supply [21], whereas fermented food and beverage production may be more closely allied to the pulsed resource dynamics observed in batch culture [22]. Resource supply might also be manipulated to favourably modify the competitive hierarchy in an existing community (e.g., by regulating the rate of nutrient supply to the gut through meal timing). Indeed, there is emerging evidence that feeding frequency can drive significant changes in gut microbiota composition [23, 24]. Thus, resource supply dynamics should be considered both a constraint in the design of novel microbial communities and as a tuning mechanism for the optimisation of preexisting communities like those found in the human gut. More