New 3D measurements of large redwood trees for biomass and structure
1.
Van Pelt, R., Sillett, S. C., Kruse, W. A., Freund, J. A. & Kramer, R. D. Emergent crowns and light-use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests. For. Ecol.Manag. 375, 279–308 (2016).
Article Google Scholar
2.
Fujimori, T. Stem biomass and structure of a mature sequoia sempervirens stand on the Pacific Coast of Northern California. J. Jpn. For. Soc. 59(12), 435–441 (1977).
Google Scholar
3.
Busing, R. T. & Fujimori, T. Biomass, production and woody detritus in an old coast redwood (Sequoia sempervirens) forest. Plant Ecol. 177, 177–188 (2005).
Article Google Scholar
4.
Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428(6985), 851 (2004).
ADS CAS PubMed Article PubMed Central Google Scholar
5.
Carder, A. C. Forest Giants of the World, Past and Present (Fitzhenry & Whiteside, Markham, 1995).
Google Scholar
6.
Harrison, J. G., Forister, M. L., Parchman, T. L. & Koch, G. W. Vertical stratification of the foliar fungal community in the world’s tallest trees. Am. J. Bot. 103(12), 2087–2095 (2016).
PubMed Article PubMed Central Google Scholar
7.
Sillett, S. C. et al. Increasing wood production through old age in tall trees. For. Ecol. Manag. 259, 976–994 (2010).
Article Google Scholar
8.
Sillett, S. C. et al. Allometric equations for Sequoia sempervirens in forests of different ages. For. Ecol. Manag. 433, 349–363 (2019).
Article Google Scholar
9.
Kizha, A. R. & Han, H.-S. Predicting aboveground biomass in second growth coast redwood: Comparing localized with generic allometric models. Forests 7, 96 (2016).
Article Google Scholar
10.
Parks, W.H. Redwood log characteristics: Sapwood thickness, bark thickness and log taper. Report number 1.20121. California Redwood Association, San Francisco (1952).
11.
Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Nat. Acad. Sci. 106(28), 11635–11640 (2009).
ADS CAS PubMed Article Google Scholar
12.
Slik, J. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeog. 22(12), 1261–1271 (2013).
Article Google Scholar
13.
Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92(3), 1434–1458 (2016).
PubMed Article Google Scholar
14.
Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368(6487), 165–168 (2020).
ADS PubMed Article CAS Google Scholar
15.
Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1), 87–99 (2005).
ADS CAS PubMed Article Google Scholar
16.
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20(10), 3177–3190 (2014).
ADS Article Google Scholar
17.
Burt, A. et al. Assessment of bias in pan-tropical biomass predictions. Front. For. Glob. Change Trop. For.https://doi.org/10.3389/ffgc.2020.00012 (2020).
Article Google Scholar
18.
Sillett, S. C., Van Pelt, R., Kramer, R. D., Caroll, A. L. & Koch, G. W. Biomass and growth potential of Eucalyptus regnans up to 100 m tall. For. Ecol. Manag. 348, 78–91 (2015).
Article Google Scholar
19.
Sillett, S. C. et al. How do tree structure and old age affect growth potential of California redwoods?. Ecol. Monog. 85(2), 181–212 (2015).
Article Google Scholar
20.
Kramer, R. D., Sillett, S. C. & Van Pelt, R. Quantifying aboveground components of Picea sitchensis for allometric comparisons among tall conifers in North American rainforests. For. Ecol. Manag. 430, 59–77 (2018).
Article Google Scholar
21.
Niklas, K. J. Influence of tissue density-specific mechanical properties on the scaling of plant height. Ann. Bot. 72, 173–179 (1993).
Article Google Scholar
22.
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
PubMed Article PubMed Central Google Scholar
23.
Luxford, R. F. & Markwardt, L. J. The strength and related properties of redwood. USDA Tech. Bull. 305, 20 (1932).
Google Scholar
24.
Wilson, P. L., Funck, W. J. & Avery, R. B. Fuelwood characteristics of northwestern conifers and hardwoods. Res. Bull. 60, 42 (1987).
Google Scholar
25.
Miles, P. D. & Smith, B. Specific gravity and other properties of wood and bark for 156 tree species found in North America. Res. Note NRS-38. Newtown Square, PA: U.S. (2009), Department of Agriculture, Forest Service, Northern Research Station, p. 35.
26.
Clark, D. B. & Kellner, J. R. Tropical forest biomass estimation and the fallacy of misplaced concreteness. J. Veg. Sci. 23(6), 1191–1196 (2012).
Article Google Scholar
27.
Momo, S. T. et al. Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data. For. Ecol. Manag. 424, 519–528 (2018).
Article Google Scholar
28.
Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J. & Hérault, B. Biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8(9), 1163–1167 (2017).
Article Google Scholar
29.
Chave, L. et al. Ground data are vital for remote sensing missions. In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 863–880 (2019).
30.
Duncanson, L. et al. The importance of global land product validation: Towards a standardized protocol for aboveground biomass. In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space. (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 979–999 (2019).
31.
Disney, M. I. Terrestrial LiDAR: A 3D revolution in how we look at trees. New Phytol. 222(4), 1736–1741 (2018).
PubMed Article PubMed Central Google Scholar
32.
Disney, M. I. et al. Weighing trees with lasers: Advances, challenges and opportunities. R. Soc. Interface Focus 8, 2. https://doi.org/10.1098/rsfs.2017.0048 (2018).
Article Google Scholar
33.
Calders, K. et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 6(2), 198–208 (2015).
Article Google Scholar
34.
Gonzalez de Tanago, J. et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9(2), 223–234 (2018).
Article Google Scholar
35.
Momo Takoudjou, S. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9(4), 905–916 (2018).
Article Google Scholar
36.
Stovall, A. E., Anderson-Teixeira, K. J. & Shugart, H. H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecol. Manag. 427, 217–229 (2018).
Article Google Scholar
37.
Disney, M. I., Burt, A., Calders, K., Schaaf, C. & Stovall, A. Innovations in ground and airborne technologies as reference and for training and validation: Terrestrial laser scanning (TLS). In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space. (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 937–958 (2019).
38.
Lau, A. et al. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees 32, 1219–1231 (2018).
CAS Article Google Scholar
39.
Shenkin, A. et al. The world’s tallest tropical tree in three dimensions. Front. For. Glob. Change.https://doi.org/10.3389/ffgc.2019.00032 (2019).
Article Google Scholar
40.
Verbeeck, H. et al. Time for a plant structural economics spectrum. Front. For. Glob. Change. 2, 43. https://doi.org/10.3389/ffgc.2019.00043 (2019).
Article Google Scholar
41.
Duncanson, L. et al. Implications of allometric model selection for county-level biomass mapping. Carbon Balance Manag. 12(1), 18 (2017).
PubMed PubMed Central Article Google Scholar
42.
Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).
Article Google Scholar
43.
Enquist, B. J. Universal scaling in tree and vascular plant allometry: Toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22, 1045–1064 (2002).
PubMed Article PubMed Central Google Scholar
44.
Niklas, K. J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171, 27–40 (2006).
PubMed Article PubMed Central Google Scholar
45.
Hunter, M. O., Keller, M., Victoria, D. & Morton, D. C. Tree height and tropical forest biomass estimation. Biogeosciences 10(12), 8385–8399 (2013).
ADS Article Google Scholar
46.
Wilkes, P. et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Rem. Sens. Environ. 196, 140–153 (2017).
ADS Article Google Scholar
47.
Burt, A., Disney, M. I. & Calders, K. Extracting individual trees from lidar point clouds using treeseg. Methods Ecol. Evol. 10(3), 438–445 (2018).
Google Scholar
48.
Douhovnikoff, V. & Dodd, R. S. Clonal spread in second growth stands of coast redwood, sequoia sempervirens. In: Standiford, R. B. et al., technical editors. Proceedings of the Redwood Region Forest Science Symposium 2007: What Does the Future Hold? Gen. Tech. Rep. PSW-GTR-194. Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture. Vol 194, 65–72 (2007).
49.
Raumonen, P. et al. Comprehensive quantitative tree models from terrestrial laser scanner data. Remote Sens. 5(2), 491–520. https://doi.org/10.3390/rs5020491 (2013).
ADS Article Google Scholar
50.
Olofsson, K., Holmgren, J. & Olsson, H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sens. 6(5), 4323–4344 (2014).
ADS Article Google Scholar
51.
Bellock, K. E. Alphashape Python toolbox, v 1.0.1. https://pypi.org/project/alphashape/ (2019).
52.
Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49(1), 12–35 (2003).
Google Scholar
53.
Chojnacky, D. C., Heath, L. S. & Jenkins, J. C. Updated generalized biomass equations for North American tree species. Forestry 87(1), 129–151 (2014).
Article Google Scholar More
