More stories

  • in

    New 3D measurements of large redwood trees for biomass and structure

    1.
    Van Pelt, R., Sillett, S. C., Kruse, W. A., Freund, J. A. & Kramer, R. D. Emergent crowns and light-use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests. For. Ecol.Manag. 375, 279–308 (2016).
    Article  Google Scholar 
    2.
    Fujimori, T. Stem biomass and structure of a mature sequoia sempervirens stand on the Pacific Coast of Northern California. J. Jpn. For. Soc. 59(12), 435–441 (1977).
    Google Scholar 

    3.
    Busing, R. T. & Fujimori, T. Biomass, production and woody detritus in an old coast redwood (Sequoia sempervirens) forest. Plant Ecol. 177, 177–188 (2005).
    Article  Google Scholar 

    4.
    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428(6985), 851 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Carder, A. C. Forest Giants of the World, Past and Present (Fitzhenry & Whiteside, Markham, 1995).
    Google Scholar 

    6.
    Harrison, J. G., Forister, M. L., Parchman, T. L. & Koch, G. W. Vertical stratification of the foliar fungal community in the world’s tallest trees. Am. J. Bot. 103(12), 2087–2095 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Sillett, S. C. et al. Increasing wood production through old age in tall trees. For. Ecol. Manag. 259, 976–994 (2010).
    Article  Google Scholar 

    8.
    Sillett, S. C. et al. Allometric equations for Sequoia sempervirens in forests of different ages. For. Ecol. Manag. 433, 349–363 (2019).
    Article  Google Scholar 

    9.
    Kizha, A. R. & Han, H.-S. Predicting aboveground biomass in second growth coast redwood: Comparing localized with generic allometric models. Forests 7, 96 (2016).
    Article  Google Scholar 

    10.
    Parks, W.H. Redwood log characteristics: Sapwood thickness, bark thickness and log taper. Report number 1.20121. California Redwood Association, San Francisco (1952).

    11.
    Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Nat. Acad. Sci. 106(28), 11635–11640 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Slik, J. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeog. 22(12), 1261–1271 (2013).
    Article  Google Scholar 

    13.
    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92(3), 1434–1458 (2016).
    PubMed  Article  Google Scholar 

    14.
    Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368(6487), 165–168 (2020).
    ADS  PubMed  Article  CAS  Google Scholar 

    15.
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1), 87–99 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20(10), 3177–3190 (2014).
    ADS  Article  Google Scholar 

    17.
    Burt, A. et al. Assessment of bias in pan-tropical biomass predictions. Front. For. Glob. Change Trop. For.https://doi.org/10.3389/ffgc.2020.00012 (2020).
    Article  Google Scholar 

    18.
    Sillett, S. C., Van Pelt, R., Kramer, R. D., Caroll, A. L. & Koch, G. W. Biomass and growth potential of Eucalyptus regnans up to 100 m tall. For. Ecol. Manag. 348, 78–91 (2015).
    Article  Google Scholar 

    19.
    Sillett, S. C. et al. How do tree structure and old age affect growth potential of California redwoods?. Ecol. Monog. 85(2), 181–212 (2015).
    Article  Google Scholar 

    20.
    Kramer, R. D., Sillett, S. C. & Van Pelt, R. Quantifying aboveground components of Picea sitchensis for allometric comparisons among tall conifers in North American rainforests. For. Ecol. Manag. 430, 59–77 (2018).
    Article  Google Scholar 

    21.
    Niklas, K. J. Influence of tissue density-specific mechanical properties on the scaling of plant height. Ann. Bot. 72, 173–179 (1993).
    Article  Google Scholar 

    22.
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Luxford, R. F. & Markwardt, L. J. The strength and related properties of redwood. USDA Tech. Bull. 305, 20 (1932).
    Google Scholar 

    24.
    Wilson, P. L., Funck, W. J. & Avery, R. B. Fuelwood characteristics of northwestern conifers and hardwoods. Res. Bull. 60, 42 (1987).
    Google Scholar 

    25.
    Miles, P. D. & Smith, B. Specific gravity and other properties of wood and bark for 156 tree species found in North America. Res. Note NRS-38. Newtown Square, PA: U.S. (2009), Department of Agriculture, Forest Service, Northern Research Station, p. 35.

    26.
    Clark, D. B. & Kellner, J. R. Tropical forest biomass estimation and the fallacy of misplaced concreteness. J. Veg. Sci. 23(6), 1191–1196 (2012).
    Article  Google Scholar 

    27.
    Momo, S. T. et al. Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data. For. Ecol. Manag. 424, 519–528 (2018).
    Article  Google Scholar 

    28.
    Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J. & Hérault, B. Biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8(9), 1163–1167 (2017).
    Article  Google Scholar 

    29.
    Chave, L. et al. Ground data are vital for remote sensing missions. In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 863–880 (2019).

    30.
    Duncanson, L. et al. The importance of global land product validation: Towards a standardized protocol for aboveground biomass. In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space. (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 979–999 (2019).

    31.
    Disney, M. I. Terrestrial LiDAR: A 3D revolution in how we look at trees. New Phytol. 222(4), 1736–1741 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Disney, M. I. et al. Weighing trees with lasers: Advances, challenges and opportunities. R. Soc. Interface Focus 8, 2. https://doi.org/10.1098/rsfs.2017.0048 (2018).
    Article  Google Scholar 

    33.
    Calders, K. et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 6(2), 198–208 (2015).
    Article  Google Scholar 

    34.
    Gonzalez de Tanago, J. et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9(2), 223–234 (2018).
    Article  Google Scholar 

    35.
    Momo Takoudjou, S. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9(4), 905–916 (2018).
    Article  Google Scholar 

    36.
    Stovall, A. E., Anderson-Teixeira, K. J. & Shugart, H. H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecol. Manag. 427, 217–229 (2018).
    Article  Google Scholar 

    37.
    Disney, M. I., Burt, A., Calders, K., Schaaf, C. & Stovall, A. Innovations in ground and airborne technologies as reference and for training and validation: Terrestrial laser scanning (TLS). In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space. (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 937–958 (2019).

    38.
    Lau, A. et al. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees 32, 1219–1231 (2018).
    CAS  Article  Google Scholar 

    39.
    Shenkin, A. et al. The world’s tallest tropical tree in three dimensions. Front. For. Glob. Change.https://doi.org/10.3389/ffgc.2019.00032 (2019).
    Article  Google Scholar 

    40.
    Verbeeck, H. et al. Time for a plant structural economics spectrum. Front. For. Glob. Change. 2, 43. https://doi.org/10.3389/ffgc.2019.00043 (2019).
    Article  Google Scholar 

    41.
    Duncanson, L. et al. Implications of allometric model selection for county-level biomass mapping. Carbon Balance Manag. 12(1), 18 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).
    Article  Google Scholar 

    43.
    Enquist, B. J. Universal scaling in tree and vascular plant allometry: Toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22, 1045–1064 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Niklas, K. J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171, 27–40 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hunter, M. O., Keller, M., Victoria, D. & Morton, D. C. Tree height and tropical forest biomass estimation. Biogeosciences 10(12), 8385–8399 (2013).
    ADS  Article  Google Scholar 

    46.
    Wilkes, P. et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Rem. Sens. Environ. 196, 140–153 (2017).
    ADS  Article  Google Scholar 

    47.
    Burt, A., Disney, M. I. & Calders, K. Extracting individual trees from lidar point clouds using treeseg. Methods Ecol. Evol. 10(3), 438–445 (2018).
    Google Scholar 

    48.
    Douhovnikoff, V. & Dodd, R. S. Clonal spread in second growth stands of coast redwood, sequoia sempervirens. In: Standiford, R. B. et al., technical editors. Proceedings of the Redwood Region Forest Science Symposium 2007: What Does the Future Hold? Gen. Tech. Rep. PSW-GTR-194. Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture. Vol 194, 65–72 (2007).

    49.
    Raumonen, P. et al. Comprehensive quantitative tree models from terrestrial laser scanner data. Remote Sens. 5(2), 491–520. https://doi.org/10.3390/rs5020491 (2013).
    ADS  Article  Google Scholar 

    50.
    Olofsson, K., Holmgren, J. & Olsson, H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sens. 6(5), 4323–4344 (2014).
    ADS  Article  Google Scholar 

    51.
    Bellock, K. E. Alphashape Python toolbox, v 1.0.1. https://pypi.org/project/alphashape/ (2019).

    52.
    Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49(1), 12–35 (2003).
    Google Scholar 

    53.
    Chojnacky, D. C., Heath, L. S. & Jenkins, J. C. Updated generalized biomass equations for North American tree species. Forestry 87(1), 129–151 (2014).
    Article  Google Scholar  More

  • in

    The genetic diversity and differentiation of mussels with complex life cycles and relations to host fish migratory traits and densities

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–9013 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Dudaniec, R. Y. & Tesson, S. V. M. Applying landscape genetics to the microbial world. Mol. Ecol. 25, 3266–3275 (2016).
    PubMed  Article  Google Scholar 

    3.
    Froufe, E. et al. Phylogeny, phylogeography, and evolution in the Mediterranean region: News from a freshwater mussel (Potomida, Unionida). Mol. Phyl. Evol. 100, 322–332 (2016).
    Article  Google Scholar 

    4.
    Simmons, L., Mathieson, M. T., Lamont, R. W. & Shapcott, A. Genetic diversity of endangered orchid Phaius australis across a fragmented Australian landscape. Conserv. Genet. 19, 451–465 (2018).
    CAS  Article  Google Scholar 

    5.
    Chong, J. P. & Roe, K. J. A comparison of genetic diversity and population structure of the endangered scaleshell mussel (Leptodea leptodon), the fragile papershell (Leptodea fragilis) and their host-fish the freshwater drum (Aplodinotus grunniens). Conserv. Genet. 19(2), 425–437 (2018).
    Article  Google Scholar 

    6.
    Berg, D. J., Christian, A. D. & Guttman, S. I. Population genetic structure of three freshwater mussel (Unionidae) species within a small stream system: significant variation at local spatial scales. Freshw. Biol. 52, 1427–1439 (2007).
    Article  Google Scholar 

    7.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Elderkin, C. L., Christian, A. D., Vaughn, C. C., Metcalfe-Smith, J. L. & Berg, D. J. Population genetics of the freshwater mussel, Amblema plicata (Say 1817) (Bivalvia: Unionidae): evidence of high dispersal and post-glacial colonization. Conserv. Genet. 8, 355–372 (2007).
    CAS  Article  Google Scholar 

    9.
    Mazé-Guilmo, E., Blanchet, S., McCoy, K. D. & Loot, G. Host dispersal as the driver of parasite genetic structure: a paradigm lost?. Ecol. Lett. 19, 336–347 (2016).
    PubMed  Article  Google Scholar 

    10.
    Karlsson, S., Larsen, B. M. & Hindar, K. Host-dependent genetic variation in freshwater pearl mussel (Margaritifera margaritifera L.). Hydrobiologia 735, 179–190 (2014).
    Article  Google Scholar 

    11.
    Östergren, J. & Nilsson, J. Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.). Ecol. Freshw. Fish 21, 119–133 (2012).
    Article  Google Scholar 

    12.
    Hendry, A. P. et al. Evolutionary principles and their practical application. Evol. Appl. 4, 159–183 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Strayer, D. L. et al. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54, 429–439 (2004).
    Article  Google Scholar 

    14.
    Geist, J. et al. Genetic structure of Irish freshwater pearl mussels (Margaritifera margaritifera and Margaritifera durrovensis): Validity of subspecies, roles of host fish, and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 923–933 (2018).
    Article  Google Scholar 

    15.
    Arvidsson, B. L., Karlsson, J. & Österling, M. E. Recruitment of the threatened mussel Margaritifera margaritifera in relation to mussel population size, mussel density and host density. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 526–532 (2012).
    Article  Google Scholar 

    16.
    Young, M. & Williams, J. The reproductive biology of the freshwater pearl mussel Margaritifera margaritifera (Linn.) in Scotland 1 Field studies. Arch. Hydrobiol. 99, 405–422 (1984).
    Google Scholar 

    17.
    Hastie, L. C. & Young, M. R. Freshwater pearl mussel (Margaritifera margaritifera) glochidiosis in wild and farmed salmonid stocks in Scotland. Hydrobiologia 445, 109–119 (2001).
    Article  Google Scholar 

    18.
    Salonen, J. K. et al. Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) differ in their suitability as hosts for the endangered freshwater pearl mussel (Margaritifera margaritifera) in northern Fennoscandian rivers. Freshw. Biol. 62, 1346–1358 (2017).
    Article  Google Scholar 

    19.
    Österling, E. M. & Söderberg, H. Sea-trout habitat fragmentation affects threatened freshwater pearl mussel. Biol. Conserv. 186, 197–203 (2015).
    Article  Google Scholar 

    20.
    Taeubert, E. & Geist, J. The relationship between the freshwater pearl mussel (Margaritifera margaritifera) and its hosts. Biol. Bull. 44, 67–73 (2017).
    Article  Google Scholar 

    21.
    Stoeckle, B. C. et al. Strong genetic differentiation and low genetic diversity of the freshwater pearl mussel (Margaritifera margaritifera L.) in the southwestern European distribution range. Conserv. Genet. 18, 147–157 (2017).
    Article  Google Scholar 

    22.
    Mathias, P. T., Hoffman, J. R., Wilson, C. C. & Zanatta, D. T. Signature of postglacial colonization on contemporary genetic structure and diversity of Quadrula quadrula (Bivalvia: Unionidae). Hydrobiologia 810, 207–225 (2018).
    CAS  Article  Google Scholar 

    23.
    implications for conservation and management. Geist, J. & Kuehn, R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations. Mol. Ecol. 14, 425–439 (2005).
    Google Scholar 

    24.
    Wacker, S., Larsen, B. M., Karlsson, S. & Hindar, K. Host specificity drives genetic structure in a freshwater mussel. Sci. Reports 9, 10409 (2019).
    ADS  Google Scholar 

    25.
    Geist, J. & Kuehn, R. Host-parasite interactions in oligotrophic stream ecosystems: The roles of life history strategy and ecological niche. Mol. Ecol. 17, 997–1008 (2008).
    PubMed  Article  Google Scholar 

    26.
    Naimo, T. J., Damschen, E. D., Rada, R. G. & Monroe, E. M. Nonlethal evaluation of the physiological health of unionid mussels: methods for biopsy and glycogen analysis. J. North Am. Benth. Soc. 17, 121–128 (1998).
    Article  Google Scholar 

    27.
    Geist, J., Rottmann, O., Schroder, W. & Kuhn, R. Development of microsatellite markers for the endangered freshwater pearl mussel Margaritifera margaritifera L. (Bivalvia : Unionoidea). Mol. Ecol. Notes3, 444–446 (2003).

    28.
    Raymond, M. & Rousset, F. An exact test for population differentiation. Evolution 49, 1280–1283 (1995).
    PubMed  Article  Google Scholar 

    29.
    Raymond, M. & Rousset, F. GENEPOP (version 1.2)—population genetics software for exact tests and ecumenicism. J Heredity 86, 248–249 (1995).
    Article  Google Scholar 

    30.
    Van Oosterhout, C., Hutchinson, W. F., Wilis, D. P. M. & Shipley, P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    31.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    32.
    Goudet, J. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Heredity 86, 485–486 (1995).
    Article  Google Scholar 

    33.
    Takezaki, N., Nei, M. & Tamura, K. POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Mol. Biol. Evol. 27, 747–752 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    36.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).
    Article  Google Scholar 

    37.
    Jombart, T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  Article  Google Scholar 

    38.
    Jombart, T. & Ahmed, I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).
    Article  Google Scholar 

    40.
    Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Nat. Acad. Sci. USA 91, 3166–3170 (1994).
    ADS  PubMed  Article  Google Scholar 

    41.
    Piry, S., Luikart, G. & Cornuet, J.-M. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Heredity 90, 502–503 (1999).
    Article  Google Scholar 

    42.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    43.
    Moritz, C., Lavery, S. & Slade, R. Using allele frequency and phylogeny to define units for conservation and management. Am. Fish. Soc. Symp. 17, 249–262 (1995).
    Google Scholar 

    44.
    Zanatta, D. T. et al. High genetic diversity and low differentiation in North American Margaritifera margaritifera (Bivalvia: Unionida: Margaritiferidae). Biol. J. Linn. Soc. 123, 850–863 (2018).
    Article  Google Scholar 

    45.
    Geist, J., Söderberg, H., Karlberg, A. & Kuehn, R. Drainage-independent genetic structure and high genetic diversity of endangered freshwater pearl mussels (Margaritifera margaritifera) in northern Europe. Conserv. Gen. 11, 1339–1350 (2010).
    Article  Google Scholar 

    46.
    Cortey, M., Vera, M., Pla, C. & Garcia-Marin, J.-L. Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biol. J. Linn. Soc. 97, 904–917 (2009).
    Article  Google Scholar 

    47.
    Schwalb, A. N., Garvie, M. & Ackerman, J. D. Dispersion of freshwater mussel larvae in a lowland river. Limnol. Oceanogr. 55, 628–638 (2010).
    ADS  Article  Google Scholar 

    48.
    Schwalb, A. N., Cottenie, K., Poos, M. S. & Ackerman, J. D. Dispersal limitation of unionid mussels and implications for their conservation. Freshw. Biol. 56, 1509–1518 (2011).
    Article  Google Scholar 

    49.
    Terui, A. et al. Dispersal of larvae of Margaritifera laevis by its host fish. Freshw. Sci. 33, 112–123 (2014).
    Article  Google Scholar 

    50.
    Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol 10(6), 1500–1508 (1996).
    Article  Google Scholar 

    51.
    Leimu, R., Mutikainen, P., Koricheva, J. & Fischer, M. How general are positive relationships between plant population size, fitness and genetic variation?. J. Ecol. 94(5), 942–952 (2006).
    Article  Google Scholar 

    52.
    Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biol. Rev. 92, 572–607 (2017).
    PubMed  Article  Google Scholar 

    53.
    Gum, B., Lange, M. & Geist, J. A critical reflection on the success of rearing and culturing juvenile freshwater mussels with a focus on the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 743–751 (2011).
    Article  Google Scholar 

    54.
    Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of conservation genetics and ecology. Hydrobiologia 644, 69–88 (2010).
    Article  Google Scholar 

    55.
    Schneider, L. D., Anders Nilsson, P., Höjesjö, J. & Österling, E. M. Local adaptation studies and conservation: parasite–host interactions between the endangered freshwater mussel Unio crassus and its host fish. Aquat. Conserv. Mar. Freshwater Ecosyst. 27, 1261–1269 (2017).
    Article  Google Scholar 

    56.
    Taeubert, J.-E., Denic, M., Gum, B., Lange, M. & Geist, J. Suitability of different salmonid strains as hosts for the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 728–734 (2010).
    Article  Google Scholar 

    57.
    Österling, M. E. & Larsen, B. M. Impact of origin and condition of host fish (Salmo trutta) on parasitic larvae of Margaritifera margaritifera. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 564–570 (2013).
    Article  Google Scholar  More

  • in

    Different types of agricultural land use drive distinct soil bacterial communities

    1.
    Marschner, P., Crowley, D. & Yang, C. H. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261, 199–208 (2004).
    CAS  Article  Google Scholar 
    2.
    Osler, G. H. R. & Sommerkorn, M. Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology 88, 1611–1621 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kennedy, A. C. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74, 65–76 (1999).
    Article  Google Scholar 

    4.
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E. & Scow, K. M. Land use and climatic factors structure regional patterns in soil microbial communities. Glob. Ecol. Biogeogr. 19, 27–39 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Ma, B. et al. Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China. mSystems 2, e00174-e1116 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Wang, X. B. et al. Habitat-specific patterns and drivers of bacterial beta-diversity in China’s drylands. ISME J. 11, 1345–1358 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Singh, J. S., Pandey, V. C. & Singh, D. P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 140, 339–353 (2011).
    Article  Google Scholar 

    11.
    Verhulst, N. et al. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil 340, 453–466 (2011).
    CAS  Article  Google Scholar 

    12.
    Aziz, I., Mahmood, T. & Islam, K. R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 131, 28–35 (2013).
    Article  Google Scholar 

    13.
    Navarro-Noya, Y. E. et al. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 65, 86–95 (2013).
    CAS  Article  Google Scholar 

    14.
    Meriles, J. M. et al. Soil microbial communities under different soybean cropping systems: Characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res. 103, 271–281 (2009).
    Article  Google Scholar 

    15.
    Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P. S. & Nautiyal, C. S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64, 450–460 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Hartmann, M., Frey, B., Mayer, J., Mader, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 103, 626–631 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Bartram, A. K. et al. Exploring links between pH and bacterial community composition in soils from the Craibstone experimental farm. FEMS Microbiol. Ecol. 87, 403–415 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Min, W. et al. Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agric. Scand. B Soil Plant Sci. 66, 117–126 (2016).
    CAS  Google Scholar 

    20.
    Lauber, C. L., Strickland, M. S., Bradford, M. A. & Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407–2415 (2008).
    CAS  Article  Google Scholar 

    21.
    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA. 104, 11436–11440 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Zhang, X.-Y., Sui, Y.-Y., Zhang, X.-D., Meng, K. & Herbert, S. J. Spatial variability of nutrient properties in black soil of Northeast China. Pedosphere 17, 19–29 (2007).
    Article  Google Scholar 

    23.
    Griffiths, R. I. et al. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Liu, J. et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 70, 113–122 (2014).
    CAS  Article  Google Scholar 

    25.
    Kim, M. et al. Highly heterogeneous soil bacterial communities around Terra Nova Bay of northern Victoria, Land Antarctica. PLoS ONE 10, e0119966 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e12816 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Barberan, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    van der Heijden, M. G. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Shi, S. et al. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Kim, J. M. et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J. Microbiol. 54, 838–845 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Tripathi, B. et al. Spatial scaling effects on soil bacterial communities in Malaysian tropical forests. Microb. Ecol. 68, 247–258 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Feng, M. et al. Interpreting distance-decay pattern of soil bacteria via quantifying the assembly processes at multiple spatial scales. MicrobiologyOpen 8, e00851 (2019).
    PubMed  PubMed Central  Google Scholar 

    34.
    Morlon, H. et al. A general framework for the distance-decay of similarity in ecological communities. Ecol. Lett. 11, 904–917 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Figuerola, E. L. M. et al. Bacterial indicator of agricultural management for soil under no-till crop production. PLoS ONE 7, e51075 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Jimenez-Bueno, N. G. et al. Bacterial indicator taxa in soils under different long-term agricultural management. J. Appl. Microbiol. 120, 921–933 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Liesack, W., Schnell, S. & Revsbech, N. P. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 24, 625–645 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Kang, S. S. et al. Status and change in chemical properties of polytunnel soil in Korea from 2000 to 2012. Korean J. Soil Sci. Fertil. 46, 641–646 (2013).
    CAS  Article  Google Scholar 

    39.
    Handley, K. M. et al. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment. FEMS Microbiol. Ecol. 81, 188–204 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Ma, J. C., Ibekwe, A. M., Yang, C. H. & Crowley, D. E. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations. Sci. Total Environ. 563, 199–209 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    41.
    Reich, P. B. et al. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecol. Lett. 8, 811–818 (2005).
    Article  Google Scholar 

    42.
    Sridevi, G. et al. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook experimental forest (HBEF), New Hampshire, USA. FEMS Microbiol. Ecol. 79, 728–740 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Singh, D., Shi, L. & Adams, J. M. Bacterial diversity in the mountains of South-West China: Climate dominates over soil parameters. J. Microbiol. 51, 439–447 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Miethling, R., Wieland, G., Backhaus, H. & Tebbe, C. C. Variation of microbial rhizosphere communities in response to crop secies, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb. Ecol. 40, 43–56 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J. A. & Woese, C. R. The green non-sulfur bacteria: A deep branching in the eubacterial line of descent. Syst. Appl. Microbiol. 9, 47–53 (1987).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Krzmarzick, M. J. et al. Natural niche for organohalide-respiring Chloroflexi. Appl. Environ. Microbiol. 78, 393–401 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Speirs, L. B. M., Rice, D. T. F., Petrovski, S. & Seviour, R. J. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge. Front. Microbiol.10 (2019).

    50.
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Will, C. et al. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl. Environ. Microbiol. 76, 6751–6759 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Costello, E. K. & Schmidt, S. K. Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ. Microbiol. 8, 1471–1486 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Lee, H. J., Jeong, S. E., Kim, P. J., Madsen, E. & Jeon, C. O. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Front. Microbiol. 6, 639 (2015).
    PubMed  PubMed Central  Google Scholar 

    54.
    Ahn, J. H. et al. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. J. Microbiol. 54, 724–731 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Hernández, M., Conrad, R., Klose, M., Ma, K. & Lu, Y. Structure and function of methanogenic microbial communities in soils from flooded rice and upland soybean fields from Sanjiang plain NE China. Soil Biol. Biochem. 105, 81–91 (2017).
    Article  CAS  Google Scholar 

    56.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Navarrete, A. A. et al. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western Brazilian Amazon. Front. Microbiol. 6, 1443 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA. 112, 10967–10972 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Trivedi, P., Delgado-Baquerizo, M., Anderson, I. C. & Singh, B. K. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 7, 990 (2016).
    PubMed  PubMed Central  Google Scholar 

    61.
    Radhakrishnan, R., Hashem, A. & Abd Allah, E. F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8, 667 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Pujalte, M. J., Lucena, T., Ruvira, M. A., Arahal, D. R. & Macián, M. C. The Family Rhodobacteraceae. In The Prokaryotes (eds Rosenberg, E. et al.) 439–512 (Springer, Berlin, 2014).
    Google Scholar 

    63.
    Baldani, J. I. et al. The Family Rhodospirillaceae. In The Prokaryotes (eds Rosenberg, E. et al.) 533–618 (Springer, Berlin, 2014).
    Google Scholar 

    64.
    Karimi, B. et al. Biogeography of soil bacterial networks along a gradient of cropping intensity. Sci. Rep. 9, 3812 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Nielsen, M. N. & Winding, A. Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark, Technical Report no. 388 (2002).

    67.
    Allison, L. E. Organic carbon in Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties (ed Black, C. A.) 1367–1378 (American Society of Agronomy, 1965).

    68.
    National Institute of Agricultural Science and Technology (NIAST). Methods of analysis of soil and plant. (NIAST, 2000)

    69.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (2016).

    72.
    Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).
    Article  Google Scholar 

    73.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    74.
    Ogle, D. H. FSA: Fisheries stock analysis. R package version 0.8.13. (2017).

    75.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media (2009).

    76.
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).
    Article  Google Scholar  More

  • in

    Coexisting with sharks: a novel, socially acceptable and non-lethal shark mitigation approach

    1.
    Thirgood, S., Woodroffe, R. & Rabinowitz, A. The impact of human–wildlife conflict on human lives and livelihoods. In People and Wildlife, Conflict or Co-existence? Conservation Biology (eds Rabinowitz, A. et al.) 13–26 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 
    2.
    Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171. https://doi.org/10.1146/annurev-environ-110615-085634 (2016).
    Article  Google Scholar 

    3.
    Curtis, T. et al. Responding to the risk of white shark attack: updated statistics, prevention, control methods, and recommendations. In Global Perspectives on the Biology and Life History of the White SharkEdition: First edition, pp 477–509 (ed. Domeier, M. L.) (CRC Press Taylor and Francis, Boca Raton, FL, 2012).
    Google Scholar 

    4.
    Sillero-Zubiri, C. et al. (eds) Canids: Foxes, Wolves, Jackals, and Dogs: Status Survey and Conservation Action Plan 430 (Gland, Cambridge, 2004).
    Google Scholar 

    5.
    Soulé, M. The, “New Conservation”. Conserv. Biol. 27, 895–897. https://doi.org/10.1111/cobi.12147 (2013).
    Article  PubMed  Google Scholar 

    6.
    Gibbs, L. & Warren, A. Transforming shark hazard policy: learning from ocean-users and shark encounter in Western Australia. Mar. Policy 58, 116–124. https://doi.org/10.1016/j.marpol.2015.04.014 (2015).
    Article  Google Scholar 

    7.
    McCagh, C., Sneddon, J. & Blache, D. Killing sharks: the media’s role in public and political response to fatal human–shark interactions. Mar. Policy 62, 271–278. https://doi.org/10.1016/j.marpol.2015.09.016 (2015).
    Article  Google Scholar 

    8.
    McPhee, D. Unprovoked shark bites: are they becoming more prevalent?. Coast. Manag. 42, 478–492 (2014).
    Article  Google Scholar 

    9.
    Chapman, B. K. & McPhee, D. Global shark attack hotspots: identifying underlying factors behind increased unprovoked shark bite incidence. Ocean Coast. Manag. 133, 72–84. https://doi.org/10.1016/j.ocecoaman.2016.09.010 (2016).
    Article  Google Scholar 

    10.
    Lagabrielle, E. et al. Environmental and anthropogenic factors affecting the increasing occurrence of shark-human interactions around a fast-developing Indian Ocean island. Sci. Rep. 8, 3676. https://doi.org/10.1038/s41598-018-21553-0 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Stevens, J. D., Bonfil, R., Dulvy, N. K. & Walker, P. A. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57, 476–494. https://doi.org/10.1006/jmsc.2000.0724 (2000).
    Article  Google Scholar 

    12.
    Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223. https://doi.org/10.1038/s42003-018-0233-1 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Gibbs, L. et al. Effects and effectiveness of lethal shark hazard management: the Shark Meshing (Bather Protection) Program, NSW, Australia. People Nat. 2, 189–203. https://doi.org/10.1002/pan3.10063 (2020).
    Article  Google Scholar 

    14.
    Berkes, F., Folke, C. & Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience (Cambridge University Press, Cambridge, 1998).
    Google Scholar 

    15.
    Green, M., Ganassin, C. & Reid, D. D. Report into the NSW Shark Meshing (Bather Protection) Program: Incorporating a Review of the Existing Program and Environmental Assessment/NSW Dept of Primary Industries (Department of Primary Industries DPI Fisheries Conservation and Aquaculture Branch, Orange, NSW, 2009).
    Google Scholar 

    16.
    Cliff, G. & Dudley, S. F. J. Reducing the environmental impact of shark-control programs: a case study from KwaZulu-Natal, South Africa. Mar. Freshw. Res. 62, 700–709. https://doi.org/10.1071/MF10182 (2011).
    CAS  Article  Google Scholar 

    17.
    Holland, K. N., Wetherbee, B. M., Lowe, C. G. & Meyer, C. G. Movements of tiger sharks (Galeocerdo cuvier) in coastal Hawaiian waters. Mar. Biol. 134, 665–673. https://doi.org/10.1007/s002270050582 (1999).
    Article  Google Scholar 

    18.
    Wetherbee, B., Lowe, C. & Crow, G. A review of shark control in Hawaii with recommendations for future research. Pac. Sci. 48, 95–115 (1994).
    Google Scholar 

    19.
    Neff, C. L. & Yang, J. Y. H. Shark bites and public attitudes: policy implications from the first before and after shark bite survey. Mar. Policy 38, 545–547. https://doi.org/10.1016/j.marpol.2012.06.017 (2013).
    Article  Google Scholar 

    20.
    McPhee, D. P. Likely Effectiveness of Netting or Other Capture Programs as a Shark Hazard Mitigation Strategy Under Western Australian Conditions (Western Australia Department of Fisheries, Perth, 2012).
    Google Scholar 

    21.
    Lemahieu, A. et al. Human-shark interactions: The case study of Reunion island in the south-west Indian Ocean. Ocean Coast. Manag. 136, 73–82. https://doi.org/10.1016/j.ocecoaman.2016.11.020 (2017).
    Article  Google Scholar 

    22.
    Simmons, P. & Mehmet, M. I. Shark management strategy policy considerations: Community preferences, reasoning and speculations. Mar. Policy 96, 111–119. https://doi.org/10.1016/j.marpol.2018.08.010 (2018).
    Article  Google Scholar 

    23.
    Robbins, W. D., Peddemors, V. M., Kennelly, S. J. & Ives, M. C. Experimental evaluation of shark detection rates by aerial observers. PLoS ONE 9, e83456. https://doi.org/10.1371/journal.pone.0083456 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Kock, A. A. et al. Shark spotters: a pioneering shark safety program in Cape Town, South Africa. In Global Perspectives on the Biology and Life History of the Great White Shark (ed. Domeier, M.) 447–466 (CRC Press, Boca Raton, FL, 2012).
    Google Scholar 

    25.
    Engelbrecht, T., Kock, A., Waries, S. & O’Riain, M. J. Shark spotters: successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa. PLoS ONE 12, e0185335. https://doi.org/10.1371/journal.pone.0185335 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Stokes, D. et al. Beach-user perceptions and attitudes towards drone surveillance as a shark-bite mitigation tool. Mar. Policy 120, 104127. https://doi.org/10.1016/j.marpol.2020.104127 (2020).
    Article  Google Scholar 

    27.
    Colefax, A. P., Butcher, P. A. & Kelaher, B. P. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES J. Mar. Sci. 75, 1–8. https://doi.org/10.1093/icesjms/fsx100 (2018).
    Article  Google Scholar 

    28.
    Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–578. https://doi.org/10.1016/j.tree.2016.05.006 (2016).
    Article  PubMed  Google Scholar 

    29.
    Althoff, W. F. Sky Ships: A History of the Airship in the United States Navy. Vol. 25th anniversary edition (The Naval Institute Press, Annapolis, 2016).
    Google Scholar 

    30.
    Hain, J. H. W. Lighter-than-air platforms (blimps and aerostats) for oceanographic and atmospheric research and monitoring in OCEANS 2000 MTS/IEEE Conference and Exhibition.1933–1936.

    31.
    Hodgson, A. BLIMP-CAM: aerial video observations of marine mammals. Mar. Technol. Soc. J. 41, 39–43 (2007).
    Article  Google Scholar 

    32.
    Nosal, A. P. et al. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA. Environ. Biol. Fish. 96, 865–878. https://doi.org/10.1007/s10641-012-0083-5 (2012).
    Article  Google Scholar 

    33.
    Adams, K., Broad, A., Ruiz-García, D. & Davis, A. R. Continuous wildlife monitoring using blimps as an aerial platform: a case study observing marine megafauna. Austral. Zool. 40(3), 407–415. https://doi.org/10.7882/AZ.2020.004 (2020).
    Article  Google Scholar 

    34.
    Sandbrook, C. The social implications of using drones for biodiversity conservation. Ambio 44, 636–647. https://doi.org/10.1007/s13280-015-0714-0 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    35.
    Fox, S. J. The rise of the drones: framework and governance—why risk it!. J. Air Law Commerce 82, 683 (2017).
    Google Scholar 

    36.
    Linchant, J., Lisein, J., Semeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev. 45, 239–252. https://doi.org/10.1111/mam.12046 (2015).
    Article  Google Scholar 

    37.
    Gururatsakul, S., Gibbins, D., Kearney, D. & Lee, I. Shark detection using optical image data from a mobile aerial platform in 2010 25th International Conference of Image and Vision Computing New Zealand. 1–8.

    38.
    Gorkin, R. et al. Sharkeye: real-time autonomous personal shark alerting via aerial surveillance. Drones https://doi.org/10.3390/drones4020018 (2020).
    Article  Google Scholar 

    39.
    Kammler, M. & Schernewski, G. Spatial and temporal analysis of beach tourism using webcam and aerial photographs. Coastline Rep. 2, 121–128 (2004).
    Google Scholar 

    40.
    Moreno, A., Amelung, B. & Santamarta, L. Linking beach recreation to weather conditions: a case study in Zandvoort, Netherlands. Tour. Mar. Environ. 5(2–3), 111–119 (2008).
    Article  Google Scholar 

    41.
    Ryan, L. A., Meeuwig, J. J., Hemmi, J. M., Collin, S. P. & Hart, N. S. It is not just size that matters: shark cruising speeds are species-specific. Mar. Biol. 162, 1307–1318. https://doi.org/10.1007/s00227-015-2670-4 (2015).
    Article  Google Scholar 

    42.
    Butcher, P. et al. Beach safety: can drones provide a platform for sighting sharks?. Wildl. Res. 46, 701–712 (2019).
    Article  Google Scholar 

    43.
    Robbins, W. D., Peddemors, V. M. & Kennelly, S. J. Assessment of shark sighting rates by aerial beach patrols Vol. 38 (NSW Department of Primary Industries Cronulla, NSW Australia, 2012).
    Google Scholar 

    44.
    Westgate, A. J., Koopman, H. N., Siders, Z. A., Wong, S. N. P. & Ronconi, R. A. Population density and abundance of basking sharks Cetorhinus maximus in the lower Bay of Fundy, Canada. Endanger. Species Res. 23, 177–185. https://doi.org/10.3354/esr00567 (2014).
    Article  Google Scholar 

    45.
    Kelaher, B. P., Peddemors, V. M., Hoade, B., Colefax, A. P. & Butcher, P. A. Comparison of sampling precision for nearshore marine wildlife using unmanned and manned aerial surveys. J. Unmanned Veh. Syst. https://doi.org/10.1139/juvs-2018-0023 (2020).
    Article  Google Scholar 

    46.
    Colefax, A. P., Butcher, P. A., Pagendam, D. E. & Kelaher, B. P. Reliability of marine faunal detections in drone-based monitoring. Ocean Coast. Manag. 174, 108–115. https://doi.org/10.1016/j.ocecoaman.2019.03.008 (2019).
    Article  Google Scholar 

    47.
    Pepin-Neff, C. In Sharks: Conservation, Governance and Management (eds Techera, E. J. & Klein, N.) 107–131 (Routledge, Oxon, 2014).
    Google Scholar 

    48.
    Crossley, R., Collins, C. M., Sutton, S. G. & Huveneers, C. Public perception and understanding of shark attack mitigation measures in Australia. Human Dimens. Wildl. 19, 154–165. https://doi.org/10.1080/10871209.2014.844289 (2014).
    Article  Google Scholar 

    49.
    Gray, G. M. E. & Gray, C. A. Beach-user attitudes to shark bite mitigation strategies on coastal beaches; Sydney, Australia. Human Dimens. Wildl. 22, 282–290. https://doi.org/10.1080/10871209.2017.1295491 (2017).
    Article  Google Scholar 

    50.
    Huveneers, C. et al. Effectiveness of five personal shark-bite deterrents for surfers. PeerJ 6, e5554. https://doi.org/10.7717/peerj.5554 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Anonymous. Dorsal, https://www.dorsalwatch.com/ (2018).

    52.
    Anonymous. SharkSmart, https://www.sharksmart.nsw.gov.au/ (2018).

    53.
    Anonymous. SharkSmart, https://www.sharksmart.com.au/ (2018).

    54.
    Anonymous. SharkMate, https://digitallivinglab.uow.edu.au/portfolio/sharkmate-app/ (2018).

    55.
    Anonymous. Sharks Spotters, https://sharkspotters.org.za/ (2018).

    56.
    Fretwell, P. T., Staniland, I. J. & Forcada, J. Whales from space: counting southern right whales by satellite. PLoS ONE 9, e88655. https://doi.org/10.1371/journal.pone.0088655 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Hodgson, A., Kelly, N. & Peel, D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study. PLoS ONE 8, e79556. https://doi.org/10.1371/journal.pone.0079556 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Joyce, K. E., Duce, S., Leahy, S. M., Leon, J. & Maier, S. W. Principles and practice of acquiring drone-based image data in marine environments. Mar. Freshw. Res. https://doi.org/10.1071/mf17380 (2019).
    Article  Google Scholar 

    59.
    Kiszka, J. J. & Heithaus, M. R. Using aerial surveys to investigate the distribution, abundance, and behavior of sharks and rays. In Shark Research: Emerging Technologies and Applications for the Field and Laboratory (eds Carrier, J. C. et al.) (CRC Press, Boca Raton, FL, 2018).
    Google Scholar 

    60.
    R Development Core Team. R: A Language and Environment for Statistical Computing,https://www.R-project.org (2008).

    61.
    Bates, D., Maechler, M. & Bolker, B. lme4: Linear Mixed-Effects Models Using S4 Classes, https://cran.r-project.org/web/packages/lme4/index.html (2012).

    62.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50(3), 346–363 (2008).
    MathSciNet  Article  Google Scholar 

    63.
    Hothorn, T. Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S. & Hothorn, M. T. multcomp: Simultaneous Inference in General Parametric Models, https://cran.stat.sfu.ca/web/packages/multcomp/multcomp.pdf (2016).

    64.
    Stanislaw, H. & Todorov, N. Calculation of signal detection theory measures. Behav. Res. Methods Instrum. Comput. 31, 137–149. https://doi.org/10.3758/BF03207704 (1999).
    CAS  Article  PubMed  Google Scholar 

    65.
    Macmillan, N. & Kaplan, H. L. Detection theory analysis of group data. Estimating sensitivity from average hit and false-alarm rates. Psychol. Bull. 98(1), 185 (1985).
    CAS  Article  Google Scholar  More

  • in

    Achieving fast start-up of anammox process by promoting the growth of anammox bacteria with FeS addition

    Effects of FeS on nitrogen removal
    The start-up period could be divided into two phases based on the operating strategy of the reactor, as illustrated in Table 1. The first phase was characterized by high HRT and low substrate concentration (days 0–18), in which the HRT was 48 h and the concentrations of influent NH4+-N and NO2−-N were 50 and 60 mg L−1, respectively. The second phase was characterized by low HRT and high substrate concentration (days 24–68), in which the HRT was 36 h and the theoretical concentrations of influent NH4+-N and NO2−-N were 100 and 120 mg L−1, respectively.
    Table 1 Operational conditions of R1 and R2 under different phases.
    Full size table

    The effluent ammonium concentration was significantly higher than that of influent at the beginning of the reactor operation shown in Fig. 1a. On the first day, the effluent NH4+-N concentration of R1 and R2 reached 106.0 and 80.6 mg L−1, respectively, nearly twice as high as the influent NH4+-N concentration. This is mainly due to the fact that some microorganisms were unable to adapt to the new environmental conditions, inducing cellular lysis21. At the same time, effluent NO2−-N concentration of R1 and R2 on the fourth day were 18.4 and 17.3 mg L−1, respectively, with the removal efficiency of more than 70% (Fig. 1b); and NO3−-N accumulated in the effluent. The high-throughput results showed that Nitrospirae, which contained massive nitrite-oxidizing bacteria (NOB), accounted for a higher proportion in the inoculation sludge (Supplementary Fig. 1)22. qPCR results also indicated that NOB abundance was higher in the inoculation sludge as shown in the section “Effect of FeS on functional bacteria abundance”. Therefore, the removal of NO2−-N in the beginning might be attributed to the role of nitrification. Denitrification also might promote the decrease of NO2−-N through using the organic matter which was released by decay of biomass23. From day 7 to day 10, effluent NH4+-N of R1 and R2 decreased rapidly from 38.1 and 49.4 mg L−1 to 6.8 and 6.8 mg L−1, respectively, however the removal rate of NO2−-N did not change much. From day 1 to day 18, the accumulation of NO3−-N in R1 and R2 gradually decreased from 10 mg L−1 to 0 mg L−1. These phenomena indicated that NOB was gradually eliminated in the low-oxygen environment and the activity of anammox bacteria was increasing. In addition, microbial metabolism and decay of biomass will release organic carbon, which can be used as carbon sources by denitrifying bacteria23. From day 4 to day 18, the total nitrogen removal efficiency (TNRE) of R1 and R2 increased from 30.4% and 22.2% to 96.0% and 98.3%, respectively. On day 18, the values of removed NO2−-N/NH4+-N and produced NO3−-N/removed NH4+-N were 1.14 and 0 in R1 while these were 1.17 and 0 in R2, which was the result of the combined action of nitrifying bacteria, denitrifying bacteria and anammox bacteria.
    Fig. 1: Nitrogen removal performances of R1 and R2.

    a Influent and effluent NH4+-N concentration; b Influent and effluent NO2−-N concentration; c Nitrogen loading rate (NLR), nitrogen removal rate (NRR), and total nitrogen removal efficiency (TNRE).

    Full size image

    On the 21st day, when influent NH4+-N and NO2−-N concentrations increased to 100.3 and 138.1 mg L−1, effluent NH4+-N and NO2−-N concentrations of R1 increased to 6.5 and 24.2 mg L−1, respectively; while those of R2 increased to 2.6 and 19.9 mg L−1. On the 24th day, when HRT decreased from 48 h to 36 h, effluent NH4+-N and NO2−-N continued to increase. At this time, the abundance of anammox bacteria in the reactors was relatively low and had not played a dominant role. Meanwhile, the cell lysis phase was over and denitrifying bacteria activity began to decrease with the continuous consumption of organic substance23. Therefore, the NH4+-N and NO2−-N removal efficiencies fluctuated widely when the nitrogen loading rate (NLR) increased. Moreover, the higher removal rate of NH4+-N and NO2−-N in R2 can be attributed to the promotion effect of FeS on anammox growth. On the 27th day, effluent NO2−-N concentration of R1 and R2 reached the highest values (81.8 mg L−1, 71.1 mg L−1); the TNRE was the lowest, which were 52.8% and 61.0%, respectively. After this point, the NH4+-N and NO2−-N removal efficiencies of both R1 and R2 gradually increased and there were significant differences in total nitrogen removal capability between the two reactors. As shown in Fig. 1c, the TNRE of R2 on the 30th day increased to 73.3%; R1 achieved a TNRE of over 70% 12 days later, while the TNRE of R2 reached over 80% at this time. On the 45th day, the accumulation of nitrate appeared again in the effluent of the two reactors, meaning anammox was predominant. On the 51st day, the NH4+-N and NO2−-N removal in R2 reached more than 85% simultaneously, and the values of removed NO2−-N/NH4+-N and produced NO3−-N/removed NH4+-N were 1.12 and 0.17, respectively, closing to the theoretical stoichiometric ratio of anammox reaction, which marks that anammox reactor was started up successfully21. Based on Eq. (1) and the experimental data on day 51, an assumed transformation model was constructed to reflect the pathways of the nitrogen conversions in the system as shown in Supplementary Fig. 2. Due to the lack of oxygen and organic matter and the inhibition of denitrification by FeS, anammox played a dominant role. The same phenomenon occurred in R1 on day 56. Bi et al. studied the effect of Fe(II) concentration on the start-up of anammox process with a HRT of 12 h and found that the start-up time of anammox process could be shortened from 70 to 58 days when the concentration of Fe(II) ranged from 1.68 to 3.36 mg L−121. Because the concentration of Fe(II) was relatively lower than previous study, the influence was relatively less but this method is more convenient. The heme c content at day 50 in R2 was higher than that in R1 as shown in the section “Fe2+ release and Heme c content”, demonstrating that the activity of anammox bacteria in R2 was higher than that in R1. In summary, FeS effectively shortened the start-up time and improved the nitrogen removal performance.
    On the 71st day, when influent NH4+-N and NO2−-N concentrations increased to 150 mg L−1 and 180 mg L−1, respectively, the NH4+-N and NO2−-N removal rates in the two reactors decreased. On the 75th day, effluent NH4+-N concentrations of R1 and R2 increased to 37.1 and 35.3 mg L−1, meantime effluent NO2−-N concentration increased to 93.3 and 84.8 mg L−1. Although the nitrogen removal rate of the two reactors decreased obviously after the NLR was increased, it quickly recovered to the original level. As shown in Fig. 1a, b, on day 81, effluent NH4+-N in R1 and R2 decreased to 11.1 and 7.1 mg L−1 and effluent NO2−-N concentrations decreased to 16.5 and 6.2 mg L−1. The TNRE increased to about 90%. This indicated that the reactors have a certain capacity in resistance to weak shock loading due to the enrichment of anammox bacteria. And, when influent NH4+-N and NO2−-N were further increased, effluent NH4+-N and NO2−-N concentrations of R2 were significantly lower than these of R1. Meantime, the responses caused by the unit intensity of shock (R) of R2 was substantially lower than these of R1 as shown in Supplementary Table 1, indicating that R2 had more resistance to shock loading rate. The same trend was observed when HRT were further shortened to 36 h and 12 h, suggested that the stability of anammox reactors can be improved with the addition of FeS.
    During the start-up period, the NO3−-N concentration in R2 was substantially higher than that in R1 as shown in Supplementary Fig. 3, which might be attributed to the inhibition of denitrification process in R2 by FeS24,25. However, in the stabilization period, the NO3−-N concentration in R2 was substantially lower than that in R1. This was due to the lack of organic matter in R1 which inactivated denitrifying bacteria. Meantime, the presence of FeS in R2 might promote sulfur autotrophic denitrification and DNRA to reduce nitrate. The KEGG function prediction result as shown in the section “Effect of FeS on microbial community” verified this inference.
    FeS structure change
    The appearance of FeS with dark brown color, particle size between 1 and 5 mm and compact texture before being added to the reactor was observed (Supplementary Fig. 4). After 180 days of reactor operation, the FeS materials remaining in R2 were found to be covered with a layer of sludge. And the appearance displayed clear differences: most of the color changed from dark brown to khaki and the texture was sparse, which may be caused by the oxidation of FeS. Moreover, the red anammox granule sludge as shown in Supplementary Fig. 4 was observed in R2. Touching these red anammox granule sludge felt that the interior was relatively hard, which was made of FeS particles. FeS may promote the formation of anammox granular sludge.
    To further understand the structure change, the morphology of FeS before and after reaction were observed by SEM at different magnifications. As shown in Fig. 2c, d, there were many honeycomb style holes on the surface and inside of the FeS particles after the reaction. The voids formed on the surface may facilitate the attachment of microorganisms, which acted like microbial carriers. Therefore, anammox granular sludge containing FeS as inert cores formed in R2. In addition, Fe2+/Fe3+ produced by oxidation and ionization of FeS could weaken the electrostatic repulsion among negatively charged anammox cells and promote the aggregation of anammox bacteria into zoogloea by the effect of salt bridge26. Thus, the addition of FeS could promote the formation of anammox granular sludge, then improve the stability of the reactor. Figure 2e, f showed that many plate-shaped secondary minerals were produced after the reaction of FeS. In the presence of dissolved oxygen (DO), O2 can diffuse into the FeS surface and oxidize Fe2+ to Fe3+ (Eq. (5))6. The formation of these secondary minerals may hinder the release of iron ions from FeS27.

    $${mathrm{FeS}} + {mathrm{2}}{mathrm{.25}}{mathrm{O}}_2 + {mathrm{2}}{mathrm{.5}},{mathrm{H}}_2{mathrm{O}} to {mathrm{Fe}}({mathrm{OH}})_3 + {mathrm{S}}{mathrm{O}}_4^{{mathrm{2}} – } + {mathrm{2}}{mathrm{H}}^ +$$
    (5)

    Fig. 2: SEM of FeS.

    Before (a, b) and after (c–f) reaction.

    Full size image

    Effect of FeS on functional bacteria abundance
    The abundance of anammox bacteria in the two reactors were monitored during the period of their operation. As shown in Fig. 3a, the copy numbers of anammox 16S rRNA gene in the inoculation sludge was 3.31 × 106 copies per ng DNA. After 150 days of cultivation, the copy numbers of anammox 16S rRNA gene in R1 and R2 (1.21 × 107, 1.42 × 107copies per ng DNA) were significantly higher than that in the inoculation sludge. The data demonstrate that although the content of anammox in the inoculation sludge was low, anammox bacteria can be rapidly enriched and the reactor could be properly started-up as long as the cultural conditions for anammox bacteria growth were suitable. The anammox 16S rRNA gene copy numbers of R1 and R2 were 5.68 × 106 and 7.04 × 106 copies per ng DNA on day 70, respectively. Compared with R1, the abundance of anammox bacteria in R2 was increased by 29%. The contrast in cell quantities between R1 and R2 indicated that the addition of FeS with this concentration promoted the growth of anammox bacteria. Combined with the water quality results, the faster growth rate of anammox bacteria in R2 was responsible for the higher removal efficiencies of NH4+-N and NO2−-N and shorter start-up time of reactor.
    Fig. 3: The qPCR results of sludge samples.

    a Anammox 16S rRNA gene copy number in different period; b other functional genes copy number on day 70. Data indicate average, and error bars represent standard deviation of the results from three independent sampling, each tested in triplicate.

    Full size image

    In addition to anammox, the contents of ammonia-oxidizing bacteria (AOB), NOB and denitrifying bacteria also affect the start-up time and nitrogen removal capacity of anammox reactor. Compared with the inoculation sludge, the expression levels of amoA (NH4+ → NO2−) and nirS (NO3− → NO2−) genes in both R1 and R2 were increased, while the expression levels of Nitrospira spp. 16S rRNA genes (NO2− → NO3−) and nirK (NO3− → NO2−) genes were decreased (Fig. 3b). The expression levels of Nitrospira spp. 16S rRNA genes could reflect the content of NOB in anammox reactor28. As anammox was cultured in an anaerobic environment, which was not conducive to the growth of NOB, the content of NOB was gradually decreased with the increase of culture time. And the expression level of Nitrospira spp. 16S rRNA genes in the inoculated sludge was 2.14 × 106 copies per ng DNA, which was consistent with the higher nitrite removal efficiency initially. On day 70, the expression levels of amoA gene in R1 and R2 were 1.34 × 104 and 2.07 × 103 copies per ng DNA, while anammox 16S rRNA gene expression level was 5.68 × 106 and 7.04 × 106 copies per ng DNA. It was clear that the content of anammox was two or three orders of magnitude higher than AOB. The qPCR results also demonstrated that the anammox bacteria were dominant after 70 days of operation, at which time the removal of ammonium nitrogen was mainly from anammox. In addition, the expression level of amoA gene in R2 was much lower than that of R1, and the NOB content of both reactors was higher than AOB content on day 70 (Fig. 3b). FeS could react with dissolved oxygen (DO) in the reactor, leading to an inhibitory effect on the growth of AOB6. But Nitrospira-like NOB has higher hypoxia tolerance ability than AOB. Liu et al. reported that when the reactor was operated under low oxygen conditions (0.16 mg DO L−1) for a long time, some of Nitrospira-like NOB can adapt to anaerobic environment and maintain activity29. Both nirS and nirK are functional genes of denitrifying bacteria. The expression level of nirS gene in R2 (2.05 × 106 copies per ng DNA) was higher than that of R1 (1.11 × 106 copies per ng DNA), while the expression of nirK gene in R2 (3.27 × 106 copies per ng DNA) was slightly lower than that of R1 (3.65 × 106 copies per ng DNA). According to previous reports, the nirK gene encodes copper-containing nitrite reductase and the nirS gene encodes heme-containing cd1 nitrite reductase which contains heme d as its catalytic center30. And iron ions are involved in the synthesis of various types of heme. It is reasonable to speculate that the synthesis of cd1 nitrite reductase in microorganisms was promoted after adding FeS into the reactor.
    Fe2+ release and Heme c content
    The effluent Fe2+ and intracellular heme c concentrations were determined and illustrated in Fig. 4. Initially, the Fe2+ content in the effluent of R1 and R2 was similar because FeS particles with compact texture had a smaller specific surface area (Fig. 2a, b) and released less iron ions (Fig. 4a). After the reactor was operated for a period, the effluent Fe2+ concentration of R2 was significantly higher than that of R1. On the 30th day, the effluent Fe2+ concentration of R1 and R2 were 0.132 and 1.762 mg L−1, respectively. The results on days 45 and 60 also showed that there was a significant difference in effluent Fe2+ concentration between R1 and R2. During this period, massive holes were corroded on the surface and inside of FeS particles as shown in Fig. 2, the specific surface area of FeS increased and the activity of FeS was higher, contributing to more release of iron ions. On day 70, the content of heme c in R1 and R2 was 7.2 and 11.8 μmol per g-protein, respectively (Fig. 4b). It has been reported that Fe2+ was involved in the formation of heme c, which was the active center of many enzyme proteins31. In many biochemical reactions, the transformation of substrate and intermediate is accomplished by the catalysis and electron transfer of c-type heme protein32,33. Anammox cells contain a large amount of multi-heme cytochromes, for example one subunit of hydroxylamine oxidoreductase enzyme (HAO) binds 8 heme c34. In this experiment, the positive correlation between Fe2+ and heme c confirmed that the concentration of Fe2+ in the reactor could be increased with the addition of FeS, then promoting the synthesis of heme c. On the 75th and 90th days, the Fe2+ content in the effluent of both reactors became lower, probably because the abundance of anammox bacteria increased gradually, corresponding to an increased consumption of iron ions. At the same time, the results showed that the content of Fe2+ in R2 effluent did not differ much from that in R1 effluent. On one hand, as the reaction progress, secondary minerals and biofilm were formed on the surface of FeS (Fig. 2), which led to a decrease in FeS activity. On the other hand, the abundance of anammox bacteria in R2 was higher than that in R1 (Fig. 3), thus more iron ions would be consumed.
    Fig. 4: Effluent Fe2+ concentration and the content of Heme c.

    a effluent Fe2+ concentration; b the content of Heme c. Data indicate average, and error bars represent standard deviation of the results from three independent sampling, each tested in triplicate.

    Full size image

    Effect of FeS on microbial community
    Through clustering analysis of OTU, the number of OTUs shared among samples and the number of OTUs unique to each sample can be intuitively observed. The number of OTUs shared by the R1 and R2 samples was 816, which accounted for 71.8% and 69.9% of the total OTUs, respectively; the number of OUT unique to R1 was 321 and that for R2 was 352 (Supplementary Fig. 5). The addition of FeS led to different species composition of the two communities. The shared OTUs number of R1 and R2 samples with inoculated sludge was 168, accounting for 14.8% and 14.4% of the total OTUs of R1 and R2 samples, respectively. Obviously, after domestication, the R1 and R2 samples were less similar to the inoculated sludge.
    The ACE, Chao1, Simpson and Shannon listed in Table 2 are the alpha diversity indexes that reflect the richness and diversity of the community. The ACE and Chao 1 indexes are mainly used to indicate the richness of the community. In general, the larger the two index values are, the higher the richness of the community is. Comparing the ACE and Chao1 index values of R1 and R2 samples, the richness of R2 community was higher than that of R1. The Simpson and Shannon indexes account for the richness and evenness of the community. The larger the two index values are, the higher the diversity of the community is. As shown in Table 2, the two index values of R2 samples were higher than these of R1, so the diversity of R2 community was higher. In summary, the community of R2 sample had higher richness and diversity. During the cultivation and acclimation process, some species in the seed sludge couldn’t adapt to the new environmental conditions and were gradually washed out from the system. The addition of FeS reduced the tendency of some species to disappear under its role in facilitating the formation of granular sludge.
    Table 2 The OTU numbers and bacterial diversity indices of sludge samples.
    Full size table

    It can be seen from the results of microbial diversity analysis that the addition of FeS had a certain influence on the number of species of R1 and R2. The differences in microbial community composition at different classification levels with or without the presence of FeS were shown in Fig. 5.
    Fig. 5: The microbial community of sludge samples at different levels on day 180.

    a Phylum level; b top 9 abundant genera at genus level; c the microbial community of Brocadiaceae.

    Full size image

    The microbial community composition of R1 and R2 was similar at phylum classification level (Fig. 5a). The dominant phylum in two reactors was Protobacteria, accounting for 40.1% and 29.6%, respectively, followed by Chloroflexi (12.5% and 14.1%). Other reports also showed there were higher contents of Protobacteria and Chloroflexi in anammox reactor35,36. The relative abundance of Planctomycetes which anammox belonged to in R1 and R2 was 9.1% and 9.9%, respectively. The values were not very high, mainly due to the small proportion of Planctomycetes in the inoculated sludge (Supplementary Fig. 1) and the slower growth rate of the anammox bacteria. The proportion of Acidobacteria in R1 and R2 showed obvious difference, with relative abundances of 7.0% and 11.9%, respectively. Several publications demonstrated that some microorganisms belonged to Acidobacteria have the ability to dissimilate iron reduction with various simple organic acids such as acetate as alternative electron donors under anaerobic conditions37,38,39. In addition, the relative abundance of Nitrospirae which Nitrospira belonged to in R1 and R2 was extremely low compared with the inoculated sludge, which was reduced from 16.58% to 0.45% and 0.15%, respectively (Supplementary Fig. 1). This result was consistent with the water quality.
    Figure 5b showed the genus of the top 9 abundance in the microbial community of R1 and R2. The most abundant genus in R1 was Halomonas, accounting for 9.7%. Most parts of the microbes belonged to Halomonas were denitrifying bacteria, which could reduce NO3−-N to NO2−-N40. Denitratisoma with a high relative abundance (7.3%) in R1 is also one type of denitrifying bacteria41. The proportions of Halomonas and Denitratisoma in R2 was 6.5% and 4.3%, respectively, significantly lower than these in R1. The relative abundance of Thiobacillus, which was the major autotrophic denitrifier detected in most sulfur-based autotrophic denitrification reactors, increased from 0.012% in R1 to 0.041% in R2 with the addition of FeS42,43. The most abundant genus in R2 was Clone_Anammox_20, accounting for 9.0%. Clone_Anammox_20 and Clone_Anammox_2 are a class of microorganisms with anammox function. The most abundant anammox genus obtained in both reactors was “Ca. Kuenenia” and the proportion was relatively close. In order to further explore the effect of FeS on the distribution of anammox bacteria, the composition of R1 and R2 samples on Brocadiaceae classification level was analyzed. The Brocadiaceae family in R1 consisted of three anammox genus, “Ca. Kuenenia”, “Ca. Brocadia” and “Ca. Jettenia”, accounting for 99%, 0.9%, and 0.1%, while the Brocadiaceae family in R2 consisted of two anammox genus, “Ca. Kuenenia” and “Ca. Brocadia”, accounting for 98% and 2%, respectively (Fig. 5c). The dominant anammox bacteria in R1 and R2 was “Ca. Kuenenia”, and the proportion of “Ca. Brocadia” in R2 was higher than in R1. Other works have found that some of the anammox bacteria under the genus “Ca. Kuenenia” and “Ca. Brocadia” could oxidize Fe2+ with NO3−-N while anammox process occurred44. Thus, FeS might affect the distribution of species and relative abundance of anammox genus but did not change the dominant status of the anammox bacteria in the community.
    To further explore the influence mechanism of FeS on nitrogen transportation, PICRUSTs was used in this experiment to predict the contents of enzymes related to NO2−-N conversion based on KEGG database. As shown in Fig. 6a, nitrite can be reduced to nitrogen (NO2−-N→N2) through denitrification and ammonia nitrogen (NO2−-N→NH4+-N) through dissimilatory nitrate reduction to ammonium (DNRA), in addition to being removed by anammox. The nitrite reductase (ammonia-forming) content of R2 was significantly higher than that of R1, while nitrite reductase (NO-forming) and nitric oxide reductase content of R2 was lower than that of R1. It had been reported that some DNRA bacteria can conduct DNRA process with sulfide (S2−) or elemental sulfur (S0) as electron donors45. And sulfide had an inhibitory effect on nitrous oxide reductase and nitric oxide reductase, which can inhibit the denitrification reaction, have an inhibitory effect on nitrite reductase (NO-forming) due to the accumulation of NO and promote the nitrite reduction reaction by the DNRA process24,25,46. In addition, heme was involved in the formation of nitrite reductase (ammonia-forming)47. Robertson et al. found that the addition of Fe2+ improved DNRA and inhibited denitrification48,49. It is postulated that the iron ions and sulfur ions released by FeS encouraged the occurrence of DNRA process and somehow decreased the denitrification reaction. Therefore, the removal rates of NO2−-N in the two reactors were significantly different, and the removal rates of NH4+-N were similar. This may also account for the relatively low abundance of denitrifying bacteria in R2. Moreover, Fig. 6b showed the predicted metabolism function of the two reactors’ communities, and the results indicated that the metabolic function of R2 was slightly higher than that of R1. It can be seen that the addition of FeS to the anammox reactor can increase microbial metabolism.
    Fig. 6: Prediction of community functions based on KEGG.

    a Nitrogen invertase content; b metabolism functions.

    Full size image

    Engineering significance
    As a new type of environmentally-friendly biological nitrogen removal process, the anammox process has been a research hotspot, but it still encounters some issues to limit its wider application. Anammox bacteria are slow-growing microorganisms, and are sensitive to environmental conditions, such as salinity and organic carbon50. Another challenge of the anammox process system is the maintenance of effluent quality since about 10% nitrate would be produced in the anammox reaction, failing to meet discharge standards51.
    In this study, the start-up time of the anammox reactor was shortened and the nitrogen removal rate was significantly increased with the addition of FeS. There were mainly two reasons: On one hand, FeS promoted the formation of anammox granular sludge and increased the abundance of anammox bacteria; on the other hand, FeS stimulated the synthesis of the heme c, which participated in the synthesis of a variety of enzymes. In addition, FeS can promote the DNRA process by inhibiting denitrification. Microbial oxidation of FeS, which links to the efficiency of denitrification, DNRA and anammox, plays an important role in the N cycle and S cycle15. According to previous report, FeS could function as an alternative electron donor for sulfur-dependent autotrophic denitrification52. Nitrate reduction was achieved by using pyrrhotite as the biofilter medium and autotrophic denitrifiers as seed in lab17. And DNRA process could occur due to HS− release18. This study found that FeS could promote the start-up of anammox process and promote the nitrite reduction reaction by the DNRA process through inhibiting denitrification. Therefore, it is possible to couple anammox with sulfur-autotrophic DNRA or sulfur-autotrophic denitrification in full-scale application by adding FeS to improve the total nitrogen removal efficiency. More

  • in

    The constraint of ignoring the subtidal water climatology in evaluating the changes of coralligenous reefs due to heating events

    1.
    Walther, G. R. Community and ecosystem responses to recent climate change. Philos Trans R Soc B Biol Sci 365, 2019–2024 (2010).
    Article  Google Scholar 
    2.
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change. 3, 919–925 (2013).
    ADS  Article  Google Scholar 

    3.
    Hoegh-Guldberg, O. & Poloczanska, E. S. The effect of climate change across ocean regions. Front. Mar. Sci. 4, 361 (2017).
    Article  Google Scholar 

    4.
    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change. 8, 499–503 (2018).
    ADS  Article  Google Scholar 

    5.
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
    ADS  CAS  Article  Google Scholar 

    6.
    Smale, D. A., Taylor, J. D., Coombs, S. H., Moore, G. & Cunliffe, M. Community responses to seawater warming are conserved across diverse biological groupings and taxonomic resolutions. Proc. R. Soc. B Biol. Sci. 284, 20170534 (2017).
    Article  Google Scholar 

    7.
    Gauzens, B., Rall, B. C., Mendonça, V., Vinagre, C. & Brose, U. Biodiversity of intertidal food webs in response to warming across latitudes. Nat. Clim. Change. 10, 264–269 (2020).
    ADS  Article  Google Scholar 

    8.
    Sahney, S. & Benton, M. J. Recovery from the most profound mass extinction of all time. Proc. R. Soc. B Biol. Sci. 275, 759–765 (2008).
    Article  Google Scholar 

    9.
    Urban, M. C. Accelereting extinction risk from climate change. Science 348, 571–573 (2012).
    ADS  Article  CAS  Google Scholar 

    10.
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    12.
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).
    Article  Google Scholar 

    13.
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change. 3, 78–82 (2013).
    ADS  Article  Google Scholar 

    14.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    ADS  Article  Google Scholar 

    16.
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).
    CAS  Article  Google Scholar 

    17.
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).
    Article  Google Scholar 

    18.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change. 9, 306–312 (2019).
    ADS  Article  Google Scholar 

    19.
    Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).
    ADS  Article  Google Scholar 

    22.
    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Glob. Chang. Biol. 21, 1463–1474 (2015).
    ADS  Article  PubMed  Google Scholar 

    23.
    Hyndes, G. A. et al. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66, 938–945 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).
    Article  Google Scholar 

    25.
    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 15050 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    E.C., MSFD 2008/56/EC of the European Parliament and of the Council, 17 June 2008, establishing a framework for Community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off. J. Eur. Comm. 25/6/2008, L164/19, 22 (2008).

    27.
    Martin, C. S. et al. Coralligenous and maërl habitats: Predictive modelling to identify their spatial distributions across the Mediterranean sea. Sci. Rep. 4, 5073 (2015).
    Article  CAS  Google Scholar 

    28.
    Ballesteros, E., Avançats, E. & Csic, D. B. Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanogr. Mar. Biol. 44, 123–195 (2006).
    Article  Google Scholar 

    29.
    Kružić, P. Bioconstructions in the Mediterranean: present and futture in The Mediterranean sea: its history and present challenges (ed. Goffredo, S. & Dubinsky, Z) 435–447 (2014).

    30.
    E.C., Council Directive 92/43/EEC (Habitat Directive) of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Comm. 22/7/1992, L206, 7 (1992).

    31.
    Martin, S. & Gattuso, J. P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob. Chang. Biol. 15, 2089–2100 (2009).
    ADS  Article  Google Scholar 

    32.
    Boudouresque, C. F. et al.Where seaweed forests meet animal forests: The examples of macroalgae in coral reefs and the Mediterranean coralligenous ecosystem marine animal forests in Marine Animal Forests. Springer, Berlin, pp 1–28 (2016).

    33.
    Coma, R., Pola, E., Ribes, M. & Zabala, M. Long-term assessment of temperate octocoral mortality patterns, protected vs. unprotected areas. Ecol. Appl. 14, 1466–1478 (2004).
    Article  Google Scholar 

    34.
    Salomidi, M. et al. Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediterr. Mar. Sci. 13, 49–88 (2012).
    Article  Google Scholar 

    35.
    Piazzi, L., La Manna, G., Cecchi, E., Serena, F. & Ceccherelli, G. Protection changes the relevancy of scales of variability in coralligenous assemblages. Estuar. Coast. Shelf Sci. 175, 62–69 (2016).
    ADS  Article  Google Scholar 

    36.
    Cerrano, C. et al. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol. Lett. 3, 284–293 (2000).
    Article  Google Scholar 

    37.
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Chang. Biol. 15, 1090–1103 (2009).
    ADS  Article  Google Scholar 

    38.
    Gatti, G. et al. Ecological change, sliding baselines and the importance of historical data: Lessons from combing observational and quantitative data on a temperate reef over 70 years. PLoS ONE 10, e0118581 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Coma, R. et al. Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar. Ecol. Prog. Ser. 327, 51–60 (2006).
    ADS  Article  Google Scholar 

    40.
    Huete-Stauffer, C. et al. Paramuricea clavata (Anthozoa, Octocorallia) loss in the Marine Protected Area of Tavolara (Sardinia, Italy) due to a mass mortality event. Mar. Ecol. 32, 107–116 (2011).
    ADS  Article  Google Scholar 

    41.
    Martin, Y., Bonnefont, J. L. & Chancerelle, L. Gorgonians mass mortality during the 1999 late summer in French Mediterranean coastal waters: the bacterial hypothesis. Water Res. 36, 779–782 (2001).
    Article  Google Scholar 

    42.
    Crisci, C., Bensoussan, N., Romano, J. C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Torrents, O., Tambutté, E., Caminiti, N. & Garrabou, J. Upper thermal thresholds of shallow vs deep populations of the precious Mediterranean red coral Corallium rubrum (L.): Assessing the potential effects of warming in the NW Mediterranean. J. Exp. Mar. Biol. Ecol. 357, 7–19 (2008).
    Article  Google Scholar 

    44.
    Pagès-Escolà, M. et al. Divergent responses to warming of two common co-occurring Mediterranean bryozoans. Sci. Rep. 8, 17455 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecol. Evol. 9, 4168–4180 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Galli, G., Solidoro, C. & Lovato, T. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Front. Mar. Sci. 4, 136 (2017).
    Article  Google Scholar 

    47.
    Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Chang. Biol. 24, 4357–4367 (2018).
    ADS  Article  PubMed  Google Scholar 

    48.
    Hobday, A. J. et al. Categorizing and naming Marine Heatwaves. Oceanography 31, 162–173 (2018).
    Article  Google Scholar 

    49.
    Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello, S. S. & Bansemer, M. S. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 6, 610 (2019).
    Article  Google Scholar 

    50.
    Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 387, 27–37 (2009).
    ADS  Article  Google Scholar 

    51.
    Bensoussan, N., Romano, J. C., Harmelin, J. G. & Garrabou, J. High resolution characterization of northwest Mediterranean coastal waters thermal regimes: To better understand responses of benthic communities to climate change. Estuar. Coast. Shelf Sci. 87, 431–441 (2010).
    ADS  Article  Google Scholar 

    52.
    Bruno, J. F., Carr, L. A. & O’Connor, M. I. Exploring the role of temperature in the ocean through metabolic scaling. Ecology 96, 3126–3140 (2015).
    Article  PubMed  Google Scholar 

    53.
    Silbiger, N. J., Goodbody-Gringley, G., Bruno, J. F. & Putnam, H. M. Comparative thermal performance of the reef-building coral Orbicella franksi at its latitudinal range limits. Mar. Biol. 166, 126 (2019).
    Article  Google Scholar 

    54.
    Linares, C., Cebrian, E., Kipson, S. & Garrabou, J. Does thermal history influence the tolerance of temperate gorgonians to future warming?. Mar. Environ. Res. 89, 45–52 (2013).
    CAS  Article  PubMed  Google Scholar 

    55.
    Piazzi, L. et al. What’s in an index? Comparing the ecological information provided by two indices to assess the status of coralligenous reefs in the NW Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1091–1100 (2017).
    Article  Google Scholar 

    56.
    Ceccherelli G., et al. Vertical gradient and spatial variability of Coralligenous reefs in Sardinia: the interactive effect of depth and location. S.It.E. (Italian Society of Ecology) conference (Ferrara, Italy 10–12 September 2019) https://www.ecologia.it/wp-content/uploads/2019/09/AbstractBook-SItE-Ferrara-2019.pdf, 124 (2019).

    57.
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS ONE 8, e81944 (2013).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Brewin, R. J. W. et al. Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sens. 10, 925 (2018).
    ADS  Article  Google Scholar 

    60.
    Coma, R. et al. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. 106, 6176–6181 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    61.
    Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 5911 (2019).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 455 (2019).
    Article  Google Scholar 

    63.
    Kim, J. B., Park, J. I., Jung, C. S., Lee, P. Y. & Lee, K. S. Distributional range extension of the seagrass Halophila nipponica into coastal waters off the Korean peninsula. Aquat. Bot. 90, 269–272 (2009).
    Article  Google Scholar 

    64.
    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Bio. Ecol. 400, 17–32 (2011).
    Article  Google Scholar 

    65.
    Saha, M. et al. Response of foundation macrophytes to near-natural simulated marine heatwaves. Glob. Chang. Biol. 26, 417–430 (2020).
    ADS  Article  PubMed  Google Scholar 

    66.
    Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).
    Article  Google Scholar 

    67.
    Hartley, S. & Kunin, W. E. Scale Dependency of rarity, extinction risk, and conservation priority. Conserv. Biol. 17, 1559–1570 (2003).
    Article  Google Scholar 

    68.
    Bavestrello, G. et al. Mass mortality of Paramuricea clavata (Anthozoa, Cnidaria) on Portofino Promontory cliffs, Ligurian Sea. Mediterranean Sea. Mar. Life 4, 15–19 (1994).
    Google Scholar 

    69.
    Ponti, M. et al. Ecological shifts in mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS ONE 9, e102782 (2014).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Lombardi, C., Cocito, S., Occhipinti-Ambrogi, A. & Hiscock, K. The influence of seawater temperature on zooid size and growth rate in Pentapora fascialis (Bryozoa: Cheilostomata). Mar. Biol. 149, 1103–1109 (2006).
    Article  Google Scholar 

    71.
    Novosel, M., Požar-Domac, A. & Pasarić, M. Diversity and distribution of the bryozoa along underwater cliffs in the Adriatic sea with special reference to thermal regime. Mar. Ecol. 25, 155–170 (2004).
    ADS  Article  Google Scholar 

    72.
    Rindi, F. et al. Coralline algae in a changing Mediterranean Sea: how can we predict their future, if we do not know their present?. Front. Mar. Sci. 6, 2 (2019).
    Article  Google Scholar 

    73.
    Crisci, C. et al. Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species. Sci. Rep. 7, 5069 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Piazzi, L. et al. STAR: An integrated and standardized procedure to evaluate the ecological status of coralligenous reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 189–201 (2019).
    Article  Google Scholar 

    75.
    Piazzi, L. et al. Integration of ESCA index through the use of sessile invertebrates. Sci. Mar. 81, 283–290 (2017).
    Article  Google Scholar 

    76.
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009).
    Google Scholar 

    77.
    Hastie, T. & Tibshirani, R. Generalized additive models (Taylor and Francis Ltd, New York, 1990).
    Google Scholar  More

  • in

    The immune response of bats differs between pre-migration and migration seasons

    1.
    Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity?. Oikos 88(1), 87–98 (2000).
    Article  Google Scholar 
    2.
    Martin, L. B., Scheuerlein, A. & Wikelski, M. Immune activity elevates energy expenditure of house sparrows: A link between direct and indirect costs?. Proc. R. Soc. Lond. B 270(1511), 153–158 (2003).
    Article  Google Scholar 

    3.
    Klasing, J.C. The costs of immunity. Acta Zool. Sin. 50, 961–969 (2004).

    4.
    Hasselquist, D. & Nilsson, J. Å. Physiological mechanisms mediating costs of immune responses: What can we learn from studies of birds?. Anim. Behav. 83(6), 1303–1312 (2012).
    Article  Google Scholar 

    5.
    Demas, G. E., Chefer, V., Talan, M. I. & Nelson, R. J. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am. J. Physiol 273, R1631–R1637 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Otálora-Ardila, A., Herrera, M. L. G., Flores-Martinez, J. J. & Welch, K. C. Jr. Metabolic cost of the activation of immune response in the fish-eating myotis (Myotis vivesi): The effects of inflammation and the acute phase response. PLoS ONE 11, e0164938 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Costantini, D. & Møller, A. P. Does immune response cause oxidative stress in birds? A meta-analysis. Comp. Biochem. Physiol. A 153, 339–344 (2009).
    Article  CAS  Google Scholar 

    8.
    Canale, C. I. & Henry, P. Y. Energetic costs of the immune response and torpor use in a primate. Funct. Ecol. 25, 557–565 (2011).
    Article  Google Scholar 

    9.
    Wikelski, M. et al. Costs of migration in free-flying songbirds. Nature 423(6941), 704–704 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Jenni-Eiermann, S., Jenni, L., Smith, S. & Costantini, D. Oxidative stress in endurance flight: An unconsidered factor in bird migration. PLoS ONE 9, e97650 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Costantini, D., Lindecke, O., Petersons, G. & Voigt, C. C. Migratory flight imposes oxidative stress in bats. Curr. Zool. 65, 147–153 (2019).
    PubMed  Article  Google Scholar 

    12.
    Troxell, S. A., Holderied, M. W., Pētersons, G. & Voigt, C. C. Nathusius’ bats optimize long-distance migration by flying at maximum range speed. J. Exp. Biol. 222, jeb176396 (2019).

    13.
    Dierschke, V., Mendel, B. & Schmaljohann, H. Differential timing of spring migration in northern wheatears Oenanthe oenanthe: Hurried males or weak females?. Behav. Ecol. Sociobiol. 57, 470–480 (2005).
    Article  Google Scholar 

    14.
    Hasselquist, D. Comparative immunoecology in birds: Hypotheses and tests. J. Ornith. 148(2), 571–582 (2007).
    Article  Google Scholar 

    15.
    Buehler, D. M. & Piersma, T. Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B 363(1490), 247–266 (2007).
    Article  Google Scholar 

    16.
    Svensson, E., Råberg, L., Koch, C. & Hasselquist, D. Energetic stress, immunosuppression and the costs of an antibody response. Funct. Ecol. 12(6), 912–919 (1998).
    Article  Google Scholar 

    17.
    Owen, J. C. & Moore, F. R. Seasonal differences in immunological condition of three species of thrushes. Condor 108(2), 389–398 (2006).
    Article  Google Scholar 

    18.
    Altizer, S. et al. Animal migration and infectious disease risk. Science 331(6015), 296–302 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Eikenaar, C., Isaksson, C. & Hegemann, A. A hidden cost of migration? Innate immune function versus antioxidant defense. Ecol. Evol. 8(5), 2721–2728 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Weber, T. P. & Stilianakis, N. I. Ecologic immunology of avian influenza (H5N1) in migratory birds. Emerg. Infect. Dis. 13(8), 1139 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Owen, J. C. & Moore, F. R. Relationship between energetic condition and indicators of immune function in thrushes during spring migration. Can. J. Zool. 7, 638–647 (2008).
    Article  CAS  Google Scholar 

    22.
    Tobler, M., Ballen, C., Healey, M., Wilson, M. & Olsson, M. Oxidant trade-offs in immunity: An experimental test in a lizard. PLoS ONE 10(5), e0126155 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Wang, D., Malo, D. & Hekimi, S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1 in long-lived Mclk1+/− mouse mutants. J. Immunol. 184, 582–590 (2009).
    PubMed  Article  CAS  Google Scholar 

    24.
    Case, A. J. et al. Elevated mitochondrial superoxide disrupts normal T cell development, impairing adaptive immune responses to an influenza challenge. Free Radic. Biol. Med. 50, 448–458 (2011).
    CAS  PubMed  Article  Google Scholar 

    25.
    Møller, A. P. & Erritzøe, J. Host immune defence and migration in birds. Evol. Ecol. 12(8), 945–953 (1998).
    Article  Google Scholar 

    26.
    Popa-Lisseanu, A. G. & Voigt, C. C. Bats on the move. J. Mammal. 90(6), 1283–1289 (2009).
    Article  Google Scholar 

    27.
    Krauel, J.J., & McCracken, G. F. Recent advances in bat migration research. in Bat Evolution, Ecology, and Conservation 293–313. (Springer, New York, 2013).

    28.
    Steffens, R., Zöphel, U. & Brockmann, D. 40th Anniversary Bat Marking Centre Dresden—Evaluation of Methods and Overview of Results. (Sächsisches Landesamt für Umwelt und Geologie, Dresden, 2004).

    29.
    Roberts, B. J., Catterall, C. P., Eby, P. & Kanowski, J. Long-distance and frequent movements of the flying-fox Pteropus poliocephalus: Implications for management. PLoS ONE 7(8), e42532 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Speakman, J. R., Thomas, D. W., Kunz, T. H., & Fenton, M. B. Physiological ecology and energetics of bats. in Bat Ecology (eds. Kunz, T.H. & Fenton M.B.), 430–490 (Chicago University Press, Chicago, 2003).

    31.
    Voigt, C. C., Borrisov, I. M. & Voigt-Heucke, S. L. Terrestrial locomotion imposes high metabolic requirements on bats. J. Exp. Biol. 215(24), 4340–4344 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    McGuire, L. P., Jonasson, K. A., & Guglielmo, C.G. Bats on a budget: torpor-assisted migration saves time and energy. PLoS ONE9(12) (2014).

    33.
    Brunet-Rossinni, A. K. Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech. Ageing Dev. 125, 11–20 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Filho, D. W., Althoff, S. L., Dafré, A. L. & Boveris, A. Antioxidant defenses, longevity and ecophysiology of South American bats. Comp. Biochem. Physiol. Part C 146, 214–220 (2007).
    Google Scholar 

    35.
    Salmon, A. B. et al. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 23, 2317–2326 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Frugivory is associated with low measures of plasma oxidative stress and high antioxidant concentration in free-ranging bats. Naturwissenschaften 101(4), 285–290 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J. Exp. Biol. 216, 4514–4519 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Costantini D, Czirják, G. Á., Bustamante, P., Bumrungsri, S., & Voigt, C.C. Impact of land use on an insectivorous tropical bat: the importance of mercury, physio-immunology and trophic position. Sci. Total Environ.671, 1077–1085 (2019).

    40.
    Wibbelt, G., Moore, M. S., Schountz, T. & Voigt, C. C. Emerging diseases in Chiroptera: Why bats?. Biol. Lett. 6, 438–440 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. R. Soc. B 280(1756), 20122753 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546(7660), 646–650 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Drexler, J. F. et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 3, 796 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Hayman, D. T. S. et al. Ecology of zoonotic infectious diseases in bats: Current knowledge and future directions. Zoonoses Public Health 60(1), 2–21 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Pētersons, G. Seasonal migrations of northeastern populations of Pipistrellus nathusii. Myotis 41–42, 29–56 (2004).
    Google Scholar 

    46.
    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46(6), 1000–1015 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Fritze, M., et al. Immune response of hibernating European bats to a fungal challenge. Biol. Open8, bio046078 (2019).

    48.
    Stockmaier, S., Dechmann, D. K., Page, R. A. & O’Mara, M. T. No fever and leukocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Lett. 11, 4–7 (2015).
    Article  CAS  Google Scholar 

    49.
    Weise, P., Czirják, G. Á., Lindecke, O., Bumrungsri, S. & Voigt, C. C. Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats (Chaereophon plicatus). PeerJ 5, e3570 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Hegemann, A. et al. Immune function and blood parasite infections impact stopover ecology in passerine birds. Oecologia 188(4), 1011–1024 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Eikenaar, C. & Hegemann, A. Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics. Biol. Lett. 12, 20160078 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Owen, J. C. & Moore, F. R. Swainson’s thrushes in migratory disposition exhibit reduced immune function. J. Ethol. 26(3), 383–388 (2008).
    Article  Google Scholar 

    53.
    Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).
    Article  Google Scholar 

    54.
    Kozak, W.I.E.S., Conn, C.A. & Kluger, M. J.Lipopolysaccharide induces fever and depresses locomotor activity in unrestrained mice. Am. J. Physiol. Reg. Integr. Comp. Physiol.266(1), R125–R135 (1994).

    55.
    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Measures of the constitutive immune system are linked to diet and roosting habits of neotropical bats. PLoS ONE 8(1), e54023 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Field, K. A. et al. The white-nose syndrome transcriptome: Activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog. 11(10), e1005168 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Costantini, D., Dell’Ariccia, G. & Lipp, H.-P. Long flights and age affect oxidative status of homing pigeons (Columba livia). J. Exp. Biol. 211, 377–381 (2008).
    CAS  PubMed  Article  Google Scholar 

    59.
    Kuznetsova, A., Brockhoff, P. B. & Bojesen Christensen, R. H. Package ‘lmerTest’. CRAN. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf (2019).

    60.
    Zeileis, A., Cribari-Neto, F., Gruen, B., Kosmidis, I., Simas, A. B., & Rocha, A. V. Package ‘betareg’. CRAN, https://cran.r-project.org/web/packages/betareg/betareg.pdf (2020). More

  • in

    Flowering season of vernal herbs is shortened at elevated temperatures with reduced precipitation in early spring

    1.
    Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395. https://doi.org/10.1038/416389a (2002).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501. https://doi.org/10.1126/science.1196624 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Carter, S. K., Saenz, D. & Rudolf, V. H. W. Shifts in phenological distributions reshape interaction potential in natural communities. Ecol. Lett. 21, 1143–1151. https://doi.org/10.1111/ele.13081 (2018).
    Article  PubMed  Google Scholar 

    4.
    Kahl, S. M., Lenhard, M. & Joshi, J. Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris. J. Ecol. 107, 1918–1930. https://doi.org/10.1111/1365-2745.13133 (2019).
    Article  Google Scholar 

    5.
    Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074. https://doi.org/10.1126/science.289.5487.2068 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    IPCC. Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty https://www.ipcc.ch/sr15/ (2018).

    7.
    Wolkovich, et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497. https://doi.org/10.1038/nature11014 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Ahammed, G. J., Li, X., Wan, H., Zhou, G. & Cheng, Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci. Hortic. 270, 109444. https://doi.org/10.1016/j.scienta.2020.109444 (2020).
    CAS  Article  Google Scholar 

    9.
    Dorji, T. et al. Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agric. Ecosyst. Environ. 291, 106795. https://doi.org/10.1016/j.agee.2019.106795 (2020).
    Article  Google Scholar 

    10.
    Bertin, R. I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126–146. https://doi.org/10.3159/07-RP-035R.1 (2008).
    Article  Google Scholar 

    11.
    Lawson, C. R., Vindenes, Y., Bailey, L. & van de Poll, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736. https://doi.org/10.1111/ele.12437 (2015).
    Article  PubMed  Google Scholar 

    12.
    Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Nat. Acad. Sci. USA 104, 198–202. https://doi.org/10.1073/pnas.0605642104 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008 (2010).
    CAS  Article  PubMed  Google Scholar 

    14.
    Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52. https://doi.org/10.1038/s41559-018-0745-6 (2019).
    Article  PubMed  Google Scholar 

    15.
    Ahammed, G. J., Li, X., Liu, A. & Chen, S. Physiological and defense responses of tea plants to elevated CO2: a review. Front. Plant Sci. 11, 305. https://doi.org/10.3389/fpls.2020.00305 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Fogelström, E. & Ehrlén, J. Phenotypic but not genotypic selection for earlier flowering in a perennial herb. J. Ecol. 107, 2650–2659. https://doi.org/10.1111/1365-2745.13240 (2019).
    Article  Google Scholar 

    17.
    Badeck, F. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x (2004).
    Article  Google Scholar 

    18.
    Ehrlén, J., Raabova, J. & Dahlgren, J. P. Flowering schedule in a perennial plant: life-history trade-offs, seed predation, and total offspring fitness. Ecology 96, 2280–2288. https://doi.org/10.1890/14-1860.1 (2015).
    Article  PubMed  Google Scholar 

    19.
    Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462. https://doi.org/10.1126/science.1186473 (2010).
    ADS  Article  PubMed  Google Scholar 

    20.
    Gerst, K. L., Rossington, N. L. & Mazer, S. J. Phenological responsiveness to climate differs among four species of Quercus in North America. J. Ecol. 105, 1610–1622. https://doi.org/10.1111/1365-2745.12774 (2017).
    Article  Google Scholar 

    21.
    Grossiord, C. et al. Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems. J. Ecol. 105, 163–175. https://doi.org/10.1111/1365-2745.12662 (2017).
    Article  Google Scholar 

    22.
    Crimmins, T. M., Crimmins, M. A. & Bertelsen, C. D. Onset of summer flowering in a ‘Sky Island’ is driven by monsoon moisture. New Phytol. 191, 468–479. https://doi.org/10.1111/j.1469-8137.2011.03705.x (2011).
    Article  PubMed  Google Scholar 

    23.
    Meng, F. D. et al. Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology 98, 734–740. https://doi.org/10.1002/ecy.1685 (2017).
    CAS  Article  PubMed  Google Scholar 

    24.
    Dunne, J. A., Harte, J. & Taylor, K. J. Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol. Monogr. 73, 69–86. https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2 (2003).
    Article  Google Scholar 

    25.
    Gugger, S., Kesselring, H., Stöcklin, J. & Hamann, E. Lower plasticity exhibited by high- versus mid- elevation species in their phenological responses to manipulated temperature and drought. Annu. Bot. 116, 953–962. https://doi.org/10.1093/aob/mcv155 (2015).
    Article  Google Scholar 

    26.
    Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371. https://doi.org/10.1038/s41586-018-0399-1 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Fenner, M. The phenology of growth and reproduction in plants. Perspect. Plant Ecol. 1, 78–91. https://doi.org/10.1078/1433-8319-00053 (1998).
    Article  Google Scholar 

    28
    Lee, H. & Kang, H. Temperature-driven changes of pollinator assemblage and activity of Megaleranthis saniculifolia (Ranunculaceae) at high altitudes on Mt. Sobaeksan, South Korea. J. Ecol. Environ. 42, 31. https://doi.org/10.1186/s41610-018-0092-1 (2018).
    Article  Google Scholar 

    29.
    Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Nat. Acad. Sci. USA 107, 22151–22156. https://doi.org/10.1073/pnas.1012490107 (2010).
    ADS  Article  PubMed  Google Scholar 

    30.
    Cook, B. I., Wolkovich, E. M. & Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Nat. Acad. Sci. USA 109, 9000–9005. https://doi.org/10.1073/pnas.1118364109 (2012).
    ADS  Article  PubMed  Google Scholar 

    31.
    Meier, A. J., Bratton, S. P. & Duffy, D. C. Possible ecological mechanisms for loss of vernal-herb diversity in logged eastern deciduous forests. Ecol. Appl. 5, 935–946. https://doi.org/10.2307/2269344 (1995).
    Article  Google Scholar 

    32.
    Sung, J. et al. Growth environment and vegetation structure of native habitat of Corydalis cornupetala. Korean J. Environ. Ecol. 27, 271–279 (2013).
    Google Scholar 

    33.
    Augspurger, C. K. & Salk, C. F. Constraints of cold and shade on the phenology of spring ephemeral herb species. J. Ecol. 105, 246–254. https://doi.org/10.1111/1365-2745.12651 (2017).
    CAS  Article  Google Scholar 

    34.
    Rizhsky, L. et al. When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696. https://doi.org/10.1104/pp.103.033431 (2004).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Su, Z. et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute response of long-term acclimation in Arabidopsis. Plant Cell 25, 3785–3807. https://doi.org/10.1105/tpc.113.115428 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Vallales, F., Wright, S. J., Lasso, E., Kitajima, K. & Pearcy, R. W. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81, 1925–1936. https://doi.org/10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2 (2000).
    Article  Google Scholar 

    37.
    Valladares, F., Sanchez-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x (2006).
    Article  Google Scholar 

    38.
    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Nat. Acad. Sci. USA 111, 13. https://doi.org/10.1073/pnas.1323073111 (2014).
    CAS  Article  Google Scholar 

    39.
    Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. Biol. Sci. 365, 3101–3112. https://doi.org/10.1098/rstb.2010.0145 (2010).
    Article  Google Scholar 

    40.
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012 (2013).
    ADS  Article  Google Scholar 

    41.
    Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 29, 290–300. https://doi.org/10.1093/jxb/10.2.290 (1959).
    Article  Google Scholar 

    42.
    Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x (2008).
    CAS  Article  PubMed  Google Scholar 

    43.
    Limousin, J.-M. et al. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169, 565–577. https://doi.org/10.1007/s00442-011-2221-8 (2012).
    ADS  Article  PubMed  Google Scholar 

    44.
    Li, X. et al. Exogeneous melatonin improves tea quality under moderate high temperatures by increasing epigallacatechin-3-gallate and theanine biosynthesis in Camellia sinensis L. J. Plant Physiol. 253, 153273. https://doi.org/10.1016/j.jplph.2020.153273 (2020).
    CAS  Article  PubMed  Google Scholar 

    45.
    Wheeler, J. A. et al. The snow and the willows: earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J. Ecol. 104, 1041–1050. https://doi.org/10.1111/1365-2745.12579 (2016).
    CAS  Article  Google Scholar 

    46.
    Llorens, L. & Peñuelas, J. Experimental evidence of future drier and warmer conditions affecting flowering of two co-occurring Mediterranean shrubs. Int. J. Plant Sci. 166, 235–245. https://doi.org/10.1086/427480 (2005).
    Article  Google Scholar 

    47.
    Bernal, M., Estiarte, M. & Penuelas, J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol. 13, 252–257. https://doi.org/10.1111/j.1438-8677.2010.00358.x (2011).
    CAS  Article  PubMed  Google Scholar 

    48.
    Shavrukov, Y. et al. Early flowering as a drought escape mechanism in plants: how can it aid wheat production?. Front. Plant Sci. 8, 1950. https://doi.org/10.3389/fpls.2017.01950 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Sherry, R. A. et al. Changes in duration of reproductive phases and lagged phenological response to experimental climate warming. Plant Ecol. Divers. 4, 23–35. https://doi.org/10.1080/17550874.2011.557669 (2011).
    Article  Google Scholar 

    50.
    Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agric. Crop Sci. 197(430–441), 2011. https://doi.org/10.1111/j.1439-037X.2011.00477.x (2011).
    CAS  Article  Google Scholar 

    51.
    Zong, J.-M. et al. The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int. J. Mol. Sci. 17, 611. https://doi.org/10.3390/ijms17040611 (2016).
    ADS  CAS  Article  PubMed Central  Google Scholar 

    52.
    Żuraw, B., Rysiak, K. & Szymczak, G. Ecology and morphology of the flowers of Hepatica nobilisSchreb. (Ranunculaceae). Mod. Phytomorphol. 4, 39–43. https://doi.org/10.5281/zenodo.161177 (2013).
    Article  Google Scholar 

    53.
    Kalliovirta, M., Ryttäri, T. & Heikkinen, R. K. Population structure of a threatened plant, Pulsatilla patens, in boreal forests: modeling relationships to overgrowth and site closure. Biodivers. Conserv. 15, 3095–3108. https://doi.org/10.1007/s10531-005-5403-z (2006).
    Article  Google Scholar 

    54
    Inghe, O. & Tamm, C. O. Survival and flowering of perennial herbs. IV. The behavior of Hepatica nobilis and Sanicula europaea on permanent plots during 1943–1981. Oikos 45, 400–420. https://doi.org/10.2307/3565576 (1985).
    Article  Google Scholar 

    55.
    Lee, T. B. Colored Flora of Korea (Hyangmunsa, Seoul, 2003).
    Google Scholar 

    56.
    Kang, H. & Jang, S. Flowering patterns among angiosperm species in Korea: diversity and constraints. J. Plant Biol. 47, 348–355. https://doi.org/10.1007/BF03030550 (2004).
    Article  Google Scholar 

    57.
    Culley, T. M. Reproductive biology and delayed selfing in Viola pubscens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. Int. J. Plant Sci. 163, 113–122. https://doi.org/10.1086/324180 (2002).
    Article  Google Scholar 

    58.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, https://www.R-project.org (2017). More