1.
Carson, H. S., Cook, G. S., López-Duarte, P. C. & Levin, L. A. Evaluating the importance of demographic connectivity in a marine metapopulation. Ecology 92, 1972–1984. https://doi.org/10.1890/11-0488.1 (2011).
PubMed Article Google Scholar
2.
Jackson, J. B. C., Donovan, M. K., Cramer, K. L., Lam, V. & Lam, W. Status and trends of Caribbean coral reefs: 1970–2012. Glob. Coral Reef Monit. Network, IUCN, Gland. Switz. 306 (2014).
3.
Palumbi, S. R. Population genetics, demographic connectivity, and the design of marine reserves. 13, 146–158, https://doi.org/10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2 (2003).
4.
Botsford, L. W. et al. Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28, 327–337. https://doi.org/10.1007/s00338-009-0466-z (2009).
ADS PubMed PubMed Central CAS Article Google Scholar
5.
Galindo, H. M., Olson, D. B. & Palumbi, S. R. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr. Biol. 16, 1622–1626. https://doi.org/10.1016/j.cub.2006.06.052 (2006).
PubMed CAS Article Google Scholar
6.
Rippe, J. P. et al. Population structure and connectivity of the mountainous star coral, Orbicella faveolata, throughout the wider Caribbean region. Ecol. Evol. 7, 9234–9246. https://doi.org/10.1002/ece3.3448 (2017).
PubMed PubMed Central Article Google Scholar
7.
Studivan, M. S. & Voss, J. D. Population connectivity among shallow and mesophotic Montastraea cavernosa corals in the Gulf of Mexico identifies potential for refugia. Coral Reefs 37, 1183–1196. https://doi.org/10.1007/s00338-018-1733-7 (2018).
ADS Article Google Scholar
8.
Baums, I. B., Johnson, M. E., Devlin-Durante, M. K. & Miller, M. W. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean. Coral Reefs 29, 835–842. https://doi.org/10.1007/s00338-010-0645-y (2010).
ADS Article Google Scholar
9.
Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619. https://doi.org/10.1038/srep21619 (2016).
ADS PubMed PubMed Central CAS Article Google Scholar
10.
Serrano, X. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240. https://doi.org/10.1111/mec.12861 (2014).
PubMed CAS Article Google Scholar
11.
Bongaerts, P. et al. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373. https://doi.org/10.1126/sciadv.1602373 (2017).
ADS PubMed PubMed Central Article Google Scholar
12.
Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 7200. https://doi.org/10.1038/s41598-019-43479-x (2019).
ADS PubMed PubMed Central CAS Article Google Scholar
13.
Goodbody-Gringley, G., Vollmer, S. V., Woollacott, R. M. & Giribet, G. Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Mar. Biol. 157, 2591–2602. https://doi.org/10.1007/s00227-010-1521-6 (2010).
Article Google Scholar
14.
Goodbody-Gringley, G., Woollacott, R. M. & Giribet, G. Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar. Ecol. 33, 32–48. https://doi.org/10.1111/j.1439-0485.2011.00452.x (2012).
ADS CAS Article Google Scholar
15.
Nunes, F. L. D., Norris, R. D. & Knowlton, N. Long distance dispersal and connectivity in Amphi-Atlantic corals at regional and basin scales. PLoS ONE 6, e22298. https://doi.org/10.1371/journal.pone.0022298 (2011).
ADS PubMed PubMed Central CAS Article Google Scholar
16.
Brazeau, D. A., Lesser, M. P. & Slattery, M. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS ONE 8, e65845. https://doi.org/10.1371/journal.pone.0065845 (2013).
ADS PubMed PubMed Central CAS Article Google Scholar
17.
Foster, N. L. et al. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol. Ecol. 21, 1143–1157. https://doi.org/10.1111/j.1365-294X.2012.05455.x (2012).
PubMed Article Google Scholar
18.
García-Machado, E., Ulmo-Díaz, G., Castellanos-Gell, J. & Casane, D. Patterns of population connectivity in marine organisms of Cuba. Bull. Mar. Sci. 94, 193–211. https://doi.org/10.5343/bms.2016.1117 (2018).
Article Google Scholar
19.
Ulmo-Díaz, G. et al. Genetic differentiation in the mountainous star coral Orbicella faveolata around Cuba. Coral Reefs 37, 1217–1227. https://doi.org/10.1007/s00338-018-1722-x (2018).
ADS Article Google Scholar
20.
Creary, M. et al. Status of coral reefs in the northern Caribbean and western Atlantic GCRMN node in 2008. in Status of Coral Reefs of the World (ed. Wilkinson, C.) 239–252 (2008).
21.
Claro, R., Reshetnikov, Y. S. & Alcolado, P. M. Physical attributes of coastal Cuba. Ecol. Mar. fishes Cuba 1–20 (2001).
22.
Whittle, D. & Rey Santos, O. Protecting Cuba’s environment: efforts to design and implement effective environmental laws and policies in Cuba. Cuban Stud. 37, 73–103. https://doi.org/10.1353/cub.2007.0018 (2006).
Article Google Scholar
23.
Caballero, H., Alcolado, P. M. & Semidey, A. Condición de los arrecifes de coral frente a costas con asentamientos humanos y aportes terrígenos: el caso del litoral habanero. Cuba. Rev. Ciencias Mar. y Costeras 1, 49. https://doi.org/10.15359/revmar.1.3 (2009).
Article Google Scholar
24.
González-Díaz, P. et al. Status of Cuban coral reefs. Bull. Mar. Sci. 94, 229–247. https://doi.org/10.5343/bms.2017.1035 (2018).
Article Google Scholar
25.
Alcolado, P. M., Caballero, H. & Perera, S. Tendencia del cambio en el cubrimiento vivo por corales pétreos en los arrecifes coralinos de Cuba. Ser. Ocean. 5, 1–14 (2009).
Google Scholar
26.
Toth, L. T. et al. Do no-take reserves benefit Florida’s corals? 14 years of change and stasis in the Florida Keys National Marine Sanctuary. Coral Reefs 33, 565–577. https://doi.org/10.1007/s00338-014-1158-x (2014).
ADS Article Google Scholar
27.
Zlatarski, V. N. & Estalella, N. M. Los esclaractinios de Cuba. (2017).
28.
Zlatarski, V. N. Investigations on mesophotic coral ecosystems in Cuba (1970–1973) and Mexico (1983–1984). CICIMAR Oceánides 33, 27–43 (2018).
Google Scholar
29.
Reed, J. et al. Cuba’s mesophotic coral reefs and associated fish communities. Rev. Investig. Mar. 38, 56–125 (2018).
Google Scholar
30.
Baisre, J. A. An overview of Cuban commercial marine fisheries: the last 80 years. Bull. Mar. Sci. 94, 359–375. https://doi.org/10.5343/bms.2017.1015 (2018).
Article Google Scholar
31.
Gil-Agudelo, D. L. et al. Coral reefs in the Gulf of Mexico large marine ecosystem: conservation status, challenges, and opportunities. Front. Mar. Sci. 6, 807. https://doi.org/10.3389/fmars.2019.00807 (2020).
Article Google Scholar
32.
Perera Valderrama, S. et al. Marine protected areas in Cuba. Bull. Mar. Sci. 94, 423–442. https://doi.org/10.5343/bms.2016.1129 (2018).
Article Google Scholar
33.
NOAA. Sister Sanctuary: Memorandum of Understanding. (2015).
34.
Budd, A. F., Nunes, F. L. D., Weil, E. & Pandolfi, J. M. Polymorphism in a common Atlantic reef coral (Montastraea cavernosa) and its long-term evolutionary implications. Evol. Ecol. 26, 265–290. https://doi.org/10.1007/s10682-010-9460-8 (2012).
Article Google Scholar
35.
Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the `deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29, 309–327. https://doi.org/10.1007/s00338-009-0581-x (2010).
Article Google Scholar
36.
Reed, J. K. Deepest distribution of Atlantic hermaptypic corals discovered in the Bahamas. Proc. Fifth Int. Coral Reef Congr. 6, 249–254 (1985).
Google Scholar
37.
Szmant, A. M. Sexual reproduction by the Caribbean reef corals Montastrea annularis and M. cavernosa. Mar. Ecol. Prog. Ser. 74, 13–25. https://doi.org/10.3354/meps074013 (1991).
ADS Article Google Scholar
38.
Highsmith, R. C., Lueptow, R. L. & Schonberg, S. C. Growth and bioerosion of three massive corals on the Belize barrier reef. Mar. Ecol. Prog. Ser. 13, 261–271 (1983).
ADS Article Google Scholar
39.
Kitchen, S. A., Crowder, C. M., Poole, A. Z., Weis, V. M. & Meyer, E. De novo assembly and characterization of four anthozoan (Phylum Cnidaria) transcriptomes. G3 (Genes|Genomes|Genetics). 5, 2441–2452, https://doi.org/10.1534/g3.115.020164 (2015).
PubMed PubMed Central CAS Article Google Scholar
40.
Matz Lab. Montastraea cavernosa annotated genome. (2018).
41.
Drury, C., Pérez Portela, R., Serrano, X. M., Oleksiak, M. & Baker, A. C. Fine-scale structure among mesophotic populations of the great star coral Montastraea cavernosa revealed by SNP genotyping. Ecol. Evol. 1–11, https://doi.org/10.1002/ece3.6340 (2020).
42.
Ellegren, H. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445. https://doi.org/10.1038/nrg1348 (2004).
PubMed CAS Article Google Scholar
43.
Joshi, D., Ram, R. N. & Lohani, P. Microsatellite markers and their application in fisheries. Int. J. Adv. Agric. Sci. Technol. 4, 67–104 (2017).
Google Scholar
44.
Jarne, P. & Lagoda, P. J. L. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424–429. https://doi.org/10.1016/0169-5347(96)10049-5 (1996).
PubMed CAS Article Google Scholar
45.
Flores-Rentería, L. & Krohn, A. Scoring microsatellite loci. in Methods in molecular biology (ed. Kantartzi, S. K.) 319–336, https://doi.org/10.1007/978-1-62703-389-3_21 (Elsevier, 2013).
46.
Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92. https://doi.org/10.1038/nrg.2015.28 (2016).
PubMed PubMed Central CAS Article Google Scholar
47.
Davey, J. L. & Blaxter, M. W. RADseq: next-generation population genetics. Brief. Funct. Genomics 9, 416–423. https://doi.org/10.1093/bfgp/elq031 (2010).
PubMed CAS Article Google Scholar
48.
Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810. https://doi.org/10.1038/nmeth.2023 (2012).
PubMed CAS Article Google Scholar
49.
Bradbury, I. R. et al. Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol. Ecol. 24, 5130–5144. https://doi.org/10.1111/mec.13395 (2015).
PubMed CAS Article Google Scholar
50.
Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius. L. Mol. Ecol. 25, 2997–3018. https://doi.org/10.1111/mec.13613 (2016).
PubMed Article Google Scholar
51.
Bohling, J., Small, M., Von Bargen, J., Louden, A. & DeHaan, P. Comparing inferences derived from microsatellite and RADseq datasets: a case study involving threatened bull trout. Conserv. Genet. 20, 329–342. https://doi.org/10.1007/s10592-018-1134-z (2019).
CAS Article Google Scholar
52.
Thornhill, D. J., Xiang, Y., Fitt, W. K. & Santos, S. R. Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS ONE https://doi.org/10.1371/journal.pone.0006262 (2009).
PubMed PubMed Central Article Google Scholar
53.
Eckert, R. J., Reaume, A. M., Sturm, A. B., Studivan, M. S. & Voss, J. D. Depth influences Symbiodiniaceae associations among Montastraea cavernosa corals on the Belize Barrier Reef. Front. Microbiol. 11, 1–13. https://doi.org/10.3389/fmicb.2020.00518 (2020).
Article Google Scholar
54.
Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080. https://doi.org/10.1111/1755-0998.13004 (2019).
PubMed PubMed Central CAS Article Google Scholar
55.
Pochon, X., Putnam, H. M., Burki, F. & Gates, R. D. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS ONE https://doi.org/10.1371/journal.pone.0029816 (2012).
PubMed PubMed Central Article Google Scholar
56.
LaJeunesse, T. C. & Thornhill, D. J. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE https://doi.org/10.1371/journal.pone.0029013 (2011).
PubMed PubMed Central Article Google Scholar
57.
Manzello, D. P. et al. Role of host genetics and heat-tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob. Change Biol. 25, 1016–1031. https://doi.org/10.1111/gcb.14545 (2018).
ADS Article Google Scholar
58.
Warner, M. E., LaJeunesse, T. C., Robison, J. D. & Thur, R. M. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Ocean. https://doi.org/10.4319/lo.2006.51.4.1887 (2006).
Article Google Scholar
59.
Finney, J. C. et al. The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb. Ecol. 60, 250–263. https://doi.org/10.1007/s00248-010-9681-y (2010).
PubMed Article Google Scholar
60.
Bongaerts, P. et al. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci. Rep. https://doi.org/10.1038/srep07652 (2015).
PubMed PubMed Central Article Google Scholar
61.
Reed, J. et al. Cruise report Cuba’s twilight zone reefs: Remotely Operated Vehicle surveys of deep/mesophotic coral reefs and associated fish communities of Cuba. (2017).
62.
Arriaza, L. et al. Modelación numérica de corrientes marinas alrededor del occidente de Cuba. Serie Oceanológica. 10, 11–22. (2012).
Google Scholar
63.
Gordon, A. & Hannon, G. FASTX-Toolkit. FASTQ/A short-reads pre-processing tools. (2010). Available at: https://hannonlab.cshl.edu/fastx_toolkit/.
64.
Bayer, T. et al. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS ONE https://doi.org/10.1371/journal.pone.0035269 (2012).
PubMed PubMed Central Article Google Scholar
65.
Davies, S. W., Ries, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the coral Siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification. Front. Mar. Sci. 5, 1–14. https://doi.org/10.3389/fmars.2018.00150 (2018).
Article Google Scholar
66.
Ladner, J. T., Barshis, D. J. & Palumbi, S. R. Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evol. Biol. 12, 217. https://doi.org/10.1186/1471-2148-12-217 (2012).
PubMed PubMed Central CAS Article Google Scholar
67.
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).
PubMed PubMed Central CAS Article Google Scholar
68.
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356. https://doi.org/10.1186/s12859-014-0356-4 (2014).
PubMed PubMed Central Article Google Scholar
69.
Peakall, R. & Smouse, P. E. GenALEx 65: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
PubMed PubMed Central CAS Article Google Scholar
70.
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of Molecular Variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
PubMed PubMed Central CAS Google Scholar
71.
Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
MathSciNet MATH Article Google Scholar
72.
Prevosti, A., Ocaña, J. & Alonso, G. Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theor. Appl. Genet. 45, 231–241. https://doi.org/10.1007/BF00831894 (1975).
PubMed CAS Article Google Scholar
73.
Kamvar, Z. N., Tabima, J. F. & Gr̈unwald, N. J. ,. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 1–14. https://doi.org/10.7717/peerj.281 (2014).
Article Google Scholar
74.
R Core Team. R: A language and environment for statistical computing. (2019).
75.
Jombart, T. & Ahmed, I. adegenet 13–1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).
PubMed PubMed Central CAS Article Google Scholar
76.
Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).
PubMed CAS Google Scholar
77.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
PubMed PubMed Central CAS Google Scholar
78.
Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8, 1–5. https://doi.org/10.1371/journal.pone.0070651 (2013).
CAS Article Google Scholar
79.
Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
Article Google Scholar
80.
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140. https://doi.org/10.1111/mec.12354 (2013).
PubMed PubMed Central Article Google Scholar
81.
Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952. https://doi.org/10.1111/1755-0998.12129 (2013).
PubMed CAS Article Google Scholar
82.
Oksanen, J. et al. Vegan: community ecology package. (2019).
83.
Alexander, D. H. D., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).
PubMed PubMed Central CAS Article Google Scholar
84.
Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702. https://doi.org/10.1534/genetics.113.154138 (2013).
PubMed PubMed Central CAS Article Google Scholar
85.
Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993. https://doi.org/10.1534/genetics.108.092221 (2008).
PubMed PubMed Central Article Google Scholar
86.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
PubMed CAS Article Google Scholar
87.
Centurioni, L. R. & Niiler, P. P. On the surface currents of the Caribbean Sea. Geophys. Res. Lett. 30, 10–13. https://doi.org/10.1029/2002GL016231 (2003).
Article Google Scholar
88.
Candela, J. et al. The flow through the gulf of Mexico. J. Phys. Oceanogr. 49, 1381–1401. https://doi.org/10.1175/JPO-D-18-0189.1 (2019).
ADS Article Google Scholar
89.
Kourafalou, V., Androulidakis, Y., Le Hénaff, M. & Kang, H. S. The Dynamics of Cuba Anticyclones (CubANs) and interaction with the Loop Current/Florida Current system. J. Geophys. Res. Ocean. 122, 7897–7923. https://doi.org/10.1002/2017JC012928 (2017).
ADS Article Google Scholar
90.
Arriaza, L. et al. Marine current estimations in southeast Cuban shelf. Ser. Ocean. 4, 1–10 (2008).
Google Scholar
91.
Carracedo-Hidalgo, D., Reyes-Perdomo, D., Calzada-estrada, A., Chang-Domínguez, D. & Rodríguez-Pupo, A. Characterization of sea currents in sea adjacent to Cuba . Main trends in the last years. Rev. Cuba. Meteorol. 25, (2019).
92.
Frys, C. et al. Fine-scale coral connectivity pathways in the Florida Reef Tract: implications for conservation and restoration. Front. Mar. Sci. 7, 1–42. https://doi.org/10.3389/fmars.2020.00312 (2020).
Article Google Scholar
93.
Kuba, A. Transgenerational effects of thermal stress: impacts on and beyond coral reproduction. (Nova Southeastern University, 2016).
94.
Claro, R., Lindeman, K. C., Kough, A. S. & Paris, C. B. Biophysical connectivity of snapper spawning aggregations and marine protected area management alternatives in Cuba. Fish. Oceanogr. 28, 33–42. https://doi.org/10.1111/fog.12384 (2019).
Article Google Scholar
95.
Holstein, D. M., Paris, C. B. & Mumby, P. J. Consistency and inconsistency in multispecies population network dynamics of coral reef ecosystems. Mar. Ecol. Prog. Ser. 499, 1–18. https://doi.org/10.3354/meps10647 (2014).
ADS Article Google Scholar
96.
Szmant, A. M. Reproductive ecology of Caribbean reef corals. Coral Reefs 5, 43–53. https://doi.org/10.1007/BF00302170 (1986).
ADS Article Google Scholar
97.
Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286. https://doi.org/10.1186/s12864-016-2583-8 (2016).
PubMed PubMed Central CAS Article Google Scholar
98.
Devlin-Durante, M. K. & Baums, I. B. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral. Acropora palmata. PeerJ 5, e4077. https://doi.org/10.7717/peerj.4077 (2017).
PubMed CAS Article Google Scholar
99.
Wang, J., Feng, C., Jiao, T., Von Wettberg, E. B. & Kang, M. Genomic signature of adaptive divergence despite strong nonadaptive forces on Edaphic Islands: a case study of Primulina juliae. Genome Biol. Evol. 9, 3495–3508. https://doi.org/10.1093/gbe/evx263 (2017).
PubMed PubMed Central Article Google Scholar
100.
Ramos-Silva, P. et al. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol. Biol. Evol. 30, 2099–2112. https://doi.org/10.1093/molbev/mst109 (2013).
PubMed PubMed Central CAS Article Google Scholar
101.
Takeuchi, T., Yamada, L., Shinzato, C., Sawada, H. & Satoh, N. Stepwise evolution of coral biomineralization revealed with genome-wide proteomics and transcriptomics. PLoS ONE https://doi.org/10.1371/journal.pone.0156424 (2016).
PubMed PubMed Central Article Google Scholar
102.
Aranda, M. et al. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol. Ecol. 20, 2955–2972. https://doi.org/10.1111/j.1365-294X.2011.05153.x (2011).
PubMed CAS Article Google Scholar
103.
Reynolds, W. S., Schwarz, J. A. & Weis, V. M. Symbiosis-enhanced gene expression in cnidarian-algal associations: cloning and characterization of a cDNA, sym32, encoding a possible cell adhesion protein. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 33–44. https://doi.org/10.1016/S0742-8413(00)00099-2 (2000).
CAS Article Google Scholar
104.
Iguchi, A. et al. Apparent involvement of a β1 type integrin in coral fertilization. Mar. Biotechnol. 9, 760–765. https://doi.org/10.1007/s10126-007-9026-0 (2007).
PubMed CAS Article Google Scholar
105.
Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91, 990–1003. https://doi.org/10.1890/09-0313.1 (2010).
PubMed Article Google Scholar
106.
Klepac, C. et al. Seasonal stability of coral-Symbiodinium associations in the subtropical coral habitat of St. Lucie Reef, Florida. Mar. Ecol. Prog. Ser. 532, 137–151. https://doi.org/10.3354/meps11369 (2015).
ADS Article Google Scholar
107.
Polinski, J. M. & Voss, J. D. Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank. Coral Reefs 37, 779–789. https://doi.org/10.1007/s00338-018-1701-2 (2018).
ADS Article Google Scholar
108.
LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 1–11. https://doi.org/10.1016/j.cub.2018.07.008 (2018).
CAS Article Google Scholar
109.
Swain, T. D., Chandler, J., Backman, V. & Marcelino, L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct. Ecol. 31, 172–183. https://doi.org/10.1111/1365-2435.12694 (2017).
Article Google Scholar
110.
Hodel, R. G. J. et al. Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Sci. Rep. 7, 1–14. https://doi.org/10.1038/s41598-017-16810-7 (2017).
CAS Article Google Scholar
111.
Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness — implications for brown trout conservation. Ecol. Evol. 9, 2106–2120. https://doi.org/10.1002/ece3.4905 (2019).
PubMed PubMed Central Article Google Scholar
112.
Puckett, E. E. Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. Conserv. Genet. Resour. 9, 289–304. https://doi.org/10.1007/s12686-016-0643-7 (2017).
Article Google Scholar
113.
Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170. https://doi.org/10.1371/journal.pone.0045170 (2012).
ADS PubMed PubMed Central CAS Article Google Scholar
114.
Luikart, G., Sherwin, W. B., Steele, B. M. & Allendorf, F. W. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 7, 963–974. https://doi.org/10.1046/j.1365-294x.1998.00414.x (1998).
PubMed CAS Article Google Scholar
115.
Willing, E.-M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS ONE 7, e42649. https://doi.org/10.1371/journal.pone.0042649 (2012).
ADS PubMed PubMed Central CAS Article Google Scholar
116.
Nazareno, A. G., Bemmels, J. B., Dick, C. W. & Lohmann, L. G. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol. Ecol. Resour. 17, 1136–1147. https://doi.org/10.1111/1755-0998.12654 (2017).
PubMed CAS Article Google Scholar More