StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales
1.
Fordham, D. A., Brook, B. W., Moritz, C. & Nogues-Bravo, D. Better forecasts of range dynamics using genetic data. Trends Ecol. Evol. 29, 436–443, https://doi.org/10.1016/j.tree.2014.05.007 (2014).
Article PubMed Google Scholar
2.
Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science, https://doi.org/10.1126/science.abc5654 (2020).
3.
Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776, https://doi.org/10.1016/j.tree.2018.07.005 (2018).
Article PubMed Google Scholar
4.
Fordham, D. A. & Nogues-Bravo, D. Open-access data is uncovering past responses of biodiversity to global environmental change. PAGES 26, 77–77, https://doi.org/10.22498/pages.26.2.77 (2018).
Article Google Scholar
5.
Fine, P. V. A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392, https://doi.org/10.1146/annurev-ecolsys-112414-054102 (2015).
Article Google Scholar
6.
Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452, https://doi.org/10.1126/science.aar5452 (2018).
CAS Article PubMed Google Scholar
7.
Lister, A. M. & Stuart, A. J. The impact of climate change on large mammal distribution and extinction: Evidence from the last glacial/interglacial transition. C. R. Geosci. 340, 615–620, https://doi.org/10.1016/j.crte.2008.04.001 (2008).
Article Google Scholar
8.
Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent quaternary climate refugia are hospices for biodiversity in the anthropocene. Nat. Clim. Change., https://doi.org/10.1038/s41558-019-0682-7 (2020).
9.
Fjeldså, J. & Lovett, J. C. Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres. Biodivers. Conserv. 6, 325–346, https://doi.org/10.1023/A:1018356506390 (1997).
Article Google Scholar
10.
Haffer, J. Speciation in Amazonian forest birds. Science 165, 131–137, https://doi.org/10.1126/science.165.3889.131 (1969).
ADS CAS Article PubMed Google Scholar
11.
Harrison, S. & Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 119, 207–214, https://doi.org/10.1093/aob/mcw248 (2017).
Article PubMed PubMed Central Google Scholar
12.
Armstrong, E., Hopcroft, P. O. & Valdes, P. J. A simulated northern hemisphere terrestrial climate dataset for the past 60,000 years. Sci. Data 6, 265, https://doi.org/10.1038/s41597-019-0277-1 (2019).
Article PubMed PubMed Central Google Scholar
13.
Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. Paleoclim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254, https://doi.org/10.1038/sdata.2018.254 (2018).
Article PubMed PubMed Central Google Scholar
14.
Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. Downscaled and debiased climate simulations for north america from 21,000 years ago to 2100 AD. Sci. Data 3, 160048, https://doi.org/10.1038/sdata.2016.48 (2016).
Article PubMed PubMed Central Google Scholar
15.
Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, https://doi.org/10.1126/science.aah4787 (2017).
16.
Nogués-Bravo, D. et al. Amplified plant turnover in response to climate change forecast by late quaternary records. Nat. Clim. Change. 6, 1115–1119, https://doi.org/10.1038/nclimate3146 (2016).
ADS Article Google Scholar
17.
Maiorano, L. et al. Building the niche through time: Using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecol. Biogeogr. 22, 302–317, https://doi.org/10.1111/j.1466-8238.2012.00767.x (2013).
Article Google Scholar
18.
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499, https://doi.org/10.1126/science.1237184 (2013).
ADS CAS Article PubMed Google Scholar
19.
Lima-Ribeiro, M. S. et al. Ecoclimate: A database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, 1–21, https://doi.org/10.17161/bi.v10i0.4955 (2015).
Article Google Scholar
20.
Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325, 310–314, https://doi.org/10.1126/science.1171041 (2009).
ADS CAS Article PubMed Google Scholar
21.
Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223, https://doi.org/10.1126/science.1259531 (2014).
ADS CAS Article PubMed Google Scholar
22.
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241, https://doi.org/10.1007/s10584-011-0156-z (2011).
ADS CAS Article Google Scholar
23.
van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z (2011).
ADS Article Google Scholar
24.
van Oldenborgh, G. J. et al. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1311–1393 (Cambridge University Press, Cambridge, United Kingdom, 2013).
25.
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74, https://doi.org/10.1126/science.1228282 (2013).
ADS CAS Article PubMed Google Scholar
26.
Botta, F., Dahl-Jensen, D., Rahbek, C., Svensson, A. & Nogues-Bravo, D. Abrupt change in climate and biotic systems. Curr. Biol. 29, R1045–R1054, https://doi.org/10.1016/j.cub.2019.08.066 (2019).
CAS Article PubMed Google Scholar
27.
Fordham, D. A. et al. Predicting and mitigating future biodiversity loss using long-term ecological proxies. Nat. Clim. Change. 6, 909–916, https://doi.org/10.1038/nclimate3086 (2016).
ADS Article Google Scholar
28.
Fordham, D. A. et al. Paleoview: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358, https://doi.org/10.1111/ecog.03031 (2017).
Article Google Scholar
29.
Fordham, D. A., Saltré, F., Brown, S. C., Mellin, C. & Wigley, T. M. L. Why decadal to century timescale palaeoclimate data are needed to explain present-day patterns of biological diversity and change. Global Change Biol. 24, 1371–1381, https://doi.org/10.1111/gcb.13932 (2018).
ADS Article Google Scholar
30.
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. 93, 485–498, https://doi.org/10.1175/Bams-D-11-00094.1 (2012).
ADS Article Google Scholar
31.
Otto-Bliesner, B. L. et al. Climate sensitivity of moderate- and low-resolution versions of CCSM3 to preindustrial forcings. J. Clim. 19, 2567–2583, https://doi.org/10.1175/Jcli3754.1 (2006).
ADS Article Google Scholar
32.
Collins, W. D. et al. The community climate system model version 3 (CCSM3). J. Clim. 19, 2122–2143, https://doi.org/10.1175/jcli3761.1 (2006).
ADS Article Google Scholar
33.
Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991, https://doi.org/10.1175/2011jcli4083.1 (2011).
ADS Article Google Scholar
34.
Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102, https://doi.org/10.1038/nature07770 (2009).
ADS CAS Article PubMed Google Scholar
35.
Carlson, A. E. In The encyclopedia of quaternary science Vol. 3 (ed Elias, S. A.) 126–134 (Elsevier, Amsterdam, 2013).
36.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in holocene temperatures. Nature 554, 92, https://doi.org/10.1038/nature25464 (2018).
ADS CAS Article PubMed Google Scholar
37.
Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future north American climate. Nat. Clim. Change. 2, 775, https://doi.org/10.1038/nclimate1562 (2012).
ADS Article Google Scholar
38.
Lutz, A. F. et al. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 36, 3988–4005, https://doi.org/10.1002/joc.4608 (2016).
Article Google Scholar
39.
Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. T. R. Soc. A. 365, 2053–2075, https://doi.org/10.1098/rsta.2007.2076 (2007).
ADS MathSciNet Article Google Scholar
40.
Schulzweida, U. CDO user guide (version 1.9.3). https://doi.org/10.5281/zenodo.3539275, (2019).
41.
Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791, https://doi.org/10.1177/0959683610386983 (2011).
ADS Article Google Scholar
42.
Santer, B. D. et al. Identifying human influences on atmospheric temperature. Proc. Natl. Acad. Sci. USA 110, 26–33, https://doi.org/10.1073/pnas.1210514109 (2013).
ADS Article PubMed Google Scholar
43.
Fordham, D. A., Wigley, T. M. L., Watts, M. J. & Brook, B. W. Strengthening forecasts of climate change impacts with multi-model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography 35, 4–8, https://doi.org/10.1111/j.1600-0587.2011.07398.x (2012).
Article Google Scholar
44.
Fordham, D. A., Brown, S. C., Wigley, T. M. L. & Rahbek, C. Cradles of diversity are unlikely relics of regional climate stability. Curr. Biol. 29, R356–R357, https://doi.org/10.1016/j.cub.2019.04.001 (2019).
CAS Article PubMed Google Scholar
45.
Sen Gupta, A., Jourdain, N. C., Brown, J. N. & Monselesan, D. Climate drift in the CMIP5 models. J. Clim. 26, 8597–8615, https://doi.org/10.1175/Jcli-D-12-00521.1 (2013).
ADS Article Google Scholar
46.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar D. & R Core Team nlme: linear and nonliner mixed effects models, https://CRAN.R-project.org/package=nlme (2017).
47.
R Core Team R: A language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2018).
48.
Pierce, D. W., Barnett, T. P., Santer, B. D. & Gleckler, P. J. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 106, 8441, https://doi.org/10.1073/pnas.0900094106 (2009).
ADS Article PubMed Google Scholar
49.
Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, https://doi.org/10.1029/2011gl050087 (2012).
50.
IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1535 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).
51.
Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun., https://doi.org/10.1038/s41467-020-16449-5 (2020).
52.
Nadeau, C. P., Urban, M. C. & Bridle, J. R. Coarse climate change projections for species living in a fine-scaled world. Globl Chang Biol 23, 12–24, https://doi.org/10.1111/gcb.13475 (2017).
ADS Article Google Scholar
53.
Frame, D., Joshi, M., Hawkins, E., Harrington, L. J. & de Roiste, M. Population-based emergence of unfamiliar climates. Nat. Clim. Change. 7, 407, https://doi.org/10.1038/Nclimate3297 (2017).
ADS Article Google Scholar
54.
Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L. & Fordham, D. A., StableClim. The University of Adelaide https://doi.org/10.25909/5ea59831121bc (2020).
55.
Dowle, M. & Srinivasan, A. data.table: extension of ‘data.frame’, https://CRAN.R-project.org/package=data.table (2019).
56.
Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436, https://doi.org/10.1038/20859 (1999).
ADS CAS Article Google Scholar
57.
Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42ka. Part 1: Constructing the time scale. Quat. Sci. Rev. 25, 3246–3257, https://doi.org/10.1016/j.quascirev.2006.08.002 (2006).
ADS Article Google Scholar
58.
Rasmussen, S. O. et al. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications. Quat. Sci. Rev. 27, 18–28, https://doi.org/10.1016/j.quascirev.2007.01.016 (2008).
ADS Article Google Scholar
59.
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253, https://doi.org/10.1111/j.1541-0420.2005.00440.x (2006).
MathSciNet Article PubMed PubMed Central MATH Google Scholar
60.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46, https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).
Article Google Scholar
61.
Clarke, K. R. & Gorley, R. N. PRIMER v6: User manual/tutorial. (PRIMER-E, Plymouth, 2006).
62.
Anderson, M. J., Gorley, R. N. & Clarke, K. R. Permanova+ for PRIMER: Guide to software and statistical methods. (PRIMER-E, Plymouth, 2008).
63.
Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl. Acad. Sci. USA 109, E1134, https://doi.org/10.1073/pnas.1116619109 (2012).
Article PubMed Google Scholar
64.
Liu, Z. et al. Younger Dryas cooling and the Greenland climate response to CO2. Proc. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.1202183109 (2012).
65.
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837, https://doi.org/10.1038/nature02494 (2004).
ADS CAS Article PubMed Google Scholar
66.
Peck, V. L. et al. The relationship of Heinrich events and their European precursors over the past 60ka BP: A multi-proxy ice-rafted debris provenance study in the north east atlantic. Quat. Sci. Rev. 26, 862–875, https://doi.org/10.1016/j.quascirev.2006.12.002 (2007).
ADS Article Google Scholar
67.
Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49, https://doi.org/10.1038/nature10915 (2012).
ADS CAS Article PubMed Google Scholar
68.
Carlson, A. E. & Winsor, K. Northern hemisphere ice-sheet responses to past climate warming. Nat. Geosci. 5, 607–613, https://doi.org/10.1038/ngeo1528 (2012).
ADS CAS Article Google Scholar
69.
Renssen, H. & Isarin, R. F. B. The two major warming phases of the last deglaciation at ∼14.7 and ∼11.5 ka cal BP in Europe: Climate reconstructions and AGCM experiments. Global Planet. Change 30, 117–153, https://doi.org/10.1016/S0921-8181(01)00082-0 (2001).
ADS Article Google Scholar
70.
Alley, R. B. & Ágústsdóttir, A. M. The 8k event: Cause and consequences of a major holocene abrupt climate change. Quat. Sci. Rev. 24, 1123–1149, https://doi.org/10.1016/j.quascirev.2004.12.004 (2005).
ADS Article Google Scholar
71.
Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188, https://doi.org/10.1214/aos/1013699998 (2001).
MathSciNet Article MATH Google Scholar
72.
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642, https://doi.org/10.1002/joc.3711 (2014).
73.
Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192, https://doi.org/10.1029/2000jd900719 (2001).
ADS Article Google Scholar
74.
Wigley, T. M. MAGICC/SCENGEN 5.3: User manual (version 2). (NCAR, Boulder, Colorado, 2008).
Google Scholar
75.
Wilcox, R. R. The percentage bend correlation coefficient. Psychometrika 59, 601–616, https://doi.org/10.1007/BF02294395 (1994).
Article MATH Google Scholar
76.
Watterson, I. G. Non-dimensional measures of climate model performance. Int. J. Climatol. 16, 379-391, https://doi.org/10.1002/(Sici)1097-0088(199604)16:43.0.Co;2-U (1996).
77.
Willmott, C. J. On the validation of models. Phys. Geogr. 2, 184–194, https://doi.org/10.1080/02723646.1981.10642213 (2013).
Article Google Scholar
78.
Santer, B. D., Wigley, T. M., Schlesinge, M. E. & Mitchell, J. F. B. Developing climate scenarios from equilibrium GCM results. (Max Planck Institute for Meteorology, Hamburg, Germany, 1990). More
