More stories

  • in

    Linking microbial Sphagnum degradation and acetate mineralization in acidic peat bogs: from global insights to a genome-centric case study

    1.
    Amesbury MJ, Gallego-Sala A, Loisel J. Peatlands as prolific carbon sinks. Nat Geosci. 2019;12:880–1.
    CAS  Google Scholar 
    2.
    Rydin H, Jeglum J. The biology of peatlands. 2nd ed. New York: Oxford University Press; 2013.

    3.
    Kremer C, Pettolino F, Bacic A, Drinnan A. Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta. 2004;219:1023–35.
    CAS  PubMed  Google Scholar 

    4.
    Theander O. Studies on Sphagnum peat. III. A quantitative study on the carbohydrate constituents of Sphagnum mosses and Sphagnum peat. Acta Chem Scand. 1954;8:989–1000.
    CAS  Google Scholar 

    5.
    Ballance S, Borsheim KY, Inngjerdingen K, Paulsen BS, Christensen BE. A re-examination and partial characterisation of polysaccharides released by mild acid hydrolysis from the chlorite-treated leaves of Sphagnum papillosum. Carbohydr Polym. 2007;67:104–15.
    CAS  Google Scholar 

    6.
    Painter TJ. Residues of D-lyxo-5-hexosulopyranuronic acid in Sphagnum holocellulose, and their role in cross-linking. Carbohydr Res. 1983;124:C18–C21.
    CAS  Google Scholar 

    7.
    Bartels D, Baumann A, Maeder M, Geske T, Heise EM, von Schwartzenberg K, et al. Evolution of plant cell wall: arabinogalactan-proteins from three moss genera show structural differences compared to seed plants. Carbohydr Polym. 2017;163:227–35.
    CAS  PubMed  Google Scholar 

    8.
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
    CAS  PubMed  Google Scholar 

    9.
    Ivanova AA, Wegner C-E, Kim Y, Liesack W, Dedysh SN. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Mol Ecol. 2016;25:4818–35.
    CAS  PubMed  Google Scholar 

    10.
    Duddleston KN, Kinney MA, Kiene RP, Hines ME. Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product. Glob Biogeochem Cycles. 2002;16:11–1-11–9.
    Google Scholar 

    11.
    Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham SD. pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic-minerotrophic gradient. Soil Biol Biochem. 2012;54:36–47.
    CAS  Google Scholar 

    12.
    van Beelen P, Wouterse MJ, Masselink MJ, Spijker J, Mesman M. The application of a simplified method to map the aerobic acetate mineralization rates at the groundwater table of the Netherlands. J Contam Hydrol. 2011;122:86–95.
    PubMed  Google Scholar 

    13.
    Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.
    Google Scholar 

    14.
    Walpen N, Getzinger GJ, Schroth MH, Sander M. Electron-donating phenolic and electron-accepting quinone moieties in peat dissolved organic matter: quantities and redox transformations in the context of peat biogeochemistry. Environ Sci Technol. 2018;52:5236–45.
    CAS  PubMed  Google Scholar 

    15.
    Dettling MD, Yavitt J, Zinder S. Control of organic carbon mineralization by alternative electron acceptors in four peatlands, central New York State, USA. Wetlands. 2006;26:917–27.
    Google Scholar 

    16.
    Keller JK, Bridgham SD. Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient. Limnol Oceanogr. 2007;52:96–107.
    CAS  Google Scholar 

    17.
    Keller JK, Takagi KK. Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere. 2013;4:1–12.
    Google Scholar 

    18.
    Keller JK, Weisenhorn PB, Megonigal JP. Humic acids as electron acceptors in wetland decomposition. Soil Biol Biochem. 2009;41:1518–22.
    CAS  Google Scholar 

    19.
    Yavitt JB, Seidman-Zager M. Methanogenic conditions in northern peat soils. Geomicrobiol J. 2006;23:119–27.
    CAS  Google Scholar 

    20.
    He S, Lau MP, Linz AM, Roden EE, McMahon KD. Extracellular electron transfer may be an overlooked contribution to pelagic respiration in humic-rich freshwater lakes. mSphere. 2019;4:1–8.
    Google Scholar 

    21.
    Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature. 1996;382:445–8.
    CAS  Google Scholar 

    22.
    Stams AJM, De Bok FAM, Plugge CM, Van Eekert MHA, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol. 2006;8:371–82.
    CAS  PubMed  Google Scholar 

    23.
    Klupfel L, Piepenbrock A, Kappler A, Sander M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat Geosci. 2014;7:195–200.
    Google Scholar 

    24.
    Bräuer SL, Yavitt JB, Zinder SH. Methanogenesis in McLean Bog, an acidic peat bog in upstate New York: stimulation by H2/CO2 in the presence of rifampicin, or by low concentrations of acetate. Geomicrobiol J. 2004;21:433–43.
    Google Scholar 

    25.
    Cadillo-Quiroz H, Brauer S, Yashiro E, Sun C, Yavitt J, Zinder S. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol. 2006;8:1428–40.
    CAS  PubMed  Google Scholar 

    26.
    Kotsyurbenko O, Chin K, Glagolev M, Stubner S, Simankova M, Nozhevnikova A, et al. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian pear bog. Environ Microbiol. 2004;6:1159–73.
    CAS  PubMed  Google Scholar 

    27.
    Lai DYF. Methane dynamics in northern peatlands: a review. Pedosphere. 2009;19:409–21.
    CAS  Google Scholar 

    28.
    Xu XF, Elias DA, Graham DE, Phelps TJ, Carroll SL, Wullschleger SD, et al. A microbial functional group-based module for simulating methane production and consumption: application to an inbucated permafrost soil. J Geophys Res Biogeosci. 2015;120:1315–33.
    CAS  Google Scholar 

    29.
    Chen I-MA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–16.
    CAS  PubMed  Google Scholar 

    30.
    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformat. 2008;9:559.
    Google Scholar 

    31.
    Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 2007;1:54.
    PubMed  PubMed Central  Google Scholar 

    32.
    Sun CL, Brauer SL, Cadillo-Quiroz H, Zinder SH, Yavitt JB. Seasonal changes in methanogenesis and methanogenic community in three peatlands, New York State. Front Microbiol. 2012;3:81.
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Osvald H. Vegetation and stratigraphy of peatlands in North America. Uppsala: Acta Universitatis Upsaliensis; 1970.

    34.
    Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front Microbiol. 2016;7:703.
    PubMed  PubMed Central  Google Scholar 

    35.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.
    PubMed  PubMed Central  Google Scholar 

    37.
    Kang D, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Google Scholar 

    38.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725.
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304.
    PubMed  PubMed Central  Google Scholar 

    41.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59.
    PubMed  Google Scholar 

    42.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Google Scholar 

    43.
    Rodriguez-R LM, Tsementzi D, Luo C, Konstantinidis KT. Iterative substractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol. 2020;22:3394–412.
    CAS  PubMed  Google Scholar 

    44.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016;4:e1900v1.
    Google Scholar 

    47.
    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51.
    PubMed  PubMed Central  Google Scholar 

    48.
    Zalman C, Keller JK, Tfaily M, Kolton M, Pfeifer-Meister L, Wilson RM, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139:155–77.
    CAS  Google Scholar 

    49.
    Williams CJ, Yavitt JB. Botanical composition of peat and degree of peat decomposition in three temperate peatlands. Ecoscience. 2003;10:85–95.
    Google Scholar 

    50.
    Dedysh SN. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol. 2011;2:184.
    PubMed  PubMed Central  Google Scholar 

    51.
    Hattori S. Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ. 2008;23:118–27.
    PubMed  Google Scholar 

    52.
    Hines ME, Duddleson KN, Kiene RP. Carbon flow to acetate and C1 compounds in northern wetlands. Geophys Res Lett. 2001;28:4251–4.
    CAS  Google Scholar 

    53.
    Karakashev D, Batstone DJ, Trably E, Angelidaki I. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol. 2006;72:5138–41.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Cervantes FJ, van der Velde S, Lettinga G, Field JA. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol. 2000;34:161–71.
    CAS  PubMed  Google Scholar 

    55.
    Cervantes FJ, Gutierrez CH, Lopez KY, Estrada-Alvarado MI, Meza-Escalante AC, Texier AC, et al. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions. Biodegradation. 2008;19:235–46.
    CAS  PubMed  Google Scholar 

    56.
    Lokshina LY, Vavilin VA, Kettunen RH, Rintala JA, Holliger C, Nozhevnikova AN. Evaluation of kinetic coefficients using integrated monod and haldane models for low-temperature acetoclastic methanogenesis. Water Res. 2001;35:2913–22.
    CAS  PubMed  Google Scholar 

    57.
    Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN, Timmis KN, et al. Shift from acetoclastic to H2-dependent methanogenesis in a West Siberain peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol. 2007;73:2344–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Schmidt O, Hink L, Horn M, Drake H. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens. ISME J. 2016;10:1954–66.
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69:12–50.
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Starai VJ, Escalante-Semerena JC. Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci. 2004;61:2020–30.
    CAS  PubMed  Google Scholar 

    61.
    Pankratov TA, Dedysh SN, Zavarzin GA. The leading role of Actinobacteria in aerobic cellulose degradation in Sphagnum peat bogs. Dokl Biol Sci. 2006;410:428–30.
    CAS  PubMed  Google Scholar 

    62.
    Mannisto M, Ganzert L, Tjirola M, Haggblom MM, Stark S. Do shifts in life strategies explain microbial community responses to increasing nitrogen in tundra soil? Soil Biol Biochem. 2016;96:216–28.
    CAS  Google Scholar 

    63.
    Kang H, Kwon MJ, Kim S, Lee S, Jones TG, Johncock AC, et al. Biologically driven DOC release from peatlands during recovery from acidification. Nat Commun. 2018;9:3807.
    PubMed  PubMed Central  Google Scholar 

    64.
    Dedysh SN, Dunfield PF. Beijerinckiaceae. In: Whitman WB, editor. Bergey’s manual of systematics of archaea and bacteria. Hoboken, NJ: John Wiley & Sons, Inc.; 2016. p. 1–4. More

  • in

    Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms

    1.
    Newton HJ, Ang DK, van Driel IR, Hartland EL. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev. 2010;23:274–98.
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Hilbi H, Hoffmann C, Harrison CF. Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep. 2011;3:286–96.
    CAS  PubMed  Google Scholar 

    3.
    Fields BS. The molecular ecology of Legionella. Trends Microbiol. 1996;4:286–90.
    CAS  PubMed  Google Scholar 

    4.
    Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev. 2004;17:413–33.
    PubMed  PubMed Central  Google Scholar 

    5.
    Hoffmann C, Harrison CF, Hilbi H. The natural alternative: protozoa as cellular models for Legionella infection. Cell Microbiol. 2014;16:15–26.
    CAS  PubMed  Google Scholar 

    6.
    Boamah DK, Zhou G, Ensminger AW, O’Connor TJ. From many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella. Front Cell Infect Microbiol. 2017;7:477.
    PubMed  PubMed Central  Google Scholar 

    7.
    Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H. Acanthamoeba and Dictyostelium as cellular models for Legionella infection. Front Cell Infect Microbiol. 2018;8:61.
    PubMed  PubMed Central  Google Scholar 

    8.
    Sherwood RK, Roy CR. A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe. 2013;14:256–68.
    CAS  PubMed  Google Scholar 

    9.
    Asrat S, de Jesus DA, Hempstead AD, Ramabhadran V, Isberg RR. Bacterial pathogen manipulation of host membrane trafficking. Annu Rev Cell Dev Biol. 2014;30:79–109.
    CAS  PubMed  Google Scholar 

    10.
    Finsel I, Hilbi H. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell Microbiol. 2015;17:935–50.
    CAS  PubMed  Google Scholar 

    11.
    Qiu J, Luo ZQ. Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol. 2017;15:591–605.
    CAS  PubMed  Google Scholar 

    12.
    Personnic N, Bärlocher K, Finsel I, Hilbi H. Subversion of retrograde trafficking by translocated pathogen effectors. Trends Microbiol. 2016;24:450–62.
    CAS  PubMed  Google Scholar 

    13.
    Steiner B, Weber S, Hilbi H. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol. 2018;308:49–57.
    CAS  PubMed  Google Scholar 

    14.
    Declerck P. Biofilms: the environmental playground of Legionella pneumophila. Environ Microbiol. 2010;12:557–66.
    CAS  PubMed  Google Scholar 

    15.
    Abdel-Nour M, Duncan C, Low DE, Guyard C. Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci. 2013;14:21660–75.
    PubMed  PubMed Central  Google Scholar 

    16.
    Pécastaings S, Allombert J, Lajoie B, Doublet P, Roques C, Vianney A. New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling. Biofouling. 2016;32:935–48.
    PubMed  Google Scholar 

    17.
    Hochstrasser R, Hilbi H. Intra-species and inter-kingdom signaling of Legionella pneumophila. Front Microbiol. 2017;8:79.
    PubMed  PubMed Central  Google Scholar 

    18.
    Mampel J, Spirig T, Weber SS, Haagensen JAJ, Molin S, Hilbi H. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol. 2006;72:2885–95.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Hindré T, Brüggemann H, Buchrieser C, Héchard Y. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology. 2008;154:30–41.
    PubMed  Google Scholar 

    20.
    Pécastaings S, Berge M, Dubourg KM, Roques C. Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms. Biofouling. 2010;26:809–19.
    PubMed  Google Scholar 

    21.
    Wai SN, Mizunoe Y, Yoshida S. How Vibrio cholerae survive during starvation. FEMS Microbiol Lett. 1999;180:123–31.
    CAS  PubMed  Google Scholar 

    22.
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305:1622–5.
    CAS  PubMed  Google Scholar 

    23.
    Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016;354:aaf4268.
    PubMed  Google Scholar 

    24.
    Claudi B, Sprote P, Chirkova A, Personnic N, Zankl J, Schurmann N, et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell. 2014;158:722–33.
    CAS  PubMed  Google Scholar 

    25.
    Hélaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343:204–8.
    PubMed  PubMed Central  Google Scholar 

    26.
    Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol. 2016;1:16051.
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Personnic N, Striednig B, Lezan E, Manske C, Welin A, Schmidt A, et al. Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nat Commun. 2019;10:5216.
    PubMed  PubMed Central  Google Scholar 

    28.
    Molofsky AB, Swanson MS. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol. 2004;53:29–40.
    CAS  PubMed  Google Scholar 

    29.
    Hammer BK, Swanson MS. Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol. 1999;33:721–31.
    CAS  PubMed  Google Scholar 

    30.
    Dalebroux ZD, Yagi BF, Sahr T, Buchrieser C, Swanson MS. Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Mol Microbiol. 2010;76:200–19.
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Tiaden A, Spirig T, Hilbi H. Bacterial gene regulation by α-hydroxyketone signaling. Trends Microbiol. 2010;18:288–97.
    CAS  PubMed  Google Scholar 

    32.
    Personnic N, Striednig B, Hilbi H. Legionella quorum sensing and its role in pathogen-host interactions. Curr Opin Microbiol. 2018;41:29–35.
    CAS  PubMed  Google Scholar 

    33.
    Spirig T, Tiaden A, Kiefer P, Buchrieser C, Vorholt JA, Hilbi H. The Legionella autoinducer synthase LqsA produces an α-hydroxyketone signaling molecule. J Biol Chem. 2008;283:18113–23.
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Tiaden A, Spirig T, Sahr T, Wälti MA, Boucke K, Buchrieser C, et al. The autoinducer synthase LqsA and putative sensor kinase LqsS regulate phagocyte interactions, extracellular filaments and a genomic island of Legionella pneumophila. Environ Microbiol. 2010;12:1243–59.
    CAS  PubMed  Google Scholar 

    35.
    Kessler A, Schell U, Sahr T, Tiaden A, Harrison C, Buchrieser C, et al. The Legionella pneumophila orphan sensor kinase LqsT regulates competence and pathogen-host interactions as a component of the LAI-1 circuit. Environ Microbiol. 2013;15:646–62.
    CAS  PubMed  Google Scholar 

    36.
    Tiaden A, Spirig T, Weber SS, Brüggemann H, Bosshard R, Buchrieser C, et al. The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol. 2007;9:2903–20.
    CAS  PubMed  Google Scholar 

    37.
    Tiaden A, Spirig T, Carranza P, Brüggemann H, Riedel K, Eberl L, et al. Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol. 2008;190:7532–47.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Schell U, Simon S, Sahr T, Hager D, Albers MF, Kessler A, et al. The α-hydroxyketone LAI-1 regulates motility, Lqs-dependent phosphorylation signalling and gene expression of Legionella pneumophila. Mol Microbiol. 2016;99:778–93.
    CAS  PubMed  Google Scholar 

    39.
    Hochstrasser R, Hutter CAJ, Arnold FM, Bärlocher K, Seeger MA, Hilbi H. The structure of the Legionella response regulator LqsR reveals amino acids critical for phosphorylation and dimerization. Mol Microbiol. 2020;113:1070–84.
    CAS  PubMed  Google Scholar 

    40.
    Hochstrasser R, Kessler A, Sahr T, Simon S, Schell U, Gomez-Valero L, et al. The pleiotropic Legionella transcription factor LvbR links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and virulence. Environ Microbiol. 2019;21:1035–53.
    CAS  PubMed  Google Scholar 

    41.
    Hochstrasser R, Hilbi H. Legionella quorum sensing meets cyclic-di-GMP signaling. Curr Opin Microbiol. 2020;55:9–16.
    CAS  PubMed  Google Scholar 

    42.
    Simon S, Schell U, Heuer N, Hager D, Albers MF, Matthias J, et al. Inter-kingdom signaling by the Legionella quorum sensing molecule LAI-1 modulates cell migration through an IQGAP1-Cdc42-ARHGEF9-dependent pathway. PLoS Pathog. 2015;11:e1005307.
    PubMed  PubMed Central  Google Scholar 

    43.
    Faucher SP, Friedlander G, Livny J, Margalit H, Shuman HA. Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci USA. 2010;107:7533–8.
    CAS  PubMed  Google Scholar 

    44.
    Faucher SP, Shuman HA. Small regulatory RNA and Legionella pneumophila. Front Microbiol. 2011;2:98.
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Balaban NQ, Hélaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17:441–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–30.
    CAS  PubMed  Google Scholar 

    47.
    Personnic N, Striednig B, Hilbi H. Single cell analysis of Legionella and Legionella-infected Acanthamoeba by agarose embedment. Methods Mol Biol. 2019;1921:191–204.
    CAS  PubMed  Google Scholar 

    48.
    Byrne B, Swanson MS. Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun. 1998;66:3029–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5:48–56.
    CAS  PubMed  Google Scholar 

    50.
    Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol. 2008;322:107–31.
    CAS  PubMed  Google Scholar 

    51.
    Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41:276–301.
    CAS  PubMed  Google Scholar 

    52.
    Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. Structural and proteomic changes in viable but non-culturable Vibrio cholerae. Front Microbiol. 2019;10:793.
    PubMed  PubMed Central  Google Scholar 

    53.
    Defraine V, Fauvart M, Michiels J. Fighting bacterial persistence: current and emerging anti-persister strategies and therapeutics. Drug Resist Updates. 2018;38:12–26.
    Google Scholar 

    54.
    Wu B, Liang W, Kan B. Growth phase, oxygen, temperature, and starvation affect the development of viable but non-culturable state of Vibrio cholerae. Front Microbiol. 2016;7:404.
    PubMed  PubMed Central  Google Scholar 

    55.
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.
    CAS  PubMed  Google Scholar 

    56.
    Epstein SS. Microbial awakenings. Nature 2009;457:1083.
    CAS  PubMed  Google Scholar 

    57.
    Sturm A, Dworkin J. Phenotypic diversity as a mechanism to exit cellular dormancy. Curr Biol. 2015;25:2272–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Carlson HK, Vance RE, Marletta MA. H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol Microbiol. 2010;77:930–42.
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F. RNA thermometers in bacterial pathogens. Microbiol Spectr. 2018;6.

    60.
    Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P, Kajava AV, et al. “Fluorescent timer”: protein that changes color with time. Science. 2000;290:1585–8.
    CAS  PubMed  Google Scholar  More

  • in

    Rain-induced bioecological resuspension of radiocaesium in a polluted forest in Japan

    1.
    Heo, K. J., Kim, H. B. & Lee, B. U. Concentration of environmental fungal and bacterial bioaerosols during the monsoon season. J. Aerosol. Sci. 77, 31–37. https://doi.org/10.1016/j.jaerosci.2014.07.001 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Huffman, J. A. et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13, 6151–6164. https://doi.org/10.5194/acp-13-6151-2013 (2013).
    ADS  CAS  Article  Google Scholar 

    3.
    Joung, Y. S. & Buie, C. R. Aerosol generation by raindrop impact on soil. Nat. Commun. 6, 6083. https://doi.org/10.1038/ncomms7083 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Prenni, A. J. et al. The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys. Res. Lett. 40, 227–231. https://doi.org/10.1029/2012gl053953 (2013).
    ADS  CAS  Article  Google Scholar 

    5.
    Schumacher, C. J. et al. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado. Atmos. Chem. Phys. 13, 11987–12001. https://doi.org/10.5194/acp-13-11987-2013 (2013).
    ADS  CAS  Article  Google Scholar 

    6.
    Yue, S. et al. Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Sci. Rep. 6, 29618. https://doi.org/10.1038/srep29618 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Joung, Y. S., Ge, Z. & Buie, C. R. Bioaerosol generation by raindrops on soil. Nat. Commun. 8, 14668. https://doi.org/10.1038/ncomms14668 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Wang, B. et al. Airborne soil organic particles generated by precipitation. Nat. Geosci. 9, 433–437. https://doi.org/10.1038/ngeo2705 (2016).
    ADS  CAS  Article  Google Scholar 

    9.
    Bear, I. J. & Thomas, R. G. Nature of argillaceous odour. Nature 201, 993–1000. https://doi.org/10.1038/201993a0 (1964).
    ADS  CAS  Article  Google Scholar 

    10.
    Gerber, N. N. Geosmin an earthy-smelling substance isolated from actinomycetes. Biotechnol. Bioeng. 9, 321–330. https://doi.org/10.1002/bit.260090305 (1967).
    CAS  Article  Google Scholar 

    11.
    Gilet, T. & Bourouiba, L. Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Comp. Biol. 54, 974–984. https://doi.org/10.1093/icb/icu116 (2014).
    CAS  Article  PubMed  Google Scholar 

    12.
    China, S. et al. Rupturing of biological spores as a source of secondary particles in Amazonia. Environ. Sci. Technol. 50, 12179–12186. https://doi.org/10.1021/acs.est.6b02896 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Igarashi, Y. et al. Fungal spore involvement in the resuspension of radiocaesium in summer. Sci. Rep. 9, 1954. https://doi.org/10.1038/s41598-018-37698-x (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Kinase, T. et al. The seasonal variations of atmospheric 134,137Cs activity and possible host particles for their resuspension in the contaminated areas of Tsushima and Yamakiya, Fukushima, Japan. Progr. Earth Planet. Sci. 5, 12. https://doi.org/10.1186/s40645-018-0171-z (2018).
    Article  Google Scholar 

    15.
    Holt, M., Campbell, R. J. & Nikitin, M. B. Fukushima Nuclear Disaster. (Library of Congress, Congressional Research Service, 2012)

    16.
    Ishizuka, M. et al. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface. J. Environ. Radioact. 166, 436–448. https://doi.org/10.1016/j.jenvrad.2015.12.023 (2017).
    CAS  Article  PubMed  Google Scholar 

    17.
    Igarashi, Y., Kajino, M., Zaizen, Y., Adachi, K. & Mikami, M. Atmospheric radioactivity over Tsukuba, Japan: A summary of three years of observations after the FDNPP accident. Progr. Earth Planet. Sci. 2, 44. https://doi.org/10.1186/s40645-015-0066-1 (2015).
    Article  Google Scholar 

    18.
    Hirose, K. Temporal variation of monthly 137Cs deposition observed in Japan: Effects of the Fukushima Daiichi nuclear power plant accident. Appl. Radiat. Isot. 81, 325–329. https://doi.org/10.1016/j.apradiso.2013.03.076 (2013).
    CAS  Article  PubMed  Google Scholar 

    19.
    Igarashi, Y. Anthropogenic radioactivity in aerosol—a review focusing on studies during the 2000s. Jpn. J. Health Phys. 44, 313–323. https://doi.org/10.5453/jhps.44.313 (2009).
    CAS  Article  Google Scholar 

    20.
    Kajino, M. et al. Long-term assessment of airborne radiocesium after the Fukushima nuclear accident: Re-suspension from bare soil and forest ecosystems. Atmos. Chem. Phys. 16, 13149–13172. https://doi.org/10.5194/acp-16-13149-2016 (2016).
    ADS  CAS  Article  Google Scholar 

    21.
    Garger, E. K., Kuzmenko, Y. I., Sickinger, S. & Tschiersch, J. Prediction of the 137Cs activity concentration in the atmospheric surface layer of the Chernobyl exclusion zone. J. Environ. Radioact. 110, 53–58. https://doi.org/10.1016/j.jenvrad.2012.01.017 (2012).
    CAS  Article  PubMed  Google Scholar 

    22.
    Evangeliou, N. et al. Resuspension and atmospheric transport of radionuclides due to wildfires near the chernobyl nuclear power plant in 2015: An impact assessment. Sci. Rep. 6, 26062. https://doi.org/10.1038/srep26062 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Yoschenko, V. I. et al. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part I. Fire experiments. J. Environ. Radioact. 86, 143–163. https://doi.org/10.1016/j.jenvrad.2005.08.003 (2006).
    CAS  Article  PubMed  Google Scholar 

    24.
    Kinase, S., Kimura, M. & Hato, S. in International Symposium on Environmental monitoring and dose estimation of residents after accident of TEPCO’s Fukushima Daiichi Nuclear Power Stations.

    25.
    Bunzl, K., Hotzl, H. & Winkler, R. Spruce pollen as a source of increased radiocesium concentrations in air. Naturwissenschaften 80, 173–174. https://doi.org/10.1007/bf01226376 (1993).
    ADS  CAS  Article  PubMed  Google Scholar 

    26.
    Teherani, D. K. Accumulation of 103Ru, 137Cs and 134Cs in fruitbodies of various mushrooms from Austria after the chernobyl incident. J. Radioanal. Nucl. Chem. 117, 69–74. https://doi.org/10.1007/BF02165314 (1987).
    CAS  Article  Google Scholar 

    27.
    Yoshida, S. & Muramatsu, Y. Concentrations of radiocesium and potassium in Japanese mushrooms. Environ. Sci. 7, 63–70. https://doi.org/10.11353/sesj1988.7.63 (1994).
    Article  Google Scholar 

    28.
    Duff, M. C. & Ramsey, M. L. Accumulation of radiocesium by mushrooms in the environment: A literature review. J. Environ. Radioact. 99, 912–932. https://doi.org/10.1016/j.jenvrad.2007.11.017 (2008).
    CAS  Article  PubMed  Google Scholar 

    29.
    Sesartić, A. & Dallafior, T. N. Global fungal spore emissions, review and synthesis of literature data. Biogeosciences (Online) 8, 1181–1192. https://doi.org/10.5194/bg-8-1181-2011 (2011).
    ADS  Article  Google Scholar 

    30.
    Fröhlich-Nowoisky, J. et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376. https://doi.org/10.1016/j.atmosres.2016.07.018 (2016).
    CAS  Article  Google Scholar 

    31.
    Yamaguchi, T. et al. Autoradiography of the fruiting body and spore print of wood-cultivated shiitake mushroom (Lentinula Edodes) from a restricted habitation area. Mushroom Sci. Biotechnol. 23, 125–129 (2015).
    Google Scholar 

    32.
    Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).
    CAS  Article  Google Scholar 

    33.
    Zhang, P. et al. Effect of litter quality on its decomposition in broadleaf and coniferous forest. Eur. J. Soil Biol. 44, 392–399. https://doi.org/10.1016/j.ejsobi.2008.04.005 (2008).
    Article  Google Scholar 

    34.
    NARO. National Agriculture and Food Research Organization, llustrated Encyclopedia of Forage Crop Disease,

    35.
    Almaguer, M., Aira, M. J., Rodriguez-Rajo, F. J., Fernandez-Gonzalez, M. & Rojas-Flores, T. I. Thirty-four identifiable airborne fungal spores in Havana, Cuba. Ann. Agric. Environ. Med. 22, 215–220. https://doi.org/10.5604/12321966.1152068 (2015).
    Article  PubMed  Google Scholar 

    36.
    Kumar, A. & Attri, A. K. Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region. Atmos. Environ. 142, 182–193. https://doi.org/10.1016/j.atmosenv.2016.07.049 (2016).
    ADS  CAS  Article  Google Scholar 

    37.
    Guarín, F. A., Abril, M. A. Q., Alvarez, A. & Fonnegra, R. Atmospheric pollen and spore content in the urban area of the city of Medellin, Colombia. Hoehnea 42, 9–19 (2015).
    Article  Google Scholar 

    38.
    Fitt, B. D. L., Mccartney, H. A. & Walklate, P. J. The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27, 241–270. https://doi.org/10.1146/annurev.py.27.090189.001325 (1989).
    Article  Google Scholar 

    39.
    Gilet, T. & Bourouiba, L. Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12, 20141092. https://doi.org/10.1098/rsif.2014.1092 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Gregory, P. H., Guthrie, E. J. & Bunce, M. E. Experiments on splash dispersal of fungus spores. J. Gen. Microbiol. 20, 328–354. https://doi.org/10.1099/00221287-20-2-328 (1959).
    CAS  Article  PubMed  Google Scholar 

    41.
    Bauer, H. et al. Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos. Environ. 42, 588–593. https://doi.org/10.1016/j.atmosenv.2007.10.013 (2008).
    ADS  CAS  Article  Google Scholar 

    42.
    Lau, A. P. S., Lee, A. K. Y., Chan, C. K. & Fang, M. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmos. Environ. 40, 249–259. https://doi.org/10.1016/j.atmosenv.2005.09.048 (2006).
    ADS  CAS  Article  Google Scholar 

    43.
    Pöhlker, C., Huffman, J. A. & Pöschl, U. Autofluorescence of atmospheric bioaerosols—fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 5, 37–71. https://doi.org/10.5194/amt-5-37-2012 (2012).
    CAS  Article  Google Scholar 

    44.
    Pöschl, U. et al. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329, 1513–1516. https://doi.org/10.1126/science.1191056 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Elbert, W., Taylor, P. E., Andreae, M. O. & Poschl, U. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7, 4569–4588. https://doi.org/10.5194/acp-7-4569-2007 (2007).
    ADS  CAS  Article  Google Scholar 

    46.
    Hassett, M. O., Fischer, M. W. & Money, N. P. Mushrooms as rainmakers: How spores act as nuclei for raindrops. PLoS ONE 10, e0140407. https://doi.org/10.1371/journal.pone.0140407 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Pringle, A., Patek, S. N., Fischer, M., Stolze, J. & Money, N. P. The captured launch of a ballistospore. Mycologia 97, 866–871. https://doi.org/10.3852/mycologia.97.4.866 (2005).
    Article  PubMed  Google Scholar 

    48.
    Turner, J. C. R. & Webster, J. Mass and momentum transfer on the small scale: how do mushrooms shed their spores?. Chem. Eng. Sci. 46, 1145–1149. https://doi.org/10.1016/0009-2509(91)85107-9 (1991).
    Article  Google Scholar 

    49.
    Hirst, J. M. & Stedman, O. J. Dry liberation of fungus spores by raindrops. J. Gen. Microbiol. 33, 335–344. https://doi.org/10.1099/00221287-33-2-335 (1963).
    CAS  Article  PubMed  Google Scholar 

    50.
    Huber, L., Madden, L. V. & Fitt, B. D. L. in The Epidemiology of Plant Diseases (ed D. Gareth Jones) Ch. Chapter 17, 348–370 (Springer Netherlands, Berlin, 1998).

    51.
    Kim, S., Park, H., Gruszewski, H. A., Schmale, D. G. 3rd. & Jung, S. Vortex-induced dispersal of a plant pathogen by raindrop impact. Proc. Natl. Acad. Sci. U.S.A. 116, 4917–4922. https://doi.org/10.1073/pnas.1820318116 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Levia, D. F., Hudson, S. A., Llorens, P. & Nanko, K. Throughfall drop size distributions: A review and prospectus for future research. Wiley Interdiscip. Rev.-Water 4, e1225. https://doi.org/10.1002/wat2.1225 (2017).
    Article  Google Scholar 

    53.
    Iida, S. I. et al. Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand. J. Hydrol. 548, 770–783. https://doi.org/10.1016/j.jhydrol.2017.03.009 (2017).
    ADS  Article  Google Scholar 

    54.
    Sun, X. C., Onda, Y., Kato, H., Gomi, T. & Liu, X. Y. Estimation of throughfall with changing stand structures for Japanese cypress and cedar plantations. For. Ecol. Manag. 402, 145–156. https://doi.org/10.1016/j.foreco.2017.07.036 (2017).
    Article  Google Scholar 

    55.
    Murakami, S. A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. J. Hydrol. 319, 72–82. https://doi.org/10.1016/j.jhydrol.2005.07.002 (2006).
    ADS  Article  Google Scholar 

    56.
    Murakami, S. Canopy interception and the effect of forest on rainfall increase. Water Sci. 56, 82–99. https://doi.org/10.20820/suirikagaku.56.1_82 (2012).
    Article  Google Scholar 

    57.
    Huffman, J. A., Treutlein, B. & Pöschl, U. Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmos. Chem. Phys. 10, 3215–3233. https://doi.org/10.5194/acp-10-3215-2010 (2010).
    ADS  CAS  Article  Google Scholar 

    58.
    Savage, N. J. et al. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10, 4279–4302. https://doi.org/10.5194/amt-10-4279-2017 (2017).
    Article  Google Scholar 

    59.
    Butterworth, J. & Mccartney, H. A. The dispersal of bacteria from leaf surfaces by water splash. J. Appl. Bacteriol. 71, 484–496. https://doi.org/10.1111/j.1365-2672.1991.tb03822.x (1991).
    Article  Google Scholar 

    60.
    Chatani, S., Matsunaga, S. N. & Nakatsuka, S. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmos. Environ. 120, 38–50. https://doi.org/10.1016/j.atmosenv.2015.08.086 (2015).
    ADS  CAS  Article  Google Scholar 

    61.
    Han, Y. M., Iwamoto, Y., Nakayama, T., Kawamura, K. & Mochida, M. Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. J. Geophys. Res.-Atmos. 119, 259–273. https://doi.org/10.1002/2013jd020390 (2014).
    ADS  CAS  Article  Google Scholar 

    62.
    Miyazaki, Y. et al. Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer. J. Geophys. Res.-Atmos. https://doi.org/10.1029/2012jd018250 (2012).
    Article  Google Scholar 

    63.
    Pringle, A. Asthma and the diversity of fungal spores in air. PLoS Pathog. 9, e1003371. https://doi.org/10.1371/journal.ppat.1003371 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    64.
    Tobo, Y. et al. Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. J. Geophys. Res.-Atmos. 118, 10100–10110. https://doi.org/10.1002/jgrd.50801 (2013).
    ADS  Article  Google Scholar 

    65.
    Iwata, A. et al. Release of highly active ice nucleating biological particles associated with rain. Atmosphere https://doi.org/10.3390/atmos10100605 (2019).
    Article  Google Scholar 

    66.
    Murray, B. J., O’Sullivan, D., Atkinson, J. D. & Webb, M. E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 41, 6519–6554. https://doi.org/10.1039/c2cs35200a (2012).
    CAS  Article  PubMed  Google Scholar 

    67.
    Homepage of High-Resolution Land Use and Land Cover Map Products. https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm.

    68.
    Torii, T. et al. Investigation of radionuclide distribution using aircraft for surrounding environmental survey from Fukushima Dai-ichi Nuclear Power Plant. JAEA-Technology–2012–036, 192 (2012).

    69.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    Lee, S. B. & Taylor, J. W. In PCR Protocols (eds Innis, M. A. et al.) 282–287 (Academic Press, New York, 1990).
    Google Scholar 

    71.
    White, T. J., Bruns, T., Lee, S. & Taylor, J. In PCR Protocols (eds Innis, M. A. et al.) 315–322 (Academic Press, New York, 1990).
    Google Scholar  More

  • in

    Investigation into the effect of divergent feed efficiency phenotype on the bovine rumen microbiota across diet and breed

    1.
    Mbow, H.-O.P., Reisinger, A., Canadell, J. & O’Brien, P. Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SR2) (IPCC, Ginevra, 2017).
    Google Scholar 
    2.
    Horowitz, C. A. Paris agreement. Int. Legal Mater. 55, 740–755 (2016).
    Google Scholar 

    3.
    Mbow, C. et al. Food security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).

    4.
    Finneran, E. et al. Simulation modelling of the cost of producing and utilising feeds for ruminants on Irish farms. J. Farm Manag. 14, 95–116 (2010).
    Google Scholar 

    5.
    Opio, C. et al. Greenhouse Gas Emissions from Ruminant Supply Chains–A Global Life Cycle Assessment 1–214 (Food and agriculture organization of the United Nations (FAO), Rome, 2013).
    Google Scholar 

    6.
    Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009 (2013).
    ADS  Google Scholar 

    7.
    Herd, R. & Arthur, P. Physiological basis for residual feed intake. J. Anim. Sci. 87, E64–E71 (2009).
    CAS  PubMed  Google Scholar 

    8.
    Kelly, A. et al. Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake. J. Anim. Sci. 88, 3214–3225 (2010).
    CAS  PubMed  Google Scholar 

    9.
    Fitzsimons, C., Kenny, D. & McGee, M. Visceral organ weights, digestion and carcass characteristics of beef bulls differing in residual feed intake offered a high concentrate diet. Animal 8, 949–959 (2014).
    CAS  PubMed  Google Scholar 

    10.
    Coyle, S., Fitzsimons, C., Kenny, D., Kelly, A. & McGee, M. Feed efficiency correlations in beef cattle offered zero-grazed grass and a high-concentrate diet. Adv. Anim. Biosci. 8, 121 (2017).
    Google Scholar 

    11.
    Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22 (2010).
    CAS  Google Scholar 

    12.
    Van Houtert, M. Challenging the rational for altering VFA ratios in growing ruminants. Feed Mix 4, 8–11 (1996).
    Google Scholar 

    13.
    Bannink, A. et al. Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim. Feed Sci. Technol. 143, 3–26 (2008).
    Google Scholar 

    14.
    Shabat, S. K. B. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Roehe, R. et al. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet. 12, e1005846 (2016).
    PubMed  PubMed Central  Google Scholar 

    16.
    Li, F. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83, e00061-e117 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Pickering, N. et al. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants. Animal 9, 1431–1440 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Tubiello, F. et al. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks (Statistics Division, Food and Agriculture Organization, Rome, 2014).
    Google Scholar 

    19.
    Nkrumah, J. D. et al. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 84, 145–153 (2006).
    CAS  PubMed  Google Scholar 

    20.
    Fitzsimons, C., Kenny, D., Deighton, M., Fahey, A. & McGee, M. Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake. J. Anim. Sci. 91, 5789–5800 (2013).
    CAS  PubMed  Google Scholar 

    21.
    Kenny, D., Fitzsimons, C., Waters, S. & McGee, M. Invited review: improving feed efficiency of beef cattle—the current state of the art and future challenges. Animal 12, 1815–1826 (2018).
    CAS  PubMed  Google Scholar 

    22.
    Coyle, S., Fitzsimons, C., Kenny, D., Kelly, A. & McGee, M. 1482 Repeatability of feed efficiency in steers offered a high-concentrate diet. J. Anim. Sci. 94, 719–719 (2016).
    Google Scholar 

    23.
    Coyle, S., Fitzsimons, C., Kenny, D., Kelly, A. & McGee, M. 1481 Repeatability of feed efficiency in beef cattle offered grass silage and zero-grazed grass. J. Anim. Sci. 94, 719–719 (2016).
    Google Scholar 

    24.
    Fitzsimons, C., McGee, M., Keogh, K., Waters, S. M. & Kenny, D. A. Molecular physiology of feed efficiency in beef cattle. In Biology of Domestic Animals (eds Scanes, C. G. & Hill, R. A.) 122–165 (CRC Press, Boca Raton, 2017).
    Google Scholar 

    25.
    Paz, H. A. et al. Rumen bacterial community structure impacts feed efficiency in beef cattle. J. Anim. Sci. 96, 1045–1058 (2018).
    PubMed  PubMed Central  Google Scholar 

    26.
    Carberry, C. A., Kenny, D. A., Han, S., McCabe, M. S. & Waters, S. M. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl. Environ. Microbiol. 78, 4949–4958 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Brockman, R. Glucose and short-chain fatty acid metabolism. In Quantitative Aspects of Ruminant Digestion and Metabolism (eds Dijkstra, J. et al.) 291–310 (CAB International, Wallingford, 2005).
    Google Scholar 

    28.
    Borrel, G. et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 11, 2059–2074 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    McDonnell, R. et al. Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets. J. Anim. Sci. 94, 1179–1193 (2016).
    CAS  PubMed  Google Scholar 

    30.
    Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Guan, L. L., Nkrumah, J. D., Basarab, J. A. & Moore, S. S. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiol. Lett. 288, 85–91 (2008).
    CAS  PubMed  Google Scholar 

    32.
    Myer, P. R., Smith, T. P., Wells, J. E., Kuehn, L. A. & Freetly, H. C. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 10, e0129174 (2015).
    PubMed  PubMed Central  Google Scholar 

    33.
    McGovern, E. et al. Characterisation of the rumen archaeal and bacterial populations in bulls offered a high concentrate diet phenotypically divergent for residual feed intake (in review).

    34.
    Hegarty, R., Goopy, J., Herd, R. & McCorkell, B. Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci. 85, 1479–1486 (2007).
    CAS  PubMed  Google Scholar 

    35.
    Carberry, C. A., Waters, S. M., Kenny, D. A. & Creevey, C. J. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl. Environ. Microbiol. 80, 586–594 (2014).
    PubMed  PubMed Central  Google Scholar 

    36.
    Martin, C., Morgavi, D. P. & Doreau, M. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351–365 (2009).
    Google Scholar 

    37.
    Nkamga, V. D. & Drancourt, M. Methanomassiliicoccus. Bergey’s Manual of Systematics of Archaea and Bacteria (Wiley, Hoboken, 2016).
    Google Scholar 

    38.
    McGovern, E. et al. Plane of nutrition affects the phylogenetic diversity and relative abundance of transcriptionally active methanogens in the bovine rumen. Sci. Rep. 7, 13047 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    39.
    Danielsson, R. et al. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol. 8, 226 (2017).
    PubMed  PubMed Central  Google Scholar 

    40.
    Shi, W. et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 24, 1517–1525 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Kittelmann, S. et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 8, e47879 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Leahy, S. C. et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE 5, e8926 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    43.
    Bonacker, L. G., Baudner, S., Mörschel, E., Böcher, R. & Thauer, R. K. Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 217, 587–595 (1993).
    CAS  PubMed  Google Scholar 

    44.
    Saleem, F. et al. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci. 95, 6606–6623 (2012).
    CAS  PubMed  Google Scholar 

    45.
    Ametaj, B. N. et al. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 6, 583–594 (2010).
    CAS  Google Scholar 

    46.
    Poulsen, M. et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4, 1428 (2013).
    ADS  PubMed  Google Scholar 

    47.
    Nakazawa, F. et al. Description of Mogibacterium pumilum gen. nov., sp. nov. and Mogibacterium vescum gen. nov., sp. nov., and reclassification of Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50 Pt 2, 679–688 (2000).
    CAS  PubMed  Google Scholar 

    48.
    Li, M., Zhou, M., Adamowicz, E., Basarab, J. A. & Guan, L. L. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis. Vet. Microbiol. 155, 72–80 (2012).
    CAS  PubMed  Google Scholar 

    49.
    Rius, A. G. et al. Nitrogen metabolism and rumen microbial enumeration in lactating cows with divergent residual feed intake fed high-digestibility pasture. J. Dairy Sci. 95, 5024–5034 (2012).
    CAS  PubMed  Google Scholar 

    50.
    Oki, K. et al. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol. 16, 284 (2016).
    PubMed  PubMed Central  Google Scholar 

    51.
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Richardson, E. C. et al. Body composition and implications for heat production of Angus steer progeny of parents selected for and against residual feed intake. Aust. J. Exp. Agric. 41, 1065–1072 (2001).
    Google Scholar 

    53.
    Li, F., Hitch, T. C. A., Chen, Y., Creevey, C. J. & Guan, L. L. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome 7, 6 (2019).
    PubMed  PubMed Central  Google Scholar 

    54.
    Yu, Z. & Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808–812 (2004).
    CAS  PubMed  Google Scholar 

    55.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    ADS  CAS  PubMed  Google Scholar 

    56.
    Bolyen, E. et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science (PeerJ Preprints, 2018).

    57.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639 (2017).
    PubMed  PubMed Central  Google Scholar 

    59.
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
    CAS  PubMed  Google Scholar 

    60.
    Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).
    Google Scholar 

    61.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    62.
    Mallick, H. et al. Multivariable association in population-scale meta’omic surveys (2019) (in submission). More

  • in

    Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages

    1.
    Fricke, R., Eschmeyer, W. N. & van der Laan, R. Eschmeyer’s catalog of fishes: genera, species, references (https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) (Electronic version accessed 01 December 2019) (2019).
    2.
    Crampton, W. G. R. in Historical biogeography of neotropical freshwater fishes (eds J. S. Albert & R. E. Reis) 165–189 (University of California Press, California, 2011).

    3.
    Dagosta, F. C. P. & de Pinna, M. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. N. Y. 1–163, 2019. https://doi.org/10.1206/0003-0090.431.1.1 (2019).
    Article  Google Scholar 

    4.
    Reis, R. E. et al. Fish biodiversity and conservation in South America. J. Fish Biol. 89, 12–47. https://doi.org/10.1111/jfb.13016 (2016).
    CAS  Article  PubMed  Google Scholar 

    5.
    Albert, J. S. & Reis, R. E. Historical Biogeography of Neotropical Freshwater Fishes (University of California Press, Berkeley, 2011).
    Google Scholar 

    6.
    Albert, J. S., Petry, P. & Reis, R. E. in Historical biogeography of neotropical freshwater fishes (eds J. S. Albert & R. E. Reis) 21–58 (University of California Press, California, 2011).

    7.
    Oberdorff, T. et al. Unexpected fish diversity gradients in the Amazon basin. Sci. Adv. 5, 8681. https://doi.org/10.1126/sciadv.aav8681 (2019).
    ADS  Article  Google Scholar 

    8.
    Fernandes, C. C., Podos, J. & Lundberg, J. G. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science 305, 1960–1962. https://doi.org/10.1126/science.1101240 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Craig, J. M. et al. Using community phylogenetics to assess phylogenetic structure in the Fitzcarrald region of Western Amazonia. Neotrop. Ichthyol. 18, 1–16. https://doi.org/10.1590/1982-0224-2020-0004 (2020).
    Article  Google Scholar 

    10.
    Willis, S. C., Winemiller, K. O. & Lopez-Fernandez, H. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142, 284–295. https://doi.org/10.1007/s00442-004-1723-z (2005).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Val, A. L. & Almeida-Val, V. M. F. Fishes of the Amazon and their Environment. Physiological and Biochemical Aspect (Springer, Berlin, 1995).
    Google Scholar 

    12.
    Van Nynatten, A. D. et al. To see or not to see: Molecular evolution of the rhodopsin visual pigment in neotropical electric fishes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 286, 20191182. https://doi.org/10.1098/rspb.2019.1182 (2019).
    CAS  Article  Google Scholar 

    13.
    Rodriguez, M. A. & Lewis, W. M. Regulation and stability in fish assemblages of neotropical floodplain lakes. Oecologia 99, 166–180. https://doi.org/10.1007/BF00317098 (1994).
    ADS  Article  PubMed  Google Scholar 

    14.
    Etienne, R. S. & Olff, H. Confronting different models of community structure to species-abundance data: A Bayesian model comparison. Ecol. Lett. 8, 493–504. https://doi.org/10.1111/j.1461-0248.2005.00745.x (2005).
    Article  PubMed  Google Scholar 

    15.
    Sioli, H. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin Vol. 56 Monographiae Biologicae (ed H. Sioli) 127–165 (Junk, 1984).

    16.
    Goulding, M., Carvalho, M. L. & Ferreira, E. G. Rio Negro, rich life in poor water: Amazonian diversity and foodchain ecology as seen through fish communities. (SPB Academic Publishing, 1988).

    17.
    Junk, W. J. et al. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31, 623–640. https://doi.org/10.1007/s13157-011-0190-7 (2011).
    Article  Google Scholar 

    18.
    Ríos-Villamizar, E. A., Piedade, M. T. F., Da Costa, J. G., Adeney, J. M. & Junk, W. J. Chemistry of different Amazonian water types for river classification: a preliminary review. Water Soc 2(178), 17–28. https://doi.org/10.2495/13WS0021 (2014).
    Article  Google Scholar 

    19.
    Gibbs, R. J. Water chemistry of the Amazon river. Geochim. Cosmochim. Acta 36, 1061–1066. https://doi.org/10.1016/0016-7037(72)90021-X (1972).
    ADS  CAS  Article  Google Scholar 

    20.
    Dustan, P. Terrestrial limitation of Amazon river productivity: why the Amazon River is not green. Evol. Ecol. Res. 11, 421–432 (2009).
    Google Scholar 

    21.
    Furch, K. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (ed H. Sioli) 168–199 (Dr W. Junk, 1984).

    22.
    Junk, W. J. & Furch, K. in Amazonia (eds G.T. Prance & T.E. Lovejoy) 3–17 (Pergamon/IUCN, 1985).

    23.
    Devol, A. H. & Hedges, J. I. in The biogeochemistry of the Amazon basin (eds M. E. McClain, R. L. Victoria, & J. E. Richey) 275–306 (Oxford University Press, 2001).

    24.
    Seyler, P. T. & Boaventura, G. R. in The biogeochemistry of the Amazon basin (eds M. E. McClain, R. L. Victoria, & J. E. Richey) 307–327 (Oxford University Press, 2001).

    25.
    Wallace, A. R. A narrative of travels on the Amazon and Rio Negro, with an account of the native tribes, and observations on the climate, geology and natural history of the Amazon valley. (Reeve and Co., 1853).

    26.
    Sioli, H. The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (Junk, Dordrecht, 1984).
    Google Scholar 

    27.
    Melack, J. M. & Forsberg, B. R. in The biogeochemistry of the Amazon basin (eds M.E. McClain, R. L. Victoria, & J. E. Richey) 235–274 (Oxford University Press, 2001).

    28.
    Melack, J. M. & Hess, L. L. in Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management (eds W. J. Junk et al.) 43–59 (Springer, 2010).

    29.
    Galacatos, K., Stewart, D. J. & Ibarra, M. Fish community patterns of lagoons and associated tributaries in the Ecuadorian Amazon. Copeia 2, 875–894 (1996).
    Article  Google Scholar 

    30.
    Henderson, P. A. & Crampton, W. G. R. A comparison of fish diversity and abundance between nutrient-rich and nutrient-poor lakes in the Upper Amazon. J. Trop. Ecol. 13, 175–198. https://doi.org/10.1017/S0266467400010403 (1997).
    Article  Google Scholar 

    31.
    Saint-Paul, U. et al. Fish communities in central Amazonian white- and blackwater floodplains. Environ. Biol. Fishes 57, 235–250. https://doi.org/10.1023/A:1007699130333 (2000).
    Article  Google Scholar 

    32.
    Winemiller, K. O., Lopez-Fernandez, H., Taphorn, D. C., Nico, L. G. & Duque, A. B. Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basins. J. Biogeogr. 35, 1551–1563. https://doi.org/10.1111/j.1365-2699.2008.01917.x (2008).
    Article  Google Scholar 

    33.
    Fisher, T. R. Plankton and primary production in aquatic systems of the Central Amazon basin. Comp. Biochem. Physiol. 62A, 31–38. https://doi.org/10.1016/0300-9629(79)90739-4 (1979).
    Article  Google Scholar 

    34.
    Fittkau, E. J., Irmler, U., Junk, W. J., Reiss, F. & Schimdt, G. W. in Tropical ecological systems: trends in terrestrial and aquatic research (eds F.B. Golley & E. Medina) 284–311 (Springer, Berlin, 1975).

    35.
    Putz, R. & Junk, W. J. in The central Amazon floodplain: ecology of a pulsing system (ed W. J. Junk) 147–181 (Springer, Berlin, 1997).

    36.
    Rai, H. & Hill, G. E. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (ed H. Sioli) 311–335 (Dr. W. Junk Publishers, 1984).

    37.
    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters II. The limnology of a tropical floodplain lake in Central Amazonia (Lago do Castanho). Amazoniana 4, 139–203 (1973).
    Google Scholar 

    38.
    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters III. Primary productivity of phytoplankton in a tropical floodplain lake of Central Amazonia, Lago do Castanho, Amazonas, Brazil. Amazoniana 4, 379–404 (1973).
    Google Scholar 

    39.
    Schmidt, G. W. Studies on the primary productivity of phytoplankton in the three types of Amazonian waters I. Introduction. Amazoniana 4, 135–138 (1973).
    Google Scholar 

    40.
    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters. IV. On the primary productivity of phytoplankton in a bay of the lower Rio Negro (Amazonas, Brazil). Amazoniana 5, 517–528 (1976).
    Google Scholar 

    41.
    Putz, R. Periphyton communities in Amazonian black- and whitewater habitats: Community structure, biomass and productivity. Aquat. Sci. 59, 74–93 (1997).
    Article  Google Scholar 

    42.
    Moreira-Turcq, P., Seyler, P., Guyot, J. L. & Etcheber, H. Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol. Process. 17, 1329–1344. https://doi.org/10.1002/hyp.1287 (2003).
    ADS  Article  Google Scholar 

    43.
    Wissmar, R. C., Richey, J. E., Stallard, R. F. & Edmond, J. M. Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floodplain waters, Peru-Brazil, May–June 1977. Ecology 62, 1622–1633. https://doi.org/10.2307/1941517 (1981).
    CAS  Article  Google Scholar 

    44.
    Costa, M. P. F., Novo, E. M. L. M. & Telmer, K. H. Spatial and temporal variability of light attenuation in large rivers of the Amazon. Hydrobiologia 702, 171–190. https://doi.org/10.1007/s10750-012-1319-2 (2013).
    CAS  Article  Google Scholar 

    45.
    Engle, D. L., Melack, J. M., Doyle, R. D. & Fisher, T. R. High rates of net primary production and turnover of floating grasses on the Amazon floodplain: Implications for aquatic respiration and regional CO2 flux. Glob. Change Biol. 14, 369–381. https://doi.org/10.1111/j.1365-2486.2007.01481.x (2008).
    ADS  Article  Google Scholar 

    46.
    Junk, W. J. Investigations on the ecology and production-biology of the “floating meadows” (Paspalo-Echinochloetum) on the middle Amazon Part I: The floating vegetation and its ecology. Amazoniana 2, 449–495 (1970).
    Google Scholar 

    47.
    Junk, W. J. & Piedade, M. T. F. in The Central Amazon floodplain. Ecological Studies (ed W. J. Junk) 147–185 (Springer, Berlin, 1997).

    48.
    Junk, W. J. & Piedade, M. T. F. in Amazonian floodplain forests: Ecophysiology, biodiversity and sutainable management (eds W. J. Junk et al.) 3–25 (Springer, Berlin, 2010).

    49.
    Engle, D. L. & Melack, J. M. Floating meadow epiphyton—biological and chemical features of epiphytic material in an Amazon floodplain lake. Freshwat. Biol. 22, 479–494. https://doi.org/10.1111/j.1365-2427.1989.tb01120.x (1989).
    Article  Google Scholar 

    50.
    Piedade, M. T. F., Junk, W., D’Ângelo, S. A., Wittmann, F. & Schöngart, J. Aquatic herbaceous plants of the Amazon floodplains: State of the art and research needed. Acta Limnol. Brasil. 22, 165–178. https://doi.org/10.4322/actalb.02202006 (2010).
    Article  Google Scholar 

    51.
    Goulding, M. The fishes and the forest (University of California Press, California, 1980).
    Google Scholar 

    52.
    Worbes, M. in The Central Amazon floodplain. Ecological Studies (ed W. J. Junk) 223–260 (Springer, Berlin, 1997).

    53.
    Adis, J., Erwin, T. L., Battirola, L. D. & Ketelhut, S. in Amazonian floodplain forests: Ecophysiology, biodiversity and sutainable management (eds W. J. Junk et al.) 313–325 (Springer, Berlin, 2010).

    54.
    Prance, G. T. Notes on the vegetation of Amazonia. III. The terminology of Amazonian forest types subject to inundation. Brittonia 31, 26–38. https://doi.org/10.2307/2806669 (1979).
    Article  Google Scholar 

    55.
    Junk, W. J. & Piedade, M. T. F. Biomass and primary-production of herbaceous plant communities in the Amazon floodplain. Hydrobiology 263, 155–162. https://doi.org/10.1007/BF00006266 (1993).
    Article  Google Scholar 

    56.
    Junk, W. J., Wittmann, F., Schöngart, J. & Piedade, M. T. F. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol. Manag. 23, 677–693. https://doi.org/10.1007/s11273-015-9412-8 (2015).
    CAS  Article  Google Scholar 

    57.
    Junk, W. J., Teresa, T., Piedade, F., Schöngart, J. & Wittmann, F. A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetlands Ecol. Manag. 20, 461–475. https://doi.org/10.1007/s11273-012-9268-0 (2012).
    Article  Google Scholar 

    58.
    Rosenzweig, M. L. Species diversity in space and time (Cambridge University Press, Cambridge, 1995).
    Google Scholar 

    59.
    Evans, K. L., Warren, P. H. & Gaston, K. J. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biol. Rev. 79, 1–25. https://doi.org/10.1017/S1464793104006517 (2005).
    Article  Google Scholar 

    60.
    Fraser, R. H. & Currie, D. J. The species richness-energy hypothesis in a system where historical factors are thought to prevail: Coral reefs. Am. Nat. 148, 138–159. https://doi.org/10.1086/285915 (1996).
    Article  Google Scholar 

    61.
    Kramer, D. L., Lindsey, C. C., Moodie, G. E. E. & Stevens, E. D. The fishes and the aquatic environment of the Central Amazonian basin, with particular reference to respiratory patterns. Can. J. Zool. 56, 717–729. https://doi.org/10.1139/z78-101 (1978).
    Article  Google Scholar 

    62.
    Crampton, W. G. R. Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. J. Fish Biol. 53, 307–330. https://doi.org/10.1111/j.1095-8649.1998.tb01034.x (1998).
    Article  Google Scholar 

    63.
    Gonzalez, R. J., Wilson, R. W., Wood, C. M., Patrick, M. L. & Val, A. L. Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiol. Biochem. Zool. 75, 37–42. https://doi.org/10.1086/339216 (2002).
    CAS  Article  PubMed  Google Scholar 

    64.
    Gonzalez, R. J., Wilson, R. W. & Wood, C. M. in The Physiology of Tropical Fishes (eds A. L. Val, V.M.F. Almeida-Val, & D.J. Randall) 397–442 (Academic Press, 2006).

    65.
    Van Nynatten, A. D., Bloom, D. D., Chang, B. S. W. & Lovejoy, N. R. Out of the blue: Adaptive visual pigment evolution accompanies Amazon invasion. Biol. Lett. 11, 20150349. https://doi.org/10.1098/rsbl.2015.0349 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Crampton, W. G. R. Electroreception, electrogenesis and signal evolution. J. Fish Biol. 95, 92–134. https://doi.org/10.1111/jfb.13922 (2019).
    Article  PubMed  Google Scholar 

    67.
    Cooke, G. M., Landguth, E. L. & Beheregaray, L. B. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone. Evolution 87, 1–14. https://doi.org/10.1111/evo.12410 (2014).
    Article  Google Scholar 

    68.
    Gonzalez, R. J. et al. Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon. Physiol. Zool. 71, 15–22. https://doi.org/10.1086/515893 (1998).
    CAS  Article  PubMed  Google Scholar 

    69.
    Duncan, W. P., Costa, O. T. F. & Fernandes, M. N. Ionic regulation and Na+–K+-ATPase activity in gills and kidney of the freshwater stingray Paratrygon aiereba living in white and blackwaters in the Amazon Basin. J. Fish Biol. 74, 956–960. https://doi.org/10.1111/j.1095-8649.2008.02156.x (2009).
    CAS  Article  PubMed  Google Scholar 

    70.
    Correa, S. B., Crampton, W. G. R., Chapman, L. J. & Albert, J. S. A comparison of flooded forest and floating meadow fish assemblages in an upper Amazon floodplain. J. Fish Biol. 72, 629–644. https://doi.org/10.1111/j.1095-8649.2007.01752.x (2008).
    Article  Google Scholar 

    71.
    Fernandes, C. C. Lateral migration of fishes in Amazon floodplains. Ecol. Freshwat. Fish 6, 36–44. https://doi.org/10.1111/j.1600-0633.1997.tb00140.x (1997).
    Article  Google Scholar 

    72.
    Sánchez-Botero, J. I. & Araujo-Lima, C. A. R. M. As macrófitas aquáticas como bercário para a ictiofauna da várzea do Rio Amazonas. Acta Amazon. 31, 437–447. https://doi.org/10.1590/1809-43922001313447 (2001).
    Article  Google Scholar 

    73.
    Emmons, L. H. Geographic varition in densities and diversities of non-flying mammals in Amazonia. Biotropica 16, 210–222. https://doi.org/10.2307/2388054 (1984).
    Article  Google Scholar 

    74.
    Pomara, L. Y., Ruokolainen, K., Tuomisto, H. & Young, K. R. Avian composition co-varies with floristic composition and soil nutrient concentration in Amazonian upland forests. Biotropica 44, 545–553. https://doi.org/10.1111/j.1744-7429.2011.00851.x (2012).
    Article  Google Scholar 

    75.
    Crampton, W. G. R. in Fish life in special environments (eds P. Sebert, D. W. Onyango, & B. G. Kapoor) 283–339 (Science Publishers, 2007).

    76.
    Duarte, C., Magurran, A. E., Zuanon, J. & Deus, C. P. Trophic ecology of benthic fish assemblages in a lowland river in the Brazilian Amazon. Aquat. Ecol. 53, 707–718. https://doi.org/10.1007/s10452-019-09720-5 (2019).
    CAS  Article  Google Scholar 

    77.
    Hugueny, B., Oberdorff, T. & Tedesco, P. A. Community ecology of river fishes: a large-scale perspective. Am. Fish. Soc. Symp. 73, 29–62 (2010).
    Google Scholar 

    78.
    Guégan, J. F., Lek, S. & Oberdorff, T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384. https://doi.org/10.1038/34899 (1998).
    ADS  Article  Google Scholar 

    79.
    Dodson, S. I., Arnott, S. E. & Cottingham, K. L. The relationship in lake communities between primary productivity and species richness. Ecology 81, 2662–2679. https://doi.org/10.1890/0012-9658(2000) (2000).
    Article  Google Scholar 

    80.
    Kay, R. F., Madden, R. H., Van Schaik, C. P. & Higdon, D. Primate species richness is determined by plant productivity: Implications for conservation. Proc. Natl. Acad. Sci. U.S.A. 94, 13023–13027. https://doi.org/10.1073/pnas.94.24.13023 (1997).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Pires, J. M. & Prance, G. T. in Amazonia (eds G.T. Prance & T.E. Lovejoy) 109–145 (Pergamom, 1985).

    82.
    Correa, S. B. & Winemiller, K. O. Terrestrial-aquatic trophic linkages support fish production in a tropical oligotrophic river. Oecologia 186, 1069–1078. https://doi.org/10.1007/s00442-018-4093-7 (2018).
    ADS  Article  PubMed  Google Scholar 

    83.
    Araujo-Lima, C. A. R. M., Forsberg, B., Victoria, R. & Martinelli, L. Energy sources for detritivorous fishes in the Amazon. Science 234, 1256–1258. https://doi.org/10.1126/science.234.4781.1256 (1986).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Duncan, W. P. & Fernandes, M. N. Physicochemical characterization of the white, black, and clearwater rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (Chondrichthyes, Potamotrygonidae). Pan-Am. J. Aquat. Sci. 5, 454–464 (2010).
    Google Scholar 

    85.
    Wootton, T. J. & Power, M. E. Productivity, consumers, and the structure of a river food chain. Proc. Natl. Acad. Sci. USA 90, 1384–1387. https://doi.org/10.1073/pnas.90.4.1384 (1993).
    ADS  CAS  Article  PubMed  Google Scholar 

    86.
    Prepas, E. E. Total dissolved solids as a predictor of lake biomass and productivity. Can. J. Fish. Aquat. Sci. 40, 92–95. https://doi.org/10.1139/f83-015 (1983).
    Article  Google Scholar 

    87.
    Nixon, S. W. Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanol. Acta 2, 357–371 (1982).
    Google Scholar 

    88.
    Arbeláez, F., Duivenvoorden, J. F. & Maldonado-Ocampo, J. A. Geological differentiation explains diversity and composition of fish communities in upland streams in the southern Amazon of Colombia. J. Trop. Ecol. 24, 505–515. https://doi.org/10.1017/S0266467408005294 (2008).
    Article  Google Scholar 

    89.
    Pereira, M. J. R. et al. Structuring of Amazonian bat assemblages: the roles of flooding patterns and floodwater nutrient load. J. Anim. Ecol. 78, 1163–1171. https://doi.org/10.1111/j.1365-2656.2009.01591.x (2009).
    Article  PubMed  Google Scholar 

    90.
    Smith, N. J. H. A pesca no Rio Amazonas. (Instituto Nacional de Pesquisas da Amazônia, 1979).

    91.
    Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229. https://doi.org/10.1111/conl.12008 (2013).
    Article  Google Scholar 

    92.
    van der Sleen, P. & Albert, J. S. Field guide to the fishes of the Amazon, Orinoco, and Guianas (Princeton University Press, Princeton, 2017).
    Google Scholar 

    93.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2019).

    94.
    Oksanen, J. et al. The Vegan Package. Commun. Ecol. Pack. 10, 631–637 (2019).
    Google Scholar 

    95.
    Ripley, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. MASS: Functions and datasets to support Venables and Ripley, “Modern Applied Statistics with S” (4th Edition, 2002). (CRAN, 2017).

    96.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    97.
    Lenth, R. V., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package emmeans: Estimated marginal means, aka least-squares means. Compr. R. Arch. Netw. 2019, 1–67 (2019).
    Google Scholar  More

  • in

    Chemoselective transesterification and polymer synthesis using a zincate complex

    1.
    Kobayashi M, Matsumoto Y, Uchiyama M, Ohwada T. A new chemoselective anionic polymerization method for poly(N-isopropylacrylamide) (PNIPAm) in aqueous media: design and application of bulky zincate possessing little basicity. Macromolecules. 2004;37:4339–41.
    CAS  Article  Google Scholar 
    2.
    Uchiyama M, Kobayashi Y, Furuyama T, Nakamura S, Kajihara Y, Miyoshi T, et al. Generation and suppression of 3-/4-functionalized benzynes using zinc Ate Base (TMP−Zn−ate) :new approaches to multisubstituted benzenes. J Am Chem Soc. 2008;130:472–80.
    CAS  Article  Google Scholar 

    3.
    Furuyama T, Yonehara M, Arimoto S, Kobayashi M, Matsumoto Y, Uchiyama M. Development of highly chemoselective bulky zincate complex, tBu4ZnLi2: design, structure, and practical applications in small-/macromolecular synthesis. Chem Eur J. 2008;14:10348–56.
    CAS  Article  Google Scholar 

    4.
    Hirano T, Furutani T, Saito T, Segata T, Oshimura M, Ute K. Isotactic-specific anionic polymerization of N-isopropylacrylamide with dilithium tetra-tert-butylzincate in the presence of a fluorinated alcohol or Lewis acid. Polymer. 2012;53:4961–66.
    CAS  Article  Google Scholar 

    5.
    Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2019;38:3484–504. as a review
    Article  Google Scholar 

    6.
    Kitayama T, Yamaguchi H, Kanzawa T, Hirano T. Living ring-opening polymerization of ε-caprolactone with combinations of tert-butyllithium and bilky aluminium phenoxides. Polym Bull. 2000;45:97–104.
    CAS  Article  Google Scholar 

    7.
    Oshimura M, Okazaki R, Hirano T, Ute K. Ring-opening polymerization of ɛ-caprolactone with dilithium tetra-tert-butylzincate under mild conditions. Polym J. 2014;46:866–72.
    CAS  Article  Google Scholar 

    8.
    Oshimura M, Oda Y, Kondoh K, Hirano T, Ute K. Efficient acylation and transesterification catalyzed by dilithium tetra-tert-butylzincate at low temperatures. Tetrahedron Lett. 2016;57:2070–73.
    CAS  Article  Google Scholar 

    9.
    Nudelman A, Bechor Y, Falb E, Fischer B, Wexler BA, Nedelman A. Acetyl chloride-methanol as a convenient reagent for: A) quantitative formation of amine hydrochlorides B) carboxylate ester formation C) mild removal of N-t-BOC-protective group. Synth Commun.1998;28:471–4.
    CAS  Article  Google Scholar 

    10.
    Seebach D, Hungerbühler E, Naef R, Schnurrenberger P, Weidmann B, Züger M. Titanate-mediated transesterifications with functionalized substrates. Synthesis. 1982;2:138–41.
    Article  Google Scholar 

    11.
    Kim S, Lee JI. Copper ion promoted esterification of (S)-2-pyridyl thioates and 2-pyridyl esters. Efficient methods for the preparation of hindered esters. J Org Chem. 1984;49:1712–16.
    CAS  Article  Google Scholar 

    12.
    Otto MC. A simple, powerful, and efficient method for transesterification. J Chem Soc Chem Commun. 1986;9:695–7.
    Google Scholar 

    13.
    Taber DF, Amedio JC Jr, Patel YK. Selective benzoylation of diols with 1-(benzoyloxy)benzotriazole. J Org Chem. 1985;50:1751–2.
    Article  Google Scholar 

    14.
    Vedejs E, Bennett NS, Conn LM, Diver ST, Gringras M, Lin S, et al. Tributylphosphine-catalyzed acylations of alcohols: scope and related reactions. J Org Chem. 1993;58:7286–88.
    CAS  Article  Google Scholar 

    15.
    Grasa GA, Kissling RM, Nolan SP. N-heterocyclic carbenes as versatile nucleophilic catalysts for transesterification/acylation reactions. Org Lett. 2002;4:3583–86.
    CAS  Article  Google Scholar 

    16.
    Grasa GA, Güveli T, Singh R, Nolan SP. Efficient transesterification/acylation reactions mediated by n-heterocyclic carbene catalysts. J Org Chem. 2003;68:2812–19.
    CAS  Article  Google Scholar 

    17.
    Singh R, Kissling RM, Letellier M, Nolan SP. Transesterification/acylation of secondary alcohols mediated by N-heterocyclic carbene catalysts. J Org Chem. 2004;69:209–12.
    CAS  Article  Google Scholar 

    18.
    Nyce GW, Lamboy JA, Connor EF, Waymouth RM, Hedrick JL. Expanding the catalytic activity of nucleophilic N-heterocyclic carbenes for transesterification reactions. Org Lett. 2002;4:3587–90.
    CAS  Article  Google Scholar 

    19.
    Shirae Y, Mino T, Hasegawa T, Sakamoto M, Fujita T. ransesterification of various alcohols with vinyl acetate under mild conditions catalyzed by diethylzinc using N-substituted diethanolamine as a ligand. Tetrahedron Lett. 2005;46:5877–9.
    CAS  Article  Google Scholar 

    20.
    Mino T, Hasegawa T, Shirae Y, Sakamoto M, Fujita T. N,O-ligand accelerated zinc-catalyzed transesterification of alcohols with vinyl esters. J Organomet Chem. 2007;692:4389–96.
    CAS  Article  Google Scholar 

    21.
    Kwak H, Lee SH, Kim SH, Lee YM, Lee EY, Park BK, et al. Construction of ZnII compounds with a chelating 2,2’-dipyridylamine (Hdpa) ligand: anion effect and catalytic activities. Eur J Inorg Chem. 2008;3:408–15.
    Article  Google Scholar 

    22.
    Bosco JWJ, Agrahari A, Saikia AK. Molecular iodine-catalyzed selective acetylation of alcohols with vinyl acetate. Tetrahedron Lett. 2006;47:4065–8.
    CAS  Article  Google Scholar 

    23.
    Rathore PS, Advani J, Rathore S, Thakore S. Metal nanoparticles assisted amine catalyzed transesterification under ambient conditions. J Mol Catal A Chem. 2013;377:129–36.
    CAS  Article  Google Scholar 

    24.
    Lin MH, RajanBabu TV. Metal-catalyzed acyl transfer reactions of enol esters: role of Y5(OiPr)13O and (thd)2Y(OiPr) as transesterification catalysts. Org Lett. 2002;2:997–1000.
    Article  Google Scholar 

    25.
    Yoo DW, Han JH, Nam SH, Kim HJ, Kim C, Lee JK. Efficient transesterification by polymer-supported zinc complexes: clean and recyclable catalysts. Inorg Chem Commun. 2006;9:654–57.
    CAS  Article  Google Scholar 

    26.
    Oshimura M, Hirata T, Hirano T, Ute K. Synthesis of aliphatic polycarbonates by irreversible polycondensation catalyzed by dilithium tetra-tert-butylzincate. Polymer. 2017;131:50–5.
    CAS  Article  Google Scholar 

    27.
    Feng J, Zhuo RX, Zhang XZ. Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci. 2012;37:211–36.
    CAS  Article  Google Scholar 

    28.
    Naik PU, Refes K, Sadaka F, Brachais CH, Boni G, Couvercelle JP, et al. Organo-catalyzed synthesis of aliphatic polycarbonates in solvent-free conditions. Polym Chem. 2012;3:1475–80.
    CAS  Article  Google Scholar 

    29.
    Park JH, Jeon JY, Lee JJ, Jang Y, Varghese JK, Lee BY. Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules. 2013;46:3301–8.
    CAS  Article  Google Scholar 

    30.
    Wang L, Wang G, Wang F, Liu P. Transesterification between diphenyl carbonate and 1,6-hexandiol catalyzed by metal-organic frameworks based on Zn2+ and different aromatic carboxylic acids. Asian J Chem. 2013;25:5385–9.
    CAS  Article  Google Scholar 

    31.
    Wang Z, Yang X, Liu S, Hu J, Zhang H, Wang G. One-pot synthesis of high-molecular-weight aliphatic polycarbonates melt transesterification of diphenyl carbonate and diols using Zn(OAc)2 as a catalyst. RSC Adv. 2015;5:87311–9.
    CAS  Article  Google Scholar 

    32.
    Wang Z, Yang X, Li J, Liu S, Wang G. Synthesis of high-molecular-weight aliphatic polycarbonates from diphenyl carbonate and aliphatic diols by solid base. J Mol Catal A Chem. 2016;424:77–84.
    CAS  Article  Google Scholar 

    33.
    Fleischmann C, Anastasaki A, Gutekunst WR, McGrath AJ, Hustad PD, Clark PG, et al. Direct access to functional (meth)acrylate copolymers through transesterification with lithium alkoxides. J Polym Sci A Polym Chem. 2017;55:1566–74.
    CAS  Article  Google Scholar 

    34.
    Ito D, Ogura Y, Sawamoto M, Terashima T. Acrylate-selective transesterification of methacrylate/acrylate copolymers: postfunctionalization with common acrylates and alcohols. ACS Macro Lett. 2018;7:997–1002.
    CAS  Article  Google Scholar 

    35.
    Ohshima T, Iwasaki T, Maegawa Y, Yoshiyama A, Mashima K. Enzyme-like chemoselective acylation of alcohols in the presence of amines catalyzed by a tetranuclear zinc cluster. J Am Chem Soc. 2008;130:2944–5.
    CAS  Article  Google Scholar  More

  • in

    Variation and conservation implications of the effectiveness of anti-bear interventions

    1.
    Sathyakumar, S. & Viswanath, S. Observations on food habits of Asiatic black bear in Kedarnath Wildlife Sanctuary, India: preliminary evidence on their role in seed germination and dispersal. Ursus 14, 99–103 (2003).
    Google Scholar 
    2.
    Barua, M. Mobilizing metaphors: the popular use of keystone, flagship and umbrella species concepts. Biodivers. Conserv. 20, 1427–1440 (2011).
    Google Scholar 

    3.
    Rozylowicz, L., Popescu, V. D., Pătroescu, M. & Chişamera, G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 20, 561–579 (2011).
    Google Scholar 

    4.
    Ratnayeke, S. & van Manen, F. T. Assessing sloth bears as surrogates for carnivore conservation in Sri Lanka. Ursus 23, 206–217 (2012).
    Google Scholar 

    5.
    Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J. & Macdonald, D. W. Resolving human-bear conflict: a global survey of countries, experts, and key factors. Conserv. Lett. 7, 501–513 (2014).
    Google Scholar 

    6.
    Di Minin, E. et al. Global priorities for national carnivore conservation under land use change. Sci. Rep. 6, 23814. https://doi.org/10.1038/srep23814 (2016).
    ADS  CAS  Article  PubMed Central  Google Scholar 

    7.
    Linnell, J. D. C. et al. Border security fencing and wildlife: the end of the transboundary paradigm in Eurasia? PLoS Biol. 14, e1002483. https://doi.org/10.1371/journal.pbio.1002483 (2016).
    Article  PubMed Central  Google Scholar 

    8.
    Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052. https://doi.org/10.1098/rsos.170052 (2017).
    ADS  Article  PubMed Central  Google Scholar 

    9.
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).
    ADS  CAS  Google Scholar 

    10.
    IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org (2020).

    11.
    Linnell, J. D. C., Swenson, J. E. & Andersen, R. Conservation of biodiversity in Scandinavian boreal forests: large carnivores as flagships, umbrellas, indicators, or keystones? Biodivers. Conserv. 9, 857–868 (2000).
    Google Scholar 

    12.
    Fredrikkson, G. Human-sun bear conflicts in East Kalimantan, Indonesian Borneo. Ursus 16, 130–137 (2005).
    Google Scholar 

    13.
    Smith, T. S., Herrero, S., Debruyn, T. D. & Wilder, J. M. Efficacy of bear deterrent spray in Alaska. J. Wildl. Manage. 72, 640–645 (2008).
    Google Scholar 

    14.
    Kobashikawa, S., Trentin, B. & Koike, S. The benefit of wrapping trees in biodegradable material netting to protect against bark stripping by bears extends to surrounding stands. Forest Ecol. Manage. 437, 134–138 (2019).
    Google Scholar 

    15.
    Woodroffe, R., Frank, L. G., Lindsey, P. A., ole Ranah, S. M. K. & Romañach, S. Livestock husbandry as a tool for carnivore conservation in Africa’s community rangelands: a case-control study. Biodivers. Conserv. 16, 1245–1260 (2007).

    16.
    Davidson-Nelson, S. J. & Gehring, T. M. Testing fladry as a nonlethal management tool for wolves and coyotes in Michigan. Hum-Wildl. Interact. 4, 87–94 (2010).
    Google Scholar 

    17.
    Iliopoulos, Y. et al. Tools for co-existence: fladry corrals efficiently repel wild wolves (Canis lupus) from experimental baiting sites. Wildl. Res. 46, 484–498 (2019).
    Google Scholar 

    18.
    Andelt, W. F. & Hopper, S. N. Livestock guard dogs reduce predation on domestic sheep in Colorado. J. Range Manage. 53, 259–267 (2000).
    Google Scholar 

    19.
    Papworth, S. K. et al. Bear-proof fences reduce livestock losses in the Tibetan Autonomous Region China. Conserv. Evid. 11, 8–11 (2014).
    Google Scholar 

    20.
    Otto, T. E. & Roloff, G. J. Black bear exclusion fences to protect mobile apiaries. Hum-Wildl. Interact. 9, 78–86 (2015).
    Google Scholar 

    21.
    Di Vittorio, M., Costrini, P., Rocco, M., Bragalanti, N. & Borsetta, M. Assessing the efficacy of electric fences to prevent bear damage in Italy. Carnivore Damage Prevent. News 12, 31–37 (2016).
    Google Scholar 

    22.
    Yamazaki, K. Effects of pruning and brush clearing on debarking within damaged conifer stands by Japanese black bears. Ursus 14, 94–98 (2003).
    Google Scholar 

    23.
    Zimmermann, B., Wabakken, P. & Dötterer, M. Brown bear-livestock conflicts in a bear conservation zone in Norway: are cattle a good alternative to sheep? Ursus 14, 72–83 (2003).
    Google Scholar 

    24.
    Gore, M. L., Knuth, B. A., Scherer, C. W. & Curtis, P. D. Evaluating a conservation investment designed to reduce human-wildlife conflict. Conserv. Lett. 1, 136–145 (2008).
    Google Scholar 

    25.
    Breck, S. W. et al. Domestic calf mortality and producer detection rates in the Mexican wolf recovery area: implications for livestock management and carnivore compensation schemes. Biol. Conserv. 144, 930–936 (2011).
    Google Scholar 

    26.
    Kavčič, I., Adamič, M., Kaczensky, P., Krofel, M. & Jerina, K. Supplemental feeding with carrion is not reducing brown bear depredations on sheep in Slovenia. Ursus 24, 111–119 (2013).
    Google Scholar 

    27.
    Alldredge, M. W., Walsh, D. P., Sweanor, L. L., Davies, R. B. & Trujillo, A. Evaluation of translocation of black bears involved in human-bear conflicts in south-central Colorado. Wildl. Soc. Bull. 39, 334–340 (2015).
    Google Scholar 

    28.
    Bromley, C. & Gese, E. M. Surgical sterilization as a method of reducing coyote predation on domestic sheep. J. Wildl. Manage. 65, 510–519 (2001).
    Google Scholar 

    29.
    Hawley, J. E. et al. Developing a new shock-collar design for safe and efficient use on wild wolves. Wildl. Soc. Bull. 37, 416–422 (2013).
    Google Scholar 

    30.
    Hamr, J., Popp, J. N., Brown, D. L. & Mallory, F. F. Problem behaviour of black bears (Ursus americanus) in central Ontario: the effects of hunting and natural food availability. Anim. Biol. 65, 151–161 (2015).
    Google Scholar 

    31.
    Breck, S. W., Lance, N. & Callahan, P. A shocking device for protection of concentrated food sources from black bears. Wildl. Soc. Bull. 34, 23–26 (2006).
    Google Scholar 

    32.
    Miller, J. R. B. et al. Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores. Wildl. Soc. Bull. 40, 806–815 (2016).
    Google Scholar 

    33.
    Treves, A., Krofel, M. & McManus, J. Predator control should not be a shot in the dark. Front. Ecol. Environ. 14, 380–388 (2016).
    Google Scholar 

    34.
    Eklund, A., López-Bao, J. V., Tourani, M., Chapron, G. & Frank, J. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Sci. Rep. 7, 2097. https://doi.org/10.1038/s41598-017-02323-w (2017).
    ADS  CAS  Article  PubMed Central  Google Scholar 

    35.
    Van Eeden, L. M. et al. Managing conflict between large carnivores and livestock. Conserv. Biol. 32, 26–34 (2017).
    Google Scholar 

    36.
    Khorozyan, I. & Waltert, M. A framework of most effective practices in protecting human assets from predators. Hum. Dimens. Wildl. 24, 380–394 (2019).
    Google Scholar 

    37.
    Khorozyan, I. & Waltert, M. How long do anti-predator interventions remain effective? Patterns, thresholds and uncertainty. R. Soc. Open Sci. 6, 190826. https://doi.org/10.1098/rsos.190826 (2019).
    ADS  Article  PubMed Central  Google Scholar 

    38.
    Blackwell, B. F. et al. No single solution: application of behavioural principles in mitigating human-wildlife conflict. Anim. Behav. 120, 245–254 (2016).
    Google Scholar 

    39.
    Blumstein, D. T. Habituation and sensitization: new thoughts about old ideas. Anim. Behav. 120, 255–262 (2016).
    Google Scholar 

    40.
    Wooldridge, D. R. Polar bear electronic deterrent and detection systems. Int. Conf. Bear Res. Manage. 5, 264–269 (1983).
    Google Scholar 

    41.
    Beckmann, J. P., Lackey, C. W. & Berger, J. Evaluation of deterrent techniques and dogs to alter behavior of “nuisance” black bears. Wildl. Soc. Bull. 32, 1141–1146 (2004).
    Google Scholar 

    42.
    Obbard, M. E. et al. Relationships among food availability, harvest, and human-bear conflict at landscape scales in Ontario, Canada. Ursus 25, 98–110 (2014).
    Google Scholar 

    43.
    Sagør, J. T., Swenson, J. E. & Røskaft, E. Compatibility of brown bear Ursus arctos and free-ranging sheep in Norway. Biol. Conserv. 81, 91–95 (1997).
    Google Scholar 

    44.
    Morehouse, A. T. & Boyce, M. S. Evaluation of intercept feeding to reduce livestock depredation by grizzly bears. Ursus 28, 66–80 (2017).
    Google Scholar 

    45.
    Riley, S. J., Aune, K., Mace, R. D. & Madel, M. J. Translocation of nuisance grizzly bears in northwestern Montana. Int. Conf. Bear Res. Manage. 9, 567–573 (1994).
    Google Scholar 

    46.
    Wooldridge, D. R. & Belton, P. Natural and synthesized aggressive sounds as polar bear repellents. Bears Biol. Manag. 4, 85–91 (1980).
    Google Scholar 

    47.
    Huygens, O. C. & Hayashi, H. Using electric fences to reduce Asiatic black bear depredation in Nagano Prefecture, central Japan. Wildl. Soc. Bull. 27, 959–964 (1999).
    Google Scholar 

    48.
    Levin, M. Electrical fences against large predators. Carnivore Damage Prevent. News 2, 6–7 (2000).
    Google Scholar 

    49.
    Clark, J. D. et al. American black bears and bee yard depredation at Okefenokee Swamp, Georgia. Ursus 16, 234–244 (2005).
    Google Scholar 

    50.
    Seijas, J. M. et al. Effectiveness of brown bear damage protection measures to protect apiaries in the Cantambrian Mountains. Carnivore Damage Prevent. News 12, 26–30 (2016).
    Google Scholar 

    51.
    Parish, J. A. & Rheinhart, J. D. Calving season selection considerations. Mississippi State University Extension. Publication 2501 (POD-10–15). https://extension.msstate.edu (2015).

    52.
    Landa, A., Gudvangen, K., Swenson, J. E. & Røskaft, E. Factors associated with wolverine Gulo gulo predation on domestic sheep. J. Appl. Ecol. 36, 963–973 (1999).
    Google Scholar 

    53.
    Anderson, C. R., Ternent, M. A. & Moody, D. S. Grizzly bear-cattle interactions on two grazing allotments in northwest Wyoming. Ursus 13, 247–256 (2002).
    Google Scholar 

    54.
    Smith, T. S., Herrero, S., Layton, C. S., Larsen, R. T. & Johnson, K. R. Efficacy of firearms for bear deterrence in Alaska. J. Wildl. Manage. 76, 1021–1027 (2012).
    Google Scholar 

    55.
    Miller, G. D. Field tests of potential polar bear repellents. Int. Conf. Bear Res. Manage. 7, 383–390 (1987).
    Google Scholar 

    56.
    Rauer, G., Kaczensky, P. & Knauer, F. Experiences with aversive conditioning of habituated brown bears in Austria and other European countries. Ursus 14, 215–224 (2003).
    Google Scholar 

    57.
    Knarrum, V. et al. Brown bear predation on domestic sheep in central Norway. Ursus 17, 67–74 (2006).
    Google Scholar 

    58.
    Leigh, J. Effects of aversive conditioning on behavior of nuisance Louisiana black bears. MSc thesis. (Louisiana State University, 2007).

    59.
    Mazur, R. L. Does aversive conditioning reduce human-black bear conflict? J. Wildl. Manage. 74, 48–54 (2010).
    ADS  Google Scholar 

    60.
    Meadows, L. E. & Knowlton, F. F. Efficacy of guard llamas to reduce canine predation on domestic sheep. Wildl. Soc. Bull. 28, 614–622 (2000).
    Google Scholar 

    61.
    Hansen, I. & Smith, M. E. Livestock-guarding dogs in Norway. Part II: different working regimes. J. Range Manage. 52, 312–316 (1999).
    Google Scholar 

    62.
    Barrett, M. A., Telesco, D. J., Barrett, S. E., Widness, K. M. & Leone, E. H. Testing bear-resistant trash cans in residential areas of Florida. Southeast. Nat. 13, 26–39 (2014).
    Google Scholar 

    63.
    Johnson, H. E., Lewis, D. L., Lischka, S. A. & Breck, S. W. Assessing ecological and social outcomes of a bear-proofing experiment. J. Wildl. Manage. 82, 1102–1114 (2018).
    Google Scholar 

    64.
    Ziegltrum, G. J. Efficacy of black bear supplemental feeding to reduce conifer damage in western Washington. J. Wildl. Manage. 68, 470–474 (2004).
    Google Scholar 

    65.
    Stringham, S. F. & Bryant, A. Distance-dependent effectiveness of diversionary bear bait sites. Hum-Wildl. Interact. 9, 229–235 (2015).
    Google Scholar 

    66.
    Landriault, L. J., Brown, G. S., Hamr, J. & Mallory, F. F. Age, sex and relocation distance as predictors of return for relocated nuisance black bears Ursus americanus in Ontario, Canada. Wildl. Biol. 15, 155–164 (2009).
    Google Scholar 

    67.
    Treves, A., Kapp, K. J. & MacFarland, D. M. American black bear nuisance complaints and hunter take. Ursus 21, 30–42 (2010).
    Google Scholar 

    68.
    Lennox, R. J., Gallagher, A. J., Ritchie, E. G. & Cooke, S. J. Evaluating the efficacy of predator removal in a conflict-prone world. Biol. Conserv. 224, 277–289 (2018).
    Google Scholar 

    69.
    Goldstein, I. et al. Andean bear-livestock conflicts: a review. Ursus 17, 8–15 (2006).
    Google Scholar 

    70.
    Debata, S., Swain, K. K., Sahu, H. K. & Palei, H. S. Human-sloth bear conflict in a human-dominated landscape of northern Odisha, India. Ursus 27, 90–98 (2016).
    Google Scholar 

    71.
    Herrero, S. & Higgins, A. Field use of capsicum spray as a bear deterrent. Ursus 10, 533–537 (1998).
    Google Scholar 

    72.
    Andelt, W. F. Relative effectiveness of guarding-dog breeds to deter predation on domestic sheep in Colorado. Wildl. Soc. Bull. 27, 706–714 (1999).
    Google Scholar 

    73.
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).
    Google Scholar  More

  • in

    Integration of absolute multi-omics reveals dynamic protein-to-RNA ratios and metabolic interplay within mixed-domain microbiomes

    Taxonomic and functional resolution of the omics
    In order to explore the RNA/protein dynamics in a microbiome setting, we first needed to characterize our test community over time at the molecular level. We previously genomically reconstructed and resolved the SEM1b community, retrieving 11 metagenome-assembled genomes (MAGs) as well as two isolate genomes (see “Methods” section)10, covering the taxonomic and functional niches that are required to convert cellulosic material to methane/CO2 in an anaerobic biogas reactor15. Taxonomic analysis of both 16S rRNA genes and the MAGs of SEM1b inferred population-level affiliations to Rumini(Clostridium) thermocellum (RCLO1), Clostridium sp. (CLOS1), Coprothermobacter proteolyticus (COPR1, BWF2A, SW3C), Tepidanaerobacter (TEPI1-2), Synergistales (SYNG1-2), Tissierellales (TISS1), and the methanogen Methanothermobacter (METH1)10, as depicted in Fig. 1a. Herein we estimated that the total genomic potential of SEM1b includes 39,144 open reading frames (ORFs) (Supplementary Data 1). Since ORFs with very high sequence similarity may produce RNAs and proteins that are indistinguishable in MT and MP data, all the ORFs were gathered into ORF-groups (ORFGs) during the MT and MP data processing (see “Methods” section), where a singleton ORFG is defined as a group with a single ORF, and thus a single gene. Using this approach, our MT and MP data identified 12552 (96% singleton) and 3235 (78% singletons) highly transcribed and translated ORFGs, respectively. The discrepancy between the singleton percentages was as expected, due to the fact that variations in DNA/RNA sequences are greater than in proteins since different codons can code for the same amino acid (codon degeneracy). Degeneracy also implies that the chance to distinguish between homologous genes using MT is greater than using MP. Previous MG analyses using assembly algorithms have shown that genomic regions difficult to assemble in a given environmental contig can harbor variants from multiple, closely related strains, which can be further linked to normal strain-level variability within a population and species divergence16,17,18. Within SEM1b, the ORFGs that contained multiple homologous ORFs predominantly originated from several strains of a single species. For example, in the MT, 444 non-singleton ORFGs (88% of the total) contained ORFs from different strains of the same species, whilst this was the case for 294 ORFGs (32%) in the MP.
    Fig. 1: Life cycle of the SEM1b consortium and sampling scheme.

    a In the SEM1b consortium, seven major microbial populations perform the metabolic processes that lead from saccharification to methanogenesis. In the first phase, RCLO1 and CLOS1 degrade the spruce substrate (predominantly cellulose and hemicellulose), thanks to a sophisticated and flexible enzymatic array, which releases simple oligosaccharides and sugars. Subsequently, the consortium grows (the protein concentration in the samples increases) up to t4 (23 h post inoculum), alongside the degradation (and fermentation) of mono- and disaccharides by RCLO1, CLOS1, TEPI1, TISS1, and COPR1+ strains. One of the sugars released from the degradation of xylan, xylose, is briefly accumulated (Fig. 4a). In addition, SCFAs are accumulated as a byproduct of microbial fermentation. In the last step, the synergetic partnership between TEP1 and METH1 (syntrophic acetate oxidizer and methanogen, respectively) converts the SCFAs and H2 to methane. The bars in the protein profile represent the maxima and minima of the measurements. b To characterize SEM1b, 24 flasks containing spruce media were inoculated with a SEM1b culture at t0. Starting from t1 (8 h), three flasks were opened every 5 h and their content processed. From the eight time points (plus t0) different omic- and meta-data were collected (depicted in the table). Every dot represents a replicate sample, and most measurements are taken in triplicate (except for cellulose degradation).

    Full size image

    All ORFs were annotated using KEGG Ontology (KO), and at least one term was found for 19070 (49%) representatives from our complete data set (Supplementary Data 2). The predominant ORF annotations included Membrane transport, Carbohydrate metabolism, Translation, Amino acid metabolism, and Replication and repair (Supplementary Fig. 1). As expected, these functional categories were also among the top five most abundant for the MT, and top six in MP (plus Energy metabolism), although in a different order. The Membrane transport category is poorly represented in the MP (2% of the terms), which is likely explained by well-known technical issues with the gel-based sample preparation method that we used, which limits the extraction of transmembrane proteins19. The most abundant annotation categories mentioned above are all in line with the community function of cellulose degradation. The abundance ranking of the KO categories was assessed using the Kendall τ, which takes values from −1 (opposite direction of the ranking) to +1 (total agreement in ranking). Its score is interpreted as a correlation measure; however, it is more conservative. The ranking is largely preserved from MG to MT (Kendall τ: 0.77, p  More