More stories

  • in

    Investigation into the effect of divergent feed efficiency phenotype on the bovine rumen microbiota across diet and breed

    1.
    Mbow, H.-O.P., Reisinger, A., Canadell, J. & O’Brien, P. Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SR2) (IPCC, Ginevra, 2017).
    Google Scholar 
    2.
    Horowitz, C. A. Paris agreement. Int. Legal Mater. 55, 740–755 (2016).
    Google Scholar 

    3.
    Mbow, C. et al. Food security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).

    4.
    Finneran, E. et al. Simulation modelling of the cost of producing and utilising feeds for ruminants on Irish farms. J. Farm Manag. 14, 95–116 (2010).
    Google Scholar 

    5.
    Opio, C. et al. Greenhouse Gas Emissions from Ruminant Supply Chains–A Global Life Cycle Assessment 1–214 (Food and agriculture organization of the United Nations (FAO), Rome, 2013).
    Google Scholar 

    6.
    Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009 (2013).
    ADS  Google Scholar 

    7.
    Herd, R. & Arthur, P. Physiological basis for residual feed intake. J. Anim. Sci. 87, E64–E71 (2009).
    CAS  PubMed  Google Scholar 

    8.
    Kelly, A. et al. Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake. J. Anim. Sci. 88, 3214–3225 (2010).
    CAS  PubMed  Google Scholar 

    9.
    Fitzsimons, C., Kenny, D. & McGee, M. Visceral organ weights, digestion and carcass characteristics of beef bulls differing in residual feed intake offered a high concentrate diet. Animal 8, 949–959 (2014).
    CAS  PubMed  Google Scholar 

    10.
    Coyle, S., Fitzsimons, C., Kenny, D., Kelly, A. & McGee, M. Feed efficiency correlations in beef cattle offered zero-grazed grass and a high-concentrate diet. Adv. Anim. Biosci. 8, 121 (2017).
    Google Scholar 

    11.
    Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22 (2010).
    CAS  Google Scholar 

    12.
    Van Houtert, M. Challenging the rational for altering VFA ratios in growing ruminants. Feed Mix 4, 8–11 (1996).
    Google Scholar 

    13.
    Bannink, A. et al. Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim. Feed Sci. Technol. 143, 3–26 (2008).
    Google Scholar 

    14.
    Shabat, S. K. B. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Roehe, R. et al. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet. 12, e1005846 (2016).
    PubMed  PubMed Central  Google Scholar 

    16.
    Li, F. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83, e00061-e117 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Pickering, N. et al. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants. Animal 9, 1431–1440 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Tubiello, F. et al. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks (Statistics Division, Food and Agriculture Organization, Rome, 2014).
    Google Scholar 

    19.
    Nkrumah, J. D. et al. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 84, 145–153 (2006).
    CAS  PubMed  Google Scholar 

    20.
    Fitzsimons, C., Kenny, D., Deighton, M., Fahey, A. & McGee, M. Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake. J. Anim. Sci. 91, 5789–5800 (2013).
    CAS  PubMed  Google Scholar 

    21.
    Kenny, D., Fitzsimons, C., Waters, S. & McGee, M. Invited review: improving feed efficiency of beef cattle—the current state of the art and future challenges. Animal 12, 1815–1826 (2018).
    CAS  PubMed  Google Scholar 

    22.
    Coyle, S., Fitzsimons, C., Kenny, D., Kelly, A. & McGee, M. 1482 Repeatability of feed efficiency in steers offered a high-concentrate diet. J. Anim. Sci. 94, 719–719 (2016).
    Google Scholar 

    23.
    Coyle, S., Fitzsimons, C., Kenny, D., Kelly, A. & McGee, M. 1481 Repeatability of feed efficiency in beef cattle offered grass silage and zero-grazed grass. J. Anim. Sci. 94, 719–719 (2016).
    Google Scholar 

    24.
    Fitzsimons, C., McGee, M., Keogh, K., Waters, S. M. & Kenny, D. A. Molecular physiology of feed efficiency in beef cattle. In Biology of Domestic Animals (eds Scanes, C. G. & Hill, R. A.) 122–165 (CRC Press, Boca Raton, 2017).
    Google Scholar 

    25.
    Paz, H. A. et al. Rumen bacterial community structure impacts feed efficiency in beef cattle. J. Anim. Sci. 96, 1045–1058 (2018).
    PubMed  PubMed Central  Google Scholar 

    26.
    Carberry, C. A., Kenny, D. A., Han, S., McCabe, M. S. & Waters, S. M. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl. Environ. Microbiol. 78, 4949–4958 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Brockman, R. Glucose and short-chain fatty acid metabolism. In Quantitative Aspects of Ruminant Digestion and Metabolism (eds Dijkstra, J. et al.) 291–310 (CAB International, Wallingford, 2005).
    Google Scholar 

    28.
    Borrel, G. et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 11, 2059–2074 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    McDonnell, R. et al. Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets. J. Anim. Sci. 94, 1179–1193 (2016).
    CAS  PubMed  Google Scholar 

    30.
    Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Guan, L. L., Nkrumah, J. D., Basarab, J. A. & Moore, S. S. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiol. Lett. 288, 85–91 (2008).
    CAS  PubMed  Google Scholar 

    32.
    Myer, P. R., Smith, T. P., Wells, J. E., Kuehn, L. A. & Freetly, H. C. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 10, e0129174 (2015).
    PubMed  PubMed Central  Google Scholar 

    33.
    McGovern, E. et al. Characterisation of the rumen archaeal and bacterial populations in bulls offered a high concentrate diet phenotypically divergent for residual feed intake (in review).

    34.
    Hegarty, R., Goopy, J., Herd, R. & McCorkell, B. Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci. 85, 1479–1486 (2007).
    CAS  PubMed  Google Scholar 

    35.
    Carberry, C. A., Waters, S. M., Kenny, D. A. & Creevey, C. J. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl. Environ. Microbiol. 80, 586–594 (2014).
    PubMed  PubMed Central  Google Scholar 

    36.
    Martin, C., Morgavi, D. P. & Doreau, M. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351–365 (2009).
    Google Scholar 

    37.
    Nkamga, V. D. & Drancourt, M. Methanomassiliicoccus. Bergey’s Manual of Systematics of Archaea and Bacteria (Wiley, Hoboken, 2016).
    Google Scholar 

    38.
    McGovern, E. et al. Plane of nutrition affects the phylogenetic diversity and relative abundance of transcriptionally active methanogens in the bovine rumen. Sci. Rep. 7, 13047 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    39.
    Danielsson, R. et al. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol. 8, 226 (2017).
    PubMed  PubMed Central  Google Scholar 

    40.
    Shi, W. et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 24, 1517–1525 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Kittelmann, S. et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 8, e47879 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Leahy, S. C. et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE 5, e8926 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    43.
    Bonacker, L. G., Baudner, S., Mörschel, E., Böcher, R. & Thauer, R. K. Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 217, 587–595 (1993).
    CAS  PubMed  Google Scholar 

    44.
    Saleem, F. et al. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci. 95, 6606–6623 (2012).
    CAS  PubMed  Google Scholar 

    45.
    Ametaj, B. N. et al. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 6, 583–594 (2010).
    CAS  Google Scholar 

    46.
    Poulsen, M. et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4, 1428 (2013).
    ADS  PubMed  Google Scholar 

    47.
    Nakazawa, F. et al. Description of Mogibacterium pumilum gen. nov., sp. nov. and Mogibacterium vescum gen. nov., sp. nov., and reclassification of Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50 Pt 2, 679–688 (2000).
    CAS  PubMed  Google Scholar 

    48.
    Li, M., Zhou, M., Adamowicz, E., Basarab, J. A. & Guan, L. L. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis. Vet. Microbiol. 155, 72–80 (2012).
    CAS  PubMed  Google Scholar 

    49.
    Rius, A. G. et al. Nitrogen metabolism and rumen microbial enumeration in lactating cows with divergent residual feed intake fed high-digestibility pasture. J. Dairy Sci. 95, 5024–5034 (2012).
    CAS  PubMed  Google Scholar 

    50.
    Oki, K. et al. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol. 16, 284 (2016).
    PubMed  PubMed Central  Google Scholar 

    51.
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Richardson, E. C. et al. Body composition and implications for heat production of Angus steer progeny of parents selected for and against residual feed intake. Aust. J. Exp. Agric. 41, 1065–1072 (2001).
    Google Scholar 

    53.
    Li, F., Hitch, T. C. A., Chen, Y., Creevey, C. J. & Guan, L. L. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome 7, 6 (2019).
    PubMed  PubMed Central  Google Scholar 

    54.
    Yu, Z. & Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808–812 (2004).
    CAS  PubMed  Google Scholar 

    55.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    ADS  CAS  PubMed  Google Scholar 

    56.
    Bolyen, E. et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science (PeerJ Preprints, 2018).

    57.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639 (2017).
    PubMed  PubMed Central  Google Scholar 

    59.
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
    CAS  PubMed  Google Scholar 

    60.
    Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).
    Google Scholar 

    61.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    62.
    Mallick, H. et al. Multivariable association in population-scale meta’omic surveys (2019) (in submission). More

  • in

    Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages

    1.
    Fricke, R., Eschmeyer, W. N. & van der Laan, R. Eschmeyer’s catalog of fishes: genera, species, references (https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) (Electronic version accessed 01 December 2019) (2019).
    2.
    Crampton, W. G. R. in Historical biogeography of neotropical freshwater fishes (eds J. S. Albert & R. E. Reis) 165–189 (University of California Press, California, 2011).

    3.
    Dagosta, F. C. P. & de Pinna, M. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. N. Y. 1–163, 2019. https://doi.org/10.1206/0003-0090.431.1.1 (2019).
    Article  Google Scholar 

    4.
    Reis, R. E. et al. Fish biodiversity and conservation in South America. J. Fish Biol. 89, 12–47. https://doi.org/10.1111/jfb.13016 (2016).
    CAS  Article  PubMed  Google Scholar 

    5.
    Albert, J. S. & Reis, R. E. Historical Biogeography of Neotropical Freshwater Fishes (University of California Press, Berkeley, 2011).
    Google Scholar 

    6.
    Albert, J. S., Petry, P. & Reis, R. E. in Historical biogeography of neotropical freshwater fishes (eds J. S. Albert & R. E. Reis) 21–58 (University of California Press, California, 2011).

    7.
    Oberdorff, T. et al. Unexpected fish diversity gradients in the Amazon basin. Sci. Adv. 5, 8681. https://doi.org/10.1126/sciadv.aav8681 (2019).
    ADS  Article  Google Scholar 

    8.
    Fernandes, C. C., Podos, J. & Lundberg, J. G. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science 305, 1960–1962. https://doi.org/10.1126/science.1101240 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Craig, J. M. et al. Using community phylogenetics to assess phylogenetic structure in the Fitzcarrald region of Western Amazonia. Neotrop. Ichthyol. 18, 1–16. https://doi.org/10.1590/1982-0224-2020-0004 (2020).
    Article  Google Scholar 

    10.
    Willis, S. C., Winemiller, K. O. & Lopez-Fernandez, H. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142, 284–295. https://doi.org/10.1007/s00442-004-1723-z (2005).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Val, A. L. & Almeida-Val, V. M. F. Fishes of the Amazon and their Environment. Physiological and Biochemical Aspect (Springer, Berlin, 1995).
    Google Scholar 

    12.
    Van Nynatten, A. D. et al. To see or not to see: Molecular evolution of the rhodopsin visual pigment in neotropical electric fishes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 286, 20191182. https://doi.org/10.1098/rspb.2019.1182 (2019).
    CAS  Article  Google Scholar 

    13.
    Rodriguez, M. A. & Lewis, W. M. Regulation and stability in fish assemblages of neotropical floodplain lakes. Oecologia 99, 166–180. https://doi.org/10.1007/BF00317098 (1994).
    ADS  Article  PubMed  Google Scholar 

    14.
    Etienne, R. S. & Olff, H. Confronting different models of community structure to species-abundance data: A Bayesian model comparison. Ecol. Lett. 8, 493–504. https://doi.org/10.1111/j.1461-0248.2005.00745.x (2005).
    Article  PubMed  Google Scholar 

    15.
    Sioli, H. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin Vol. 56 Monographiae Biologicae (ed H. Sioli) 127–165 (Junk, 1984).

    16.
    Goulding, M., Carvalho, M. L. & Ferreira, E. G. Rio Negro, rich life in poor water: Amazonian diversity and foodchain ecology as seen through fish communities. (SPB Academic Publishing, 1988).

    17.
    Junk, W. J. et al. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31, 623–640. https://doi.org/10.1007/s13157-011-0190-7 (2011).
    Article  Google Scholar 

    18.
    Ríos-Villamizar, E. A., Piedade, M. T. F., Da Costa, J. G., Adeney, J. M. & Junk, W. J. Chemistry of different Amazonian water types for river classification: a preliminary review. Water Soc 2(178), 17–28. https://doi.org/10.2495/13WS0021 (2014).
    Article  Google Scholar 

    19.
    Gibbs, R. J. Water chemistry of the Amazon river. Geochim. Cosmochim. Acta 36, 1061–1066. https://doi.org/10.1016/0016-7037(72)90021-X (1972).
    ADS  CAS  Article  Google Scholar 

    20.
    Dustan, P. Terrestrial limitation of Amazon river productivity: why the Amazon River is not green. Evol. Ecol. Res. 11, 421–432 (2009).
    Google Scholar 

    21.
    Furch, K. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (ed H. Sioli) 168–199 (Dr W. Junk, 1984).

    22.
    Junk, W. J. & Furch, K. in Amazonia (eds G.T. Prance & T.E. Lovejoy) 3–17 (Pergamon/IUCN, 1985).

    23.
    Devol, A. H. & Hedges, J. I. in The biogeochemistry of the Amazon basin (eds M. E. McClain, R. L. Victoria, & J. E. Richey) 275–306 (Oxford University Press, 2001).

    24.
    Seyler, P. T. & Boaventura, G. R. in The biogeochemistry of the Amazon basin (eds M. E. McClain, R. L. Victoria, & J. E. Richey) 307–327 (Oxford University Press, 2001).

    25.
    Wallace, A. R. A narrative of travels on the Amazon and Rio Negro, with an account of the native tribes, and observations on the climate, geology and natural history of the Amazon valley. (Reeve and Co., 1853).

    26.
    Sioli, H. The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (Junk, Dordrecht, 1984).
    Google Scholar 

    27.
    Melack, J. M. & Forsberg, B. R. in The biogeochemistry of the Amazon basin (eds M.E. McClain, R. L. Victoria, & J. E. Richey) 235–274 (Oxford University Press, 2001).

    28.
    Melack, J. M. & Hess, L. L. in Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management (eds W. J. Junk et al.) 43–59 (Springer, 2010).

    29.
    Galacatos, K., Stewart, D. J. & Ibarra, M. Fish community patterns of lagoons and associated tributaries in the Ecuadorian Amazon. Copeia 2, 875–894 (1996).
    Article  Google Scholar 

    30.
    Henderson, P. A. & Crampton, W. G. R. A comparison of fish diversity and abundance between nutrient-rich and nutrient-poor lakes in the Upper Amazon. J. Trop. Ecol. 13, 175–198. https://doi.org/10.1017/S0266467400010403 (1997).
    Article  Google Scholar 

    31.
    Saint-Paul, U. et al. Fish communities in central Amazonian white- and blackwater floodplains. Environ. Biol. Fishes 57, 235–250. https://doi.org/10.1023/A:1007699130333 (2000).
    Article  Google Scholar 

    32.
    Winemiller, K. O., Lopez-Fernandez, H., Taphorn, D. C., Nico, L. G. & Duque, A. B. Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basins. J. Biogeogr. 35, 1551–1563. https://doi.org/10.1111/j.1365-2699.2008.01917.x (2008).
    Article  Google Scholar 

    33.
    Fisher, T. R. Plankton and primary production in aquatic systems of the Central Amazon basin. Comp. Biochem. Physiol. 62A, 31–38. https://doi.org/10.1016/0300-9629(79)90739-4 (1979).
    Article  Google Scholar 

    34.
    Fittkau, E. J., Irmler, U., Junk, W. J., Reiss, F. & Schimdt, G. W. in Tropical ecological systems: trends in terrestrial and aquatic research (eds F.B. Golley & E. Medina) 284–311 (Springer, Berlin, 1975).

    35.
    Putz, R. & Junk, W. J. in The central Amazon floodplain: ecology of a pulsing system (ed W. J. Junk) 147–181 (Springer, Berlin, 1997).

    36.
    Rai, H. & Hill, G. E. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (ed H. Sioli) 311–335 (Dr. W. Junk Publishers, 1984).

    37.
    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters II. The limnology of a tropical floodplain lake in Central Amazonia (Lago do Castanho). Amazoniana 4, 139–203 (1973).
    Google Scholar 

    38.
    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters III. Primary productivity of phytoplankton in a tropical floodplain lake of Central Amazonia, Lago do Castanho, Amazonas, Brazil. Amazoniana 4, 379–404 (1973).
    Google Scholar 

    39.
    Schmidt, G. W. Studies on the primary productivity of phytoplankton in the three types of Amazonian waters I. Introduction. Amazoniana 4, 135–138 (1973).
    Google Scholar 

    40.
    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters. IV. On the primary productivity of phytoplankton in a bay of the lower Rio Negro (Amazonas, Brazil). Amazoniana 5, 517–528 (1976).
    Google Scholar 

    41.
    Putz, R. Periphyton communities in Amazonian black- and whitewater habitats: Community structure, biomass and productivity. Aquat. Sci. 59, 74–93 (1997).
    Article  Google Scholar 

    42.
    Moreira-Turcq, P., Seyler, P., Guyot, J. L. & Etcheber, H. Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol. Process. 17, 1329–1344. https://doi.org/10.1002/hyp.1287 (2003).
    ADS  Article  Google Scholar 

    43.
    Wissmar, R. C., Richey, J. E., Stallard, R. F. & Edmond, J. M. Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floodplain waters, Peru-Brazil, May–June 1977. Ecology 62, 1622–1633. https://doi.org/10.2307/1941517 (1981).
    CAS  Article  Google Scholar 

    44.
    Costa, M. P. F., Novo, E. M. L. M. & Telmer, K. H. Spatial and temporal variability of light attenuation in large rivers of the Amazon. Hydrobiologia 702, 171–190. https://doi.org/10.1007/s10750-012-1319-2 (2013).
    CAS  Article  Google Scholar 

    45.
    Engle, D. L., Melack, J. M., Doyle, R. D. & Fisher, T. R. High rates of net primary production and turnover of floating grasses on the Amazon floodplain: Implications for aquatic respiration and regional CO2 flux. Glob. Change Biol. 14, 369–381. https://doi.org/10.1111/j.1365-2486.2007.01481.x (2008).
    ADS  Article  Google Scholar 

    46.
    Junk, W. J. Investigations on the ecology and production-biology of the “floating meadows” (Paspalo-Echinochloetum) on the middle Amazon Part I: The floating vegetation and its ecology. Amazoniana 2, 449–495 (1970).
    Google Scholar 

    47.
    Junk, W. J. & Piedade, M. T. F. in The Central Amazon floodplain. Ecological Studies (ed W. J. Junk) 147–185 (Springer, Berlin, 1997).

    48.
    Junk, W. J. & Piedade, M. T. F. in Amazonian floodplain forests: Ecophysiology, biodiversity and sutainable management (eds W. J. Junk et al.) 3–25 (Springer, Berlin, 2010).

    49.
    Engle, D. L. & Melack, J. M. Floating meadow epiphyton—biological and chemical features of epiphytic material in an Amazon floodplain lake. Freshwat. Biol. 22, 479–494. https://doi.org/10.1111/j.1365-2427.1989.tb01120.x (1989).
    Article  Google Scholar 

    50.
    Piedade, M. T. F., Junk, W., D’Ângelo, S. A., Wittmann, F. & Schöngart, J. Aquatic herbaceous plants of the Amazon floodplains: State of the art and research needed. Acta Limnol. Brasil. 22, 165–178. https://doi.org/10.4322/actalb.02202006 (2010).
    Article  Google Scholar 

    51.
    Goulding, M. The fishes and the forest (University of California Press, California, 1980).
    Google Scholar 

    52.
    Worbes, M. in The Central Amazon floodplain. Ecological Studies (ed W. J. Junk) 223–260 (Springer, Berlin, 1997).

    53.
    Adis, J., Erwin, T. L., Battirola, L. D. & Ketelhut, S. in Amazonian floodplain forests: Ecophysiology, biodiversity and sutainable management (eds W. J. Junk et al.) 313–325 (Springer, Berlin, 2010).

    54.
    Prance, G. T. Notes on the vegetation of Amazonia. III. The terminology of Amazonian forest types subject to inundation. Brittonia 31, 26–38. https://doi.org/10.2307/2806669 (1979).
    Article  Google Scholar 

    55.
    Junk, W. J. & Piedade, M. T. F. Biomass and primary-production of herbaceous plant communities in the Amazon floodplain. Hydrobiology 263, 155–162. https://doi.org/10.1007/BF00006266 (1993).
    Article  Google Scholar 

    56.
    Junk, W. J., Wittmann, F., Schöngart, J. & Piedade, M. T. F. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol. Manag. 23, 677–693. https://doi.org/10.1007/s11273-015-9412-8 (2015).
    CAS  Article  Google Scholar 

    57.
    Junk, W. J., Teresa, T., Piedade, F., Schöngart, J. & Wittmann, F. A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetlands Ecol. Manag. 20, 461–475. https://doi.org/10.1007/s11273-012-9268-0 (2012).
    Article  Google Scholar 

    58.
    Rosenzweig, M. L. Species diversity in space and time (Cambridge University Press, Cambridge, 1995).
    Google Scholar 

    59.
    Evans, K. L., Warren, P. H. & Gaston, K. J. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biol. Rev. 79, 1–25. https://doi.org/10.1017/S1464793104006517 (2005).
    Article  Google Scholar 

    60.
    Fraser, R. H. & Currie, D. J. The species richness-energy hypothesis in a system where historical factors are thought to prevail: Coral reefs. Am. Nat. 148, 138–159. https://doi.org/10.1086/285915 (1996).
    Article  Google Scholar 

    61.
    Kramer, D. L., Lindsey, C. C., Moodie, G. E. E. & Stevens, E. D. The fishes and the aquatic environment of the Central Amazonian basin, with particular reference to respiratory patterns. Can. J. Zool. 56, 717–729. https://doi.org/10.1139/z78-101 (1978).
    Article  Google Scholar 

    62.
    Crampton, W. G. R. Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. J. Fish Biol. 53, 307–330. https://doi.org/10.1111/j.1095-8649.1998.tb01034.x (1998).
    Article  Google Scholar 

    63.
    Gonzalez, R. J., Wilson, R. W., Wood, C. M., Patrick, M. L. & Val, A. L. Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiol. Biochem. Zool. 75, 37–42. https://doi.org/10.1086/339216 (2002).
    CAS  Article  PubMed  Google Scholar 

    64.
    Gonzalez, R. J., Wilson, R. W. & Wood, C. M. in The Physiology of Tropical Fishes (eds A. L. Val, V.M.F. Almeida-Val, & D.J. Randall) 397–442 (Academic Press, 2006).

    65.
    Van Nynatten, A. D., Bloom, D. D., Chang, B. S. W. & Lovejoy, N. R. Out of the blue: Adaptive visual pigment evolution accompanies Amazon invasion. Biol. Lett. 11, 20150349. https://doi.org/10.1098/rsbl.2015.0349 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Crampton, W. G. R. Electroreception, electrogenesis and signal evolution. J. Fish Biol. 95, 92–134. https://doi.org/10.1111/jfb.13922 (2019).
    Article  PubMed  Google Scholar 

    67.
    Cooke, G. M., Landguth, E. L. & Beheregaray, L. B. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone. Evolution 87, 1–14. https://doi.org/10.1111/evo.12410 (2014).
    Article  Google Scholar 

    68.
    Gonzalez, R. J. et al. Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon. Physiol. Zool. 71, 15–22. https://doi.org/10.1086/515893 (1998).
    CAS  Article  PubMed  Google Scholar 

    69.
    Duncan, W. P., Costa, O. T. F. & Fernandes, M. N. Ionic regulation and Na+–K+-ATPase activity in gills and kidney of the freshwater stingray Paratrygon aiereba living in white and blackwaters in the Amazon Basin. J. Fish Biol. 74, 956–960. https://doi.org/10.1111/j.1095-8649.2008.02156.x (2009).
    CAS  Article  PubMed  Google Scholar 

    70.
    Correa, S. B., Crampton, W. G. R., Chapman, L. J. & Albert, J. S. A comparison of flooded forest and floating meadow fish assemblages in an upper Amazon floodplain. J. Fish Biol. 72, 629–644. https://doi.org/10.1111/j.1095-8649.2007.01752.x (2008).
    Article  Google Scholar 

    71.
    Fernandes, C. C. Lateral migration of fishes in Amazon floodplains. Ecol. Freshwat. Fish 6, 36–44. https://doi.org/10.1111/j.1600-0633.1997.tb00140.x (1997).
    Article  Google Scholar 

    72.
    Sánchez-Botero, J. I. & Araujo-Lima, C. A. R. M. As macrófitas aquáticas como bercário para a ictiofauna da várzea do Rio Amazonas. Acta Amazon. 31, 437–447. https://doi.org/10.1590/1809-43922001313447 (2001).
    Article  Google Scholar 

    73.
    Emmons, L. H. Geographic varition in densities and diversities of non-flying mammals in Amazonia. Biotropica 16, 210–222. https://doi.org/10.2307/2388054 (1984).
    Article  Google Scholar 

    74.
    Pomara, L. Y., Ruokolainen, K., Tuomisto, H. & Young, K. R. Avian composition co-varies with floristic composition and soil nutrient concentration in Amazonian upland forests. Biotropica 44, 545–553. https://doi.org/10.1111/j.1744-7429.2011.00851.x (2012).
    Article  Google Scholar 

    75.
    Crampton, W. G. R. in Fish life in special environments (eds P. Sebert, D. W. Onyango, & B. G. Kapoor) 283–339 (Science Publishers, 2007).

    76.
    Duarte, C., Magurran, A. E., Zuanon, J. & Deus, C. P. Trophic ecology of benthic fish assemblages in a lowland river in the Brazilian Amazon. Aquat. Ecol. 53, 707–718. https://doi.org/10.1007/s10452-019-09720-5 (2019).
    CAS  Article  Google Scholar 

    77.
    Hugueny, B., Oberdorff, T. & Tedesco, P. A. Community ecology of river fishes: a large-scale perspective. Am. Fish. Soc. Symp. 73, 29–62 (2010).
    Google Scholar 

    78.
    Guégan, J. F., Lek, S. & Oberdorff, T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384. https://doi.org/10.1038/34899 (1998).
    ADS  Article  Google Scholar 

    79.
    Dodson, S. I., Arnott, S. E. & Cottingham, K. L. The relationship in lake communities between primary productivity and species richness. Ecology 81, 2662–2679. https://doi.org/10.1890/0012-9658(2000) (2000).
    Article  Google Scholar 

    80.
    Kay, R. F., Madden, R. H., Van Schaik, C. P. & Higdon, D. Primate species richness is determined by plant productivity: Implications for conservation. Proc. Natl. Acad. Sci. U.S.A. 94, 13023–13027. https://doi.org/10.1073/pnas.94.24.13023 (1997).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Pires, J. M. & Prance, G. T. in Amazonia (eds G.T. Prance & T.E. Lovejoy) 109–145 (Pergamom, 1985).

    82.
    Correa, S. B. & Winemiller, K. O. Terrestrial-aquatic trophic linkages support fish production in a tropical oligotrophic river. Oecologia 186, 1069–1078. https://doi.org/10.1007/s00442-018-4093-7 (2018).
    ADS  Article  PubMed  Google Scholar 

    83.
    Araujo-Lima, C. A. R. M., Forsberg, B., Victoria, R. & Martinelli, L. Energy sources for detritivorous fishes in the Amazon. Science 234, 1256–1258. https://doi.org/10.1126/science.234.4781.1256 (1986).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Duncan, W. P. & Fernandes, M. N. Physicochemical characterization of the white, black, and clearwater rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (Chondrichthyes, Potamotrygonidae). Pan-Am. J. Aquat. Sci. 5, 454–464 (2010).
    Google Scholar 

    85.
    Wootton, T. J. & Power, M. E. Productivity, consumers, and the structure of a river food chain. Proc. Natl. Acad. Sci. USA 90, 1384–1387. https://doi.org/10.1073/pnas.90.4.1384 (1993).
    ADS  CAS  Article  PubMed  Google Scholar 

    86.
    Prepas, E. E. Total dissolved solids as a predictor of lake biomass and productivity. Can. J. Fish. Aquat. Sci. 40, 92–95. https://doi.org/10.1139/f83-015 (1983).
    Article  Google Scholar 

    87.
    Nixon, S. W. Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanol. Acta 2, 357–371 (1982).
    Google Scholar 

    88.
    Arbeláez, F., Duivenvoorden, J. F. & Maldonado-Ocampo, J. A. Geological differentiation explains diversity and composition of fish communities in upland streams in the southern Amazon of Colombia. J. Trop. Ecol. 24, 505–515. https://doi.org/10.1017/S0266467408005294 (2008).
    Article  Google Scholar 

    89.
    Pereira, M. J. R. et al. Structuring of Amazonian bat assemblages: the roles of flooding patterns and floodwater nutrient load. J. Anim. Ecol. 78, 1163–1171. https://doi.org/10.1111/j.1365-2656.2009.01591.x (2009).
    Article  PubMed  Google Scholar 

    90.
    Smith, N. J. H. A pesca no Rio Amazonas. (Instituto Nacional de Pesquisas da Amazônia, 1979).

    91.
    Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229. https://doi.org/10.1111/conl.12008 (2013).
    Article  Google Scholar 

    92.
    van der Sleen, P. & Albert, J. S. Field guide to the fishes of the Amazon, Orinoco, and Guianas (Princeton University Press, Princeton, 2017).
    Google Scholar 

    93.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2019).

    94.
    Oksanen, J. et al. The Vegan Package. Commun. Ecol. Pack. 10, 631–637 (2019).
    Google Scholar 

    95.
    Ripley, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. MASS: Functions and datasets to support Venables and Ripley, “Modern Applied Statistics with S” (4th Edition, 2002). (CRAN, 2017).

    96.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    97.
    Lenth, R. V., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package emmeans: Estimated marginal means, aka least-squares means. Compr. R. Arch. Netw. 2019, 1–67 (2019).
    Google Scholar  More

  • in

    Chemoselective transesterification and polymer synthesis using a zincate complex

    1.
    Kobayashi M, Matsumoto Y, Uchiyama M, Ohwada T. A new chemoselective anionic polymerization method for poly(N-isopropylacrylamide) (PNIPAm) in aqueous media: design and application of bulky zincate possessing little basicity. Macromolecules. 2004;37:4339–41.
    CAS  Article  Google Scholar 
    2.
    Uchiyama M, Kobayashi Y, Furuyama T, Nakamura S, Kajihara Y, Miyoshi T, et al. Generation and suppression of 3-/4-functionalized benzynes using zinc Ate Base (TMP−Zn−ate) :new approaches to multisubstituted benzenes. J Am Chem Soc. 2008;130:472–80.
    CAS  Article  Google Scholar 

    3.
    Furuyama T, Yonehara M, Arimoto S, Kobayashi M, Matsumoto Y, Uchiyama M. Development of highly chemoselective bulky zincate complex, tBu4ZnLi2: design, structure, and practical applications in small-/macromolecular synthesis. Chem Eur J. 2008;14:10348–56.
    CAS  Article  Google Scholar 

    4.
    Hirano T, Furutani T, Saito T, Segata T, Oshimura M, Ute K. Isotactic-specific anionic polymerization of N-isopropylacrylamide with dilithium tetra-tert-butylzincate in the presence of a fluorinated alcohol or Lewis acid. Polymer. 2012;53:4961–66.
    CAS  Article  Google Scholar 

    5.
    Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2019;38:3484–504. as a review
    Article  Google Scholar 

    6.
    Kitayama T, Yamaguchi H, Kanzawa T, Hirano T. Living ring-opening polymerization of ε-caprolactone with combinations of tert-butyllithium and bilky aluminium phenoxides. Polym Bull. 2000;45:97–104.
    CAS  Article  Google Scholar 

    7.
    Oshimura M, Okazaki R, Hirano T, Ute K. Ring-opening polymerization of ɛ-caprolactone with dilithium tetra-tert-butylzincate under mild conditions. Polym J. 2014;46:866–72.
    CAS  Article  Google Scholar 

    8.
    Oshimura M, Oda Y, Kondoh K, Hirano T, Ute K. Efficient acylation and transesterification catalyzed by dilithium tetra-tert-butylzincate at low temperatures. Tetrahedron Lett. 2016;57:2070–73.
    CAS  Article  Google Scholar 

    9.
    Nudelman A, Bechor Y, Falb E, Fischer B, Wexler BA, Nedelman A. Acetyl chloride-methanol as a convenient reagent for: A) quantitative formation of amine hydrochlorides B) carboxylate ester formation C) mild removal of N-t-BOC-protective group. Synth Commun.1998;28:471–4.
    CAS  Article  Google Scholar 

    10.
    Seebach D, Hungerbühler E, Naef R, Schnurrenberger P, Weidmann B, Züger M. Titanate-mediated transesterifications with functionalized substrates. Synthesis. 1982;2:138–41.
    Article  Google Scholar 

    11.
    Kim S, Lee JI. Copper ion promoted esterification of (S)-2-pyridyl thioates and 2-pyridyl esters. Efficient methods for the preparation of hindered esters. J Org Chem. 1984;49:1712–16.
    CAS  Article  Google Scholar 

    12.
    Otto MC. A simple, powerful, and efficient method for transesterification. J Chem Soc Chem Commun. 1986;9:695–7.
    Google Scholar 

    13.
    Taber DF, Amedio JC Jr, Patel YK. Selective benzoylation of diols with 1-(benzoyloxy)benzotriazole. J Org Chem. 1985;50:1751–2.
    Article  Google Scholar 

    14.
    Vedejs E, Bennett NS, Conn LM, Diver ST, Gringras M, Lin S, et al. Tributylphosphine-catalyzed acylations of alcohols: scope and related reactions. J Org Chem. 1993;58:7286–88.
    CAS  Article  Google Scholar 

    15.
    Grasa GA, Kissling RM, Nolan SP. N-heterocyclic carbenes as versatile nucleophilic catalysts for transesterification/acylation reactions. Org Lett. 2002;4:3583–86.
    CAS  Article  Google Scholar 

    16.
    Grasa GA, Güveli T, Singh R, Nolan SP. Efficient transesterification/acylation reactions mediated by n-heterocyclic carbene catalysts. J Org Chem. 2003;68:2812–19.
    CAS  Article  Google Scholar 

    17.
    Singh R, Kissling RM, Letellier M, Nolan SP. Transesterification/acylation of secondary alcohols mediated by N-heterocyclic carbene catalysts. J Org Chem. 2004;69:209–12.
    CAS  Article  Google Scholar 

    18.
    Nyce GW, Lamboy JA, Connor EF, Waymouth RM, Hedrick JL. Expanding the catalytic activity of nucleophilic N-heterocyclic carbenes for transesterification reactions. Org Lett. 2002;4:3587–90.
    CAS  Article  Google Scholar 

    19.
    Shirae Y, Mino T, Hasegawa T, Sakamoto M, Fujita T. ransesterification of various alcohols with vinyl acetate under mild conditions catalyzed by diethylzinc using N-substituted diethanolamine as a ligand. Tetrahedron Lett. 2005;46:5877–9.
    CAS  Article  Google Scholar 

    20.
    Mino T, Hasegawa T, Shirae Y, Sakamoto M, Fujita T. N,O-ligand accelerated zinc-catalyzed transesterification of alcohols with vinyl esters. J Organomet Chem. 2007;692:4389–96.
    CAS  Article  Google Scholar 

    21.
    Kwak H, Lee SH, Kim SH, Lee YM, Lee EY, Park BK, et al. Construction of ZnII compounds with a chelating 2,2’-dipyridylamine (Hdpa) ligand: anion effect and catalytic activities. Eur J Inorg Chem. 2008;3:408–15.
    Article  Google Scholar 

    22.
    Bosco JWJ, Agrahari A, Saikia AK. Molecular iodine-catalyzed selective acetylation of alcohols with vinyl acetate. Tetrahedron Lett. 2006;47:4065–8.
    CAS  Article  Google Scholar 

    23.
    Rathore PS, Advani J, Rathore S, Thakore S. Metal nanoparticles assisted amine catalyzed transesterification under ambient conditions. J Mol Catal A Chem. 2013;377:129–36.
    CAS  Article  Google Scholar 

    24.
    Lin MH, RajanBabu TV. Metal-catalyzed acyl transfer reactions of enol esters: role of Y5(OiPr)13O and (thd)2Y(OiPr) as transesterification catalysts. Org Lett. 2002;2:997–1000.
    Article  Google Scholar 

    25.
    Yoo DW, Han JH, Nam SH, Kim HJ, Kim C, Lee JK. Efficient transesterification by polymer-supported zinc complexes: clean and recyclable catalysts. Inorg Chem Commun. 2006;9:654–57.
    CAS  Article  Google Scholar 

    26.
    Oshimura M, Hirata T, Hirano T, Ute K. Synthesis of aliphatic polycarbonates by irreversible polycondensation catalyzed by dilithium tetra-tert-butylzincate. Polymer. 2017;131:50–5.
    CAS  Article  Google Scholar 

    27.
    Feng J, Zhuo RX, Zhang XZ. Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci. 2012;37:211–36.
    CAS  Article  Google Scholar 

    28.
    Naik PU, Refes K, Sadaka F, Brachais CH, Boni G, Couvercelle JP, et al. Organo-catalyzed synthesis of aliphatic polycarbonates in solvent-free conditions. Polym Chem. 2012;3:1475–80.
    CAS  Article  Google Scholar 

    29.
    Park JH, Jeon JY, Lee JJ, Jang Y, Varghese JK, Lee BY. Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules. 2013;46:3301–8.
    CAS  Article  Google Scholar 

    30.
    Wang L, Wang G, Wang F, Liu P. Transesterification between diphenyl carbonate and 1,6-hexandiol catalyzed by metal-organic frameworks based on Zn2+ and different aromatic carboxylic acids. Asian J Chem. 2013;25:5385–9.
    CAS  Article  Google Scholar 

    31.
    Wang Z, Yang X, Liu S, Hu J, Zhang H, Wang G. One-pot synthesis of high-molecular-weight aliphatic polycarbonates melt transesterification of diphenyl carbonate and diols using Zn(OAc)2 as a catalyst. RSC Adv. 2015;5:87311–9.
    CAS  Article  Google Scholar 

    32.
    Wang Z, Yang X, Li J, Liu S, Wang G. Synthesis of high-molecular-weight aliphatic polycarbonates from diphenyl carbonate and aliphatic diols by solid base. J Mol Catal A Chem. 2016;424:77–84.
    CAS  Article  Google Scholar 

    33.
    Fleischmann C, Anastasaki A, Gutekunst WR, McGrath AJ, Hustad PD, Clark PG, et al. Direct access to functional (meth)acrylate copolymers through transesterification with lithium alkoxides. J Polym Sci A Polym Chem. 2017;55:1566–74.
    CAS  Article  Google Scholar 

    34.
    Ito D, Ogura Y, Sawamoto M, Terashima T. Acrylate-selective transesterification of methacrylate/acrylate copolymers: postfunctionalization with common acrylates and alcohols. ACS Macro Lett. 2018;7:997–1002.
    CAS  Article  Google Scholar 

    35.
    Ohshima T, Iwasaki T, Maegawa Y, Yoshiyama A, Mashima K. Enzyme-like chemoselective acylation of alcohols in the presence of amines catalyzed by a tetranuclear zinc cluster. J Am Chem Soc. 2008;130:2944–5.
    CAS  Article  Google Scholar  More

  • in

    Variation and conservation implications of the effectiveness of anti-bear interventions

    1.
    Sathyakumar, S. & Viswanath, S. Observations on food habits of Asiatic black bear in Kedarnath Wildlife Sanctuary, India: preliminary evidence on their role in seed germination and dispersal. Ursus 14, 99–103 (2003).
    Google Scholar 
    2.
    Barua, M. Mobilizing metaphors: the popular use of keystone, flagship and umbrella species concepts. Biodivers. Conserv. 20, 1427–1440 (2011).
    Google Scholar 

    3.
    Rozylowicz, L., Popescu, V. D., Pătroescu, M. & Chişamera, G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 20, 561–579 (2011).
    Google Scholar 

    4.
    Ratnayeke, S. & van Manen, F. T. Assessing sloth bears as surrogates for carnivore conservation in Sri Lanka. Ursus 23, 206–217 (2012).
    Google Scholar 

    5.
    Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J. & Macdonald, D. W. Resolving human-bear conflict: a global survey of countries, experts, and key factors. Conserv. Lett. 7, 501–513 (2014).
    Google Scholar 

    6.
    Di Minin, E. et al. Global priorities for national carnivore conservation under land use change. Sci. Rep. 6, 23814. https://doi.org/10.1038/srep23814 (2016).
    ADS  CAS  Article  PubMed Central  Google Scholar 

    7.
    Linnell, J. D. C. et al. Border security fencing and wildlife: the end of the transboundary paradigm in Eurasia? PLoS Biol. 14, e1002483. https://doi.org/10.1371/journal.pbio.1002483 (2016).
    Article  PubMed Central  Google Scholar 

    8.
    Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052. https://doi.org/10.1098/rsos.170052 (2017).
    ADS  Article  PubMed Central  Google Scholar 

    9.
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).
    ADS  CAS  Google Scholar 

    10.
    IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org (2020).

    11.
    Linnell, J. D. C., Swenson, J. E. & Andersen, R. Conservation of biodiversity in Scandinavian boreal forests: large carnivores as flagships, umbrellas, indicators, or keystones? Biodivers. Conserv. 9, 857–868 (2000).
    Google Scholar 

    12.
    Fredrikkson, G. Human-sun bear conflicts in East Kalimantan, Indonesian Borneo. Ursus 16, 130–137 (2005).
    Google Scholar 

    13.
    Smith, T. S., Herrero, S., Debruyn, T. D. & Wilder, J. M. Efficacy of bear deterrent spray in Alaska. J. Wildl. Manage. 72, 640–645 (2008).
    Google Scholar 

    14.
    Kobashikawa, S., Trentin, B. & Koike, S. The benefit of wrapping trees in biodegradable material netting to protect against bark stripping by bears extends to surrounding stands. Forest Ecol. Manage. 437, 134–138 (2019).
    Google Scholar 

    15.
    Woodroffe, R., Frank, L. G., Lindsey, P. A., ole Ranah, S. M. K. & Romañach, S. Livestock husbandry as a tool for carnivore conservation in Africa’s community rangelands: a case-control study. Biodivers. Conserv. 16, 1245–1260 (2007).

    16.
    Davidson-Nelson, S. J. & Gehring, T. M. Testing fladry as a nonlethal management tool for wolves and coyotes in Michigan. Hum-Wildl. Interact. 4, 87–94 (2010).
    Google Scholar 

    17.
    Iliopoulos, Y. et al. Tools for co-existence: fladry corrals efficiently repel wild wolves (Canis lupus) from experimental baiting sites. Wildl. Res. 46, 484–498 (2019).
    Google Scholar 

    18.
    Andelt, W. F. & Hopper, S. N. Livestock guard dogs reduce predation on domestic sheep in Colorado. J. Range Manage. 53, 259–267 (2000).
    Google Scholar 

    19.
    Papworth, S. K. et al. Bear-proof fences reduce livestock losses in the Tibetan Autonomous Region China. Conserv. Evid. 11, 8–11 (2014).
    Google Scholar 

    20.
    Otto, T. E. & Roloff, G. J. Black bear exclusion fences to protect mobile apiaries. Hum-Wildl. Interact. 9, 78–86 (2015).
    Google Scholar 

    21.
    Di Vittorio, M., Costrini, P., Rocco, M., Bragalanti, N. & Borsetta, M. Assessing the efficacy of electric fences to prevent bear damage in Italy. Carnivore Damage Prevent. News 12, 31–37 (2016).
    Google Scholar 

    22.
    Yamazaki, K. Effects of pruning and brush clearing on debarking within damaged conifer stands by Japanese black bears. Ursus 14, 94–98 (2003).
    Google Scholar 

    23.
    Zimmermann, B., Wabakken, P. & Dötterer, M. Brown bear-livestock conflicts in a bear conservation zone in Norway: are cattle a good alternative to sheep? Ursus 14, 72–83 (2003).
    Google Scholar 

    24.
    Gore, M. L., Knuth, B. A., Scherer, C. W. & Curtis, P. D. Evaluating a conservation investment designed to reduce human-wildlife conflict. Conserv. Lett. 1, 136–145 (2008).
    Google Scholar 

    25.
    Breck, S. W. et al. Domestic calf mortality and producer detection rates in the Mexican wolf recovery area: implications for livestock management and carnivore compensation schemes. Biol. Conserv. 144, 930–936 (2011).
    Google Scholar 

    26.
    Kavčič, I., Adamič, M., Kaczensky, P., Krofel, M. & Jerina, K. Supplemental feeding with carrion is not reducing brown bear depredations on sheep in Slovenia. Ursus 24, 111–119 (2013).
    Google Scholar 

    27.
    Alldredge, M. W., Walsh, D. P., Sweanor, L. L., Davies, R. B. & Trujillo, A. Evaluation of translocation of black bears involved in human-bear conflicts in south-central Colorado. Wildl. Soc. Bull. 39, 334–340 (2015).
    Google Scholar 

    28.
    Bromley, C. & Gese, E. M. Surgical sterilization as a method of reducing coyote predation on domestic sheep. J. Wildl. Manage. 65, 510–519 (2001).
    Google Scholar 

    29.
    Hawley, J. E. et al. Developing a new shock-collar design for safe and efficient use on wild wolves. Wildl. Soc. Bull. 37, 416–422 (2013).
    Google Scholar 

    30.
    Hamr, J., Popp, J. N., Brown, D. L. & Mallory, F. F. Problem behaviour of black bears (Ursus americanus) in central Ontario: the effects of hunting and natural food availability. Anim. Biol. 65, 151–161 (2015).
    Google Scholar 

    31.
    Breck, S. W., Lance, N. & Callahan, P. A shocking device for protection of concentrated food sources from black bears. Wildl. Soc. Bull. 34, 23–26 (2006).
    Google Scholar 

    32.
    Miller, J. R. B. et al. Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores. Wildl. Soc. Bull. 40, 806–815 (2016).
    Google Scholar 

    33.
    Treves, A., Krofel, M. & McManus, J. Predator control should not be a shot in the dark. Front. Ecol. Environ. 14, 380–388 (2016).
    Google Scholar 

    34.
    Eklund, A., López-Bao, J. V., Tourani, M., Chapron, G. & Frank, J. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Sci. Rep. 7, 2097. https://doi.org/10.1038/s41598-017-02323-w (2017).
    ADS  CAS  Article  PubMed Central  Google Scholar 

    35.
    Van Eeden, L. M. et al. Managing conflict between large carnivores and livestock. Conserv. Biol. 32, 26–34 (2017).
    Google Scholar 

    36.
    Khorozyan, I. & Waltert, M. A framework of most effective practices in protecting human assets from predators. Hum. Dimens. Wildl. 24, 380–394 (2019).
    Google Scholar 

    37.
    Khorozyan, I. & Waltert, M. How long do anti-predator interventions remain effective? Patterns, thresholds and uncertainty. R. Soc. Open Sci. 6, 190826. https://doi.org/10.1098/rsos.190826 (2019).
    ADS  Article  PubMed Central  Google Scholar 

    38.
    Blackwell, B. F. et al. No single solution: application of behavioural principles in mitigating human-wildlife conflict. Anim. Behav. 120, 245–254 (2016).
    Google Scholar 

    39.
    Blumstein, D. T. Habituation and sensitization: new thoughts about old ideas. Anim. Behav. 120, 255–262 (2016).
    Google Scholar 

    40.
    Wooldridge, D. R. Polar bear electronic deterrent and detection systems. Int. Conf. Bear Res. Manage. 5, 264–269 (1983).
    Google Scholar 

    41.
    Beckmann, J. P., Lackey, C. W. & Berger, J. Evaluation of deterrent techniques and dogs to alter behavior of “nuisance” black bears. Wildl. Soc. Bull. 32, 1141–1146 (2004).
    Google Scholar 

    42.
    Obbard, M. E. et al. Relationships among food availability, harvest, and human-bear conflict at landscape scales in Ontario, Canada. Ursus 25, 98–110 (2014).
    Google Scholar 

    43.
    Sagør, J. T., Swenson, J. E. & Røskaft, E. Compatibility of brown bear Ursus arctos and free-ranging sheep in Norway. Biol. Conserv. 81, 91–95 (1997).
    Google Scholar 

    44.
    Morehouse, A. T. & Boyce, M. S. Evaluation of intercept feeding to reduce livestock depredation by grizzly bears. Ursus 28, 66–80 (2017).
    Google Scholar 

    45.
    Riley, S. J., Aune, K., Mace, R. D. & Madel, M. J. Translocation of nuisance grizzly bears in northwestern Montana. Int. Conf. Bear Res. Manage. 9, 567–573 (1994).
    Google Scholar 

    46.
    Wooldridge, D. R. & Belton, P. Natural and synthesized aggressive sounds as polar bear repellents. Bears Biol. Manag. 4, 85–91 (1980).
    Google Scholar 

    47.
    Huygens, O. C. & Hayashi, H. Using electric fences to reduce Asiatic black bear depredation in Nagano Prefecture, central Japan. Wildl. Soc. Bull. 27, 959–964 (1999).
    Google Scholar 

    48.
    Levin, M. Electrical fences against large predators. Carnivore Damage Prevent. News 2, 6–7 (2000).
    Google Scholar 

    49.
    Clark, J. D. et al. American black bears and bee yard depredation at Okefenokee Swamp, Georgia. Ursus 16, 234–244 (2005).
    Google Scholar 

    50.
    Seijas, J. M. et al. Effectiveness of brown bear damage protection measures to protect apiaries in the Cantambrian Mountains. Carnivore Damage Prevent. News 12, 26–30 (2016).
    Google Scholar 

    51.
    Parish, J. A. & Rheinhart, J. D. Calving season selection considerations. Mississippi State University Extension. Publication 2501 (POD-10–15). https://extension.msstate.edu (2015).

    52.
    Landa, A., Gudvangen, K., Swenson, J. E. & Røskaft, E. Factors associated with wolverine Gulo gulo predation on domestic sheep. J. Appl. Ecol. 36, 963–973 (1999).
    Google Scholar 

    53.
    Anderson, C. R., Ternent, M. A. & Moody, D. S. Grizzly bear-cattle interactions on two grazing allotments in northwest Wyoming. Ursus 13, 247–256 (2002).
    Google Scholar 

    54.
    Smith, T. S., Herrero, S., Layton, C. S., Larsen, R. T. & Johnson, K. R. Efficacy of firearms for bear deterrence in Alaska. J. Wildl. Manage. 76, 1021–1027 (2012).
    Google Scholar 

    55.
    Miller, G. D. Field tests of potential polar bear repellents. Int. Conf. Bear Res. Manage. 7, 383–390 (1987).
    Google Scholar 

    56.
    Rauer, G., Kaczensky, P. & Knauer, F. Experiences with aversive conditioning of habituated brown bears in Austria and other European countries. Ursus 14, 215–224 (2003).
    Google Scholar 

    57.
    Knarrum, V. et al. Brown bear predation on domestic sheep in central Norway. Ursus 17, 67–74 (2006).
    Google Scholar 

    58.
    Leigh, J. Effects of aversive conditioning on behavior of nuisance Louisiana black bears. MSc thesis. (Louisiana State University, 2007).

    59.
    Mazur, R. L. Does aversive conditioning reduce human-black bear conflict? J. Wildl. Manage. 74, 48–54 (2010).
    ADS  Google Scholar 

    60.
    Meadows, L. E. & Knowlton, F. F. Efficacy of guard llamas to reduce canine predation on domestic sheep. Wildl. Soc. Bull. 28, 614–622 (2000).
    Google Scholar 

    61.
    Hansen, I. & Smith, M. E. Livestock-guarding dogs in Norway. Part II: different working regimes. J. Range Manage. 52, 312–316 (1999).
    Google Scholar 

    62.
    Barrett, M. A., Telesco, D. J., Barrett, S. E., Widness, K. M. & Leone, E. H. Testing bear-resistant trash cans in residential areas of Florida. Southeast. Nat. 13, 26–39 (2014).
    Google Scholar 

    63.
    Johnson, H. E., Lewis, D. L., Lischka, S. A. & Breck, S. W. Assessing ecological and social outcomes of a bear-proofing experiment. J. Wildl. Manage. 82, 1102–1114 (2018).
    Google Scholar 

    64.
    Ziegltrum, G. J. Efficacy of black bear supplemental feeding to reduce conifer damage in western Washington. J. Wildl. Manage. 68, 470–474 (2004).
    Google Scholar 

    65.
    Stringham, S. F. & Bryant, A. Distance-dependent effectiveness of diversionary bear bait sites. Hum-Wildl. Interact. 9, 229–235 (2015).
    Google Scholar 

    66.
    Landriault, L. J., Brown, G. S., Hamr, J. & Mallory, F. F. Age, sex and relocation distance as predictors of return for relocated nuisance black bears Ursus americanus in Ontario, Canada. Wildl. Biol. 15, 155–164 (2009).
    Google Scholar 

    67.
    Treves, A., Kapp, K. J. & MacFarland, D. M. American black bear nuisance complaints and hunter take. Ursus 21, 30–42 (2010).
    Google Scholar 

    68.
    Lennox, R. J., Gallagher, A. J., Ritchie, E. G. & Cooke, S. J. Evaluating the efficacy of predator removal in a conflict-prone world. Biol. Conserv. 224, 277–289 (2018).
    Google Scholar 

    69.
    Goldstein, I. et al. Andean bear-livestock conflicts: a review. Ursus 17, 8–15 (2006).
    Google Scholar 

    70.
    Debata, S., Swain, K. K., Sahu, H. K. & Palei, H. S. Human-sloth bear conflict in a human-dominated landscape of northern Odisha, India. Ursus 27, 90–98 (2016).
    Google Scholar 

    71.
    Herrero, S. & Higgins, A. Field use of capsicum spray as a bear deterrent. Ursus 10, 533–537 (1998).
    Google Scholar 

    72.
    Andelt, W. F. Relative effectiveness of guarding-dog breeds to deter predation on domestic sheep in Colorado. Wildl. Soc. Bull. 27, 706–714 (1999).
    Google Scholar 

    73.
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).
    Google Scholar  More

  • in

    Integration of absolute multi-omics reveals dynamic protein-to-RNA ratios and metabolic interplay within mixed-domain microbiomes

    Taxonomic and functional resolution of the omics
    In order to explore the RNA/protein dynamics in a microbiome setting, we first needed to characterize our test community over time at the molecular level. We previously genomically reconstructed and resolved the SEM1b community, retrieving 11 metagenome-assembled genomes (MAGs) as well as two isolate genomes (see “Methods” section)10, covering the taxonomic and functional niches that are required to convert cellulosic material to methane/CO2 in an anaerobic biogas reactor15. Taxonomic analysis of both 16S rRNA genes and the MAGs of SEM1b inferred population-level affiliations to Rumini(Clostridium) thermocellum (RCLO1), Clostridium sp. (CLOS1), Coprothermobacter proteolyticus (COPR1, BWF2A, SW3C), Tepidanaerobacter (TEPI1-2), Synergistales (SYNG1-2), Tissierellales (TISS1), and the methanogen Methanothermobacter (METH1)10, as depicted in Fig. 1a. Herein we estimated that the total genomic potential of SEM1b includes 39,144 open reading frames (ORFs) (Supplementary Data 1). Since ORFs with very high sequence similarity may produce RNAs and proteins that are indistinguishable in MT and MP data, all the ORFs were gathered into ORF-groups (ORFGs) during the MT and MP data processing (see “Methods” section), where a singleton ORFG is defined as a group with a single ORF, and thus a single gene. Using this approach, our MT and MP data identified 12552 (96% singleton) and 3235 (78% singletons) highly transcribed and translated ORFGs, respectively. The discrepancy between the singleton percentages was as expected, due to the fact that variations in DNA/RNA sequences are greater than in proteins since different codons can code for the same amino acid (codon degeneracy). Degeneracy also implies that the chance to distinguish between homologous genes using MT is greater than using MP. Previous MG analyses using assembly algorithms have shown that genomic regions difficult to assemble in a given environmental contig can harbor variants from multiple, closely related strains, which can be further linked to normal strain-level variability within a population and species divergence16,17,18. Within SEM1b, the ORFGs that contained multiple homologous ORFs predominantly originated from several strains of a single species. For example, in the MT, 444 non-singleton ORFGs (88% of the total) contained ORFs from different strains of the same species, whilst this was the case for 294 ORFGs (32%) in the MP.
    Fig. 1: Life cycle of the SEM1b consortium and sampling scheme.

    a In the SEM1b consortium, seven major microbial populations perform the metabolic processes that lead from saccharification to methanogenesis. In the first phase, RCLO1 and CLOS1 degrade the spruce substrate (predominantly cellulose and hemicellulose), thanks to a sophisticated and flexible enzymatic array, which releases simple oligosaccharides and sugars. Subsequently, the consortium grows (the protein concentration in the samples increases) up to t4 (23 h post inoculum), alongside the degradation (and fermentation) of mono- and disaccharides by RCLO1, CLOS1, TEPI1, TISS1, and COPR1+ strains. One of the sugars released from the degradation of xylan, xylose, is briefly accumulated (Fig. 4a). In addition, SCFAs are accumulated as a byproduct of microbial fermentation. In the last step, the synergetic partnership between TEP1 and METH1 (syntrophic acetate oxidizer and methanogen, respectively) converts the SCFAs and H2 to methane. The bars in the protein profile represent the maxima and minima of the measurements. b To characterize SEM1b, 24 flasks containing spruce media were inoculated with a SEM1b culture at t0. Starting from t1 (8 h), three flasks were opened every 5 h and their content processed. From the eight time points (plus t0) different omic- and meta-data were collected (depicted in the table). Every dot represents a replicate sample, and most measurements are taken in triplicate (except for cellulose degradation).

    Full size image

    All ORFs were annotated using KEGG Ontology (KO), and at least one term was found for 19070 (49%) representatives from our complete data set (Supplementary Data 2). The predominant ORF annotations included Membrane transport, Carbohydrate metabolism, Translation, Amino acid metabolism, and Replication and repair (Supplementary Fig. 1). As expected, these functional categories were also among the top five most abundant for the MT, and top six in MP (plus Energy metabolism), although in a different order. The Membrane transport category is poorly represented in the MP (2% of the terms), which is likely explained by well-known technical issues with the gel-based sample preparation method that we used, which limits the extraction of transmembrane proteins19. The most abundant annotation categories mentioned above are all in line with the community function of cellulose degradation. The abundance ranking of the KO categories was assessed using the Kendall τ, which takes values from −1 (opposite direction of the ranking) to +1 (total agreement in ranking). Its score is interpreted as a correlation measure; however, it is more conservative. The ranking is largely preserved from MG to MT (Kendall τ: 0.77, p  More

  • in

    Symbiotic fouling of Vetulicola, an early Cambrian nektonic animal

    Systematic palaeontology
    Clade Bilateria, Clade Protostomia
    Vermilituus gregarius gen. et sp. nov.
    Etymology: Genus name from vermis (Latin) meaning worm and lituus (Latin) meaning a curved trumpet, alluding to the shape of the fossils. Species name from gregarius (Latin), meaning flock or herd.
    Holotype: YKLP 13079a, b (counterparts), U-shaped tube (Fig. 1a, b), 6.5-mm long, and reaching a maximum width of 0.6 mm: the holotype is associated with Vetulicola rectangulata YKLP 13075a, b. Paratypes (with preserved shell annulation), YKLP 13084 and 13085 (Fig. 1c, f) associated with V. rectangulata YKLP 13074, and YKLP 13082 and 13083 (Fig. 1e) associated with V. rectangulata YKLP 13073.
    Fig. 1: Different styles of preservation and morphology of Vermilituus gregarius.

    a, b Holotype, YKLP 13079a, flattened specimen showing U-shape morphology, under cross-polarised light (a) and fluorescence light (b). c Paratype YKLP 13084, partial 3D with well-preserved annulation, J-shape morphology. d, h YKLP 13086 under direct light (d) and fluorescence light (h), white arrow shows possible soft tissues. e Paratypes YKLP 13082 and 13083, preserved in 3D with annulation visible proximally: sinusoidal shape and J-shape morphology, respectively (the latter is broken distally and shows sediment fill). f Paratype YKLP 13085, partial 3D with well-preserved annulation, sinusoidal morphology. g, i–k Scanning electron microscopy images. g YKLP 13087 with J-shape morphology. i, j YKLP 13088, boxed area in “i” shows possible paired soft tissues at the termination, magnified in “j”. k YKLP 13089, with possible paired soft tissues at the terminal end. Scale bars: a–d, g–i, k, 500 μm; e, f, 1 mm; j, 200 μm.

    Full size image

    Referred material: About 192 specimens from Ercaicun, 75 from Mafang and 10 from Jianshan associated with Vetulicola rectangulata, all in the collections of the Yunnan Key Laboratory for Palaeobiology (YKLP). In total, 17 specimens from Xiaolantian and 55 specimens from Heimadi associated with Vetulicola cuneata, all in the collections of the Chengjiang Fossil Museum (CJHMD, Supplementary data file).
    Locality: Ercaicun (type locality), Mafang and Jianshan localities in the Haikou area of Kunming, and Xiaolantian and Heimadi in Chengjiang County, Yunnan Province, China (for localities see ref. 5).
    Horizon: Yu’anshan Member, Chiungchussu Formation, Eoredlichia-Wutingaspis trilobite Biozone, Nangaoan Stage of Chinese regional usage, Cambrian Series 2, Stage 3. All specimens are from rapidly sedimented ‘event beds’5.
    Diagnosis for genus (monotypic) and species. Small (0.8–7.2-mm long) elongated, conical tubes having three general forms, as a U-shape, J-shape or complex sinusoid, the latter being the dominant type: occasionally the tube also begins with a 360° planispiral coil before straightening. Coiling can be both dextral and sinistral and is in a single plane. The proximal end of the tube blunts (no bulb-like origin). Tubes increase in diameter very slowly, the proximal diameter being about 0.2 mm and the distal diameter reaching 1 mm. No longitudinal ornament. The transverse ornament of the tube consists of distinct annulation, there being about 12–16 annulae per mm. Most tubes are discrete, but in some cases two or more tubes cross. The tube wall appears to be very thin, and there is no evidence of internal septae, pseudopunctae or punctae. Paired crescentic structures are preserved at the open end of the tube in some specimens.
    Host–symbiont association
    All specimens of Vermilituus gregarius are associated with vetulicolians, a group of extinct animals of disputed phylogenetic affinity that possessed a convex anterior part with frontal and lateral openings, articulating with a tail-like posterior extension (Figs. 2–6; Supplementary Figs. 1 and 2; for a summary of vetulicolians see ref. 6). The soft anatomy of these animals is largely unknown, but the anterior part of Vetulicola has been hypothesised to comprise a pharynx with gill-like structures that flexed by means of horizontal and longitudinal muscle fibres attached to four flexible plates covered by a thin outer membrane (see below).
    Fig. 2: Vetulicola cuneata infested by Vermilituus gregarius.

    a CJHMD 00031a, right view of the internal mould. Specimen infested with circa 20 V. gregarius. b CJHMD 00031b, left view of the internal mould. c Close-up of the area indicated in the box of image “a”, showing concentration of V. gregarius specimens in the anterior section. d, e CJHMD 00032b, interior surface of the right side (dorsal to top) of the anterior section, and close-up of a sinusoidal V. gregarius tube. f Enlargement of arrowed area in image “a”, showing concentration of three specimens along the central groove. An—anus, Ao—anterior opening, As—anterior section, Dp—posterodorsal projection, Lg—lateral groove, Lp—lateral pouch, Ls—lip-like structure, Ps—posterior section, S—segment, Vp—posteroventral projection (see ref. 2 for terminology). Scale bars: a, b, d 1 cm; c 5 mm; e, f 1 mm.

    Full size image

    Fig. 3: Vetulicola rectangulata infested by Vermilituus gregarius.

    a, b YKLP 13073, left view of the internal mould of the anterior section (incomplete) and part of the posterior section. Specimen infested with circa 46 V. gregarius, with one aggregate toward the anterodorsal area (seen in “b”) comprising 29 specimens. c–f YKLP 13075, left view of the internal mould of the anterior section, and composite mould of the posterior section infested with 88 V. gregarius, including three aggregates of between 10 and 25 specimens (e.g., seen in “e”), and concentration of 24 specimens along the central groove (close-up in “f”): note that these are oriented with the narrow end associated with the groove. This specimen also shows four specimens in the tail (“d”). g, h YKLP 13074, right view of the internal mould of the anterior section infested with about 52 V. gregarius that form aggregates of between 5 and 14, including those that preserve annulation (“h”). Scale bars: a, c, g, 1 mm; b, d, e, f, h 2 mm.

    Full size image

    Fig. 4: Vetulicola cuneata, CJHMD 00033 showing taphonomic relationships with Vermilituus gregarius.

    Stereo images have a tilt of 20°, to emphasise that both the worms and the Vetulicola are 3-dimensional. a, b Lateral view (stereo pair) of the whole specimen and c, d close-up of the anterior section (stereo pair), respectively. The specimen is a composite mould, with the external surface (ES) evident only in part of the posterior section, while most of the fossil shows an interior surface (see also Supplementary Fig. 3). Scale bars: a, b 1 cm; c, d 5 mm.

    Full size image

    Fig. 5: Host specificity of Vermilituus gregarius with Vetulicola cuneata.

    a CJHMD 00033, Vetulicola cuneata preserved on rock slab with the fossil Eldonia. Vetulicola infested with circa 17 V. gregarius. Note that Eldonia was not infested. b CJHMD 00034, Vetulicola infested with circa 34 V. gregarius. c Close-up of the area indicated in the box of image “a”, showing one V. gregarius specimen near the anterior opening. d, e Close-up of the area indicated in the box of image “b”, showing concentration of three specimens along the central groove and one specimen at the position of the junction between the anterior and posterior section. Scale bars: a, b 1 cm; c–e 2 mm.

    Full size image

    Fig. 6: Reconstruction of Vetulicola cuneata (left) and V. rectangulata (right) in life.

    Infestation by Vermilituus gregarius is below the surface of the anterior section, that is, within the exoskeleton. Reconstructions are based on specimens about 6-cm long.

    Full size image

    Vermilituus gregarius occurs in four specimens of Vetulicola cuneata from the Chengjiang region (Figs. 2, 4, and 5), plus six specimens of Vetulicola rectangulata from the Haikou region (Fig. 3; Supplementary Figs. 1 and 2; Supplementary data file). Overall, at least 400 specimens of V. rectangulata and 80 specimens of V. cuneata have been collected from the Chengjiang biota (YKLP and CJHMD collections), meaning that Vermilituus gregarius is a rare associate of vetulicolians. Vetulicolian fossils occur as composite moulds where the rock splits through the specimen, each part containing components of both the external and internal surfaces (Supplementary Fig. 3). For the anterior part of Vetulicola, we interpret Vermilituus gregarius as occupying the space between the interior of the exoskeleton, and the convex surface that appears to demarcate the position of the internal anatomy (Figs. 2a–c, 3a, b, g, 4a, b; Supplementary Figs. 1b–e, 2a, b).
    The number of Vermilituus gregarius per associated vetulicolian is variable, ranging from a single tube to 88 individuals (Supplementary data file), and in some cases, V. gregarius occurs in local aggregates of up to 25 individuals, for example in YKLP 13075 (Fig. 3c, e, f). In most cases where V. gregarius aggregates, the individuals are discrete, but occasionally some overlap. The overall size of V. gregarius is from 0.8 to 7.2 mm in length, with maximum diameter ranging from 0.4 to 1 mm (proximal width is circa 0.2 mm). Average tube length varies within individual Vetulicola specimens (Supplementary data file), by a minimum of 1.6 mm (specimens associated with CJHMD 00031) to a maximum of 6.4 mm (specimens associated with YKLP 13073).
    Rather than representing post-mortem assemblages, or the result of Vermilituus scavenging or colonising vetulicolian carcasses, all evidence suggests that Vermilituus attached to the body surfaces of living vetulicolians. All infested vetulicolians are preserved within ‘event beds’5. This means that they were rapidly buried by sediment, and therefore post-mortem colonisation at the seabed is highly unlikely. Tubes of Vermilituus gregarius occur almost exclusively inside the vetulicolians, rather than the external body surface, and preferentially within the anterior part (Figs. 2–5; Supplementary Figs. 1 and 2). They are absent from other fossils preserved adjacent on the same slabs (Fig. 5a), and indeed have never been observed in other Chengjiang fossils in our investigations over the last three decades. Most specimens of V. gregarius occur in the anterior section of the vetulicolian body (n  > 345) (Figs. 2–5, Supplementary Figs. 1 and 2), with just 4 specimens associated with the posterior section of the most-infested specimen in our collection (YKLP 13075, Fig. 3d). In this rare case, V. gregarius may have over-spilled onto the external surface of the animal or has been displaced post-mortem. Among those in the anterior part, most are located in the convex area between the central groove and the fin-like margins, with some concentrations often in the anterodorsal region (Fig. 3a, b). Only a few tubes of V. gregarius occur along the margins of Vetulicola. In one case, at least 10 U-shaped tubes grow with a posterior orientation in Vetulicola YKLP 10906 (Supplementary Fig. 1e). In Vetulicola YKLP 13075, there is a clear association of 24 V. gregarius with the central groove (Fig. 3f), each having a distinctive orientation with the narrow end of the tube pointing towards the groove.
    The consistent occurrence of Vermilituus gregarius inside the anterior section of vetulicolians, combined with the observed patterns of localisation and occasional preferred orientation (Supplementary data file), argues against a chance post-mortem association, or generalist epibiontic habit. In the latter scenarios, the posterior section should also be infested. Furthermore, V. gregarius is absent from any other fossil organism in the Chengjiang biota, suggesting a highly specific relationship. The robust (possibly biomineralised) and curved tubes of V. gregarius are consistent with a sessile, attached ecology, but not with a motile scavenger that might have fed on vetulicolians after death. The size range of Vermilituus on each specimen (Supplementary data file) suggests animals growing in situ for some time, rather than colonising carrion. In addition, the lack of evidence for decay and disarticulation of infested vetulicolians combined with their preservation in event beds supports an in vivo association. In this light, the observed patterns in size, number and distribution of V. gregarius tubes also shed light on vetulicolian biology and the ecological relationship between the taxa. More

  • in

    The influence of Arctic Fe and Atlantic fixed N on summertime primary production in Fram Strait, North Greenland Sea

    1.
    Pabi, S., Van Dijken, G. L. & Arrigo, K. R. Primary production in the Arctic Ocean, 1998–2006. J. Geophys. Res. 113, 1998–2006 (2008).
    Google Scholar 
    2.
    Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochemical Cycles 24, GB3016 (2010).
    ADS  Google Scholar 

    3.
    Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).
    ADS  Google Scholar 

    4.
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
    ADS  CAS  Google Scholar 

    5.
    de Baar, H. J. W. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocea. Nature 373, 412–415 (1995).
    ADS  Google Scholar 

    6.
    Tremblay, J. -É & Gagnon, J. The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. In Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions (eds Nihoul, J. C. J. & Kostianoy, A. G.) 73–89 (Springer, Berlin, 2009).
    Google Scholar 

    7.
    De Jong, J. T. M. et al. Sources and fluxes of dissolved iron in the Bellingshausen Sea (West Antarctica): the importance of sea ice, icebergs and the continental margin. Mar. Chem. 177, 518–535 (2015).
    Google Scholar 

    8.
    Popova, E. E. et al. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J. Geophys. Res. Ocean. 117, (2012).

    9.
    Nielsdóttir, M. C., Moore, C. M., Sanders, R., Hinz, D. J. & Achterberg, E. P. Iron limitation of the postbloom phytoplankton communities in the Iceland Basin. Glob. Biogeochem. Cycles 23, 1–13 (2009).
    Google Scholar 

    10.
    Ryan-Keogh, T. J. et al. Spatial and temporal development of phytoplankton iron stress in relation to bloom dynamics in the high-latitude North Atlantic Ocean. Limnol. Oceanogr. 58, 533–545 (2013).
    ADS  Google Scholar 

    11.
    Taylor, R. L. et al. Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer. J. Geophys. Res. Ocean. 118, 3260–3277 (2013).
    ADS  Google Scholar 

    12.
    Findlay, H. S. et al. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic. Polar Res. 34, 24170 (2015).
    Google Scholar 

    13.
    Mills, M. M. et al. Nitrogen limitation of the summer phytoplankton and heterotrophic prokaryote communities in the Chukchi Sea. Front. Mar. Sci. 5, 1–22 (2018).
    ADS  Google Scholar 

    14.
    Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 1–9 (2018).
    CAS  Google Scholar 

    15.
    Codispoti, L. A. et al. Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production. Prog. Oceanogr. 110, 126–150 (2013).
    ADS  Google Scholar 

    16.
    Schauer, U. et al. Variation of measured heat flow through the Fram Strait between 1997 and 2006. In Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate (eds Dickson, R. R. et al.) 65–85 (Springer, Berlin, 2008).
    Google Scholar 

    17.
    Mouginot, J. et al. Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science (80-, ) 350, 1357–1361 (2015).
    ADS  CAS  Google Scholar 

    18.
    Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R. & Kloster, K. Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere 11, 65–79 (2017).
    ADS  Google Scholar 

    19.
    Rijkenberg, M. J. A., Slagter, H. A., Rutgers Van Der Loeff, M., Ooijen, J. Van. & Gerringa, L. J. A. Dissolved Fe in the deep and upper Arctic Ocean with a focus on Fe limitation in the Nansen Basin. Front. Mar. Sci. 5, 88 (2018).
    Google Scholar 

    20.
    de Steur, L. et al. Freshwater fluxes in the East Greenland Current: a decade of observations. Geophys. Res. Lett. 36, 1–5 (2009).
    Google Scholar 

    21.
    Beszczynska-Möller, A., Woodgate, R. A., Lee, C., Melling, H. & Karcher, M. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography 24, 82–99 (2011).
    Google Scholar 

    22.
    Rudels, B. Arctic ocean circulation. in Encyclopedia of Ocean Sciences 262–277 (Elsevier Inc., 2019). https://doi.org/10.1016/B978-0-12-409548-9.11209-6

    23.
    Laukert, G. et al. Ocean circulation and freshwater pathways in the Arctic Mediterranean based on a combined Nd isotope, REE and oxygen isotope section across Fram Strait. Geochim. Cosmochim. Acta 202, 285–309 (2017).
    ADS  CAS  Google Scholar 

    24.
    Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: a review and perspectives. Prog. Oceanogr. 139, 66–88 (2015).
    ADS  Google Scholar 

    25.
    Rudels, B. et al. The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: Results from the Arctic Ocean-02 Oden expedition. J. Mar. Syst. 55, 1–30 (2005).
    Google Scholar 

    26.
    Lalande, C. et al. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait. Deep. Res. Part I Oceanogr. Res. Pap. 114, 78–89 (2016).
    ADS  Google Scholar 

    27.
    Norwegian Polar Institute. Sea ice extent in the Fram Strait in September, 1979–2018. Environmental Monitoring of Svalbard and Jan Mayen (MOSJ) (2020). https://www.mosj.no/en/climate/ocean/sea-ice-extent-barents-sea-fram-strait.html. Accessed 10th January 2020.

    28.
    de Steur, L., Peralta-Ferriz, C. & Pavlova, O. Freshwater export in the East Greenland current freshens the North Atlantic. Geophys. Res. Lett. 45, 13359–13366 (2018).
    ADS  Google Scholar 

    29.
    Marnela, M., Rudels, B., Houssais, M.-N., Beszczynska-Möller, A. & Eriksson, P. B. Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data. Ocean Sci. 9, 499–519 (2013).
    ADS  Google Scholar 

    30.
    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).
    Google Scholar 

    31.
    de Steur, L., Hansen, E., Mauritzen, C., Beszczynska-Möller, A. & Fahrbach, E. Impact of recirculation on the East Greenland Current in Fram Strait: Results from moored current meter measurements between 1997 and 2009. Deep. Res. Part I Oceanogr. Res. Pap. 92, 26–40 (2014).
    ADS  Google Scholar 

    32.
    Grasshoff, K., Kremlingl, K. & Ehrhardt, M. Methods of Seawater Analysis (Wiley, Hoboken, 1999). https://doi.org/10.1002/9783527613984.
    Google Scholar 

    33.
    Cutter, G. et al. Sampling and Sample-handling Protocols for GEOTRACES Cruises. (2014).

    34.
    Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Anal. Chim. Acta 976, 1–13 (2017).
    CAS  PubMed  Google Scholar 

    35.
    Moore, C. M. Diagnosing oceanic nutrient deficiency. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150290 (2016).
    ADS  Google Scholar 

    36.
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).
    ADS  CAS  PubMed  Google Scholar 

    37.
    Achterberg, E. P. et al. Natural iron fertilization by the Eyjafjallajökull volcanic eruption. Geophys. Res. Lett. 40, 921–926 (2013).
    ADS  CAS  Google Scholar 

    38.
    Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).
    ADS  CAS  Google Scholar 

    39.
    Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910, 31–49 (2001).
    PubMed  Google Scholar 

    40.
    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).
    ADS  CAS  Google Scholar 

    41.
    Coupel, P. et al. Pigment signatures of phytoplankton communities in the Beaufort Sea. Biogeosciences 12, 991–1006 (2015).
    ADS  Google Scholar 

    42.
    Hong, C. N. et al. Sediment efflux of silicon on the Greenland margin and implications for the marine silicon cycle. Earth Planet. Sci. Lett. 529, 115877 (2020).
    Google Scholar 

    43.
    Tonnard, M. et al. Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01). Biogeosciences 17, 917–943 (2020).
    ADS  Google Scholar 

    44.
    Colombo, M., Jackson, S. L., Cullen, J. T. & Orians, K. J. Dissolved iron and manganese in the Canadian Arctic Ocean: On the biogeochemical processes controlling their distributions. Geochim. Cosmochim. Acta (2020). (in press).

    45.
    Ardiningsih, I. et al. Natural Fe-binding organic ligands in Fram Strait and over the Northeast Greenland shelf. Mar. Chem. 224, (2020).

    46.
    Le Moigne, F. A. C. et al. Sequestration efficiency in the iron-limited North Atlantic: implications for iron supply mode to fertilized blooms. Geophys. Res. Lett. 41, 4619–4627 (2014).
    ADS  Google Scholar 

    47.
    Beszczynska-Möller, A. & Wisotzki, A. Physical oceanography during POLARSTERN cruise ARK-XXIII/2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA (2010). https://doi.org/10.1594/PANGAEA.733424.

    48.
    Kattner, G. & Ludwichowski, K.-U. Inorganic nutrients measured on water bottle samples during POLARSTERN cruise ARK-XXIII/2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA (2014). https://doi.org/10.1594/PANGAEA.832402.

    49.
    Randelhoff, A., Fer, I., Sundfjord, A., Tremblay, J. -É & Reigstad, M. Vertical fluxes of nitrate in the seasonal nitracline of the Atlantic sector of the Arctic Ocean. J. Geophys. Res. Ocean. 121, 3010–3028 (2016).
    Google Scholar 

    50.
    Achterberg, E. P. et al. Iron biogeochemistry in the high latitude North Atlantic ocean. Sci. Rep. 8, 1–15 (2018).
    ADS  CAS  Google Scholar 

    51.
    Torres-Valdés, S. et al. Export of nutrients from the Arctic Ocean. J. Geophys. Res. 118, 1625–1644 (2013).
    ADS  Google Scholar 

    52.
    Ooijen, J. Van, Rijkenberg, M. J. A., Gerringa, L. J. A., Rabe, B. & van der Loeff, M. R. Inorganic nutrients measured on water bottle samples during POLARSTERN cruise PS94 (ARK-XXIX/3). (2016). https://doi.org/10.1594/PANGAEA.868396

    53.
    Slagter, H. A. et al. Organic Fe speciation in the Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM. Mar. Chem. 197, 11–25 (2017).
    CAS  Google Scholar 

    54.
    Gerringa, L. J. A., Rijkenberg, M. J. A. & Slagter, H. A. Dissolved iron measured on board with Flow injection analysis and iron-binding dissolved organic ligands from Ultra Clean CTD collected depth profiles during GEOTRACES PS94 Arctic cruise on Polarstern. (2018). https://doi.org/10.1594/PANGAEA.890975

    55.
    Krawczyk, D. W. et al. Seasonal succession, distribution, and diversity of planktonic protists in relation to hydrography of the Godthåbsfjord system (SW Greenland). Polar Biol. 41, 2033–2052 (2018).
    Google Scholar 

    56.
    Meire, L. et al. High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 43, 9173–9182 (2016).
    ADS  CAS  Google Scholar 

    57.
    Nöthig, E.-M. et al. Summertime plankton ecology in Fram Strait: a compilation of long- and short-term observations. Polar Res. 34, 1–18 (2015).
    Google Scholar 

    58.
    Moore, C. M. et al. Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol. Oceanogr. 53, 291–305 (2008).
    ADS  CAS  Google Scholar 

    59.
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre_Supplementary Material. Nature 551, 242–246 (2017).
    ADS  CAS  PubMed  Google Scholar 

    60.
    Kattner, G. & Budéus, G. Nutrient status of the Northeast Water Polynya. J. Mar. Syst. 10, 185–197 (1997).
    Google Scholar 

    61.
    Smith, R. E. H., Gosselin, M. & Taguchi, S. The influence of major inorganic nutrients on the growth and physiology of high arctic ice algae. J. Mar. Syst. 11, 63–70 (1997).
    Google Scholar 

    62.
    Maestrini, S. Y., Rochet, M., Legendre, L. & Demers, S. Nutrient limitation of the bottom-ice microalgal biomass (southeastern Hudson Bay, Canadian Arctic). Lim 31, 969–982 (1986).
    ADS  CAS  Google Scholar 

    63.
    Ortega-Retuerta, E., Jeffrey, W. H., Ghiglione, J. F. & Joux, F. Evidence of heterotrophic prokaryotic activity limitation by nitrogen in the Western Arctic Ocean during summer. Polar Biol. 35, 785–794 (2012).
    Google Scholar 

    64.
    Mann, E. L. & Chisholm, S. W. Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol. Oceanogr. 45, 1067–1076 (2000).
    ADS  CAS  Google Scholar 

    65.
    Vernet, M. et al. Influence of phytoplankton advection on the productivity along the Atlantic water inflow to the Arctic Ocean. Front. Mar. Sci. 6(583), 1–18 (2019).
    Google Scholar 

    66.
    Moore, C. M. et al. Iron limits primary productivity during spring bloom development in the central North Atlantic. Glob. Chang. Biol. 12, 626–634 (2006).
    ADS  Google Scholar 

    67.
    Browning, T. J. et al. Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic. Limnol. Oceanogr. 9999, 1–13 (2019).
    Google Scholar 

    68.
    Blain, S. et al. Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean. Limnol. Oceanogr. 49, 2095–2104 (2004).
    ADS  CAS  Google Scholar 

    69.
    Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).
    ADS  CAS  Google Scholar 

    70.
    Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Ann. Rev. Mar. Sci. 5, 191–215 (2013).
    PubMed  Google Scholar 

    71.
    Saito, M. A. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science (80-. ) 345, 1173–1177 (2014).
    ADS  CAS  Google Scholar 

    72.
    Ward, B. A., Dutkiewicz, S., Moore, C. M. & Follows, M. J. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 58, 2059–2075 (2013).
    ADS  CAS  Google Scholar 

    73.
    Hattermann, T., Isachsen, P. E., Von Appen, W. J., Albretsen, J. & Sundfjord, A. Eddy-driven recirculation of Atlantic Water in Fram Strait. Geophys. Res. Lett. 43, 3406–3414 (2016).
    ADS  Google Scholar 

    74.
    Klunder, M. B. et al. Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt. J. Geophys. Res. Ocean. 117, 1–18 (2012).
    Google Scholar 

    75.
    Charette, M. A. et al. The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean. J. Geophys. Res. Ocean. 125, e2019JC015920 (2020).
    ADS  Google Scholar 

    76.
    Yamamoto-Kawai, M., Carmack, E. & McLaughlin, F. Nitrogen balance and Arctic throughflow. Nature 443, 43 (2006).
    ADS  CAS  PubMed  Google Scholar 

    77.
    Rijkenberg, M. J. A. et al. The distribution of dissolved iron in the West Atlantic Ocean. PLoS ONE 9, 1–14 (2014).
    Google Scholar 

    78.
    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. Ocean. 109, 1–20 (2004).
    Google Scholar 

    79.
    Randelhoff, A., Sundfjord, A. & Reigstad, M. Seasonal variability and fluxes of nitrate in the surface waters over the Arctic shelf slope. Geophys. Res. Lett. 42, 3442–3449 (2015).
    ADS  CAS  Google Scholar 

    80.
    Randelhoff, A. et al. Pan-Arctic ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. 7, 1–15 (2020).
    Google Scholar 

    81.
    Rafter, P. A., Sigman, D. M. & Mackey, K. R. M. Recycled iron fuels new production in the eastern equatorial Pacific Ocean. Nat. Commun. 8, 1100 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    82.
    Stohl, A. et al. Arctic smoke: record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys. 7, 511–534 (2007).
    ADS  CAS  Google Scholar 

    83.
    Marsay, C. M. et al. Concentrations, provenance and flux of aerosol trace elements during US GEOTRACES Western Arctic cruise GN01. Chem. Geol. 502, 1–14 (2018).
    ADS  CAS  Google Scholar 

    84.
    Conca, E. et al. Source identification and temporal evolution of trace elements in PM10 collected near to Ny-Ålesund (Norwegian Arctic). Atmos. Environ. 203, 153–165 (2019).
    ADS  CAS  Google Scholar 

    85.
    Kadko, D. et al. The residence times of trace elements determined in the surface Arctic Ocean during the 2015 US Arctic GEOTRACES expedition. Mar. Chem. 208, 56–69 (2019).
    CAS  Google Scholar 

    86.
    Wehrmann, L. M. et al. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): evidence for a benthic recycling-transport mechanism. Geochim. Cosmochim. Acta 141, 628–655 (2014).
    ADS  CAS  Google Scholar 

    87.
    Bown, J. et al. Evidences of strong sources of DFe and DMn in Ryder Bay, Western Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170172 (2018).
    ADS  Google Scholar 

    88.
    Bucciarelli, E., Blain, S. & Tréguer, P. Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean). Mar. Chem. 73, 21–36 (2001).
    CAS  Google Scholar 

    89.
    Nishino, S. et al. Enhancement/Reduction of biological pump depends on ocean circulation in the sea-ice reduction regions of the Arctic Ocean. J. Oceanogr. 67, 305–314 (2011).
    CAS  Google Scholar 

    90.
    Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B. & Rigor, I. G. Increased fluxes of shelf-derived materials to the central arctic ocean. Sci. Adv. 4, 1–10 (2018).
    Google Scholar 

    91.
    Mayot, N. et al. Springtime export of Arctic Sea ice influences phytoplankton production in the Greenland Sea. J. Geophys. Res. Ocean. 125, 1–16 (2020).
    Google Scholar 

    92.
    Randelhoff, A. et al. The evolution of light and vertical mixing across a phytoplankton ice-edge bloom. Elem. Sci. Anthr. 7, 1–19 (2019).
    Google Scholar 

    93.
    Kahru, M., Brotas, V., Manzano-Sarabia, M. & Mitchell, B. G. Are phytoplankton blooms occurring earlier in the Arctic?. Glob. Chang. Biol. 17, 1733–1739 (2011).
    ADS  Google Scholar 

    94.
    Ardyna, M. et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem. Sci. Anthr. 8, 30 (2020).
    Google Scholar 

    95.
    Tremblay, J. É et al. Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J. Geophys. Res. Ocean. 113, 1–14 (2008).
    Google Scholar 

    96.
    Castro de la Guardia, L. et al. Assessing the role of high-frequency winds and sea ice loss on arctic phytoplankton blooms in an ice-ocean-biogeochemical model. J. Geophys. Res. Biogeosci. 124, 2728–2750 (2019).
    ADS  Google Scholar 

    97.
    Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).
    ADS  Google Scholar 

    98.
    Wang, Q. et al. Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophys. Res. Lett. 47, e2019GL086682 (2020).
    ADS  Google Scholar 

    99.
    Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, 1–6 (2008).
    Google Scholar 

    100.
    Carmack, E. C., Macdonald, R. W. & Steve, J. Phytoplankton productivity on the Canadian Shelf of the Beaufort Sea. Mar. Ecol. Prog. Ser. 277, 37–50 (2004).
    ADS  Google Scholar 

    101.
    Lasternas, S. & Agustí, S. Phytoplankton community structure during the record Arctic ice-melting of summer 2007. Polar Biol. 33, 1709–1717 (2010).
    Google Scholar 

    102.
    Harding, K. et al. Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proc. Natl. Acad. Sci. 115, 13371–13375 (2018).
    CAS  PubMed  Google Scholar 

    103.
    Sipler, R. E. et al. Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget. Limnol. Oceanogr. 2, 159–166 (2017).
    Google Scholar 

    104.
    Zehr, J. P. & Kudela, R. M. Nitrogen cycle of the open ocean: from genes to ecosystems. Annu. Rev. Mar. Sci. 3, 197–225 (2011).
    ADS  Google Scholar 

    105.
    Acker, J. G. & Leptoukh, G. Online analysis enhances use of NASA Earth Science Data. Eos (Washington, DC) 88, 14–17 (2007).
    ADS  Google Scholar 

    106.
    Schaffer, J. et al. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 8, 543–557 (2016).
    ADS  Google Scholar  More

  • in

    Scavenging by threatened turtles regulates freshwater ecosystem health during fish kills

    Field experiment
    Estimation of turtle catch per unit effort
    We conducted our field experiment in February–April 2018 at two wetland complexes near Murray Bridge, South Australia, selecting two study sites at each complex (Supplementary Fig. S3). At each site, we estimated turtle population density using catch-per-unit-effort (CPUE; Supplementary Table S1). We conducted three 3-day rounds of turtle trapping using a combination of fyke and cathedral traps, baited with offal. Up to eight traps were deployed at a time. We calculated turtle CPUE by dividing the total number of turtles caught (regardless of species) by the total trap-hours. The number of trap-hours was similar across all four sites (average 1685 ± 7.6 SE total trap-hours).
    Carp carcass decomposition
    After the first and the second trapping rounds, we deployed whole carp carcasses at each site to measure carp decomposition rates depending on turtle accessibility. We placed each carp in a pre-weighed plastic box (340 × 230 × 120 mm), securing it with cable ties. Carp were made non-accessible to turtles in half of the deployments by covering the plastic boxes with 25 × 25 mm mesh (Supplementary Fig. S4). The mesh prevented turtle access to the carp, but was large enough to allow scavenging by crayfish (Cherax destructor) and other freshwater invertebrates. We tied each box to a brick and submerged the boxes around the four study sites ≥ 30 m away from each other, sunk at an average depth of 436 mm (± 13 SE). We used a total of 38 accessible and 40 non-accessible carp, split between our four study sites over two rounds (Supplementary Table S9). Every day, starting from day 2, the box and carp were weighed together with a digital scale. In all measurements, we calculated the wet mass of the carp by subtracting the box weight from the total weight. Carp carcasses were left in the wetlands for up to 10 days, or until they were fully consumed. All work was performed in accordance with DEWNR Permit M26663-1, PIRSA permits MP0085 and ME9902980, and The University of Sydney Animal Ethics Committee approval (project number 2017/1208), observing all relevant guidelines and regulations.
    Statistical analysis
    We analysed our data using RStudio 1.1.45633 (packages: “lme4” 1.1-2134, “MuMIn” 1.42.135). To assess whether turtles were important scavengers of our carcasses, we computed a linear mixed model testing whether turtle CPUE and carp access (yes/no) affected the rate of mass loss of the carp carcasses. The turtle CPUE values used were the average CPUE in the trapping round before and after each carp was deployed. We used the rate of mass loss per day as a dependent variable. We included the carp mass before deployment as an independent variable to account for initial mass variation, and we included study site as a random variable. We log-transformed all data before analysis. We assessed model fit by examining predicted versus residual and Q–Q plots, and testing the normality of residuals.
    Mesocosm experiment
    Turtle trapping and experiment procedure
    We caught 20 adult male E. macquarii with fyke nets baited with offal at Hawkesview Lagoon, Albury, NSW, in November 2018. The E. macquarii captured at this site belong to the same genetic population as the E. macquarii trapped in South Australia36, therefore we expect behaviours to be similar between the two populations. We focussed on E. macquarii as this is the most common species in the Murray–Darling Basin, and fish carrion is an important part of its diet19,37. The turtles were transported by car to the Experimental Wetlands facility at Western Sydney University, in Richmond, NSW (Supplementary Fig. S5). This facility is comprised of 10 circular mesocosms (0.42 m depth × 2.1 m diameter) filled with 1,450 L of tap water. Each is an independent flow-through system where the water flow is regulated, and was maintained at 1998.6 ml/min (± 149.5 SE) throughout the experiment. Each mesocosm had two cement blocks for the turtles to bask on, and two plastic tunnels for shelter. The experiment was conducted for 40 days, therefore it is a short-term study (Supplementary Fig. S6). Upon arrival at the facility, we placed four adult male E. macquarii turtles in each of five random mesocosms, which means the experimental replication was 5. The remaining five mesocosms were controls and had no turtles. The four turtles comprised an average 5,376.6 g total biomass per pond, each being 3.46 m2. This would result in a biomass of 11,560 individuals/ha or 15,537 kg/ha on average. Kinosternon integrum has been estimated reaching densities of 20,000 individuals/ha in Sonora, Mexico, while Podocnemis vogli may reach 10,300 individuals/ha or 15,450 kg/ha in Venezuela, likely in temporary aggregations38. Emydura macquarii tend to congregate around food sources, therefore we considered four turtles per carp carrion as a realistic density. After 7 days of acclimation, we introduced one carp carcass to all mesocosms, and a second 6 days later. We used one ~ 1 kg carp at a time to simulate a density close to 3,144 kg carp/ha31. The turtles had continual access to the carp, which was their main food source throughout the experiment. The day all carp carcasses were fully eaten in all turtle mesocosms, we removed turtles from their mesocosms and released them at the point of capture. On the same day (day 10), we ended the data collection in their mesocosms, because any further change in water quality here would not have been related to carp decomposition. We continued the daily water quality measurements in the five control mesocosms until all carp were fully decomposed (day 32). This experimental design allowed us to collect water quality data without the need to add turtle food to the mesocosms, which would have biased our measurements once carp were removed from the turtle mesocosms.
    We measured water temperature, dissolved oxygen, conductivity, turbidity, phosphate, and ammonia concentration in all mesocosms every morning from the day before the first carp introduction (see Supplementary Materials for equipment used). We also photographed the carcasses daily to estimate their decomposition rate based on a scale (Supplementary Table S10) designed after the decomposition stages described by Benninger et al.39 Due to the short transit time of fish matter in E. macquarii’s gut37, the effects of the turtles’ metabolic wastes on water quality are included in our experiment for carp 1. All work was performed in accordance with OEH Permit SL100401, DPI permit P09/0070-3.0, and Western Sydney University Animal Ethics Committee Animal Research Authority approval A12390, observing all relevant guidelines and regulations.
    Statistical analysis
    To assess whether the presence of turtles affected the decomposition of carp we computed a mixed linear model using the repeated measures PROC MIXED procedure using SAS (3.8 University Edition, SAS Institute Inc., Cary, NC, USA). For this model, days to total decomposition/removal was a dependent variable, turtle presence/absence was a fixed effect, and carp number (first or second) was a repeated fixed effect.
    We used DO, conductivity, turbidity, phosphate, and ammonia to carry out a principal component analysis (PCA) using PROC PRINCOMP. We conducted a PCA because the parameters are a multivariate response and have potential to covary with each other, which would not be detected in univariate analyses. We considered a parameter loaded onto a PC when the absolute value of its eigenvector was > 0.300. If the same parameter loaded onto more than one PC, we considered it only on the PC where its eigenvector had a higher absolute value.
    To test the effect of turtles scavenging on water quality, we computed general linear mixed models (GLMMs), using PCs as response variables, in PROC MIXED. We used a PC as response variable if its eigenvalue was greater than one (Kaiser criterion40). For each of these GLMMs, we included turtle presence (yes/no) and day number after the first carp introduction as fixed effects, water temperature and flow as covariates, and mesocosm ID as a random effect. We computed a model with full interactions first, and then, in absence of four- or three-way interactions, simplified the model to focus on main effects.
    Finally, to test the effect of turtle scavenging on each water quality parameter, a GLMM was computed for each (logged) parameter that loaded onto a PC with eigenvalue > 1, i.e. dissolved oxygen, ammonia, turbidity, conductivity, phosphate. For these GLMMs, turtle presence and day number were fixed effects, water temperature and flow were covariates, and mesocosm ID was a random effect. More