Spatial variance-mass allometry of population density in felids from camera-trapping studies worldwide
1.
Marquet, P. A. Scaling and power-laws in ecological systems. J. Exp. Biol. 208, 1749–1769 (2005).
PubMed Google Scholar
2.
GarciaMartin, H. & Goldenfeld, N. On the origin and robustness of power-law species-area relationships in ecology. Proc. Natl. Acad. Sci. 103, 10310–10315 (2006).
ADS Google Scholar
3.
Taylor, L. R. Aggregation, variance and the mean. Nature 189, 732–735 (1961).
ADS Google Scholar
4.
Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).
ADS Google Scholar
5.
Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).
ADS CAS PubMed Google Scholar
6.
White, C. R. & Seymour, R. S. Allometric scaling of mammalian metabolism. J. Exp. Biol. 208, 1611–1619 (2005).
CAS PubMed Google Scholar
7.
da Silva, J. K. L., Garcia, G. J. M. & Barbosa, L. A. Allometric scaling laws of metabolism. Phys. Life Rev. 3, 229–261 (2006).
ADS Google Scholar
8.
Reich, P. B., Tjoelker, M. G., Machado, J.-L. & Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).
ADS CAS PubMed Google Scholar
9.
Eisler, Z., Bartos, I. & Kertész, J. Fluctuation scaling in complex systems: Taylor’s law and beyond. Adv. Phys. 57, 89–142 (2008).
ADS CAS Google Scholar
10.
Reed, D. H. & Hobbs, G. R. The relationship between population size and temporal variability in population size. Anim. Conserv. 7, 1–8 (2004).
Google Scholar
11.
Benton, T. G. & Beckerman, A. P. Population dynamics in a noisy world: lessons from a mite experimental system. in Advances in Ecological Research vol. 37, pp. 143–181 (Academic Press, Cambridge, 2005).
12.
Ramsayer, J., Fellous, S., Cohen, J. E. & Hochberg, M. E. Taylor’s law holds in experimental bacterial populations but competition does not influence the slope. Biol. Lett. 8, 316–319 (2012).
PubMed Google Scholar
13.
Kaltz, O., Escobar-Páramo, P., Hochberg, M. E. & Cohen, J. E. Bacterial microcosms obey Taylor’s law: effects of abiotic and biotic stress and genetics on mean and variance of population density. Ecol. Process. 1, 5 (2012).
Google Scholar
14.
Anderson, R. M., Gordon, D. M., Crawley, M. J. & Hassell, M. P. Variability in the abundance of animal and plant species. Nature 296, 245–248 (1982).
ADS Google Scholar
15.
Ballantyne, F. I. The upper limit for the exponent of Taylor’s power law is a consequence of deterministic population growth. Evol. Ecol. Res. 8 (2005).
16.
Engen, S., Lande, R. & Sæther, B.-E. A general model for analyzing taylor’s spatial scaling laws. Ecology 89, 2612–2622 (2008).
PubMed Google Scholar
17.
Damuth, J. Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use. Biol. J. Linn. Soc. 31, 193–246 (1987).
Google Scholar
18.
Blackburn, T. M. & Gaston, K. J. The relationship between animal abundance and body size: a review of the mechanisms. In Advances in Ecological Research (eds Fitter, A. H. & Raffaelli, D.) 181–210 (Academic Press, Cambridge, 1999).
Google Scholar
19.
Jennings, S., Oliveira, J. A. A. D. & Warr, K. J. Measurement of body size and abundance in tests of macroecological and food web theory. J. Anim. Ecol. 76, 72–82 (2007).
PubMed Google Scholar
20.
Belgrano, A. & Reiss, J. The Role of Body Size in Multispecies Systems (Academic Press, Cambridge, 2011).
Google Scholar
21.
Lawton, J. H. What is the relationship between population density and body size in animals?. Oikos 55, 429–434 (1989).
Google Scholar
22.
Marquet, P. A., Navarrete, S. A. & Castilla, J. C. Scaling oopulation density to body size in rocky intertidal communities. Science 250, 1125–1127 (1990).
ADS CAS PubMed Google Scholar
23.
Silva, M. & Downing, J. A. The allometric scaling of density and body mass: a nonlinear relationship for terrestrial mammals. Am. Nat. 145(5), 704–727 (1995).
Google Scholar
24.
Dunham, J. B. & Vinyard, G. L. Relationships between body mass, population density, and the self-thinning rule in stream-living salmonids. Can. J. Fish. Aquat. Sci. 54, 6 (1997).
Google Scholar
25.
Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and population density. Nature 395, 4 (1998).
Google Scholar
26.
Hendriks, A. J. Allometric scaling of rate, age and density parameters in ecological models. Oikos 86, 293–310 (1999).
Google Scholar
27.
Schmid, P. E. Relation between population density and body size in stream communities. Science 289, 1557–1560 (2000).
ADS CAS PubMed Google Scholar
28.
Morand, S. & Poulin, R. Body size–density relationships and species diversity in parasitic nematodes: patterns and likely processes. Evol. Ecol. Res. 12 (2002).
29.
Niklas, K. J., Midgley, J. J. & Enquist, B. J. A general model for mass–growth–density relations across tree-dominated communities. Evol. Ecol. Res. 5, 459–468 (2003).
Google Scholar
30.
Makarieva, A. M., Victor, G. & Li, B.-L. Why do population density and inverse home range scale differently with body size?. Ecol. Complex. 2, 259–271 (2005).
Google Scholar
31.
Reuman, D. C., Mulder, C., Raffaelli, D. & Cohen, J. E. Three allometric relations of population density to body mass: theoretical integration and empirical tests in 149 food webs. Ecol. Lett. 11, 1216–1228 (2008).
PubMed Google Scholar
32.
Reuman, D. C. et al. Allometry of body size and abundance in 166 food webs. in Advances in Ecological Research vol. 41, pp. 1–44 (Elsevier, 2009).
33.
Carbone, C., Pettorelli, N. & Stephens, P. A. The bigger they come, the harder they fall: body size and prey abundance influence predator–prey ratios. Biol. Lett. 7, 312–315 (2011).
PubMed Google Scholar
34.
Cohen, J. E., Xu, M. & Schuster, W. S. F. Allometric scaling of population variance with mean body size is predicted from Taylor’s law and density-mass allometry. Proc. Natl. Acad. Sci. 109, 15829–15834 (2012).
ADS CAS PubMed Google Scholar
35.
Segura, A. M. & Perera, G. The metabolic basis of fat tail distributions in populations and community fluctuations. Front. Ecol. Evol. 7, 148 (2019).
Google Scholar
36.
Agusti, S., Duarte, C. M. & Kalff, J. Algal cell size and the maximum density and biomass of phytoplankton1. Limnol. Oceanogr. 32, 983–986 (1987).
ADS Google Scholar
37.
Belgrano, A., Allen, A. P., Enquist, B. J. & Gillooly, J. F. Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. Ecol. Lett. 5, 611–613 (2002).
Google Scholar
38.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Google Scholar
39.
Barneche, D. R., Kulbicki, M., Floeter, S. R., Friedlander, A. M. & Allen, A. P. Energetic and ecological constraints on population density of reef fishes. Proc. R. Soc. B 283, 20152186 (2016).
PubMed Google Scholar
40.
Ghedini, G., White, C. R. & Marshall, D. J. Metabolic scaling across succession: do individual rates predict community-level energy use?. Funct. Ecol. 32, 1447–1456 (2018).
Google Scholar
41.
Lagrue, C., Poulin, R. & Cohen, J. E. Parasitism alters three power laws of scaling in a metazoan community: Taylor’s law, density-mass allometry, and variance-mass allometry. Proc. Natl. Acad. Sci. 112, 1791–1796 (2015).
ADS CAS PubMed Google Scholar
42.
Xu, M. Ecological scaling laws link individual body size variation to population abundance fluctuation. Oikos 125, 288–299 (2016).
Google Scholar
43.
Taylor, L. R. & Woiwod, I. P. Comparative synoptic dynamics. I. Relationships between inter- and intra-specific spatial and temporal variance/mean population parameters. J. Anim. Ecol. 51, 879 (1982).
Google Scholar
44.
Cyr, H., Downing, J. A., Peters, R. H. & Cyr, H. Density-body size relationships in local aquatic communities. Oikos 79, 333 (1997).
Google Scholar
45.
O’Connell, A. F., Nichols, J. D. & Karant, U. K. Camera traps in animal ecology methods and analyses (Springer, London, 2010).
Google Scholar
46.
Anile, S. & Devillard, S. Study design and body mass influence RAIs from camera trap studies: evidence from the Felidae. Anim. Conserv. 19, 35–45 (2015).
Google Scholar
47.
Anile, S. & Devillard, S. Camera-trapping provides insights into adult sex ratio variability in felids. Mamm. Rev. 48, 168–179 (2018).
Google Scholar
48.
Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).
PubMed Google Scholar
49.
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
Google Scholar
50.
Van Valkenburgh, B., Hayward, M. W., Ripple, W. J., Meloro, C. & Roth, V. L. The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc. Natl. Acad. Sci. 113, 862–867 (2016).
ADS PubMed Google Scholar
51.
Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149 (2018).
PubMed PubMed Central Google Scholar
52.
Dickman, S. Felid conservation priorities. Conserv. Biol. (2015).
53.
Inskip, C. & Zimmermann, A. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43, 18 (2009).
Google Scholar
54.
Macdonald, D. W. & Loveridge, A. J. The Biology and Conservation of Wild Felids (Oxford University Press, Oxford, 2010).
Google Scholar
55.
Hunter, L. Wild Cats of the World (Bloomsbury Publishing, London, 2015).
Google Scholar
56.
Rizzuto, M., Carbone, C. & Pawar, S. Foraging constraints reverse the scaling of activity time in carnivores. Nat. Ecol. Evol. 2, 247–253 (2018).
PubMed Google Scholar
57.
Karanth, K. U., Nichols, J. D., Samba Kumar, N., Link, W. A. & Hines, J. E. Tigers and their prey: predicting carnivore densities from prey abundance. Proc. Natl. Acad. Sci. 101, 4854–4858 (2004).
ADS CAS PubMed Google Scholar
58.
Jiang, G. et al. New hope for the survival of the Amur leopard in China. Sci. Rep. 15, 15475 (2015).
ADS Google Scholar
59.
Jedrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution: application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).
PubMed PubMed Central Google Scholar
60.
Kitchener, A. C. et al. A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News Special Issue, pp. 11–80 (2017).
61.
Sinclair, A. R. E. Mammal populations: fluctuation, regulation, life history theory and their implications for conservation. Front. Popul. Ecol. 1, 127–154 (1996).
Google Scholar
62.
Santini, L., Isaac, N. J. B. & Ficetola, G. F. TetraDENSITY: a database of population density estimates in terrestrial vertebrates. Glob. Ecol. Biogeogr. 27, 787–791 (2018).
Google Scholar
63.
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, E6089–E6096 (2017).
CAS PubMed Google Scholar
64.
Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl. Acad. Sci. 114, 10678–10683 (2017).
CAS PubMed Google Scholar
65.
Wikramanayake, E. et al. A landscape-based conservation strategy to double the wild tiger population: landscape-based strategy for tiger recovery. Conserv. Lett. 4, 219–227 (2011).
Google Scholar
66.
Stearns, S. C. The Influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41, 173 (1983).
Google Scholar
67.
Paemelaere, E. & Dobson, F. S. Fast and slow life histories of carnivores. Can. J. Zool. 89, 692–704 (2011).
Google Scholar
68.
Peters, R. H. & Wassenberg, K. The effect of body size on animal abundance. Oecologia 60, 89–96 (1983).
ADS PubMed Google Scholar
69.
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of Body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).
PubMed Google Scholar
70.
Gamelon, M. et al. Influence of life-history tactics on transient dynamics: a comparative analysis across mammalian populations. Am. Nat. 184, 673–683 (2014).
PubMed PubMed Central Google Scholar
71.
McCallum, J. Changing use of camera traps in mammalian field research: habitats, taxa and study types: camera trap use and development in field ecology. Mamm. Rev. 43, 196–206 (2013).
Google Scholar
72.
Johnson, P. J. et al. Rensching cats and dogs: feeding ecology and fecundity trends explain variation in the allometry of sexual size dimorphism. R. Soc. Open Sci. 4, 170453 (2017).
ADS CAS PubMed PubMed Central Google Scholar
73.
Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610 (2004).
Google Scholar
74.
Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1783 (2017).
ADS PubMed PubMed Central Google Scholar
75.
Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Springer, New York, 2013).
Google Scholar
76.
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: ecological Archives E090–184. Ecology 90, 2648 (2009).
Google Scholar
77.
Huaranca, J. C. et al. Density and activity patterns of Andean cat and pampas cat (Leopardus jacobita and L. colocolo) in the Bolivian Altiplano. Wildl. Res. 47(1), 68–76 (2020).
Google Scholar
78.
Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).
Google Scholar More