Environmental filtering and spillover explain multi-species edge responses across agricultural boundaries in a biosphere reserve
1.
Vandermeer, J. & Perfecto, I. Tropical conservation and grassroots social movements: ecological theory and social justice. Bull. Ecol. Soc. Am. 88, 171–175 (2007).
Google Scholar
2.
Singer, B. How useful is the landscape approach? In Proceedings of the 2nd world heritage forests meeting (9–11 March 2005) (2007).
3.
Wiens, J. A. (2002). Central concepts and issues of landscape ecology. In Gutzwiller, K. J. (Eds.), Applying landscape ecology in biological conservation (pp. 3–21). Springer.
4.
Schonewald-Cox, C. M. & Bayless, J. W. The boundary model: a geographical analysis of design and conservation of nature reserves. Biol. Conserv. 38, 305–322 (1986).
Google Scholar
5.
Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).
PubMed Google Scholar
6.
Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B. & Smith, A. L. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol. Evol. 28, 605–613 (2013).
PubMed Google Scholar
7.
Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).
Google Scholar
8.
Campbell, R. E., Harding, J. S., Ewers, R. M., Thorpe, S. & Didham, R. K. Production land use alters edge response functions in remnant forest invertebrate communities. Ecol. Appl. 21, 3147–3161 (2011).
Google Scholar
9.
Tscharntke, T., Rand, T. A. & Bianchi, F. J. J. A. The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann. Zool. Fennici 42, 421–432 (2005).
Google Scholar
10.
Ng, K., Barton, P. S., Macfadyen, S., Lindenmayer, D. B. & Driscoll, D. A. Beetle’s responses to edges in fragmented landscapes are driven by adjacent farmland use, season and cross-habitat movement. Landsc. Ecol. 33, 109–125 (2018).
Google Scholar
11.
Ruffell, J. & Didham, R. K. Towards a better mechanistic understanding of edge effects. Landsc. Ecol. 31, 2205–2213 (2016).
Google Scholar
12.
Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).
CAS PubMed Google Scholar
13.
Ruffel, J. et al. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure. PLoS ONE 9, e113098 (2014).
ADS Google Scholar
14.
Mairota, P. et al. Very high resolution earth observation features for testing the direct and indirect effects of landscape structure on local habitat quality. Int. J. Appl. Earth Obs. Geoinf. 34, 96–102 (2015).
ADS Google Scholar
15.
Laurance, W. F., Didham, R. K. & Power, M. E. Ecological boundaries: a search for synthesis. Trends Ecol. Evol. 16, 70–71 (2001).
Google Scholar
16.
Perfecto, I. & Vandermeer, J. Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern mexico. Conserv. Biol. 16, 174–182 (2002).
Google Scholar
17.
Kupfer, J. A., Malanson, G. P. & Franklin, S. B. Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob. Ecol. Biogeogr. 15, 8–20 (2006).
Google Scholar
18.
Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
Google Scholar
19.
Ries, L. & Debinski, D. M. Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J. Anim. Ecol. 70, 840–852 (2001).
Google Scholar
20.
de Lange, H. J., Lahr, J., Brouwer, J. H. D. & Faber, J. H. Review of available evidence regarding the vulnerability of off-crop non-target arthropod communities in comparison to in-crop non-target arthropod communities. Support. Publ. EN-348 (2012).
21.
Ppr, E. F. S. A. Scientific opinion addressing the rate of the science on risk assessment of plant protection products for non-target arthropods. EFSA J. 13, 3996 (2015).
Google Scholar
22.
Ries, L. & Sisk, T. D. Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156, 75–86 (2008).
ADS PubMed Google Scholar
23.
Ries, L., Murphy, S. M., Wimp, G. M. & Fletcher, R. J. Closing persistent gaps in knowledge about edge ecology. Curr. Landsc. Ecol. Rep. 2, 30–41 (2017).
Google Scholar
24.
Wilson, D. S. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73, 1984–2000 (1992).
Google Scholar
25.
Ries, L., Fletcher, R. J. J., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522 (2004).
Google Scholar
26.
Ries, L. & Sisk, T. D. What is an edge species? The implications of sensitivity to habitat edges. Oikos 119, 1636–1642 (2010).
Google Scholar
27.
Pandit, S. N., Kolasa, J., Cottenie, K., Andit, S. H. N. P. & Olasa, J. U. K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262 (2009).
PubMed Google Scholar
28.
van Schalkwyk, J., Pryke, J. S. & Samways, M. J. Contribution of common vs. rare species to species diversity patterns in conservation corridors. Ecol. Indic. 104, 279–288 (2019).
Google Scholar
29.
Kotze, D. J. & Samways, M. J. No general edge effects for invertebrates at Afromontane forest/grassland ecotones. Biodivers. Conserv. 10, 443–466 (2001).
Google Scholar
30.
Rand, T. A., Tylianakis, J. M. & Tscharntke, T. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9, 603–614 (2006).
PubMed Google Scholar
31.
Winegardner, A. K., Jones, B. K., Ng, I. S. Y., Siqueira, T. & Cottenie, K. The terminology of metacommunity ecology. Trends Ecol. Evol. 27, 253–254 (2012).
PubMed Google Scholar
32.
Lanta, V., Nordahl, K., Gilbert, S., Söderman, G. & Rinne, V. Biotic filtering and mass effects in small shrub patches: is arthropod community structure predictable based on the quality of the vegetation?. Ecol. Entomol. 43, 234–244 (2018).
Google Scholar
33.
Duelli, P. & Obrist, M. K. Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl. Ecol. 4, 129–138 (2003).
Google Scholar
34.
Katayama, N., Bouam, I., Koshida, C. & Baba, Y. G. Biodiversity and yield under different land-use types in orchard/vineyard landscapes: a meta-analysis. Biol. Conserv. 229, 125–133 (2019).
Google Scholar
35.
Lucey, J. M. et al. Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biol. Conserv. 169, 268–276 (2014).
Google Scholar
36.
Vink, N. & Tregurtha, N. Agriculture and mariculture first paper: structure, performance and future prospects—an overview (Department of Agriculture, Forestry, and Fisheries, Cape Town, 2007).
Google Scholar
37.
Thorpe, P. T., Pryke, J. S. & Samways, M. J. Review of ecological and conservation perspectives on future options for arthropod management in Cape Floristic Region pome fruit orchards. Afr. Entomol. 24, 279–306 (2016).
Google Scholar
38.
van Schalkwyk, J., Pryke, J. S., Samways, M. J. & Gaigher, R. Complementary and protection value of a Biosphere Reserve buffer zone for increasing local representativeness of ground-living arthropods. Biol. Conserv. 239, 108292 (2019).
Google Scholar
39.
Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783 (1987).
MathSciNet CAS PubMed MATH Google Scholar
40.
Oksanen, J. et al. vegan: community ecology package (2019).
41.
R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).
42.
De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).
Google Scholar
43.
Tichý, L. & Chytrý, M. Statistical determination of diagnostic species for site groups of unequal sample size. J. Veg. Sci. 17, 809–818 (2006).
Google Scholar
44.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
45.
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
ADS PubMed Google Scholar
46.
Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).
Google Scholar
47.
Blanchet, G., Legendre, P. & Borcard, D. Forward selection of spatial explanatory variables. Ecology 89, 2623–2632 (2008).
PubMed Google Scholar
48.
Bauman, D., Drouet, T., Fortin, M.-J. & Dray, S. Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99, 2159–2166 (2018).
PubMed Google Scholar
49.
Wagner, H. H. Direct multi-scale ordination with canonical correspondence analysis. Ecology 85, 342–351 (2004).
Google Scholar
50.
Dray, S. et al. adespatial: multivariate multiscale spatial analysis (2019).
51.
UNESCO. Biosphere reserves—learning sites for sustainable development (2017). https://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/. Accessed 2 March 2020.
52.
Kammerer, M. A., Biddinger, D. J., Rajotte, E. G. & Mortensen, D. A. Local plant diversity across multiple habitats supports a diverse wild bee community in pennsylvania apple orchards. Environ. Entomol. 45, 32–38 (2016).
PubMed Google Scholar
53.
Witt, A. B. R. & Samways, M. J. Influence of agricultural land transformation and pest management practices on the arthropod diversity of a biodiversity hotspot, the Cape Floristic Region, South Africa. Afr. Entomol. 12, 89–95 (2004).
Google Scholar
54.
Adu-Acheampong, S., Bazelet, C. S. & Samways, M. J. Extent to which an agricultural mosaic supports endemic species-rich grasshopper assemblages in the Cape Floristic Region biodiversity hotspot. Agric. Ecosyst. Environ. 227, 52–60 (2016).
Google Scholar
55.
Magura, T. Carabids and forest edge: spatial pattern and edge effect. For. Ecol. Manag. 157, 23–37 (2002).
Google Scholar
56.
Kautz, M., Schopf, R. & Ohser, J. The ‘sun-effect’: microclimatic alterations predispose forest edges to bark beetle infestations. Eur. J. For. Res. 132, 453–465 (2013).
Google Scholar
57.
Greenslade, P. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J. Anim. Ecol. 33, 301–310 (1964).
Google Scholar
58.
Gascon, C. et al. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91, 223–229 (1999).
Google Scholar
59.
Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2017).
Google Scholar
60.
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science (80-) 344, 296–299 (2014).
ADS CAS Google Scholar
61.
Epstein, D. L., Zack, R. S., Brunner, J. F., Gut, L. & Brown, J. J. Effects of broad-spectrum insecticides on epigeal arthropod biodiversity in Pacific Northwest apple orchards. Environ. Entomol. 29, 340–348 (2000).
CAS Google Scholar
62.
Markó, V. & Kádár, F. Effects of different insecticide disturbance levels and weed patterns on carabid beetle assemblages. Acta Phytopathol. Entomol. Hungarica 40, 111–143 (2005).
Google Scholar
63.
Ries, L. & Sisk, T. D. A predictive model of edge effects. Ecology 85, 2917–2926 (2004).
Google Scholar
64.
Gerlach, J., Samways, M. & Pryke, J. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J. Insect Conserv. 17, 831–850 (2013).
Google Scholar
65.
Nuyttens, D. et al. Drift from field crop sprayers using an integrated approach: results of a five-year study. Trans. ASABE 54, 403–408 (2011).
Google Scholar
66.
Zaady, E., Katra, I., Shuker, S., Knoll, Y. & Shlomo, S. Tree belts for decreasing aeolian dust-carried pesticides from cultivated areas. Geosciences 8, 286 (2018).
ADS Google Scholar
67.
Blitzer, E. J. et al. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 146, 34–43 (2012).
Google Scholar
68.
Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).
PubMed Google Scholar
69.
With, K. A. The landscape ecology of invasive spread. Conserv. Biol. 16, 1192–1203 (2002).
Google Scholar
70.
Hickey, M. B. C. & Doran, B. A review of the efficiency of buffer strips for the maintenance and enhancement of riparian ecosystems. Water Qual. Res. J. Canada 39, 311–317 (2004).
Google Scholar
71.
Vought, L. B. M. & Lacoursièr, J. O. Restoration of streams in the agricultural landscapes. In Restoration of Lakes, Streams, Floodplains, and Bogs in Europe Vol. 3 (ed. Eiseltová, M.) (Springer, Berlin, 2010).
Google Scholar
72.
Samways, M. J., Osborn, R. & Carliel, F. Effect of a highway on ant (Hymenoptera: Formicidae) species composition and abundance, with a recommendation for roadside verge width. Biodivers. Conserv. 6, 903–913 (1997).
Google Scholar
73.
Nyhus, P. J. & Adams, M. S. Biosphere Reserves of the World—Principles and Practice (University of Wisconsin, Madison, 1995).
Google Scholar
74.
UNESCO. Management Manual for UNESCO Biosphere Reserves in Africa. (2015).
75.
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).
Google Scholar
76.
Mehring, M. & Stoll-Kleemann, S. How effective is the buffer zone? Linking institutional processes with satellite images from a case study in the Lore Lindu forest biosphere reserve, Indonesia. Ecol. Soc. 16, 3 (2011).
Google Scholar
77.
Badejo, M. A. & Ola-Adams, B. A. Abundance and diversity of soil mites of fragmented habitats in a biopshere reserve in southern Nigeria. Pesqui. Agropecuária Bras. 35, 2121–2128 (2000).
Google Scholar
78.
Dutta, P. et al. Mosquito biodiversity of Dibru-Saikhowa biosphere reserve in Assem, India. J. Environ. Biol. 31, 695–699 (2010).
CAS PubMed Google Scholar
79.
González-Moreno, A., Bordera, S., Leirana-Alcocer, J., Delfín-González, H. & Ballina-Gómez, H. S. Explaining variations in the diversity of parasitoid assemblages in a biosphere reserve of Mexico: evidence from vegetation, land management and seasonality. Bull. Entomol. Res. 108, 602–615 (2018).
PubMed Google Scholar
80.
McIntyre, S. & Barrett, G. W. Habitat variegation, an alternative to fragmentation. Conserv. Biol. 6, 146–147 (1992).
Google Scholar
81.
Ingham, D. S. & Samways, M. J. Application of fragmentation and variegation models to epigaeic invertebrates in South Africa. Conserv. Biol. 10, 1353–1358 (1996).
Google Scholar
82.
Guevara, S. & Laborde, J. The landscape approach: designing new reserves for protection of biological and cultural diversity in Latin America. Environ. Ethics 30, 251–262 (2008).
Google Scholar
83.
Brunckhorst, D. Building capital through bioregional planning and biosphere reserves. Ethics Sci. Environ. Polit. 1, 19–32 (2001).
Google Scholar More
