To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators
1.
Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:fix006.
Google Scholar
2.
Poindexter JS. Oligotrophy. In: Alexander M, editor. Advances in microbial ecology. Springer US, Boston, MA: Springer US; 1981. pp. 63–89.
3.
Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. Brock Biology of Microorganisms, 15th Global edition. Boston, US: Benjamin Cummins. 2018.
4.
Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev. 2010;34:476–95.
PubMed Google Scholar
5.
Wood TK, Knabel SJ, Kwan BW. Bacterial persister cell formation and dormancy. Appl Environ Microbiol. 2013;79:7116–21.
CAS PubMed PubMed Central Google Scholar
6.
Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol. 2016;26:2862–72.
CAS PubMed Google Scholar
7.
Setlow P, Wang S, Li Y-Q. Germination of spores of the orders Bacillales and Clostridiales. Annu Rev Microbiol. 2017;71:459–77.
CAS PubMed Google Scholar
8.
Song S, Wood TK. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. bioRxiv. 2019. https://doi.org/10.1101/663658.
9.
Fenton AK, Kanna M, Woods R, Aizawa S, Sockett RE. Shadowing the actions of a predator: Backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol. 2010;192:6329–35.
CAS PubMed PubMed Central Google Scholar
10.
Makowski Ł, Donczew R, Weigel C, Zawilak-Pawlik A, Zakrzewska-Czerwinska J. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus. Front Microbiol. 2016;7.
11.
Rotem O, Pasternak Z, Jurkevitch E. The genus Bdellovibrio and like organisms. The prokaryotes: deltaproteobacteria and epsilonproteobacteria. 2014. pp. 3–17.
12.
Lambert C, Evans KJ, Till R, Hobley L, Capeness M, Rendulic S, et al. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol Microbiol. 2006;60:274–86.
CAS PubMed PubMed Central Google Scholar
13.
Thomashow LS, Rittenberg SC. Waveform analysis and structure of flagella and basal complexes from Bdellovibrio bacteriovorus 109J. J Bacteriol. 1985;163:1038–46.
CAS PubMed PubMed Central Google Scholar
14.
Hespell RB, Rosson RA, Thomashow MF, Rittenberg SC. Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth. J Bacteriol. 1973;113:1280–8.
CAS PubMed PubMed Central Google Scholar
15.
Hespell RB, Thomashow MF, Rittenberg SC. Changes in cell composition and viability of Bdellovibrio bacteriovorus during starvation. Arch Microbiol. 1974;97:313–27.
CAS PubMed Google Scholar
16.
Paix B, Ezzedine JA, Jacquet S. Diversity, dynamics, and distribution of Bdellovibrio and like organisms in perialpine lakes. Appl Environ Microbiol. 2019;85.
17.
Varon M, Fine M, Stein A. The maintenance of Bdellovibrio at low prey density. Microb Ecol. 1984;10:95–8.
CAS PubMed Google Scholar
18.
Varon M, Zeigler BP. Bacterial predator-prey interaction at low prey density. Appl Environ Microbiol. 1978;36:11–7.
CAS PubMed PubMed Central Google Scholar
19.
Chen H, Young S, Berhane TK, Williams HN. Predatory Bacteriovorax communities ordered by various prey species. PLoS ONE. 2012;7.
20.
Rogosky AM, Moak PL, Emmert EAB. Differential predation by Bdellovibrio bacteriovorus 109J. Curr Microbiol. 2006;52:81–5.
CAS PubMed Google Scholar
21.
Jurkevitch E, Minz D, Ramati B, Barel G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol. 2000;66:2365–71.
CAS PubMed PubMed Central Google Scholar
22.
Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol. 2014;89:149–61.
CAS PubMed Google Scholar
23.
Pineiro SA, Williams HN, Stine OC, Piñeiro SA, Williams HN, Stine OC. Phylogenetic relationships amongst the saltwater members of the genus Bacteriovorax using rpoB sequences and reclassification of Bacteriovorax stolpii as Bacteriolyticum stolpii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2008;58:1203–9.
CAS PubMed Google Scholar
24.
Chen H, Athar R, Zheng G, Williams HN. Prey bacteria shape the community structure of their predators. ISME J. 2011;5:1314–22.
PubMed PubMed Central Google Scholar
25.
Shatzkes K, Connell ND, Kadouri DE. Predatory bacteria: a new therapeutic approach for a post-antibiotic era. Future Microbiol. 2017;12:469–72.
CAS PubMed Google Scholar
26.
Guo Y, Yan L, Cai J. Effects of Bdellovibrio and like organisms on survival and growth performance of juvenile turbot, scophthalmus maximus. J World Aquac Soc. 2016;47:633–45.
Google Scholar
27.
Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. Potential control of potato soft rot disease by the obligate predators Bdellovibrio and like organisms. Appl Environ Microbiol. 2020;86.
28.
Sathyamoorthy R, Maoz A, Pasternak Z, Im H, Huppert A, Kadouri D, et al. Bacterial predation under changing viscosities. Environ Microbiol. 2019;21:2997–3010.
CAS PubMed Google Scholar
29.
Hobley L, Fung RKY, Lambert C, Harris MATS, Dabhi JM, King SS, et al. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog. 2012;8.
30.
Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS ONE. 2013;8.
31.
Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics. 2006;22:3–6.
CAS PubMed Google Scholar
32.
Ko J, Ryu K-S, Kim H, Shin J-S, Lee J-O, Cheong C, et al. Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by PilZ domain proteins. J Mol Biol. 2010;398:97–110.
CAS PubMed Google Scholar
33.
Wirebrand L, Österberg S, López-Sánchez A, Govantes F, Shingler V. PP4397/FlgZ provides the link between PP2258 c-di-GMP signalling and altered motility in Pseudomonas putida. Sci Rep. 2018;8:1–10.
CAS Google Scholar
34.
Shanks RMQ, Davra VR, Romanowski EG, Brothers KM, Stella NA, Godboley D, et al. An eye to a kill: using predatory bacteria to control gram-negative pathogens associated with ocular infections. PLOS ONE. 2013;8:e66723.
CAS PubMed PubMed Central Google Scholar
35.
Wurtzel O, Dori-Bachash M, Pietrokovski S, Jurkevitch E, Sorek R. Mutation detection with next-generation resequencing through a mediator genome. PLoS ONE. 2010;5.
36.
Pasternak Z, Njagi M, Shani Y, Chanyi R, Rotem O, Lurie-Weinberger MN, et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 2014;8:625–35.
CAS PubMed Google Scholar
37.
Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O. Survival guide: Escherichia coli in the stationary phase. Acta Nat. 2015;7:22–33.
CAS Google Scholar
38.
Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev. 2005;69:527–43.
CAS PubMed PubMed Central Google Scholar
39.
Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5:1245–65.
CAS PubMed PubMed Central Google Scholar
40.
Avidan O, Petrenko M, Becker R, Beck S, Linscheid M, Pietrokovski S, et al. Identification and characterization of differentially-regulated type IVb pilin genes necessary for predation in obligate bacterial predators. Sci Rep. 2017;7:1–12.
41.
Barembruch C, Hengge R. Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol Microbiol. 2007;65:76–89.
CAS PubMed Google Scholar
42.
Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303:689–92.
CAS PubMed Google Scholar
43.
Nyström T. Stationary-phase physiology. Annu Rev Microbiol. 2004;58:161–81.
PubMed Google Scholar
44.
Browning AP, Sharp JA, Mapder T, Baker CM, Burrage K, Simpson MJ. Persistence is an optimal hedging strategy for bacteria in volatile environments. bioRxiv. 2019. https://doi.org/10.1101/2019.12.19.883645.
45.
Ratcliff WC, Denison RF. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr Biol. 2010;20:1740–4.
CAS PubMed Google Scholar
46.
Zhang X-X, Rainey PB. Bet hedging in the underworld. Genome Biol. 2010;11:137.
PubMed PubMed Central Google Scholar
47.
Franklin RB, Mills AL. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol. 2003;44:335–46.
CAS PubMed Google Scholar
48.
Manderscheid B, Matzner E. Spatial heterogeneity of soil solution chemistry in a mature Norway spruce (Picea abies (L.) Karst.) stand. Water Air Soil Pollut. 1995;85:1185–90.
CAS Google Scholar
49.
Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D, Chaussod R. Sampling strategy in molecular microbial ecology: Influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol. 2003;5:1111–20.
CAS PubMed Google Scholar
50.
Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 2017;15:271–84.
CAS PubMed Google Scholar
51.
Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, et al. Second messenger-mediated adjustment of bacterial swimming velocity. Cell. 2010;141:107–16.
CAS PubMed Google Scholar
52.
Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a ‘Backstop Brake’ mechanism. Mol Cell. 2010;38:128–39.
CAS PubMed PubMed Central Google Scholar
53.
Dattner I, Miller E, Petrenko M, Kadouri DE, Jurkevitch E, Huppert A. Modelling and parameter inference of predator–prey dynamics in heterogeneous environments using the direct integral approach. J R Soc Interface. 2017;14:20160525.
PubMed PubMed Central Google Scholar
54.
Hol FJH, Rotem O, Jurkevitch E, Dekker C, Koster DA. Bacterial predator–prey dynamics in microscale patchy landscapes. Proc R Soc B Biol Sci. 2016;283:20152154.
Google Scholar
55.
Gabel CV, Berg HC. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc Natl Acad Sci USA. 2003;100:8748–51.
CAS PubMed Google Scholar
56.
Gadkari D, Stolp H. Energy metabolism of Bdellovibrio bacteriovorus. I. Energy production, ATP pool, energy charge. Arch Microbiol. 1975;102:179–85.
CAS PubMed Google Scholar
57.
Shioi JI, Galloway RJ, Niwano M, Chinnock RE, Taylor BL. Requirement of ATP in bacterial chemotaxis. J Biol Chem. 1982;257:7969–75.
58.
Fang X, Gomelsky M. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol. 2010;76:1295–305.
CAS PubMed Google Scholar
59.
Varon M. Interaction of Bdellovibrio with its prey in mixed microbial populations. Microb Ecol. 1981;7:97–105.
CAS PubMed Google Scholar
60.
Kessel M, Shilo M. Relationship of Bdellovibrio elongation and fission to host cell size. J Bacteriol. 1976;128:477–80.
CAS PubMed PubMed Central Google Scholar
61.
LaMarre AG, Straley SC, Conti SF. Chemotaxis toward amino acids by Bdellovibrio bacteriovorus. J Bacteriol. 1977;131:201–7.
CAS PubMed PubMed Central Google Scholar
62.
Chauhan A, Williams HN. Response of Bdellovibrio and like organisms (BALOs) to the migration of naturally occurring bacteria to chemoattractants. Curr Microbiol. 2006;53:516–22.
CAS PubMed Google Scholar
63.
Feng S, Tan CH, Constancias F, Kohli GS, Cohen Y, Rice SA. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol Ecol. 2017;93.
64.
Kadouri DE, O’Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol. 2005;71:4044–51.
CAS PubMed PubMed Central Google Scholar
65.
Szabó E, Liébana R, Hermansson M, Modin O, Persson F, Wilén B-MB-MB-M, et al. Comparison of the bacterial community composition in the granular and the suspended phase of sequencing batch reactors. AMB Express. 2017;7:168.
PubMed PubMed Central Google Scholar
66.
Lambert C, Smith MCM, Sockett RE. A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol. 2003;5:127–32.
CAS PubMed Google Scholar
67.
Petrenko M, Friedman SP, Fluss R, Pasternak Z, Huppert A, Jurkevitch E. Spatial heterogeneity stabilizes predator–prey interactions at the microscale while patch connectivity controls their outcome. Environ Microbiol. 2019;22:694–704.
68.
Mukherjee S, Brothers KM, Shanks RMQQ, Kadouri DE. Visualizing Bdellovibrio bacteriovorus by using the tdTomato fluorescent protein. Appl Environ Microbiol. 2015;82:1653–61.
PubMed Google Scholar
69.
Jurkevitch E. Isolation and classification of Bdellovibrio and like organisms. Curr Protoc Microbiol. 2012;Chapter 7:Unit 7B.1.
Google Scholar
70.
Peters JM, Koo B-M, Patino R, Heussler GE, Hearne CC, Qu J, et al. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nat Microbiol. 2019;4:244–50.
CAS PubMed PubMed Central Google Scholar
71.
Copeland MF, Weibel DB. Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter. 2009;5:1174–87.
CAS PubMed PubMed Central Google Scholar
72.
Rotem O, Pasternak Z, Shimoni E, Belausov E, Porat Z, Pietrokovski S, et al. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci. 2015;112:E6028–37.
CAS PubMed Google Scholar More