Hunting strategies to increase detection of chronic wasting disease in cervids
1.
Wasserberg, G., Osnas, E. E., Rolley, R. E. & Samuel, M. D. Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling study. J. Appl. Ecol. 46, 457–466 (2009).
PubMed Google Scholar
2.
Heberlein, T. A. “Fire in the Sistine Chapel”: How Wisconsin responded to chronic wasting disease. Hum. Dimens Wildl. 9, 165–179 (2004).
Google Scholar
3.
Donnelly, C. A. & Woodroffe, R. Badger-cull targets unlikely to reduce TB. Nature 526, 640 (2015).
ADS CAS PubMed Google Scholar
4.
Turner, W. C. et al. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc. R. Soc. Lond. Ser. B 281, https://doi.org/10.1098/rspb.2014.1785 (2014).
5.
Uehlinger, F. D., Johnston, A. C., Bollinger, T. K. & Waldner, C. L. Systematic review of management strategies to control chronic wasting disease in wild deer populations in North America. BMC Vet. Res. 12, 1–16 (2016).
Google Scholar
6.
Tildesley, M. J., Bessell, P. R., Keeling, M. J. & Woolhouse, M. E. J. The role of pre-emptive culling in the control of foot-and-mouth disease. Proc. R. Soc. Lond. Ser. B 276, 3239 (2009).
Google Scholar
7.
te Beest, D. E., Hagenaars, T. J., Stegeman, J. A., Koopmans, M. P. & van Boven, M. Risk based culling for highly infectious diseases of livestock. Vet. Res. 42, 81 (2011).
Google Scholar
8.
Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 88 (2016).
PubMed PubMed Central Google Scholar
9.
Haley, N. J. & Hoover, E. A. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).
CAS PubMed Google Scholar
10.
USGS. Expanding Distribution of Chronic Wasting Disease https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center_objects=0#qt-science_center_objects (USGS, 2019).
11.
Edmunds, D. R. et al. Chronic wasting disease drives population decline of white-tailed deer. PLoS ONE 11, e0161127 (2016).
PubMed PubMed Central Google Scholar
12.
DeVivo, M. T. et al. Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLoS ONE 12, e0186512 (2017).
PubMed PubMed Central Google Scholar
13.
Mysterud, A. & Rolandsen, C. M. A reindeer cull to prevent chronic wasting disease in Europe. Nat. Ecol. Evol. 2, 1343–1345 (2018).
PubMed Google Scholar
14.
V. K. M. Ytrehus, et al. Factors that can Contribute to Spread of CWD—An Update on the Situation in Nordfjella, Norway (Opinion of the Panel on biological hazards. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway, 2018).
15.
Vors, L. S. & Boyce, M. S. Global declines of caribou and reindeer. Glob. Change Biol. 15, 2626–2633 (2009).
ADS Google Scholar
16.
Diefenbach, D. R., Rosenberry, C. S. & Boyd, R. C. From the field: efficacy of detecting chronic wasting disease via sampling hunter-killed white-tailed deer. Wildl. Soc. Bull. 32, 267–272 (2004).
Google Scholar
17.
Rees, E. E. et al. Targeting the detection of chronic wasting disease using the hunter harvest during early phases of an outbreak in Saskatchewan, Canada. Prev. Vet. Med. 104, 149–159 (2012).
PubMed Google Scholar
18.
Belsare, A. V. et al. An agent-based framework for improving wildlife disease surveillance: a case study of chronic wasting disease in Missouri white-tailed deer. Ecol. Model. 417, 108919 (2020).
Google Scholar
19.
Walsh, D. P. & Miller, M. W. A weighted surveillance approach for detecting chronic wasting disease foci. J. Wildl. Dis. 46, 118–135 (2010).
PubMed Google Scholar
20.
Heisey, D. M. et al. Linking process to pattern: estimating spatiotemporal dynamics of a wildlife epidemic from cross-sectional data. Ecol. Monogr. 80, 221–240 (2010).
Google Scholar
21.
Miller, M. W. & Conner, M. M. Epidemiology of chronic wasting disease in free-ranging mule deer: Spatial, temporal, and demographic influences on observed prevalence patterns. J. Wildl. Dis. 41, 275–290 (2005).
PubMed Google Scholar
22.
Samuel, M. D. & Storm, D. J. Chronic wasting disease in white-tailed deer: infection, mortality, and implications for heterogeneous transmission. Ecol. 97, 3195–3205 (2016).
Google Scholar
23.
Mysterud, A., Coulson, T. & Stenseth, N. C. The role of males in the population dynamics of ungulates. J. Anim. Ecol. 71, 907–915 (2002).
Google Scholar
24.
Ginsberg, J. R. & Milner-Gulland, E. J. Sex biased harvesting and population dynamics in ungulates: implications for conservation and sustainable use. Cons. Biol. 8, 157–166 (1994).
Google Scholar
25.
Milner-Gulland, E. J., Coulson, T. N. & Clutton-Brock, T. H. On harvesting a structured ungulate population. Oikos 88, 592–602 (2000).
Google Scholar
26.
Stärk, K. D. C. et al. Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: review of current approaches. BMC Health Serv. Res. 6, 20 (2006).
PubMed PubMed Central Google Scholar
27.
Martin, P. A., Cameron, A. R. & Greiner, M. Demonstrating freedom from disease using multiple complex data sources. Prev. Vet. Med. 79, 71–97 (2007).
CAS PubMed Google Scholar
28.
Cannon, R. M. Demonstrating disease freedom-combining confidence levels. Prev. Vet. Med. 52, 227–249 (2002).
CAS PubMed Google Scholar
29.
Sutherland, W. J. et al. A 2018 horizon scan of emerging Issues for global conservation and biological diversity. Trends Ecol. Evol. 33, 47–58 (2018).
PubMed Google Scholar
30.
EFSA Panel on Biological Hazards (BIOHAZ), Ricci, A. et al. Chronic wasting disease (CWD) in cervids. EFSA J. 15, 4667 (2016).
Google Scholar
31.
Vicente, J. et al. Science-based wildlife disease response. Science 364, 943 (2019).
ADS PubMed Google Scholar
32.
Schalk, G. & Forbes, M. R. Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78, 67–74 (1997).
Google Scholar
33.
Córdoba-Aguilar, A. & Munguía-Steyer, R. The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. Plos One 8, e76246 (2013).
ADS PubMed PubMed Central Google Scholar
34.
Milner-Gulland, E. J. et al. Reproductive collapse in saiga antelope harems. Nature 422, 135 (2003).
ADS CAS PubMed Google Scholar
35.
Sargeant, G. A., Weber, D. C. & Roddy, D. E. Implications of chronic wasting disease, cougar predation, and reduced recruitment for elk management. J. Wildl. Manag. 75, 171–177 (2011).
Google Scholar
36.
Monello, R. J. et al. Survival and population growth of a free-ranging elk population with a long history of exposure to Chronic wasting disease. J. Wildl. Manag. 78, 214–223 (2014).
Google Scholar
37.
Argue, C. K., Ribble, C., Lees, V. W., McLane, J. & Balachandran, A. Epidemiology of an outbreak of chronic wasting disease on elk farms in Saskatchewan. Can. Vet. J. 48, 1241–1248 (2007).
PubMed PubMed Central Google Scholar
38.
Delahay, R. J. Smith, G. C. & Hutchings, M. R. Management of Disease in Wild Mammals (Springer, Tokyo, Japan, 2009).
39.
Almberg, E. S., Cross, P. C., Johnson, C. J., Heisey, D. M. & Richards, B. J. Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction. PLoS ONE 6, e19896 (2011).
ADS CAS PubMed PubMed Central Google Scholar
40.
Keeling, M. J. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B 266, 859–867 (1999).
CAS Google Scholar
41.
Joly, D. O., Samuel, M. D., Langenberg, J. A., Rolley, R. E. & Keane, D. P. Surveillance to detect chronic wasting disease in white-tailed deer in Wisconsin. J. Wildl. Dis. 45, 989–997 (2009).
PubMed Google Scholar
42.
Nusser, S. M., Clark, W. R., Otis, D. L. & Huang, L. Sampling considerations for disease surveillance in wildlife populations. J. Wildl. Manag. 72, 52–60 (2008).
Google Scholar
43.
Osnas, E. E., Heisey, D. M., Rolley, R. E. & Samuel, M. D. Spatial and temporal patterns of chronic wasting disease: fine-scale mapping of a wildlife epidemic in Wisconsin. Ecol. Appl. 19, 1311–1322 (2009).
PubMed Google Scholar
44.
Samuel, M. D. et al. Surveillance strategies for detecting chronic wasting disease in free-ranging deer and elk – results of a CWD surveillance workshop. https://pubs.er.usgs.gov/publication/70006758 (U.S. Geological Survey Conference publication, Madison, WI, 2003).
45.
Spraker, T. R. et al. Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J. Wildl. Dis. 33, 1–6 (1997).
CAS PubMed Google Scholar
46.
Panzacchi, M. et al. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. J. Anim. Ecol. 85, 32–42 (2015).
PubMed Google Scholar
47.
Ziller, M., Selhorst, T., Teuffert, J., Kramer, M. & Schlüter, H. Analysis of sampling strategies to substantiate freedom from disease in large areas. Prev. Vet. Med. 52, 333–343 (2002).
CAS PubMed Google Scholar
48.
Jongman, R. H. G. Homogenisation and fragmentation of the European landscape: ecological consequences and solutions. Landsc. Urban Plan. 58, 211–221 (2002).
Google Scholar
49.
Holand, Ø. et al. The effect of sex ratio and male age structure on reindeer calving. J. Wildl. Manag. 67, 25–33 (2003).
Google Scholar
50.
Sæther, B.-E., Solberg, E. J. & Heim, M. Effects of altering sex ratio structure on the demography of an isolated moose population. J. Wildl. Manag. 67, 455–466 (2003).
Google Scholar
51.
Morina, D. L., Demarais, S., Strickland, B. K. & Larson, J. E. While males fight, females choose: male phenotypic quality informs female mate choice in mammals. Anim. Behav. 138, 69–74 (2018).
Google Scholar
52.
Bro-Jørgensen, J. Overt female competition and preference for central males in a lekking antelope. Proc. Natl Acad. Sci. USA 99, 9290–9293 (2002).
ADS PubMed Google Scholar
53.
Andres, D. et al. Sex differences in the consequences of maternal loss in a long-lived mammal, the red deer (Cervus elaphus). Behav. Ecol. Sociobiol. 67, 1249–1258 (2013).
Google Scholar
54.
Ericsson, G. Reduced cost of reproduction in moose Alces alces through human harvest. Alces 37, 61–69 (2001).
Google Scholar
55.
Apollonio, M. Andersen, R. & Putman, R. European Ungulates and their Management in the 21st Century (Cambridge University Press, Cambridge, 2010).
56.
Mawson, P. R., Hampton, J. O. & Dooley, B. Subsidized commercial harvesting for cost-effective wildlife management in urban areas: a case study with kangaroo sharpshooting. Wildl. Soc. Bull. 40, 251–260 (2016).
Google Scholar
57.
Manjerovic, M. B., Green, M. L., Mateus-Pinilla, N. & Novakofski, J. The importance of localized culling in stabilizing chronic wasting disease prevalence in white-tailed deer populations. Prev. Vet. Med. 113, 139–145 (2014).
PubMed Google Scholar
58.
Mateus-Pinilla, N., Weng, H. Y., Ruiz, M. O., Shelton, P. & Novakofski, J. Evaluation of a wild white-tailed deer population management program for controlling chronic wasting disease in Illinois, 2003-2008. Prev. Vet. Med. 110, 541–548 (2013).
PubMed Google Scholar
59.
Vaske, J. J. Lessons learned from human dimensions of chronic wasting disease research. Hum. Dimens Wildl. 15, 165–179 (2010).
Google Scholar
60.
Mysterud, A., Strand, O. & Rolandsen, C. M. Efficacy of recreational hunters and marksmen for host culling to combat chronic wasting disease in reindeer. Wildl. Soc. Bull. 43, 683–692 (2019).
Google Scholar
61.
Gaydos, D. A., Petrasova, A., Cobb, R. C. & Meentemeyer, R. K. Forecasting and control of emerging infectious forest disease through participatory modelling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180283 (2019).
PubMed PubMed Central Google Scholar
62.
Strand, O., Nilsen, E. B., Solberg, E. J. & Linnell, J. D. C. Can management regulate the population size of wild reindeer (Rangifer tarandus) through harvest? Can. J. Zool. 90, 163–171 (2012).
Google Scholar
63.
Nilsen, E. B. & Strand, O. Integrating data from several sources for increased insight into demographic processes: Simulation studies and proof of concept for hierarchical change in ratio models. PLoS ONE 13, e0194566 (2018).
PubMed PubMed Central Google Scholar
64.
Viljugrein, H. et al. A method that accounts for differential detectability in mixed samples of long-term infections with applications to the case of chronic wasting disease in cervids. Methods Ecol. Evol. 10, 134–145 (2019).
Google Scholar
65.
Mysterud, A. et al. The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere 10, e02931 (2019).
Google Scholar
66.
MacDiarmid, S. C. A theoretical basis for the use of a skin test for brucellosis surveillance in extensively-managed cattle herds. Rev. Sci. Tech. Int Epiz 6, 1029–1035 (1987).
CAS Google Scholar
67.
Viljugrein, H. Accompanying Code for the Paper “Hunting Wildlife to Increase Disease Detection” Version v1.0.0, August 4-2020) https://doi.org/10.5281/zenodo.3972037 (Zenodo, 2020). More