More stories

  • in

    A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis

    Based on the labels of DeepFish, we consider these four computer vision tasks: classification, counting, localization, and segmentation. Deep learning have consistently achieved state-of-the-art results on these tasks as they can leverage the enormous size of the datasets they are trained on. These datasets include ImageNet6, Pascal7, CityScapes5 and COCO24. DeepFish aims to be part of these large scale datasets with the unique goal of understanding complex fish habitats for the purpose of inspiring further research in this area.
    We present standard deep learning methods for each of these tasks. Shown as the blue module in Figure 4, these methods have the ResNet-5013 backbone which is one of the most popular feature extractors for image understanding and visual recognition. They enable models to learn from large datasets and transfer the acquired knowledge to train efficiently on another dataset. This process is known as transfer learning and has been consistently used in most current deep learning methods22. Such pretrained models can even recognize object classes that they have never been trained on29. This property illustrates how powerful the extracted features are from a pretrained ResNet-50.
    Therefore, we initialize the weights of our ResNet-50 backbones by pre-training it on ImageNet following the procedure discussed in6. ImageNet consists of over 14 million images categorized over 1,000 classes. As a result, the backbone learns to extract strong, general features for unseen images by training on such dataset. These features are then used by a designated module to perform their respective computer vision task such as classification and segmentation. We describe these modules in the sections below.
    To put the results into perspective, we also include baseline results by training the same methods without ImageNet pretraining (Table 3). In this case, we randomly initialize the weights of the ResNet-50 backbone with Xavier’s method11. These results also illustrate the efficacy of having pretrained models over randomly initialized models.
    Table 3 Comparison between randomly initialized and ImageNet pretrained models.
    Full size table

    Classification results
    The goal of the classification task is to identify whether images are foreground (contains fish) or background (contains no fish). We use accuracy to evaluate the models on this task which is a standard metric for binary classification problems3,8,9,15,27. The metric is computed as

    $$begin{aligned} { ACC}=({ TP}+{ TN})/{ N}, end{aligned}$$

    where ({ TP}) and ({ TN}) are the true positives and true negatives, respectively, and ({ N}) is the total number of images. A true positive represents an image with at least one fish that is predicted as foreground, whereas a true negative represents an image with no fish that is predicted as background. For this task we used the FishClf dataset for this task where the number of images labeled is 39,766.
    The classification architecture consists of a ResNet-50 backbone and a feed-forward network (FFN) (classification branch of Fig. 4). FFN takes as input features extracted by ResNet-50 and outputs a probability for the image corresponding to how likely it contains a fish. If the probability is higher than 0.5 the predicted classification label is foreground. For the FFN, we use the network presented in ImageNet which consists of 3 layers. However, instead of the original 1,000-class output layer, we use a 2-class output layer to represent the foreground or background class.
    During training, the classifier learns to minimize the binary cross-entropy objective function28 using the Adam16 optimizer. The learning rate was set as (10^{-3}) and the batch size was set to be 16. Since FFN require a fixed resolution of the extracted features, the input images are resized to (224times 224). At test time, the model outputs a score for each of the two classes for a given unseen image. The predicted class for that image is the class with the higher score.
    In Table 3 we compare between a classifier with the backbone pretrained on ImageNet and with the randomly initialized backbone. Note that both classifiers have their FFN network initialized at random. We see that the pretrained model achieved near-perfect classification results outperforming the baseline significantly. This result suggests that transfer learning is important and that deep learning has strong potential for analyzing fish habitats.
    Figure 4

    Deep learning methods. The architecture used for the four computer vision tasks of classification, counting, localization, and segmentation consists of two components. The first component is the ResNet-50 backbone which is used to extract features from the input image. The second component is either a feed-forward network that outputs a scalar value for the input image or an upsampling path that outputs a value for each pixel in the image.

    Full size image

    Counting results
    The goal of the counting task is to predict the number of fish present in an image. We evaluate the models on the FishLoc dataset, which consists of 3,200 images labeled with point-level annotations. We measure the model’s efficacy in predicting the fish count by using the mean absolute error. It is defined as,

    $$begin{aligned} { MAE}=frac{1}{N}sum _{i=1}^N|hat{C}_i-C_i|, end{aligned}$$

    where (C_i) is the true fish count for image i and (hat{C}_i) is the model’s predicted fish count for image i. This metric is standard for object counting12,23 and it measures the number of miscounts the model is making on average across the test images.
    The counting branch in Fig. 4 shows the architecture used for the counting task, which, similar to the classifier, consists of a ResNet-50 backbone and a feed-forward network (FFN). Given the extracted features from the backbone for an input image, the FFN outputs a number that correspond to the count of the fish in the image. Thus, instead of a 2-class output layer like with the classifier, the counting model has a single node output layer.
    We train the models by minimizing the squared error loss28, which is a common objective function for the counting task. At test time, the predicted value for an image is the predicted object count.
    The counting model with the backbone pretrained on ImageNet achieved an MAE of 0.38 (Table 3. This result corresponds to making an average of 0.38 fish miscounts per image which is satisfactory as the average number of fish per image is 7. In comparison, the counting model initialized randomly achieved an MAE of 1.30. This result further confirms that transfer learning and deep learning can successfully address the counting task despite the fact that the dataset for counting (FishLoc) is much smaller than classification (FishClf).
    Localization results
    Localization considers the task of identifying the locations of the fish in the image. It is a more difficult task than classification and counting as the fish can extensively overlap. Like with the counting task, we evaluate the models on the FishLoc dataset. However, MAE scores do not provide how well the model performs at localization as the model can count the wrong objects and still achieve perfect score. To address this limitation, we use a more accurate evaluation for localization by following12, which considers both the object count and the location estimated for the objects. This metric is called Grid Average Mean absolute Error (GAME). It is computed as

    $$begin{aligned} GAME = sum _{i=1}^4 { GAME}(L),quad { GAME}(L) = frac{1}{N}sum _{i=1}^Nleft( sum _{l=1}^{4^L}|D^l_i – hat{D}^l_i|right) , end{aligned}$$

    where (D^l_i) is the number of point-level annotations in region l, and (hat{D}^l_i) is the model’s predicted count for region l. ({ GAME}(L)) first divides the image into a grid of (4^L) non-overlapping regions, and then computes the sum of the MAE scores across these regions. The higher L, the more restrictive the GAME metric will be. Note that ({ GAME}(0)) is equivalent to MAE.
    The localization branch in Fig. 4 shows the architecture used for the localization task, which consists of a ResNet-50 backbone and an upsampling path. The upsampling path is based on the network described in FCN826 which is a standard fully convolutional neural network meant for localization and segmentation, which consists of three upsampling layers.
    FCN8 processes images as follows. The features extracted with the backbone are of a smaller resolution than the input image. These features are then upsampled with the upsampling path to match the resolution of the input image. The final output is a per-pixel probability map where each pixel represents the likelihood that it belongs to the fish class.
    The models is trained using a state-of-the-art localization-based loss function called LCFCN21. LCFCN is trained using four objective functions: image-level loss, point-level loss, split-level loss, and false positive loss. The image-level loss encourages the model to predict all pixels as background for background images. The point-level loss encourages the model to predict the centroids of the fish. Unfortunately, these two loss terms alone do not prevent the model from predicting every pixel as fish for foreground images. Thus, LCFCN also minimizes the split loss and false-positive loss. The split loss splits the predicted regions so that no region has more than one point annotation. This results in one blob per point annotation. The false-positive loss prevents the model from predicting blobs for regions where there are no point annotations. Note that training LCFCN only requires point-level annotations which are spatial locations of where the objects are in the image.
    At test time, the predicted probability map are thresholded to become 1 if they are larger than 0.5 and 0 otherwise. This results in a binary mask, where each blob is a single connected component and they can be collectively obtained using the standard connected components algorithm. The number of connected components is the object count and each blob represents the location of an object instance (see Fig. 5 for example predictions with FCN8 trained with LCFCN).
    Models trained on this dataset are optimized using Adam16 with a learning rate of (10^{-3}) and weight decay of 0.0005, and have been ran for 1,000 epochs on the training set. In all cases the batch size is 1, which makes it applicable for machines with limited memory.
    Table 3 shows the MAE and GAME results of training an FCN8 with and without a pretrained ResNet-50 backbone using the LCFCN loss function. We see that pretraining leads to significant improvement on MAE and a slight improvement for GAME. The efficacy of the pretrained model is further confirmed by the qualitative results shown in Fig. 5a where the predicted blobs are well-placed on top of the fish in the images.
    Figure 5

    Qualitative results on counting, localization, and segmentation. (a) Prediction results of the model trained with the LCFCN loss21. (b) Annotations that represent the (x, y) coordinates of each fish within the images. (c) Prediction results of the model trained with the focal loss25. (d) Annotations that represent the full segmentation masks of the corresponding fish.

    Full size image

    Segmentation results
    The task of segmentation is to label every pixel in the image as either fish or not fish (Fig. 5c,d). When combined with depth information, a segmented image allows us to measure the size and the weight of the fish in a location, which can vastly improve our understanding of fish communities. We evaluate the model on the FishSeg dataset for which we acquired per-pixel labels for 620 images. We evaluate the models on this dataset using the standard Jaccard index5,7 which is defined as the number of correctly labelled pixels of a class, divided by the number of pixels labelled with that class in either the ground truth mask or the predicted mask. It is commonly known as the intersection-over-union metric IoU, computed as (frac{TP}{TP + FP + FN}), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively, which is determined over the whole test set. In segmentation tasks, the IoU is preferred over accuracy as it is not as affected by the class imbalances that are inherent in foreground and background segmentation masks like in DeepFish.
    During training, instead of minimizing the standard per-pixel cross-entropy loss26, we use the focal loss function25 which is more suitable when the number of background pixels is much higher than the foreground pixels like in our dataset. The rest of the training procedure is the same as with the methods trained for localization.
    At test time, the model outputs a probability for each pixel in the image. If the probability is higher than 0.5 for the foreground class, then the pixel is labeled as fish, resulting in a segmentation mask for the input image.
    The results in Table 3 show a comparison between the pretrained and randomly initialized segmentation model. Like with the other tasks, the pretrained model achieves superior results both quantitatively and qualitatively (Fig. 5).
    Ethical approval
    This work was conducted with the approval of the JCU Animal Ethics Committee (protocol A2258), and conducted in accordance with DAFF general fisheries permit #168652 and GBRMP permit #CMES63. More

  • in

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    1.
    Hutchins DA, Fu F. Microorganisms and ocean global change. Nat Microbiol. 2017;2:17058.
    CAS  PubMed  Google Scholar 
    2.
    Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.
    PubMed  PubMed Central  Google Scholar 

    3.
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.
    CAS  Google Scholar 

    4.
    Eppley RW. Temperature and phytoplankton growth in the sea. Fish Bull. 1972;70:1063–85.
    Google Scholar 

    5.
    Hawkes CV, Keitt TH. Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett. 2015;18:612–25.
    PubMed  Google Scholar 

    6.
    Stegen JC, Bottos EM, Jansson JK. A unified conceptual framework for prediction and control of microbiomes. Curr Opin Microbiol. 2018;44:20–7.
    PubMed  Google Scholar 

    7.
    Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 2020;14:413–24.
    CAS  PubMed  Google Scholar 

    8.
    Izem R, Kingsolver JG. Variation in continuous reaction norms: quantifying directions of biological interest. Am Naturalist. 2005;166:277–89.
    Google Scholar 

    9.
    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8.
    CAS  PubMed  Google Scholar 

    10.
    Lomas M, Hopkinson B, Ryan JLD, Shi D, Xu Y, Morel F. Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquat Microb Ecol. 2012;66:211–22.
    Google Scholar 

    11.
    Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O, Dyhrman ST, et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat Clim Change. 2015;5:1002–6.
    CAS  Google Scholar 

    12.
    Hunt DE, Ward CS. A network-based approach to disturbance transmission through microbial interactions. Front Microbiol. 2015;6:1182. http://www.frontiersin.org/Journal/Abstract.aspx?s=53&name=aquatic_microbiology&ART_DOI=10.3389/fmicb.2015.01182.

    13.
    Hennon GM, Morris JJ, Haley ST, Zinser ER, Durrant AR, Entwistle E, et al. The impact of elevated CO2 on Prochlorococcus and microbial interactions with ‘helper’ bacterium Alteromonas. The ISME J. 2017;12:520–31.
    Google Scholar 

    14.
    von Scheibner M, Dörge P, Biermann A, Sommer U, Hoppe HG, Jürgens K. Impact of warming on phyto‐bacterioplankton coupling and bacterial community composition in experimental mesocosms. Environ Microbiol. 2014;16:718–33.
    Google Scholar 

    15.
    Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84.
    CAS  Google Scholar 

    16.
    Ward CS, Yung C-M, Davis KM, Blinebry SK, Williams TC, Johnson ZI, et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 2017;11:1412–22.
    PubMed  PubMed Central  Google Scholar 

    17.
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.
    CAS  PubMed  Google Scholar 

    18.
    Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA. 2008;105:7774–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Doo SS, Kealoha A, Andersson A, Cohen AL, Hicks TL, Johnson ZI, et al. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J Mar Sci. 2020. https://doi.org/10.1093/icesjms/fsaa094.

    20.
    Lindh MV, Riemann L, Baltar F, Romero‐Oliva C, Salomon PS, Granéli E, et al. Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea. Environ Microbiol Rep. 2013;5:252–62.
    CAS  PubMed  Google Scholar 

    21.
    Roy A-S, Gibbons S, Schunck H, Owens S, Caporaso J, Sperling M, et al. Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms. Biogeosciences. 2013;10:555–66.
    Google Scholar 

    22.
    Oliver AE, Newbold LK, Whiteley AS, van der Gast CJ. Marine bacterial communities are resistant to elevated carbon dioxide levels. Environ Microbiol Rep. 2014;6:574–82.
    CAS  PubMed  Google Scholar 

    23.
    Newbold LK, Oliver AE, Booth T, Tiwari B, DeSantis T, Maguire M, et al. The response of marine picoplankton to ocean acidification. Environ Microbiol. 2012;14:2293–307.
    CAS  PubMed  Google Scholar 

    24.
    Bergen B, Endres S, Engel A, Zark M, Dittmar T, Sommer U, et al. Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms. Environ Microbiol. 2016;18:4579–95.
    CAS  PubMed  Google Scholar 

    25.
    Bunse C, Lundin D, Karlsson CM, Akram N, Vila-Costa M, Palovaara J, et al. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nat Clim Change. 2016;6:483–7.
    CAS  Google Scholar 

    26.
    Xia X, Wang Y, Yang Y, Luo T, Van Nostrand JD, Zhou J, et al. Ocean acidification regulates the activity, community structure, and functional potential of heterotrophic bacterioplankton in an oligotrophic gyre. J Geophys Res. 2019;124:1001–17.
    CAS  Google Scholar 

    27.
    Crawfurd KJ, Alvarez-Fernandez S, Mojica KD, Riebesell U, Brussaard CP. Alterations in microbial community composition with increasing fCO2: a mesocosm study in the eastern Baltic Sea. Biogeosciences. 2017;14:3831–49.
    CAS  Google Scholar 

    28.
    Johnson ZI, Wheeler BJ, Blinebry SK, Carlson CM, Ward CS, Hunt DE. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA) is regulated by physical and biogeochemical processes on multiple timescales. PLoS ONE. 2013;8:e85117.
    PubMed  PubMed Central  Google Scholar 

    29.
    Wang Z, Juarez DL, Pan JF, Blinebry SK, Gronniger J, Clark JS, et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ Microbiol. 2019;21:3862–72.
    CAS  PubMed  Google Scholar 

    30.
    Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci USA. 2009;106:12235–40.
    CAS  PubMed  Google Scholar 

    31.
    Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.
    PubMed  PubMed Central  Google Scholar 

    32.
    Caldeira K, Wickett ME. Anthropogenic carbon and ocean pH. Nature. 2003;425:365.
    CAS  PubMed  Google Scholar 

    33.
    Clayton TD, Byrne RH. Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res Part I. 1993;40:2115–29.
    CAS  Google Scholar 

    34.
    Barber RT, Marra J, Bidigare RC, Codispoti LA, Halpern D, Johnson Z, et al. Primary productivity and its regulation in the Arabian Sea during 1995. Deep Sea Res Part II. 2001;48:1127–72.
    CAS  Google Scholar 

    35.
    Labasque T, Chaumery C, Aminot A, Kergoat G. Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability. Marine Chemistry. 2004;88:53–60.

    36.
    Johnson ZI, Shyam R, Ritchie AE, Mioni C, Lance VP, Murray JW, et al. The effect of iron-and light-limitation on phytoplankton communities of deep chlorophyll maxima of the western Pacific Ocean. J Mar Res. 2010;68:283–308.
    CAS  Google Scholar 

    37.
    Marie D, Partensky F, Jacquet S, Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol. 1997;63:186–93.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
    CAS  PubMed  Google Scholar 

    39.
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
    CAS  PubMed  Google Scholar 

    40.
    Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015;9:968–79.
    CAS  PubMed  Google Scholar 

    41.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community ecology package, version. 2015;2.

    42.
    Tsementzi D, Poretsky R, Rodriguez-R LM, Luo C, Konstantinidis KT. Evaluation of metatranscriptomic protocols and application to the study of freshwater microbial communities. Environ Microbiol Rep. 2014;6:640–55.
    CAS  PubMed  Google Scholar 

    43.
    Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010;11:485.
    Google Scholar 

    44.
    Bengtsson‐Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, et al. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15:1403–14.
    PubMed  Google Scholar 

    45.
    Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.
    CAS  PubMed  Google Scholar 

    46.
    Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2012;41:D226–32.
    PubMed  PubMed Central  Google Scholar 

    47.
    Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–64.
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.
    CAS  PubMed  Google Scholar 

    49.
    Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci data. 2018;5:170203.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Rodriguez-R LM, Tsementzi D, Luo C, Konstantinidis KT. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol. 2020;22:3394–412.
    CAS  PubMed  Google Scholar 

    51.
    Tsementzi D, Rodriguez-R LM, Ruiz-Perez CA, Meziti A, Hatt JK, Konstantinidis KT. Ecogenomic characterization of widespread, closely-related SAR11 clades of the freshwater genus “Candidatus Fonsibacter” and proposal of Ca. Fonsibacter lacus sp. nov. Syst Appl Microbiol. 2019;42:495–505.
    PubMed  Google Scholar 

    52.
    Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, et al. The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 2006;34:D187–91.
    CAS  PubMed  Google Scholar 

    53.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25–29:25.
    Google Scholar 

    54.
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59.
    CAS  PubMed  Google Scholar 

    56.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1.
    Google Scholar 

    57.
    Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, et al. Changes in biogenic carbon flow in response to sea surface warming. Proc Natl Acad Sci USA. 2009;106:7067–72.
    CAS  PubMed  Google Scholar 

    58.
    Fu F-X, Warner ME, Zhang Y, Feng Y, Hutchins DA. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental rations in marine Synechoccocus and Prochlorococcus (Cyanobacteria). J Phycol. 2007;43:485–96.
    Google Scholar 

    59.
    Riebesell U, Wolf-Gladrow D, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature. 1993;361:249–51.
    CAS  Google Scholar 

    60.
    McCarthy A, Rogers SP, Duffy SJ, Campbell DA. Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta). J Phycol. 2012;48:635–46.
    CAS  PubMed  Google Scholar 

    61.
    Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci USA. 2006;103:13104–9.
    CAS  PubMed  Google Scholar 

    62.
    Baltar F, Palovaara J, Vila-Costa M, Salazar G, Calvo E, Pelejero C, et al. Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site. FEMS Microbiol Ecol. 2015;91:fiv058.
    PubMed  Google Scholar 

    63.
    Paerl HW, Huisman J. Blooms like it hot. Science. 2008;320:57–8.
    CAS  PubMed  Google Scholar 

    64.
    Yung C-M, Vereen MK, Herbert A, Davis KM, Yang J, Kantorowska A, et al. Thermally adaptive tradeoffs in closely-related marine bacterial strains. Environ Microbiol. 2015;17:2421–9.
    PubMed  Google Scholar 

    65.
    Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, et al. Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol. 2004;186:7796–803.
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    van der Veen S, Hain T, Wouters JA, Hossain H, de Vos WM, Abee T, et al. The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology. 2007;153:3593–607.
    PubMed  Google Scholar 

    67.
    Hall EK, Singer GA, Kainz MJ, Lennon JT. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off. Funct Ecol. 2010;24:898–908.
    Google Scholar 

    68.
    Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, et al. The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA. 2009;106:15527–33.
    CAS  PubMed  Google Scholar 

    69.
    Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins. PLoS ONE. 2012;7:5.
    Google Scholar 

    70.
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Hunt DE, Lin Y, Church MJ, Karl DM, Izzo LK, Tringe S, et al. Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl Environ Microbiol. 2013;79:177–84.
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.
    CAS  PubMed  Google Scholar  More

  • in

    Semi-automated identification of biological control agent using artificial intelligence

    Sampling of N. barkeri and related species
    Phytoseiid mites inhabit a variety of habitats, such as various plants and soil litters. Individuals were collected from plants and those on substrates and soil litters were isolated using Berlese’ funnels and kept in 95% alcohol. Samples were mounted in Hoyer’s medium and softened and cleaned with lactic acid if the mite body was hard. In addition, specimens were deposited at several institutes: GIABR (Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China), HUM (Hokkaido University Museum, Sapporo, Japan), NMNS (National Museum of Nature and Science, Tsukuba, Japan), NTU (Department of Entomology, National Taiwan University, Taipei, Taiwan), TARL (Taiwan Acari Research Laboratory, Taichung City, Taiwan). Female phytoseiid mites were collected, including 250 specimens of N. barkeri, and 262 specimens of 35 non-target species belonging to subfamily Amblyseiinae, in 6 tribes, and 11 genera. The following numbers of these non-target species were collected: 4 of N. baraki, 10 of N. longispinosus, 10 of N. makuwa, 6 of N. taiwanicus, 9 of N. womersleyi, 9 of Amblyseius alpinia, 10 of A. bellatulus, 10 of A. eharai, 10 of A. herbicolus, 2 of A. pascalis, 10 of A. tamatavensis, 10 of Euseius aizawai, 6 of E. circellatus, 7 of E. daluensis, 11 of E. macaranga, 10 of E. ovalis, 6 of E. paraovalis, 3 of E. nicholsi, 6 of E. oolong, 7 of E. sojaensis, 4 of Gynaeseius liturivorus, 3 of G. santosoi, 10 of Okiseius subtropicus, 4 of Paraamblyseius formosanus, 7 of Paraphytoseius chihpenensis, 10 of Parap. cracentis, 3 of Parap. hualienensis, 10 of Parap. orientalis, 6 of Phytoscutus salebrosus, 10 of Proprioseiopsis asetus, 3 of Prop. ovatus, 8 of Scapulaseius anuwati, 10 of S. cantonensis, 10 of S. okinawanus, and 8 of S. tienhsainensis. In addition, specimens of N. barkeri were collected from the United States, China, Israel, Japan, the Netherlands, Taiwan, and Thailand (including intercepted specimens in plant quarantine).
    Quantitative measurements of phytoseiid mites
    Specimens were examined under an Olympus BX51 microscope, and measurements were performed using a stage-calibrated ocular micrometer and ImageJ 1.4736. Photos were taken using a Motic Moticam 5+ camera attached to the microscope (Figure S1). All measurements were recorded in micrometres (μm). The general terminology used for morphological descriptions in this study conformed to that of Chant and McMurtry20. The notation for idiosomal setae conformed to that of Lindquist and Evans37 and Lindquist38, as adapted by Rowell et al.39 and Chant and Yoshida-Shaul32. Phytoseiid mites exhibit pronounced sexual dimorphism, and female individuals are more crucial for identification because of their distinguishing features and greater prevalence. In the present study, 22 quantitative measurements were collected from the female specimens: dorsal shield length and width; j1, j3, j4, j6, J5, z2, z4, z5, Z1, Z4, Z5, s4, r3, and R1 setae length; ventrianal shield length and width (at ZV2 level); JV5 length; St IV length; spermatheca calyx length, and spermatheca calyx width (Fig. 1, Table 1).
    XGBoost training and computing
    We used XGBoost to develop a classification system for target mite species and related species based on their morphological features. Among machine learning methods, XGBoost is the most efficient for implementing the gradient boosting decision tree algorithm from multiple decision trees, which are created successively. For each iteration, a tree enhances its predictive power by minimising the unexplained part of the last tree. First, we determined the number of decision trees through cross-validation. The original sample was randomly partitioned into five equally sized subsamples (Table S1). A single subsample and the other subsamples were retained for use as the validation and training data, respectively. Cross-validation was then performed five times, with each subsample used exactly once as the validation data. The number of decision trees allows the same level of performance to be achieved in training and validation. The number of decision trees was then used for the full dataset to create a final model, and key morphological features were selected for their relative importance. Next, we used ICE plots to indicate the determinative roles of these key features in classification. Plots in which one line represents one specimen indicate changes in predictions (of target species) that occur as a morphological feature change. We generated XGBoost and ICE plots by respectively using the R package “xgboost”40 and “pdp”41.
    Drawings
    Hand-drawn illustrations (Fig. 1) were made under an optic microscope (Olympus BX51). These drawings were first scanned, then processed and digitized with Photoshop CS6 (Adobe Systems Incorporated, USA). More

  • in

    Importance of old bulls: leaders and followers in collective movements of all-male groups in African savannah elephants (Loxodonta africana)

    1.
    King, A. J., Douglas, C. M. S., Huchard, E., Isaac, N. J. B. & Cowlishaw, G. Dominance and affiliation mediate despotism in a social primate. Curr. Biol. 18, 1833–1838 (2008).
    CAS  PubMed  Google Scholar 
    2.
    Harcourt, J. L., Ang, T. Z., Sweetman, G., Johnstone, R. A. & Manica, A. Social feedback and the emergence of leaders and followers. Curr. Biol. 19, 248–252 (2009).
    CAS  PubMed  Google Scholar 

    3.
    Maransky, B. P. & Bildstein, K. L. Follow your elders: age-related differences in the migration behavior of broad-winged hawks at hawk mountain sanctuary, Pennsylvania. Wilson Bull. 113, 350–353 (2001).
    Google Scholar 

    4.
    King, A. J., Johnson, D. D. P. & Van Vugt, M. The origins and evolution of leadership. Curr. Biol. 19, R911–R916 (2009).
    CAS  PubMed  Google Scholar 

    5.
    Dyer, J. R. G. et al. Consensus decision making in human crowds. Anim. Behav. 75, 461–470 (2008).
    Google Scholar 

    6.
    Lusseau, D. & Conradt, L. The emergence of unshared consensus decisions in bottlenose dolphins. Behav. Ecol. Sociobiol. 63, 1067–1077 (2009).
    Google Scholar 

    7.
    Diamond, J. Unwritten knowledge. Nature 410, 521–521 (2001).
    ADS  CAS  PubMed  Google Scholar 

    8.
    McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol. Sci. 278, 3270–3276 (2011).
    Google Scholar 

    9.
    McComb, K., Moss, C., Durant, S. M., Baker, L. & Sayialel, S. Matriarchs as repositories of social knowledge in African elephants. Science 292, 491–494 (2001).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).
    CAS  PubMed  Google Scholar 

    11.
    Stephen Dobson, F. Competition for mates and predominant juvenile male dispersal in mammals. Anim. Behav. 30, 1183–1192 (1982).
    Google Scholar 

    12.
    Baker, J. E. Trophy hunting as a sustainable use of wildlife resources in Southern and Eastern Africa. J. Sustain. Tour. 5, 306–321 (1997).
    Google Scholar 

    13.
    Hurt, R. & Ravn, P. Hunting and its benefits: an overview of hunting in Africa with special reference to Tanzania. In Wildlife Conservation by Sustainable Use, 295–313 (Springer, 2000). https://doi.org/10.1007/978-94-011-4012-6_15.

    14.
    Chiyo, P. I., Obanda, V. & Korir, D. K. Illegal tusk harvest and the decline of tusk size in the African elephant. Ecol. Evol. 5, 5216–5229 (2015).
    PubMed  PubMed Central  Google Scholar 

    15.
    Presotto, A., Fayrer-Hosken, R., Curry, C. & Madden, M. Spatial mapping shows that some African elephants use cognitive maps to navigate the core but not the periphery of their home ranges. Anim. Cogn. 22, 251–263 (2019).
    PubMed  Google Scholar 

    16.
    Von Gerhardt, K., Van Niekerk, A., Kidd, M., Samways, M. & Hanks, J. The role of elephant Loxodonta africana pathways as a spatial variable in crop-raiding location. Oryx 48, 436–444 (2014).
    Google Scholar 

    17.
    Lee, P. C., Poole, J. H., Njiraini, N., Sayialel, C. N. & Moss, C. J. Male social dynamics. In The Amboseli elephants 260–271 (University of Chicago Press, 2011). https://doi.org/10.7208/chicago/9780226542263.003.0017.

    18.
    Ngene, S. M. et al. The ranging patterns of elephants in Marsabit protected area, Kenya: the use of satellite-linked GPS collars. Afr. J. Ecol. 48, 386–400 (2009).
    Google Scholar 

    19.
    Archie, E. A., Moss, C. J. & Alberts, S. C. The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proc. R. Soc. B Biol. Sci. 273, 513–522 (2005).
    Google Scholar 

    20.
    Chiyo, P. I. et al. Association patterns of African elephants in all-male groups: the role of age and genetic relatedness. Anim. Behav. 81, 1093–1099 (2011).
    Google Scholar 

    21.
    Poole, J. H. Rutting behavior in African elephants: the phenomenon of musth. Behaviour 102, 283–316 (1987).
    Google Scholar 

    22.
    Hollister-Smith, J. A. et al. Age, musth and paternity success in wild male African elephants, Loxodonta africana. Anim. Behav. 74, 287–296 (2007).
    Google Scholar 

    23.
    Goldenberg, S. Z., de Silva, S., Rasmussen, H. B., Douglas-Hamilton, I. & Wittemyer, G. Controlling for behavioural state reveals social dynamics among male African elephants, Loxodonta africana. Anim. Behav. 95, 111–119 (2014).
    Google Scholar 

    24.
    Moss, C. J. The demography of an African elephant (Loxodonta africana) population in Amboseli, Kenya. J. Zool. 255, 145–156 (2001).
    Google Scholar 

    25.
    Lee, P. C. & Moss, C. J. Statural growth in known-age African elephants (Loxodonta africana). J. Zool. 236, 29–41 (1995).
    Google Scholar 

    26.
    Moss, C. J. & Lee, P. C. Female reproductive strategies. In The Amboseli Elephants 187–204 (University of Chicago Press, 2011). https://doi.org/10.7208/chicago/9780226542263.003.0012.

    27.
    Chiyo, P. I. & Cochrane, E. P. Population structure and behaviour of crop-raiding elephants in Kibale National Park, Uganda. Afr. J. Ecol. 43, 233–241 (2005).
    Google Scholar 

    28.
    Stevens, J. Understanding Human–Elephant Interactions in and Around Makgadikgadi Pans National Park, Botswana. PhD Thesis, University of Bristol (2018).

    29.
    Obanda, V. et al. Injuries of free ranging African elephants (Loxodonta africana africana) in various ranges of Kenya. Pachyderm 44, 54–58 (2008).
    Google Scholar 

    30.
    Foley, C., Pettorelli, N. & Foley, L. Severe drought and calf survival in elephants. Biol. Lett. 4, 541–544 (2008).
    PubMed  PubMed Central  Google Scholar 

    31.
    Evans, K. E. Elephants for Africa: male Savannah elephant Loxodonta africana sociality, the Makgadikgadi and resource competition. Int. Zoo Yearb. 53, 200–207 (2019).
    Google Scholar 

    32.
    Shannon, G., Page, B. R., Duffy, K. J. & Slotow, R. The ranging behaviour of a large sexually dimorphic herbivore in response to seasonal and annual environmental variation. Aust. Ecol. 35, 731–742 (2010).
    Google Scholar 

    33.
    Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Pettit, B., Ákos, Z., Vicsek, T. & Biro, D. Speed determines leadership and leadership determines learning during pigeon flocking. Curr. Biol. 25, 3132–3137 (2015).
    CAS  PubMed  Google Scholar 

    35.
    Hutchinson, J. R. The locomotor kinematics of Asian and African elephants: changes with speed and size. J. Exp. Biol. 209, 3812–3827 (2006).
    PubMed  Google Scholar 

    36.
    Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. 89, 57–67 (2019).
    PubMed  PubMed Central  Google Scholar 

    37.
    King, A. J. et al. Selfish-herd behaviour of sheep under threat. Curr. Biol. 22, R561–R562 (2012).
    CAS  PubMed  Google Scholar 

    38.
    Joubert, D. Hunting behaviour of lions (Panthera leo) on elephants (Loxodonta africana) in the Chobe National Park, Botswana. Afr. J. Ecol. 44, 279–281 (2006).
    Google Scholar 

    39.
    de Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. J. Mammal. 91, 1280–1286 (2010).
    Google Scholar 

    40.
    Wittemyer, G., Daballen, D. & Douglas-Hamilton, I. Comparative demography of an at-risk African elephant population. PLoS ONE 8, e53726 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Jones, T. et al. Age structure as an indicator of poaching pressure: Insights from rapid assessments of elephant populations across space and time. Ecol. Ind. 88, 115–125 (2018).
    Google Scholar 

    42.
    Conradt, L., Krause, J., Couzin, I. D. & Roper, T. J. “Leading according to need” self-organizing groups. Am. Nat. 173, 304–312 (2009).
    CAS  PubMed  Google Scholar 

    43.
    Hoare, D., Reeves, P. & Krause, J. Positioning behaviour in roach shoals: the role of body length and nutritional state. Behaviour 135, 1031–1039 (1998).
    Google Scholar 

    44.
    Fischhoff, I. R. et al. Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. Anim. Behav. 73, 825–831 (2007).
    Google Scholar 

    45.
    Leggett, K. Effects of artificial water points on the movement and behaviour of desert-dwelling elephants in north-western Namibia. Pachyderm 40, 40–51 (2006).
    Google Scholar 

    46.
    Bell, R. H. V. The effect of soil nutrient availability on community structure in African ecosystems. In Ecological Studies 193–216 (Springer, Berlin, 1982). https://doi.org/10.1007/978-3-642-68786-0_10.

    47.
    Mramba, R. P., Andreassen, H. P., Mlingi, V. & Skarpe, C. Activity patterns of African elephants in nutrient-rich and nutrient-poor savannas. Mammal. Biol. 94, 18–24 (2019).
    Google Scholar 

    48.
    Mutinda, H., Poole, J. H. & Moss, C. J. Decision making and leadership in using the ecosystem. In The Amboseli Elephants 246–259 (University of Chicago Press, 2011). https://doi.org/10.7208/chicago/9780226542263.003.0016.

    49.
    Aureli, F. et al. Fission-fusion dynamics. Curr. Anthropol. 49, 627–654 (2008).
    Google Scholar 

    50.
    Moss, C. J. & Poole, J. H. Relationships and social structure in African elephants. In Primate Social Relationships: An Integrated Approach (ed. Hinde, R. A.) (Blackwell, Oxford, 1983).
    Google Scholar 

    51.
    Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim. Behav. 69, 1357–1371 (2005).
    Google Scholar 

    52.
    Bates, L. A. et al. African elephants have expectations about the locations of out-of-sight family members. Biol. Let. 4, 34–36 (2007).
    Google Scholar 

    53.
    Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Hanks, J. Growth of the African elephant (Loxodonta africana). Afr. J. Ecol. 10, 251–272 (1972).
    Google Scholar 

    55.
    Muposhi, V. K., Gandiwa, E., Bartels, P., Makuza, S. M. & Madiri, T. H. Trophy hunting and sustainability: temporal dynamics in trophy quality and harvesting patterns of wild herbivores in a tropical semi-arid savanna ecosystem. PLoS ONE 11, e0164429 (2016).
    PubMed  PubMed Central  Google Scholar 

    56.
    DG Ecological Consulting. Policy and Strategy for the Conservation and Management of Elephants in Botswana (Department of Wildlife and National Parks, Gaberone, 2003).
    Google Scholar 

    57.
    Pilgram, T. & Western, D. Inferring the sex and age of African elephants from tusk measurements. Biol. Conserv. 36, 39–52 (1986).
    Google Scholar 

    58.
    De Villiers PA. Aspect of the Behaviour and Ecology of Elephant (Loxodonta Africana, Blumenbach, 1797) in the Eastern Transvaal Lowveld with Special Reference to Environmental Interactions. PhD thesis, University of the Orange Free State (1994).

    59.
    Lindsey, P. A., Frank, L. G., Alexander, R., Mathieson, A. & Romañach, S. S. Trophy hunting and conservation in Africa: problems and one potential solution. Conserv. Biol. 21, 880–883 (2007).
    PubMed  Google Scholar 

    60.
    Selier, S.-A.J., Page, B. R., Vanak, A. T. & Slotow, R. Sustainability of elephant hunting across international borders in southern Africa: a case study of the greater Mapungubwe Transfrontier Conservation Area. J. Wildl. Manag. 78, 122–132 (2013).
    Google Scholar 

    61.
    Archie, E. A. et al. Fine-scale population genetic structure in a fission–fusion society. Mol. Ecol. 17, 2666–2679 (2008).
    PubMed  Google Scholar 

    62.
    Evans, K. E. & Harris, S. Adolescence in male African elephants, Loxodonta africana, and the importance of sociality. Anim. Behav. 76, 779–787 (2008).
    Google Scholar 

    63.
    Poole, J. H., Lee, P. C., Njiraini, N. & Moss, C. J. Longevity, competition, and musth. In The Amboseli Elephants 272–288 (University of Chicago Press, 2011). https://doi.org/10.7208/chicago/9780226542263.003.0018.

    64.
    CITES. 2020 CITES national export quotas. https://www.cites.org/eng/resources/quotas/index.php (2020).

    65.
    Mbaiwa, J. E. Effects of the safari hunting tourism ban on rural livelihoods and wildlife conservation in Northern Botswana. S. Afr. Geogr. J. 100, 41–61 (2017).
    Google Scholar 

    66.
    Thouless C.R. et al. African Elephant Status Report 2016: an update from the African Elephant Database. Occasional Paper Series of the IUCN Species Survival Commission, No. 60 IUCN/SSC Africa Elephant Specialist Group. IUCN, Gland, Switzerland (2016).

    67.
    Pitfield A. R. The Social and Environmental Factors Affecting the Life of Bull African Elephants (Loxodonta africana) in a ‘Bull Area’—A Social Network Analysis. Masters Thesis, University of Bristol (2017) (email info@elephantsforafrica.org for a PDF)

    68.
    Moss, C. Getting to know a population. In Studying Elephants (ed. Kangwana, K.) 58–74 (The African Wildlife Foundation, Nairobi, 1996).
    Google Scholar 

    69.
    Lee, H. C. & Teichroeb, J. A. Partially shared consensus decision making and distributed leadership in vervet monkeys: older females lead the group to forage. Am. J. Phys. Anthropol. 161, 580–590 (2016).
    PubMed  Google Scholar 

    70.
    Mayberry, A. L., Hovorka, A. J. & Evans, K. E. Well-being impacts of human-elephant conflict in Khumaga, Botswana: exploring visible and hidden dimensions. Conser. Soc. 15, 280–291. https://doi.org/10.4103/cs.cs_16_132 (2017).
    Article  Google Scholar  More

  • in

    Releasing uncurated datasets is essential for reproducible phylogenomics

    E.D.S. was supported by the International Mobilities of Researchers of the Biology Centre (grant no. CZ.02.2.69/0.0/0.0/16_027/0008357). L.E. is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting grant no. 803151). M.W.B. was supported by the United States National Science Foundation Division of Environmental Biology (grant no. 1456054). M.K. was supported by Fellowship Purkyně (Czech Academy of Sciences) and by the project Centre for research of pathogenicity and virulence of parasites r.n.: CZ.02.1.01/0.0/0.0/16_019/0000759. More

  • in

    Testing for context-dependent effects of prenatal thyroid hormones on offspring survival and physiology: an experimental temperature manipulation

    1.
    Moore, M. P., Whiteman, H. H. & Martin, R. A. A mother’s legacy: The strength of maternal effects in animal populations. Ecol. Lett. 22, 1620–1628 (2019).
    PubMed  Google Scholar 
    2.
    Yin, J. J., Zhou, M., Lin, Z. R., Li, Q. S. Q. & Zhang, Y. Y. Transgenerational effects benefit offspring across diverse environments: A meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986 (2019).
    PubMed  Google Scholar 

    3.
    Groothuis, T. G. G., Hsu, B.-Y., Kumar, N. & Tschirren, B. Revisiting mechanisms and functions of prenatal hormone-mediated maternal effects using avian species as a model. Philos. Trans. R. Soc. B 374, 20180115 (2019).
    CAS  Google Scholar 

    4.
    Ruuskanen, S. & Hsu, B.-Y. Maternal thyroid hormones: An unexplored mechanism underlying maternal effects in an ecological framework. Physiol. Biochem. Zool. 91, 904–916 (2018).
    PubMed  Google Scholar 

    5.
    Meylan, S., Miles, D. B. & Clobert, J. Hormonally mediated maternal effects, individual strategy and global change. Philos. Trans. R. Soc. B 367, 1647–1664 (2012).
    Google Scholar 

    6.
    Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here?. Glob. Change Biol. 24, 13–34 (2018).
    ADS  Google Scholar 

    7.
    Ruuskanen, S., Hsu, B.-Y. & Nord, A. Endocrinology of thermoregulation of birds in a changing climate. https://doi.org/10.32942/osf.io/jzam3 (2020).

    8.
    Sheriff, M. J. et al. Integrating ecological and evolutionary context in the study of maternal stress. Integr. Comp. Biol. 57, 437–449 (2017).
    PubMed  PubMed Central  Google Scholar 

    9.
    Schoech, S. J., Rensel, M. A. & Heiss, R. S. Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: A review. Curr. Zool. 57, 514–530 (2011).
    CAS  Google Scholar 

    10.
    Love, O. P. & Williams, T. D. The adaptive value of stress-induced phenotypes: Effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am. Nat. 172, E135–E149 (2008).
    PubMed  Google Scholar 

    11.
    Weber, B. M. et al. Pre- and postnatal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity and survival of nestling house wrens. Funct. Ecol. 32, 1995–2007 (2018).
    PubMed  PubMed Central  Google Scholar 

    12.
    Dantzer, B. et al. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340, 1215–1217 (2013).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Zimmer, C., Boogert, N. J. & Spencer, K. A. Developmental programming: Cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm. Behav. 64, 494–500 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Muriel, J. et al. Context-dependent effects of yolk androgens on nestling growth and immune function in a multibrooded passerine. J. Evol. Biol. 28, 1476–1488 (2015).
    CAS  PubMed  Google Scholar 

    15.
    Gil, D. Hormones in avian eggs: Physiology, ecology and behavior. Adv. Study Behav. 38, 337–398 (2008).
    Google Scholar 

    16.
    Hsu, B.-Y., Doligez, B., Gustafsson, L. & Ruuskanen, S. Transient growth-enhancing effects of elevated maternal thyroid hormones at no apparent oxidative cost during early postnatal period. J. Avian Biol. 50, jav-01919 (2019).
    Google Scholar 

    17.
    Sarraude, T., Hsu, B.-Y., Groothuis, T. G. G. & Ruuskanen, S. Manipulation of prenatal thyroid hormones does not influence growth or physiology in nestling pied flycatchers. Physiol. Biochem. Zool. 93, 255–266 (2020).
    PubMed  Google Scholar 

    18.
    Hsu, B.-Y., Dijkstra, C., Darras, V. M., de Vries, B. & Groothuis, T. G. G. Maternal thyroid hormones enhance hatching success but decrease nestling body mass in the rock pigeon (Columba livia). Gen. Comp. Endocrinol. 240, 174–181 (2017).
    CAS  PubMed  Google Scholar 

    19.
    Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J. & Metcalfe, N. B. The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Funct. Ecol. 29, 479–486 (2015).
    Google Scholar 

    20.
    McNabb, F. M. A. The hypothalamic–pituitary–thyroid (HPT) axis in birds and its role in bird development and reproduction. Crit. Rev. Toxicol. 37, 163–193 (2007).
    CAS  PubMed  Google Scholar 

    21.
    Price, E. R. & Dzialowski, E. M. Development of endothermy in birds: Patterns and mechanisms. J. Comp. Physiol. B 188, 373–391 (2018).
    CAS  PubMed  Google Scholar 

    22.
    Ruuskanen, S. et al. Temperature-induced variation in yolk androgen and thyroid hormone levels in avian eggs. Gen. Comp. Endocrinol. 235, 29–37 (2016).
    CAS  PubMed  Google Scholar 

    23.
    Stier, A., Bize, P., Hsu, B.-Y. & Ruuskanen, S. Plastic but repeatable: Rapid adjustments of mitochondrial function and density during reproduction in a wild bird species. Biol. Lett. 15, 20190536 (2019).
    CAS  PubMed  Google Scholar 

    24.
    Salin, K., Auer, S. K., Rey, B., Selman, C. & Metcalfe, N. B. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. R. Soc. B 282, 20151028 (2015).
    PubMed  Google Scholar 

    25.
    Lassiter, K., Dridi, S., Greene, E., Kong, B. & Bottje, W. G. Identification of mitochondrial hormone receptors in avian muscle cells. Poult. Sci. 97, 2926–2933 (2018).
    CAS  PubMed  Google Scholar 

    26.
    Lanni, A., Moreno, M. & Goglia, F. Mitochondrial actions of thyroid hormone. Compr. Physiol. 6, 1591–1607 (2016).
    PubMed  Google Scholar 

    27.
    Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell. Endocrinol. 342, 1–7 (2011).
    CAS  PubMed  Google Scholar 

    28.
    Clarke, A. & Portner, H. O. Temperature, metabolic power and the evolution of endothermy. Biol. Rev. 85, 703–727 (2010).
    PubMed  Google Scholar 

    29.
    Xia, T., Zhang, X., Wang, Y. & Deng, D. Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation, and mitochondrial dysfunction in skeletal muscle of fetal rats. Biosci. Rep. 38, BSR20171731 (2018).
    PubMed  PubMed Central  Google Scholar 

    30.
    Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford University Press, New York, 2015).
    Google Scholar 

    31.
    Villanueva, I., Alva-Sanchez, C. & Pacheco-Rosado, J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid. Med. Cell. Longev. 2013, 218145 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Stier, A. et al. Elevation impacts the balance between growth and oxidative stress in coal tits. Oecologia 175, 791–800 (2014).
    ADS  PubMed  Google Scholar 

    33.
    Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B 184, 1021–1029 (2014).
    CAS  PubMed  Google Scholar 

    34.
    Andreasson, F., Nord, A. & Nilsson, J. -Å. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. J. Avian Biol. 49, jav-01620 (2018).
    Google Scholar 

    35.
    Podmokła, E., Drobniak, S. M. & Rutkowska, J. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method—a meta-analysis. Biol. Rev. 93, 1499–1517 (2018).
    PubMed  Google Scholar 

    36.
    Lundberg, A. & Alatalo, R. The Pied Flycatcher (Poyser, London, 1992).
    Google Scholar 

    37.
    Haggerty, T. M. Effects of nestling age and brood size on nestling care in the Bachman’s sparrow (Aimophila aestivalis). Am. Midl. Nat. 128, 115–125 (1992).
    Google Scholar 

    38.
    Chastel, O. & Kersten, M. Brood size and body condition in the house sparrow Passer domesticus: The influence of brooding behaviour. Ibis 144, 284–292 (2002).
    Google Scholar 

    39.
    Ruuskanen, S. et al. A new method for measuring thyroid hormones using nano-LC-MS/MS. J. Chromatogr. B 1093–1094, 24–30 (2018).
    Google Scholar 

    40.
    Chang, H.-W. et al. High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis. BMC Biotechnol. 8, 12 (2008).
    PubMed  PubMed Central  Google Scholar 

    41.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 

    42.
    Halekoh, U. & Højsgaard, S. Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. J. Stat. Softw. 59, 1–32 (2014).
    Google Scholar 

    43.
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
    Google Scholar 

    44.
    Ruuskanen, S., Darras, V. M., Visser, M. E. & Groothuis, T. G. G. Effects of experimentally manipulated yolk thyroid hormone levels on offspring development in a wild bird species. Horm. Behav. 81, 38–44 (2016).
    CAS  PubMed  Google Scholar 

    45.
    Rodríguez, S., Diez-Méndez, D. & Barba, E. Negative effects of high temperatures during development on immediate post-fledging survival in great tits Parus major. Acta Ornithol. 51, 235–244 (2016).
    Google Scholar 

    46.
    Rodríguez, S. & Barba, E. Nestling growth is impaired by heat stress: An experimental study in a Mediterranean great tit population. Zool. Stud. 55, 13 (2016).
    Google Scholar 

    47.
    Dawson, R. D., Lawrie, C. C. & O’Brien, E. L. The importance of microclimate variation in determining size, growth and survival of avian offspring: Experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507 (2005).
    ADS  PubMed  Google Scholar 

    48.
    Stier, A., Massemin, S., Zahn, S., Tissier, M. L. & Criscuolo, F. Starting with a handicap: Effects of asynchronous hatching on growth rate, oxidative stress and telomere dynamics in free-living great tits. Oecologia 179, 999–1010 (2015).
    ADS  PubMed  Google Scholar 

    49.
    Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).
    PubMed  Google Scholar 

    50.
    Darras, V. M. The role of maternal thyroid hormones in avian embryonic development. Front. Endocrinol. 10, 66 (2019).
    Google Scholar 

    51.
    Huget-Penner, S. & Feig, D. S. Maternal thyroid disease and its effects on the fetus and perinatal outcomes. Prenat. Diagn. https://doi.org/10.1002/pd.5684 (2020).
    Article  PubMed  Google Scholar 

    52.
    Kulkami, S. S. & Buchholz, K. R. Beyond synergy: Corticosterone and thyroid hormone have numerous interaction effects on gene regulation in Xenopus tropicalis tadpoles. Endocrinology 153, 5309–5324 (2012).
    Google Scholar 

    53.
    Watanabe, Y., Grommern, S. V. H. & de Groef, B. Corticotropin-releasing hormone: Mediator of vertebrate life stage trasitions?. Gen. Comp. Endocrinol. 228, 60–68 (2016).
    CAS  PubMed  Google Scholar 

    54.
    Sechman, A. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 190, 68–75 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Flood, D. E. K., Fernandino, J. I. & Langlois, V. S. Thyroid hormones in male reproductive develoment: Evidence for direct crosstalk between the androgen and thyroid hormones axes. Gen. Comp. Endocrinol. 192, 2–14 (2013).
    CAS  PubMed  Google Scholar 

    56.
    Duarte-Guterman, P., Navarro-Martín, L. & Trudeau, V. L. Mechanisms of crosstalk between endocrine systems: Regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen. Comp. Endocrinol. 203, 69–85 (2014).
    CAS  PubMed  Google Scholar 

    57.
    Stier, A. et al. How to measure mitochondrial function in birds using red blood cells: A case study in the king penguin and perspectives in ecology and evolution. Methods Ecol. Evol. 8, 1172–1182 (2017).
    Google Scholar  More

  • in

    Increased insect herbivore performance under elevated CO2 is associated with lower plant defence signalling and minimal declines in nutritional quality

    1.
    Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. I. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009).
    CAS  Article  Google Scholar 
    2.
    Birch, A. N. E., Begg, G. S. & Squire, G. R. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J. Exp. Bot. 62, 3251–3261 (2011).
    CAS  Article  Google Scholar 

    3.
    Johnson, S. N. & Jones, T. H. Global Climate Change and Terrestrial Invertebrates (John Wiley & Son Ltd., New York, 2017).
    Google Scholar 

    4.
    Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321–336 (2012).
    CAS  Article  Google Scholar 

    5.
    Zavala, J. A., Nabity, P. D. & DeLucia, E. H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 58, 79–97 (2013).
    CAS  Article  Google Scholar 

    6.
    Ode, P. J., Johnson, S. N. & Moore, B. D. Atmospheric change and induced plant secondary metabolites—Are we reshaping the building blocks of multi-trophic interactions? Curr. Opin. Ins. Sci. 5, 57–65 (2014).
    Article  Google Scholar 

    7.
    DeLucia, E. H., Nabity, P. D., Zavala, J. A. & Berenbaum, M. R. Climage change: Resetting plant–insect interactions. Plant Physiol. 160, 1677–1685 (2012).
    CAS  Article  Google Scholar 

    8.
    Facey, S. L., Ellsworth, D. S., Staley, J. T., Wright, D. J. & Johnson, S. N. Upsetting the order: How climate and atmospheric change affects herbivore–enemy interactions. Curr. Opin. Insect Sci. 5, 66–74 (2014).
    Article  Google Scholar 

    9.
    Newman, J. A., Anand, M., Henry, H. A. L., Hunt, S. & Gedalof, Z. Climate Change Biology (CABI, 2011).

    10.
    Mattson, W. J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).
    Article  Google Scholar 

    11.
    Drake, B. G., Gonzalez-Meler, M. A. & Long, S. P. More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609–639 (1997).
    CAS  Article  Google Scholar 

    12.
    Stiling, P. & Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 13, 1823–1842 (2007).
    ADS  Article  Google Scholar 

    13.
    Pang, J. et al. A new explanation of the N concentration decrease in tissues of rice (Oryza sativa L.) exposed to elevated atmospheric pCO2. Environ. Exp. Bot. 57, 98–105 (2006).

    14.
    Taub, D. R. & Wang, X. Z. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J. Integr. Plant Biol. 50, 1365–1374 (2008).
    CAS  Article  Google Scholar 

    15.
    Howe, G. A. & Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66 (2008).
    CAS  Article  Google Scholar 

    16.
    Wu, J. Q. & Baldwin, I. T. New insights into plant responses to the attack from insect herbivores. Annu. Rev. Genet. 44, 1–24 (2010).
    CAS  Article  Google Scholar 

    17.
    Erb, M., Meldau, S. & Howe, G. A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17, 250–259 (2012).
    CAS  Article  Google Scholar 

    18.
    Anderson, C. J. et al. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc. Natl. Acad. Sci. U.S.A. 115, 5034–5039 (2018).
    CAS  Article  Google Scholar 

    19.
    Jones, C. M., Parry, H., Tay, W. T., Reynolds, D. R. & Chapman, J. W. Movement ecology of pest Helicoverpa: Implications for ongoing spread. Annu. Rev. Entomol. 64, 277–295 (2019).
    CAS  Article  Google Scholar 

    20.
    Sharma, H. C. et al. Elevated CO2 influences host plant defense response in chickpea against Helicoverpa armigera. Arthropod-Plant Interact. 10, 171–181 (2016).
    Article  Google Scholar 

    21.
    Khadar, B. A., Prabhuraj, A., Rao, M. S., Sreenivas, A. G. & Naganagoud, A. Influence of elevated CO2 associated with chickpea on growth performance of gram caterpillar, Helicoverpa armigera (Hüb.). Appl. Ecol. Environ. Res. 12, 345–353 (2014).

    22.
    Chen, F., Wu, G., Parajulee, M. N. & Ge, F. Long-term impacts of elevated carbon dioxide and transgenic Bt cotton on performance and feeding of three generations of cotton bollworm. Entomol. Exp. Appl. 124, 27–35 (2007).
    Article  Google Scholar 

    23.
    Chen, F. J., Wu, G., Ge, F., Parajulee, M. N. & Shrestha, R. B. Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomol. Exp. Appl. 115, 341–350 (2005).
    CAS  Article  Google Scholar 

    24.
    Coll, M. & Hughes, L. Effects of elevated CO2 on an insect omnivore: A test for nutritional effects mediated by host plants and prey. Agric. Ecosyst. Environ. 123, 271–279 (2008).
    CAS  Article  Google Scholar 

    25.
    Gang, W., Chen, F. J., Sun, Y. C. & Feng, G. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls under elevated CO2. J. Environ. Sci. 19, 1318–1325 (2007).
    Article  Google Scholar 

    26.
    Yin, J., Sun, Y. C., Wu, G. & Ge, F. Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera. Entomol. Exp. Appl. 136, 12–20 (2010).
    CAS  Article  Google Scholar 

    27.
    Wu, G., Chen, F. J. & Ge, F. Response of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2. J. Appl. Entomol. 130, 2–9 (2006).
    Article  Google Scholar 

    28.
    Hall, C. R., Mikhael, M., Hartley, S. E. & Johnson, S. N. Elevated atmospheric CO2 suppresses jasmonate and silicon-based defences without affecting herbivores. Funct. Ecol. 34, 993–1002 (2020).
    Article  Google Scholar 

    29.
    Guo, H. J. et al. Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PloS One 7, e41426, https://doi.org/10.1371/journal.pone.0041426 (2012).

    30.
    Soussana, J. F. & Hartwig, U. A. The effects of elevated CO2 on symbiotic N2 fixation: A link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187, 321–332 (1996).
    CAS  Article  Google Scholar 

    31.
    Johnson, S. N., Gherlenda, A. N., Frew, A. & Ryalls, J. M. W. The importance of testing multiple environmental factors in legume-insect research: Replication, reviewers and rebuttal. Front. Plant Sci. 7, 489, https://doi.org/10.3389/fpls.2016.00489 (2016).

    32.
    Guo, H. et al. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. Global Change Biol. 19, 3210–3223 (2013).
    ADS  Article  Google Scholar 

    33.
    Johnson, S. N., Ryalls, J. M. W. & Karley, A. J. Global climate change and crop resistance to aphids: contrasting responses of lucerne genotypes to elevated atmospheric carbon dioxide. Ann. Appl. Biol. 165, 62–72 (2014).
    CAS  Article  Google Scholar 

    34.
    Deng, Y. & Lu, S. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 36, 257–290 (2017).
    Article  Google Scholar 

    35.
    Winter, G., Todd, C. D., Trovato, M., Forlani, G. & Funck, D. Physiological implications of arginine metabolism in plants. Front. Plant Sci. 6, 534, https://doi.org/10.3389/fpls.2015.00534 (2015).

    36.
    Schortemeyer, M., Hartwig, U. A., Hendrey, G. R. & Sadowsky, M. J. Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to Free Air Carbon dioxide Enrichment (FACE). Soil Biol. Biochem. 28, 1717–1724 (1996).
    CAS  Article  Google Scholar 

    37.
    Ryle, G. J. A. & Powell, C. E. The influence of elevated CO2 and temperature on biomass production of continuously defoliated white clover. Plant Cell Environ. 15, 593–599 (1992).
    CAS  Article  Google Scholar 

    38.
    Norby, R. J. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiol. Plantarum 71, 77–82 (1987).
    CAS  Article  Google Scholar 

    39.
    Edwards, E. J., McCaffery, S. & Evans, J. R. Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward. New Phytol. 169, 157–167 (2006).
    CAS  Article  Google Scholar 

    40.
    Goodspeed, D., Chehab, E. W., Min-Venditti, A., Braam, J. & Covington, M. F. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc. Natl. Acad. Sci. U.S.A. 109, 4674–4677 (2012).
    ADS  CAS  Article  Google Scholar 

    41.
    Thaler, J. S., Humphrey, P. T. & Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17, 260–270 (2012).
    CAS  Article  Google Scholar 

    42.
    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

    43.
    Teakle, R. E. & Jensen, J. M. in Handbook of Insect Rearing, Vol. 2 (eds R. Singh & R.F. Moore) 312–322 (Elsevier, London, 1985).

    44.
    Jones, C. G., Hare, J. D. & Compton, S. J. Measuring plant protein with the Bradford assay. 1. Evaluation and standard method. J. Chem. Ecol. 15, 979–992 (1989).

    45.
    Bradford, M. M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
    CAS  Article  Google Scholar 

    46.
    Furota, S., Ogawa, N. O., Takano, Y., Yoshimura, T. & Ohkouchi, N. Quantitative analysis of underivatized amino acids in the sub- to several-nanomolar range by ion-pair HPLC using a corona-charged aerosol detector (HPLC-CAD). J. Chromatogr. B 1095, 191–197 (2018).
    CAS  Article  Google Scholar 

    47.
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
    CAS  Article  Google Scholar 

    48.
    Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, 1–48 (2010).
    Article  Google Scholar 

    49.
    Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, New York, 1985). More

  • in

    Application of image processing to evidence for the persistence of the Ivory-billed Woodpecker (Campephilus principalis)

    The videos were imported from digital videotapes using iMovie 4 and iMovie HD 6.0.3. They were deinterlaced using JES Deinterlacer 3.8.4. Images are processed here using QuickTime Player 7.3.3, GraphicConverter 8.8.3, and GIMP 2.10. Within these applications, it is possible to interpolate and adjust brightness, contrast, color, and other parameters. The simple processing applied here is effective for some cases. With advanced processing techniques that involve greater control and analysis of parameters, experts in image processing might be able to extract additional information.
    The 2006 video
    The first video was obtained from a kayak with a Sony DCR-HC36 standard video camera (which captures interlaced video at 720 × 480 pixels) in the Pearl River swamp in Louisiana on February 20, 2006, in an area along English Bayou where there were five sightings that week; the ‘kent’ calls of the Ivory-billed Woodpecker were heard twice during the same period, once coming simultaneously from different directions. The 2006 video shows a large woodpecker perched on a tree, climbing upward, taking a short flight between limbs, and then taking off into a longer flight. Part of the perch tree, which includes two forks that facilitated scaling, was used in the size comparison in Fig. 2; the bird in the video appears to be larger than a Pileated Woodpecker specimen8. According to Julie Zickefoose, whose paintings of the Ivory-billed Woodpecker have appeared on the covers of the January 2006 issue of the Auk and both editions of Ref.3, the “long but fluffy and squared-off crest,” “extremely long, erect head and neck,” “large, long bill,” “bill to head proportions,” “rared-back pose,” “long and thin” wings, “flapping leap” between limbs, and “ponderous and heavy” flight are suggestive of the Ivory-billed Woodpecker but not the Pileated Woodpecker13.
    Figure 2

    A pileated Woodpecker specimen is mounted on part of the perch tree. Frames from the 2006 video were scaled using forks in the tree (dashed lines). A meter stick is placed at the point where the flight between limbs occurred. The inset shows Pileated Woodpecker and Ivory-billed Woodpecker specimens that were photographed side by side at the National Museum of Natural History. The bird in the video is partially hidden by vegetation in the image on the lower left, but it is fully in view in the images at the top when it took the flight between limbs.

    Full size image

    The 2008 video
    A short distance up the same bayou, another video was obtained with the same camera on March 29, 2008, from 23 m up a tree that was used as an observation platform for keeping watch for Ivory-billed Woodpeckers flying over the treetops in the distance. A large bird that flew along the bayou and passed below was identified as an Ivory-billed Woodpecker on the basis of two white stripes on the back and black leading edges and white trailing edges on the dorsal surfaces of the wings (those definitive field marks were observed from an ideal vantage point at close range and nearly directly above). The appearance in the video of the bird, its reflection from the still surface of the bayou, and reference objects made it possible to determine positions along the flight path and obtain estimates of the flight speed and wingspan. The bird in the 2008 video folded its wings closed during the middle of each upstroke as illustrated in Fig. 3. The two large woodpeckers are the only large birds north of the Rio Grande that have this distinctive wing motion, which is clearly resolved in the video. Using an approach that he had previously developed and applied to other woodpeckers17, Bret Tobalske, an expert on woodpecker flight mechanics, digitized the horizontal and vertical motions of the wingtips and concluded that the bird in the video is a large woodpecker13. The flap rate of the bird in the video is about ten standard deviations greater than the mean flap rate of the Pileated Woodpecker13.
    Figure 3

    Illustrations of large woodpeckers in flight. Left: The Pileated Woodpecker typically swoops upward a short distance before landing on a surface that faces the direction of approach; the Ivory-billed Woodpecker has long vertical ascents that allow time for maneuvering and landing on surfaces that do not face the direction of approach. Center: An Ivory-billed Woodpecker takes off with rapid wingbeats into a horizontal flight that quickly transitions into an upward swooping flight. Right: Illustration of a flight in the Pearl River swamp on March 29, 2008, that was viewed from 23 m up in a cypress tree. When the wings are folded closed in flight, the dorsal stripes and the white triangular patch have the same appearance as they do for the perched birds in Fig. 1. As discussed in Movie S6 of Ref.8, the wings of an Ivory-billed Woodpecker in a historical photo and of the bird in the 2008 video have the swept-back appearance of the wings in the middle image.

    Full size image

    Additional characteristics of the bird in the video that are consistent with the Ivory-billed Woodpecker but not the Pileated Woodpecker are the high flight speed, narrow wings, swept back wings, and prominent white patches on the dorsal surfaces of the wings8,13. There is one characteristic of the bird in the video that was initially thought to be inconsistent with the Ivory-billed Woodpecker. On the basis of historical accounts of a ‘duck-like’ flight, the Ivory-billed Woodpecker was thought to have a duck-like wing motion in which the wings remain extended throughout the flap cycle. In a series of paintings of the large woodpeckers in flight by Zickefoose18, the wings of the Pileated Woodpecker are correctly shown folding closed during the middle of the upstroke; in a proper representation of conventional wisdom at the time, the wings of the Ivory-billed Woodpecker are shown remaining extended throughout the flap cycle (duck-like flaps). An apparent paradox arose during the initial inspection of the video, which revealed an unexpected wing motion. The paradox was resolved after the discovery that a photo from 1939 shows an Ivory-billed Woodpecker in flight at an instant when the wings are nearly folded closed13.
    The 2007 video
    The other video was obtained with a Sony HDR-HC3 high-definition video camera (which captures interlaced video at 1,440 × 1,080 pixels) that was mounted on kayak paddles8 in the Choctawhatchee River swamp in Florida on January 19, 2007, in an area where an ornithologist and his colleagues had recently reported a series of sightings7. During an encounter with a pair of birds that were identified as Ivory-billed Woodpeckers on the basis of field marks and remarkable swooping flights, the camera captured a series of events that involve flights, field marks, and other behaviors and characteristics that are consistent with the Ivory-billed Woodpecker but no other species of the region. The analysis of the 2007 video is based in part on the fact that the probability of a series of unlikely events becomes extremely small as the number of events increases12. There is a downward swooping takeoff with a long horizontal glide that is consistent with the following account by Audubon15: “The transit from one tree to another, even should the distance be as much as a hundred yards, is performed by a single sweep, and the bird appears as if merely swinging from the top of the one tree to that of the other, forming an elegantly curved line.” There are upward swooping landings with long vertical ascents that are not consistent with the Pileated Woodpecker but are consistent with an account by Eckleberry of an Ivory-billed Woodpecker that “alighted with one magnificent upward swoop”19.
    A long vertical ascent allows time for maneuvering, and the bird appears to rotate about its axis during two of the ascents as illustrated in Fig. 3. In a film of the closely related Magellanic Woodpecker (Campephilus magellanicus)20, there is maneuvering during a landing with a long vertical ascent. During and after one of the ascents, a woodpecker in the 2007 video shows field marks and body proportions that are consistent with the Ivory-billed Woodpecker but no other species of the region. There is a takeoff into horizontal flight with deep and rapid flaps that are not consistent with the Pileated Woodpecker but are similar to the deep and rapid flaps during a takeoff of the closely related Imperial Woodpecker (Campephilus imperialis)21. In another event, a woodpecker climbs upward and engages in a series of behaviors that are consistent with the Ivory-billed Woodpecker but no other species of the region, including delivering a blow that produces an audible double knock and taking off with rapid wingbeats into a flight that immediately transitions into an upward swooping flight that is illustrated in Fig. 3. More