1.
Gómez-Robles, A. Dental evolutionary rates and its implications for the Neanderthal–modern human divergence. Sci. Adv. 5, eaaw1268 (2019).
ADS PubMed PubMed Central Google Scholar
2.
Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).
ADS CAS PubMed Google Scholar
3.
Wenzel, S. Neanderthal presence and behaviour in central and Northwestern Europe during MIS. In Developments in Quaternary Sciences Vol. 7 (eds Sirocko, F. et al.) 173–193 (Elsevier, Amsterdam, 2007).
Google Scholar
4.
Sørensen, B. Demography and the extinction of European Neanderthals. J. Anthropol. Archaeol. 30, 17–29 (2011).
Google Scholar
5.
Salazar-García, D. C. et al. Neanderthal diets in central and southeastern Mediterranean Iberia. Quat. Int. 318, 3–18 (2013).
Google Scholar
6.
Wißing, C. et al. Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe. Quat. Int. 411, 327–345 (2016).
Google Scholar
7.
Nielsen, T. K. et al. Investigating Neanderthal dispersal above 55°N in Europe during the Last Interglacial Complex. Quat. Int. 431, 88–103 (2017).
Google Scholar
8.
Nicholson, C. M. Eemian paleoclimate zones and Neanderthal landscape-use: a GIS model of settlement patterning during the last interglacial. Quat. Int. 438, 144–157 (2017).
Google Scholar
9.
Rhodes, S. E., Starkovich, B. M. & Conard, N. J. Did climate determine Late Pleistocene settlement dynamics in the Ach Valley, SW Germany?. PLoS ONE 14, e0215172 (2019).
PubMed PubMed Central Google Scholar
10.
Defleur, A. R. & Desclaux, E. Impact of the last interglacial climate change on ecosystems and Neanderthals behavior at Baume Moula-Guercy, Ardèche, France. J. Archaeol. Sci. 104, 114–124 (2019).
Google Scholar
11.
Hovers, E. Territorial Behavior in the Middle Paleolithic of the Southern Levant. In: Settlement dynamics of the Middle Paleolithic and Middle Stone Age, Conard, N. J., editor. Kerns Verlag T¨ubingen; 123–152 (2001).
12.
Shea, J. J. Neandertals, competition, and the origin of modern human behavior in the Levant. Evol. Anthropol. 12, 173–187 (2003).
Google Scholar
13.
Been, E. et al. The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant. Sci. Rep. 7, 2958 (2017).
ADS PubMed PubMed Central Google Scholar
14.
Vahdati Nasab, H., Clark, G. A. & Torkamandi, S. Late Pleistocene dispersal corridors across the Iranian Plateau: a case study from Mirak, a Middle Paleolithic site on the Northern Edge of the Iranian Central Desert (Dasht-e Kavir). Quat. Int. 300, 267–281 (2013).
Google Scholar
15.
Heydari-Guran, S. Palaeolithic Landscapes of Iran. BAR International Series, 2568 (2014).
16.
Bazgir, B. et al. Understanding the emergence of modern humans and the disappearance of Neanderthals: Insights from Kaldar Cave (Khorramabad Valley, Western Iran). Sci. Rep. 7, 43460 (2017).
ADS PubMed PubMed Central Google Scholar
17.
Smith, P. E. L. Paleolithic Archaeology in Iran (University of Pennsylvania Press, Philadelphia, 1986).
Google Scholar
18.
Heydari-Guran, S. & Ghasidian, E. The MUP Zagros Project: tracking the Middle-Upper Palaeolithic transition in the Kermanshah region, West-Central Zagros, Iran. Antiquity 91, 1–7 (2017).
Google Scholar
19.
Heydari-Guran, S. & Ghasidian, E. Late Pleistocene hominin settlement patterns and population dynamics in the Zagros Mountains: Kermanshah region. Archaeol. Res. Asia 21, 100161 (2020).
Google Scholar
20.
Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 451–463 (2011).
Google Scholar
21.
Svenning, J. C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930–2947 (2011).
ADS Google Scholar
22.
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).
Google Scholar
23.
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat858 (2019).
Google Scholar
24.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
25.
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
Google Scholar
26.
Banks, W. E. et al. Neanderthal extinction by competitive exclusion. PLoS ONE 3, e3972 (2008).
ADS PubMed PubMed Central Google Scholar
27.
Franklin, J., Potts, A. J., Fisher, E. C., Cowling, R. M. & Marean, C. M. Paleodistribution modeling in archaeology and paleoanthropology. Quat. Sci. Rev. 110, 1–14 (2015).
Google Scholar
28.
Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).
Google Scholar
29.
Giampoudakis, K. et al. Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Glob. Ecol. Biogeogr. 26, 359–370 (2017).
Google Scholar
30.
Marean, C. W. A critique of the evidence for scavenging by Neandertals and early modern humans: new data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 layer 10 (South Africa). J. Hum. Evol. 35, 111–136 (1998).
CAS PubMed Google Scholar
31.
Marean, C. W. & Kim, S. Y. Mousterian large-mammal remains from Kobeh Cave: behavioural implications for Neanderthals and early modern humans. Curr. Anthropol. 39, S79–S114 (1998).
Google Scholar
32.
Mashkour, M. et al. Carnivores and their prey in the Wezmeh Cave (Kermanshah, Iran): a Late Pleistocene refuge in the Zagros. Int. J. Osteoarchaeol. 19, 678–694 (2009).
Google Scholar
33.
Biglari, F. et al. Qaleh Bozi, new evidence of late middle paleolithic occupation in the Zayandeh-Rud Basin, Esfahan Province. Archaeol. Res. Iran 7, 7–26 (2015).
Google Scholar
34.
Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
Google Scholar
35.
Melchionna, M. et al. Fragmentation of Neanderthals’ pre-extinction distribution by climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 146–154 (2018).
Google Scholar
36.
Hole, F. & Flannery, K. V. The prehistory of Southwestern Iran: a preliminary report. Proc. Prehist. Soc. 22, 147–206 (1967).
Google Scholar
37.
Roustaei, K. et al. Recent paleolithic surveys in Lurestan. Curr. Anthropol. 45, 692–707 (2004).
Google Scholar
38.
Diedrich, C. Ice age spotted hyenas as Neanderthal exhumers and scavengers in Europe. Chronicles Sci. 1, 1–34 (2014).
Google Scholar
39.
Banks, W. E. The application of ecological niche modeling methods to archaeological data in order to examine culture-environment relationships and cultural trajectories. Quaternaire 28, 271–276 (2017).
Google Scholar
40.
Banks, W. E. et al. Eco-cultural niches of the Badegoulian: unraveling links between cultural adaptation and ecology during the Last Glacial Maximum in France. J. Anthropol. Archaeol. 30, 359–374 (2011).
Google Scholar
41.
King, T. et al. Azokh cave hominin remains. In Azokh cave and the transcaucasian corridor, vertebrate paleobiology and paleoanthropology (eds Fernndez-Jalvo, Y. et al.) 103–106 (Springer, Dordrecht, 2016).
Google Scholar
42.
Solecki, R. S. Prehistory in Shanidar valley, Northern Iraq. Science 139, 179–193 (1963).
ADS CAS PubMed Google Scholar
43.
Pomeroy, E. et al. Newly-discovered Neanderthal remains from Shanidar Cave, Iraqi Kurdistan, and their attribution to Shanidar 5. J. Hum. Evol. 111, 102–118 (2017).
PubMed Google Scholar
44.
Zanolli, C. et al. A Neanderthal from the Central Western Zagros, Iran. Structural reassessment of the Wezmeh 1 maxillary premolar. J. Hum. Evol. 135, 102643 (2019).
PubMed Google Scholar
45.
Coon, C. S. The seven caves. In: Archaeological Exploration in the Middle East. (Alfred Knopf, 1975).
46.
Biglari, F. & Heydari, S. Do-Ashkaft: a recent discovery Mousterian cave site in Kermanshah Plain, Iran. Antiquity 75, 487–488 (2001).
Google Scholar
47.
Conard, N. J., Ghasidian, E. & Heydari, S. The paleolithic of Iran. In Ancient Iran (ed. Potts, D. T.) 29–48 (Oxford Press, Oxford, 2013).
Google Scholar
48.
Power, R. C. Neanderthals and their diet. In eLS (Wiley, 2019).
49.
Perkins, D. Prehistoric fauna from Shanidar, Iraq. Science 144, 1565–1566 (1964).
ADS PubMed Google Scholar
50.
Turnbull, P. F. The mammalian fauna of Warwasi rock shelter, west-central Iran. Fieldiana Geol. 33, 141–155 (1975).
Google Scholar
51.
Hesse, B. Paleolithic Faunal Remains from Ghar-I-Khar, Western Iran (University of Alabama Press, Alabama, 1989).
Google Scholar
52.
Karami, M., Ghadirian, T. & Faizolahi, K. The Atlas of the Mammals of Iran (Jahad Daneshgahi Press, Tehran, 2016).
Google Scholar
53.
Naderi, S. Evolutionary history of wild goat (Capra aegagrus) and the goat (C. hircus) based on the analysis of mitochondrial and nuclear DNA polymorphism: Implications for conservation and for the origin of the domestication. Ecology, Environment. Grenoble: Université Joseph-Fourier – Grenoble I (2007).
54.
Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).
Google Scholar
55.
Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package, (2015).
56.
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, Austria, 2017).
57.
Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database https://srtm.csi.cgiar.org on 15 April 2015 (2008).
58.
Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
Google Scholar
59.
Naimi, B. Uncertainty Analysis for Species Distribution Models. R package version 1.1–15 (2015).
60.
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
PubMed Google Scholar
61.
McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989).
Google Scholar
62.
Hastie, T. J. & Tibshirani, R. Generalized Additive Models (Chapman and Hall, London, 1990).
Google Scholar
63.
Ridgeway, G. The state of boosting. J. Comput. Sci. 31, 172–181 (1999).
Google Scholar
64.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
65.
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
MATH Google Scholar
66.
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
Google Scholar
67.
Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
Google Scholar
68.
Le Hirzel, A. H., Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
Google Scholar
69.
Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
ADS MathSciNet CAS MATH Google Scholar
70.
Schoener, T. W. Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
Google Scholar More