Microbial carrying capacity and carbon biomass of plastic marine debris
1.
Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, Van Franeker JA, et al. A global inventory of small floating plastic debris. Environ Res Lett. 2015;10:124006.
Google Scholar
2.
Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DK, Thums M, et al. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS ONE. 2014;9:e100289.
PubMed PubMed Central Google Scholar
3.
Mincer TJ, Zettler ER, Amaral-Zettler LA. Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In: Rei Yamashita KT, Bee Geok Yeo, Hideshige Takada, Jan A. van Franeker, Megan Dalton, Eric Dale, editors. Hazardous chemicals associated with plastics in the marine environment. Springer: Cham; 2016. pp. 221–33.
4.
Morét-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE, Reddy CM. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull. 2010;60:1873–8.
PubMed Google Scholar
5.
Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE. 2014;9:e111913.
PubMed PubMed Central Google Scholar
6.
Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47:7137–46.
CAS PubMed Google Scholar
7.
Amaral-Zettler LA, Zettler ER, Slikas B, Boyd GD, Melvin DW, Morrall CE, et al. The biogeography of the plastisphere: implications for policy. Front Ecol Environ. 2015;13:541–6.
Google Scholar
8.
De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol. 2015;49:9629–38.
PubMed Google Scholar
9.
De Tender CA, Schlundt C, Devriese LI, Mincer TJ, Zettler ER, Amaral-Zettler LA. A review of microscopy and comparative molecular-based methods to characterize “plastisphere” communities. Anal Methods. 2017;9:2132–43.
Google Scholar
10.
Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:219.
Google Scholar
11.
Bonk F, Popp D, Harms H, Centler F. PCR-based quantification of taxa-specific abundances in microbial communities: quantifying and avoiding common pitfalls. J Microbiol Methods. 2018;153:139–47.
CAS PubMed Google Scholar
12.
Neu TR, Lawrence JR. Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol. 2015;23:233–42.
CAS PubMed Google Scholar
13.
Bochdansky AB, Clouse MA, Herndl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017;11:362–73.
PubMed Google Scholar
14.
Schlundt C, Welch JLM, Knochel AM, Zettler ER, Amaral‐Zettler LA. Spatial structure in the “plastisphere”: molecular resources for imaging microscopic communities on plastic marine debris. Mol Ecol Resour. 2020;20:620–634.
CAS PubMed Google Scholar
15.
Bruinsma G, Van der Mei H, Busscher H. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001;22:3217–24.
CAS PubMed Google Scholar
16.
Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796–808.
CAS PubMed Google Scholar
17.
Khachikyan A, Milucka J, Littmann S, Ahmerkamp S, Meador T, Könneke M, et al. Direct cell mass measurements expand the role of small microorganisms in nature. Appl Environ Microbiol. 2019;85:e00493–19.
CAS PubMed PubMed Central Google Scholar
18.
Romanova N, Sazhin A. Relationships between the cell volume and the carbon content of bacteria. Oceanology. 2010;50:522–30.
Google Scholar
19.
Menden-Deuer S, Lessard EJ. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr. 2000;45:569–79.
CAS Google Scholar
20.
Massana R, Logares R. Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol. 2013;15:1254–61.
PubMed Google Scholar
21.
Loferer-Krößbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol. 1998;64:688–94.
PubMed PubMed Central Google Scholar
22.
Lee S, Fuhrman JA. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol. 1987;53:1298–303.
CAS PubMed PubMed Central Google Scholar
23.
Erni-Cassola G, Zadjelovic V, Gibson MI, Christie-Oleza JA. Distribution of plastic polymer types in the marine environment; a meta-analysis. J Hazard Mater. 2019;369:691–8.
CAS PubMed Google Scholar
24.
Dudek KL, Cruz BN, Polidoro B, Neuer S. Microbial colonization of microplastics in the Caribbean Sea. Limnol Oceanogr Lett. 2020;5:5–17.
Google Scholar
25.
Carpenter EJ, Smith K. Plastics on the Sargasso Sea surface. Science. 1972;175:1240–1.
CAS PubMed Google Scholar
26.
Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139–51.
CAS PubMed Google Scholar
27.
Patil JS, Anil AC. Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling. 2005;21:189–206.
CAS PubMed Google Scholar
28.
Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett. 2017;4:258–67.
CAS Google Scholar
29.
Michels J, Stippkugel A, Lenz M, Wirtz K, Engel A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc R Soc B. 2018;285:20181203.
PubMed Google Scholar
30.
Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull. 2011;62:197–200.
CAS PubMed Google Scholar
31.
Mueller LN, de Brouwer JF, Almeida JS, Stal LJ, Xavier JB. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol. 2006;6:1.
PubMed PubMed Central Google Scholar
32.
De Tender CA, Devriese LI, Haegeman A, Maes S, Vangeyte JR, Cattrijsse A, et al. Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ Sci Technol. 2017;51:7350–60.
PubMed Google Scholar
33.
Tetu SG, Sarker I, Schrameyer V, Pickford R, Elbourne LD, Moore LR, et al. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun Biol. 2019;2:1–9.
Google Scholar
34.
Capolupo M, Sørensen L, Jayasena KDR, Booth AM, Fabbri E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020;169:115270.
CAS PubMed Google Scholar
35.
Vosshage AT, Neu TR, Gabel F. Plastic alters biofilm quality as food resource of the freshwater Gastropod Radix balthica. Environ Sci Technol. 2018;52:11387–93.
CAS PubMed Google Scholar
36.
Dussud C, Meistertzheim A, Conan P, Pujo-Pay M, George M, Fabre P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut. 2018;236:807–16.
CAS PubMed Google Scholar
37.
Armitage AR, Gonzalez VL, Fong P. Decoupling of nutrient and grazer impacts on a benthic estuarine diatom assemblage. Estuar Coast Shelf Sci. 2009;84:375–82.
CAS PubMed PubMed Central Google Scholar
38.
Yokota K, Waterfield H, Hastings C, Davidson E, Kwietniewski E, Wells B. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics. Limnol Oceanogr Lett. 2017;2:91–104.
Google Scholar
39.
Oberbeckmann S, Kreikemeyer B, Labrenz M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol. 2018;8:2709.
PubMed PubMed Central Google Scholar
40.
Kirstein IV, Wichels A, Krohne G, Gerdts G. Mature biofilm communities on synthetic polymers in seawater-specific or general? Mar Environ Res. 2018;142:147–54.
CAS PubMed Google Scholar
41.
Kettner MT, Rojas‐Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ Microbiol. 2017;19:4447–59.
CAS PubMed Google Scholar
42.
Kettner MT, Oberbeckmann S, Labrenz M, Grossart HP. The eukaryotic life on microplastics in brackish ecosystems. Front Microbiol. 2019;10:538.
PubMed PubMed Central Google Scholar
43.
Bayoudh S, Othmane A, Bettaieb F, Bakhrouf A, Ouada HB, Ponsonnet L. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater Sci Eng C. 2006;26:300–5.
CAS Google Scholar
44.
Bendinger B, Rijnaarts HH, Altendorf K, Zehnder AJ. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol. 1993;59:3973–7.
CAS PubMed PubMed Central Google Scholar
45.
Thompson SE, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms–potential targets for antifouling: a review. Biofouling. 2017;33:410–32.
PubMed Google Scholar
46.
Araya P, Chamy R, Mota M, Alves M. Biodegradability and toxicity of styrene in the anaerobic digestion process. Biotechnol Lett. 2000;22:1477–81.
CAS Google Scholar
47.
Pinto M, Langer TM, Hüffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE. 2019;14:e0217165.
CAS PubMed PubMed Central Google Scholar
48.
Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7:11965.
CAS PubMed PubMed Central Google Scholar
49.
Zobell CE. The effect of solid surfaces upon bacterial activity. J Bacteriol. 1943;46:39–56.
CAS PubMed PubMed Central Google Scholar
50.
Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel DV, Houlihan T, et al. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res Part II: Topical Stud Oceanogr. 2001;48:1529–66.
CAS Google Scholar
51.
Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res II. 2001;48:1405–47.
CAS Google Scholar
52.
Flemming H-C, Wuertz S. Bacteria and Archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247.
CAS PubMed Google Scholar
53.
Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci. 1998;95:6578–83.
CAS PubMed Google Scholar
54.
Bjørnsen PK. Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol. 1986;51:1199–204.
PubMed PubMed Central Google Scholar
55.
Bloem J, Veninga M, Shepherd J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol. 1995;61:926–36.
CAS PubMed PubMed Central Google Scholar
56.
Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci. 2012;109:16213–6.
CAS PubMed Google Scholar
57.
Pernice MC, Forn I, Gomes A, Lara E, Alonso-Sáez L, Arrieta JM, et al. Global abundance of planktonic heterotrophic protists in the deep ocean. ISME J. 2015;9:782–92.
CAS PubMed Google Scholar
58.
Bölter M, Bloem J, Meiners K, Möller R. Enumeration and biovolume determination of microbial cells–a methodological review and recommendations for applications in ecological research. Biol Fertil Soils. 2002;36:249–59.
Google Scholar More
