More stories

  • in

    Achieving similar root microbiota composition in neighbouring plants through airborne signalling

    1.
    Heil M, Ton J. Long-distance signalling in plant defence. Trends Plant Sci. 2008;13:264–72.
    CAS  PubMed  Article  Google Scholar 
    2.
    Kim J, Felton GW. Priming of antiherbivore defensive responses in plants. Insect Sci. 2013;20:273–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, et al. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiol. 2015;167:1671–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Cofer TM, Engelberth M, Engelberth J. Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. Plant Cell Environ. 2018;41:1673–82.
    CAS  PubMed  Article  Google Scholar 

    5.
    Šimpraga M, Takabayashi J, Holopainen JK. Language of plants: where is the word? J Integr Plant Biol. 2016;58:343–9.
    PubMed  Article  CAS  Google Scholar 

    6.
    Sharifi R, Lee SM, Ryu CM. Microbe-induced plant volatiles. N. Phytol. 2018;220:684–91.
    Article  Google Scholar 

    7.
    Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA. 2010;107:3600–5.
    CAS  PubMed  Article  Google Scholar 

    8.
    Jiménez‐Martínez ES, Bosque‐Pérez NA, Berger PH, Zemetra RS, Ding H, Eigenbrode SD. Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus–infected transgenic and untransformed wheat. Environ Entomol. 2004;33:1207–16.
    Article  Google Scholar 

    9.
    Eigenbrode SD, Ding H, Shiel P, Berger PH. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc R Soc B. 2002;269:455–60.
    CAS  PubMed  Article  Google Scholar 

    10.
    Attaran E, Rostás M, Zeier J. Pseudomonas syringae elicits emission of the terpenoid (E, E)‐4,8,12‐trimethyl‐1,3,7,11‐tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Mol Plant Microbe. 2008;21:1482–97.
    CAS  Article  Google Scholar 

    11.
    Cellini A, Buriani G, Rocchi L, Rondelli E, Savioli S, Rodriguez Estrada MT, et al. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora. Mol Plant Pathol. 2018;19:158–68.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Cellini A, Biondi E, Buriani G, Farneti B, Rodriguez-Estrada MT, Braschi I, et al. Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences. Trees. 2016;30:795–806.
    CAS  Article  Google Scholar 

    13.
    Castelyn HD, Appelgryn JJ, Mafa MS, Pretorius ZA, Visser B. Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australas Plant Pathol. 2015;44:245–54.
    CAS  Article  Google Scholar 

    14.
    Quintana‐Rodriguez E, Morales‐Vargas AT, Molina‐Torres J, Ádame‐Alvarez RM, Acosta‐Gallegos JA, Heil M, et al. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol. 2015;103:250–60.
    Article  CAS  Google Scholar 

    15.
    Yi H-S, Heil M, Alvarez R, Ryu C-M. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol. 2009;151:2152–61.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Schausberger P, Peneder S, Jürschik S, Hoffmann D. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct Ecol. 2012;26:441–9.
    Article  Google Scholar 

    17.
    Ballhorn DJ, Kautz S, Schadler M. Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia. 2013;172:833–46.
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Babikova Z, Gilbert L, Bruce T, Dewhirst SY, Pickett JA, Johnson D, et al. Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Funct Ecol. 2014;28:375–85.
    Article  Google Scholar 

    19.
    Planchamp C, Glauser G, Mauch‐Mani B. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci. 2014;5:719.
    PubMed  PubMed Central  Google Scholar 

    20.
    Pangesti N, Weldegergis BT, Langendorf B, van Loon JJ, Dicke M, Pineda A. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host‐infested plants. Oecologia. 2015;178:1169–80.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Kloepper JW, Beauchamp CJ. A review of issues related to measuring of plant roots by bacteria. Can J Microbiol. 1992;38:1219–32.
    Article  Google Scholar 

    22.
    Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, Spinelli F. Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy. 2020;10:794.
    Article  Google Scholar 

    23.
    Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41:109–17.
    CAS  Article  Google Scholar 

    24.
    Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact. 2015;28:1049–58.
    CAS  PubMed  Article  Google Scholar 

    25.
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860–4.
    CAS  PubMed  Article  Google Scholar 

    26.
    Bloemberg GV, Lugtenberg BJJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol. 2001;4:343–50.
    CAS  PubMed  Article  Google Scholar 

    27.
    Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, andiron deficiency. J Plant Nutr Soil Sci. 2011;174:e68555.
    Article  CAS  Google Scholar 

    28.
    Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9:2738.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.
    CAS  PubMed  Article  Google Scholar 

    30.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
    CAS  Article  Google Scholar 

    31.
    Chaparro J, Badri D, Vivanco J. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.
    CAS  PubMed  Article  Google Scholar 

    32.
    Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci. 2019;10:157.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Gabriele B, Martina K, Daria R, Henry M, Rita G, Kornelia S. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol. 2017;93:5.
    Google Scholar 

    34.
    Kallenbach M, Oh Y, Eilers EJ, Veit D, Baldwin IT, Schuman MC. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J. 2014;78:1060–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Ryu CM, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, et al. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA. 2003;100:4927–32.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Knudsen JT, Eriksson R, Gershenzon J, Stahl B. Diversity and distribution of floral scent. Bot Rev. 2006;72:1–120.
    Article  Google Scholar 

    37.
    Huang M, Sanchez-Moreiras A, Abel C, Sohrabi R, Lee S, Gershenzon J, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-beta-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012;193:997–1008.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Sabulal B, Dan M, Anil JJ, Kurup R, Pradeep NS, Valsamma RK, et al. Caryophyllene‐rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity. Phytochemistry. 2006;67:2469–73.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Wardle K, Dalsou V, Roberts AV, Short KC. Characterization of the effect of farnesol on roots of barley. Plant Physiol. 1986;125:401–7.
    CAS  Article  Google Scholar 

    40.
    Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA. Volatile signaling in plant–plant interactions: “talking trees” in the genomics era. Science. 2006;311:812–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, et al. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell. 2017;29:1440–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Wenig M, Ghirardo A, Sales JH, Pabst ES, Breitenbach HH, Antritter F, et al. Systemic acquired resistance networks amplify airborne defense cues. Nat Commun. 2019;10:3813.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:209.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Schulz K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12. https://doi.org/10.1038/s41396-017-0035-3.

    45.
    Erb M. Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling. Curr Opin Plant Biol. 2018;44:117–21.
    CAS  PubMed  Article  Google Scholar 

    46.
    Mithöfer A, Boland W. Do you speak chemistry? EMBO Rep. 2016;17:626–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Connectivity and population structure of albacore tuna across southeast Atlantic and southwest Indian Oceans inferred from multidisciplinary methodology

    1.
    Collette, B. & Nauen, C. Scombrids of the world—An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Sp. Cat 2, 137 (1983).
    Google Scholar 
    2.
    ISSF. ISSF Tuna Stock Status Update, 2015: Status of the world fisheries for tuna. ISSF Technical Report 2015-03A. (International Seafood Sustainability Foundation, Washington, D.C., 2015).

    3.
    FAO. The State of World Fisheries and Aquaculture 2012. (2012).

    4.
    ISSF. Status of the world fisheries for tuna. ISSF Technical Report. 2019-07. International Seafood Sustainability Foundation, Washington, D.C., USA. https://iss-foundation.org/knowledge-tools/technical-and-meeting-reports/ (2019).

    5.
    ICCAT. ICCAT Report of the 2016 ICCAT North and South Atlantic Albacore stock assessment meeting. N & S Atlantic ALB stock assessment meeting–Madeira 2016. (2016).

    6.
    IOTC. Albacore executive summary. Status summary for species of tuna and tuna-like species under the IOTC mandate, as well as other species impacted by IOTC fisheries. (2016).

    7.
    IOTC. Albacore executive summary. Status summary species tuna and tuna species under iotc mandate well other species impacted by iotc fisheries. (2018).

    8.
    Nikolic, N. et al. Review of albacore tuna, Thunnus alalunga, biology, fisheries and management. Rev. Fish. Biol. Fisheries. 27, 775–810 (2016).
    Article  Google Scholar 

    9.
    Arrizabalaga, H., Lopez-Rodas, V., Costas, E. & González-Garcás, A. Use of genetic data to assess the uncertainty in stock assessments due to the assumed stock structure: The case of albacore (Thunnus alalunga) from the Atlantic Ocean. Fish. Bull. 105(1), 140–146 (2007).
    Google Scholar 

    10.
    Chow, S. & Kishino, H. Phylogenetic relationships between tuna species of the genus Thunnus (Scombridae: Teleostei): Inconsistent implications from morphology, nuclear and mitochondrial genomes. J. Mol. Evol. 41, 741–748 (1995).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Takagi, M., Okamura, T., Chow, S. & Taniguchi, N. Preliminary study of albacore (Thunnus alalunga) stock differentiation inferred from microsatellite DNA analysis. Fish. Bull. 99, 697–701 (2001).
    Google Scholar 

    12.
    Viñas, J., Bremer, J. A. & Pla, C. Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar. Biol. 145, 225–232 (2004).
    Article  CAS  Google Scholar 

    13.
    Arrizabalaga, H. et al. Population structure of albacore, Thunnus alalunga, inferred from blood groups and tag recapture analyses. Mar. Ecol. Prog. Ser. 282, 245–252 (2004).
    ADS  Article  Google Scholar 

    14.
    Wu, G. C. C., Chiang, H. C., Chen, K. S., Hsu, C. C. & Yang, H. Y. Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA. Fish. Res. 95, 125–131 (2009).
    Article  Google Scholar 

    15.
    Davies, C. A., Gosling, E. M., Was, A., Brophy, D. & Tysklind, N. Microsatellite analysis of albacore tuna (Thunnus alalunga): Population genetic structure. Mar. Biol. 158, 2727–2740 (2011).
    Article  Google Scholar 

    16.
    Nikolic, N. & Bourjea, J. Differentiation of albacore stock: Review by oceanic regions. Collect. Vol. Sci. Pap. ICCAT 70(3), 1340–1354 (2014).
    Google Scholar 

    17.
    Pawson, M. G. & Jennings, S. A critique of methods for stock identification in marine capture fisheries. Fish. Res. 25, 203–217 (1996).
    Article  Google Scholar 

    18.
    Waldman, J. R. The importance of comparative studies in stock analysis. Fish. Res. 43, 237–246 (1999).
    Article  Google Scholar 

    19.
    Nielsen, E. E., Hemmer-Hansen, J., Larsen, P. F. & Bekkevold, D. Population genomics of marine fishes: Identifying adaptive variation in space and time. Mol. Ecol. 18, 3128–3150 (2009).
    PubMed  Article  Google Scholar 

    20.
    Waples, R. S. & Naish, K. A. Genetic and evolutionary considerations in fishery management: Research needs for the future. Future Fish. Sci. N. Am. 31, 427–451 (2009).
    Google Scholar 

    21.
    Montes, I. et al. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay. Mar. Biol. 163, 205 (2016).
    Article  CAS  Google Scholar 

    22.
    Morita, S. On the relationship between the albacore stocks of the South Atlantic and Indian Oceans. Collect Vol. Sci. Pap. ICCAT 7, 232–237 (1977).
    Google Scholar 

    23.
    Gonzalez, E. G., Beerli, P. & Zardoya, R. Genetic structuring and migration patterns of Atlantic bigeye tuna, Thunnus obesus (Lowe, 1839). BMC Evol. Biol. 8, 252 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Chow, S. & Ushiama, H. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar. Biol. 123, 39–45 (1995).
    CAS  Article  Google Scholar 

    25.
    Graves, J. E. & Dizon, A. E. Mitochondrial DNA sequence similarity of Atlantic and Pacific albacore tuna (Thunnus alalunga). Can. J. Fish. Aquat. Sci. 46, 870–873 (1989).
    Article  Google Scholar 

    26.
    Viñas, J., Santiago, J. & Pla, C. Genetic characterization and Atlantic-Mediterranean stock structure of Albacore, Thunnus alalunga. Collect Vol. Sci. Pap. ICCAT. 49, 188–190 (1999).
    Google Scholar 

    27.
    Pujolar, J. M., Roldán, M. I. & Pla, C. Genetic analysis of tuna populations, Thunnus thynnus thynnus and T. alalunga. Mar. Biol. 3, 613–621 (2003).
    Article  Google Scholar 

    28.
    Nakadate, M. et al. Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. J. Fish Biol. 66, 1545–1557 (2005).
    CAS  Article  Google Scholar 

    29.
    Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int. 2014, 691759 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Albaina, A. et al. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim. Genet. 44, 678–692 (2013).
    CAS  PubMed  Article  Google Scholar 

    31.
    Laconcha, U. & Iriondo, M. New nuclear SNP markers unravel the genetic structure and effective population size of Albacore tuna (Thunnus alalunga). PLoS ONE 10, e0128247 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Heincke, D. F. Naturgeschichte des herring. Abhandlungen Doutsch Seefisch Verein 2, 128–233 (1898).
    Google Scholar 

    33.
    Foote, C. J., Wood, C. C. & Withler, R. E. Biochemical genetic comparison of sockeye salmon and kokane, the anadromus and nonanadromus forms of Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 46, 149–158 (1989).
    Article  Google Scholar 

    34.
    Robinson, B. W. & Wilson, D. S. Genetic variation and phenotypic plasticity in a tropically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evol. Ecol. 10, 631–652 (1996).
    Article  Google Scholar 

    35.
    Cabral, H. N. et al. Genetic and morphologica variation of Synaptura lusitanica Capello, 1868, along the Portuguese coast. J. Sea Res. 50, 167–175 (2003).
    ADS  Article  Google Scholar 

    36.
    Dhurmeea, Z. et al. Reproductive biology of Albacore tuna (Thunnus alalunga) in the Western Indian Ocean. PLoS ONE 11, 0168605–0168610 (2016).
    Article  CAS  Google Scholar 

    37.
    Gonzalez, E. G. & Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 7, 197 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Young, E. F. et al. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species. Evol. Appl. 8, 486–509 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Santos, A. M. P. et al. Sardine (Sardina pilchardus) larval dispersal in the Iberian Upwelling System, using coupled biophysical techniques. Prog. Oceanogr. 162, 83–97 (2018).
    ADS  Article  Google Scholar 

    40.
    Kaplan, D. M., Cuif, M. & Fauvelot, C. Uncertainty in empirical estimates of marine larval connectivity. ICES J. Mar. Sci 74(6), 1723–1734 (2016).
    Article  Google Scholar 

    41.
    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Nickols, K. J., White, J. W., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).
    PubMed  Article  Google Scholar 

    43.
    Nikolic, N. et al. GERMON project final report (GEnetic stRucture and Migration Of albacore tuna). IFREMER Re. 2015, 219 (2015).
    Google Scholar 

    44.
    Dhurmeea, Z. et al. Reproductive biology of albacore tuna (Thunnus. in alalunga) in the Western Indian Ocean. PLoS ONE 11(12), e0168605 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Ueyanagi, S. Observations on the distribution of tuna larva in the Indo-Pacific Ocean with emphasis on the delineation of spawning areas of albacore, Thunnus alalunga. Bull. Far. Seas Fish. Res. Lab. 2, 177–219 (1969).
    Google Scholar 

    46.
    Bard, F. X. Le Thon Germon (Thunnus alalunga, Bonnaterre 1788) de l’Océan Atlantique. De la dynamique des populations à la stratégie démographique. Thèse de Doctorat d’Etat. Université Pierre et Marie Curie. (XI, 1981).

    47.
    Wu, C. L. & Kuo, C. L. Maturity and fecundity of albacore, Thunnus alalunga (Bonnaterre), from the Indian Ocean. J. Fish Soc. Taiwan 20(2), 135–151 (1993).
    Google Scholar 

    48.
    Lilliefors, H. W. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402 (1967).
    Article  Google Scholar 

    49.
    Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (eds Olkin, I. et al.) 278–292 (Stanford University Press, Stanford, 1960).
    Google Scholar 

    50.
    Manly, B. Randomization bootstrap and Monte Carlo methods in biology (Chapman & Hall/CRC, Boca Raton, 2007).
    Google Scholar 

    51.
    Fay, M. P. & Shaw, P. A. Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The Interval R Package. J. Stat. Softw. 36, 1–34 (2010).
    Article  Google Scholar 

    52.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, London, 2011).
    Google Scholar 

    53.
    Ogle, D. H. Introductory Fisheries Analyses with R (Chapman & Hall/CRC, Boca raton, 2016).
    Google Scholar 

    54.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, Berlin, 2002).
    Google Scholar 

    55.
    Ricker, W. E. Linear regression in fisheries research. J. Fish. Res. Board Can. 30, 409–434 (1973).
    Article  Google Scholar 

    56.
    Ricker, W. E. Methods for assessment of fish production in fresh waters. IBP Handbook N°3 (Blackwell Scientific Publications, Oxford and Edinburgh, 1968).
    Google Scholar 

    57.
    Rossiter, D. G. Technical note: Curve fitting with the R Environment for Statistical Computing. In Enschede (NL): 17, International Institute for Geo-information Science & Earth Observations (2009).

    58.
    Nikolic, N. et al. Discovery of genome-wide microsatellite markers in Scombridae: A pilot study on albacore tuna. PLoS ONE 10, e0141830 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Article  Google Scholar 

    60.
    Rousset, F. & Raymond, M. Testing heterozygote excess and deficiency. Genetics 140, 1413–1419 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Storey, J. D. A Direct Approach to False Discovery Rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 479–498 (2002).
    MathSciNet  MATH  Article  Google Scholar 

    62.
    Storey, J. D. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann. Stat. 31, 2013–2035 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    63.
    Storey, J. D. & Tibshirani, R. Statistical significance for genome wide studies. Proc. Natl. Acad. Sci. USA. 100, 9440–9445 (2003).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    64.
    Storey, J. D., Taylor, J. E. & Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66, 187–205 (2004).
    MathSciNet  MATH  Article  Google Scholar 

    65.
    Storey, J., Bass, A., Dabney, A. & Robinson, D. qvalue: Q-value Estimation for False Discovery Rate Control. https://github.com/jdstorey/qvalue (2019).

    66.
    Engels, W. R. Exact tests for Hardy-Weinberg proportions. Genetics 183, 1431–1441 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    68.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin ver. 3.1: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).
    CAS  Article  Google Scholar 

    69.
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000. (Université de, 1996).

    70.
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  Article  Google Scholar 

    71.
    Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Thioulouse, J., Chessel, D., Dolédec, S. & Olivier, J. M. ADE-4: A multivariate analysis and graphical display software. Stat. Comput. 7, 75–83 (1997).
    Article  Google Scholar 

    73.
    Pritchard, J. K., Stephens, P. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    PubMed  Article  Google Scholar 

    75.
    Evanno, G. & Regnaut Sand Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    76.
    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
    PubMed  Article  Google Scholar 

    77.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 5, 1179–1191 (2015).
    Article  CAS  Google Scholar 

    78.
    Takezaki, N., Nei, M. & Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 6, 1622–1624 (2014).
    Article  CAS  Google Scholar 

    79.
    Parks, D. H. et al. GenGIS 2: Geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS ONE 8, 69885 (2013).
    ADS  Article  CAS  Google Scholar 

    80.
    Takezaki, N., Nei, M. & Tamura, K. PopTree2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol. Biol. Evol. 27, 747–752 (2010).
    CAS  PubMed  Article  Google Scholar 

    81.
    Peakall, R. & Smouse, P. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Article  Google Scholar 

    82.
    Mossman, C. A. & Waser, P. M. Genetic detection of sex-biased dispersal. Mol. Ecol. 8, 1063–1067 (1999).
    CAS  PubMed  Article  Google Scholar 

    83.
    R development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, 2013). https://www.R-project.org.

    84.
    Gastwirth, J. L. et al. lawstat: Tools for Biostatistics. (Public Policy, and Law, 2017).

    85.
    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22(4), 1–20 (2007).
    Article  Google Scholar 

    86.
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, Boca Raton, 2006).
    Google Scholar 

    87.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73(1), 3–36 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    88.
    Fournier, D. A. et al. AD Model Builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).
    MathSciNet  MATH  Article  Google Scholar 

    89.
    Skaug, H., Fournier, D., Nielsen, A., Magnusson, A. & Bolker, B. Generalized Linear Mixed Models using AD Model Builder. (2013).

    90.
    Chen, K.-Y. et al. assignPOP: An r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods Ecol. Evol. 9, 439–446 (2018).
    Article  Google Scholar 

    91.
    Gibbs, R. & Colette, B. Comparative anatomy and systemics of the tunas, genus Thunnus. USA. Fish Wildl. Serv. Fish. Bull. 66, 65–130 (1967).
    Google Scholar 

    92.
    Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behaviour of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).
    Article  Google Scholar 

    93.
    Schaefer, K. M. Reproductive biology of tunas. Fish Physiol. 19, 225–270 (2001).
    Article  Google Scholar 

    94.
    Ramon, D. & Bailey, K. Spawning seasonality of albacore, Thunnus alalunga, in the South Pacific Ocean. Fish. Bull. Natl. Oceanic Atmos. Admin. 94(4), 725–733 (1996).
    Google Scholar 

    95.
    Description and results. Ferry. Mercator global eddy permitting ocean reanalysis glorys1v1. Tech. Rep. Mercator Ocean Q. Newsl. 36, 15–28 (2010).
    Google Scholar 

    96.
    Gaspar, P. et al. Oceanic dispersal of juvenile leatherback turtles: Going beyond passive drift modeling. Mar. Ecol. Prog. Ser. 457, 265–284 (2012).
    ADS  Article  Google Scholar 

    97.
    Lalire, M. & Gaspar, P. Modeling the active dispersal of juvenile leatherback turtles in the North Atlantic Ocean. Mov. Ecol. 7, 7 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    98.
    Lehodey, P., Senina, L., Dragon, A. C. & Arrizabalaga, H. Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (Thunnus alalunga). Earth Syst. Sci. Data 6, 317–329 (2014).
    ADS  Article  Google Scholar 

    99.
    Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).
    Article  Google Scholar 

    100.
    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360 (1999).
    ADS  CAS  PubMed  Google Scholar 

    101.
    Li, J. et al. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies. Clim. Dyn. 51, 1391–1409 (2018).
    Article  Google Scholar 

    102.
    Schouten, M. W., de Ruijter, W. P., van Leeuwen, P. J. & Ridderinkhof, H. Eddies and variability in the Mozambique Channel. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 1987–2003 (2003).
    ADS  Article  Google Scholar 

    103.
    de Ruijter, W. P. M. et al. Eddies and dipoles around South Madagascar: Formation, pathways and large-scale impact. Deep Sea Res. Part I 51, 383–400 (2004).
    Article  Google Scholar 

    104.
    de Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten, M. W. & Veth, C. Observations of the flow in the Mozambique Channel: Observations in the Mozambique channel. Geophys. Res. Lett. 29, 140-1-140–3 (2002).
    Article  Google Scholar 

    105.
    Longhurst, A. R. Ecological Geography of the Sea (Academic Press, London, 2007).
    Google Scholar 

    106.
    New, A. et al. Physical and biochemical aspects of the flow across the Mascarene Plateau in the Indian Ocean. Philos. Trans. R Soc. Math. Phys. Eng. Sci. 363, 151–168 (2005).
    ADS  CAS  Google Scholar 

    107.
    Penney, A. J., Yeh, S. Y., Kuo, C. L. & Leslie, R. W. Relationships between albacore (Thunnus alalunga) stocks in the southern Atlantic and Indian Oceans. In Int Com Conserv AH Tuna Tuna Symp, Ponta Delgada, Azores (ed. Beckett, J. S.) 10–18 (1998).

    108.
    Postel, E. Sur deux lots de germon (Germo alalunga) capturés dans le Golfe de Guinée par les palangriers japonais. Cahiers ORSTOM Série Océanographique 2, 55–60 (1964).
    Google Scholar 

    109.
    Liorzou, B. Les nouveaux engins de pêche pour la capture du germon: Description, statistiques, impact sur le stock nord-Atlantique. Collect. Vol. Sci. Pap. 30(1), 203–217 (1989).
    Google Scholar 

    110.
    Koto, T. Studies on the albacore-XIV. Distribution and movement of the albacore in the Indian and the Atlantic Oceans based on the catch statistics of Japanese tuna long-line fishery. Bull. Far. Seas Fish. Res. Lab. 1, 115–129 (1969).
    Google Scholar 

    111.
    Conand, F. & Richards, W. J. Distribution of tuna larvae between Madagascar and the Equator, Indian Ocean. Biol. Oceanogr. 4, 321–336 (1982).
    Google Scholar 

    112.
    Shiohama, T. Overall fishing intensity and length composition of albacore caught by long line fishery. In The Indian Ocean, 1952–1982. IPTP, Vol. 22, 91–109 (1985).

    113.
    Fonteneau, A. A summarized presentation of the report of the 2nd. In IOTC WP of the Albacore Meeting held in Bangkok (2008).

    114.
    IOTC. Proposition: Résumé exécutive: GERMON. in IOTC, IOTC-2013-SC16-ES01 (2013).

    115.
    Nishikawa, Y., Honma, M., Ueyanagi, S. & Kikawa, S. Average distribution of larvae of oceanic species of scombroid fishes, 1956–1981. Far. Seas Fish. Res. Lab. 12, 1–99 (1985).
    Google Scholar 

    116.
    Nishida, T. & Tanaka, M. General reviews of Indian Ocean Albacore (Thunnus alalunga). IOTC-2004- WPTMT-03. (2004).

    117.
    Stéquert, B. & Marsac, F. La pêche de surface des thonidés tropicaux dans l’océan Indien. (1986).

    118.
    Fonteneau, A. & Marcille, J. Ressources, pêche et biologie des thonidés tropicaux de l’Atlantique centre-est. FAO Dot. Tech. Pêches 292. (1988).

    119.
    Hoyle, S., Sharma, R. & Herrera, M. Stock assessment of albacore tuna in the Indian Ocean for 2014 using stock synthesis. Indian Ocean Tuna Commission working party on temperate Tunas, Busan, Rep. of Korea, 28–31 July 2014, IOTC–2014–WPTmT05–24_Rev1. (2014).

    120.
    Montes, I. et al. Worldwide genetic structure of albacore (Thunnus alalunga) revealed by microsatellite DNA markers. Mar. Ecol. Prog. Ser. 471, 183–191 (2012).
    ADS  CAS  Article  Google Scholar 

    121.
    Carlsson, J. et al. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol. Ecol. 13, 3345–3356 (2004).
    CAS  PubMed  Article  Google Scholar 

    122.
    Carlsson, J., McDowell, J. R., Carlsson, J. E. & Graves, J. E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98, 23–28 (2007).
    CAS  PubMed  Article  Google Scholar 

    123.
    Riccioni, G., Landi, M., Ferrara, G. & Milano, I. Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic bluefin tuna of the Mediterranean Sea. Proc. Natl. Acad. Sci. USA 107, 2102–2107 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    124.
    Yeh, S. Y., Treng, T. D., Hui, C. F. & Penney, A. J. Mitochondrial DNA sequence analysis on Albacore, Thunnus alalunga, meat samples collected from the waters off western South Africa and the Eastern Indian Ocean. ICCAT Col. Vol. Sci. Pap. 46, 152–159 (1997).
    Google Scholar 

    125.
    Durand, J. D., Collet, A., Chow, S., Guinand, B. & Borsa, P. Nuclear and mitochondrial DNA markers indicated unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar. Biol. 147, 313–322 (2005).
    CAS  Article  Google Scholar 

    126.
    Poulsen, N. A., Nielsen, E. E., Schierup, M. H., Loeschcke, V. & Gronkjaer, P. Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Mol. Ecol. 15, 321–331 (2006).
    CAS  PubMed  Article  Google Scholar 

    127.
    Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K. & Barut, N. Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Mol. Ecol. 9, 221–227 (2000).
    CAS  PubMed  Article  Google Scholar 

    128.
    Graham, M. H., Dayton, P. K. & Erlandson, J. M. Ice ages and ecological transitions on temperate coasts. Trends Ecol. Evol. 18, 33–40 (2003).
    Article  Google Scholar 

    129.
    Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    130.
    Rohfritsch, A. & Borsa, P. Genetic structure of Indian scad mackerel Decapterus russelli: Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas. Heredity 95, 315–326 (2005).
    CAS  PubMed  Article  Google Scholar 

    131.
    Janko, K. et al. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?—Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol. Biol. 7, 220 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    132.
    Ravago-Gotanco, R. G. & Juinio-Meñez, M. A. Phylogeography of the mottled spinefoot Siganus fuscescens: Pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol. Ecol. 19, 4520–4534 (2010).
    CAS  PubMed  Article  Google Scholar 

    133.
    Pedrosa-Gerasmio, I. R., Agmata, A. B. & Santos, M. D. Genetic diversity, population genetic structure, and demographic history of Auxis thazard (Perciformes), Selar crumenophthalmus (Perciformes), Rastrelliger kanagurta (Perciformes) and Sardinella lemuru (Clupeiformes) in Sulu-Celebes Sea inferred by mitochondrial DNA sequences. Fish. Res. 162, 64–74 (2015).
    Article  Google Scholar 

    134.
    Barth, J. M. I., Damerau, M., Matschiner, M., Jentoft, S. & Hanel, R. Genomic differentiation and demographic histories of Atlantic and Indo-Pacific yellowfin tuna (Thunnus albacares) populations. Genome Biol. Evol. 9(4), 1084–1098 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    135.
    West, W. MSc thesis. Genetic stock structure and estimation of abundance of swordfish (Xiphias gladius) in South Africa. https://open.uct.ac.za/handle/11427/20432. (2016).

    136.
    Silva, D. M. et al. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J. Appl. Phycol. 27, 1671–1680 (2015).
    CAS  Article  Google Scholar 

    137.
    Bourjea, J. et al. Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Mol. Ecol. 16, 175–186 (2007).
    CAS  PubMed  Article  Google Scholar 

    138.
    Rudomiotkina, G. P. Distribution of larval tunas (Thunnidae, Perciformes) in the Central-Atlantic Ocean. Int. Council Explor. Sea (ICES), Pelagic Fish (S.) Committee, J. 15 (1973).

    139.
    Piccinetti, C. & Piccinetti-Manfrin, G. Relation entre œufs et larves de thonidés et hydrologie en Méditerranée. CNEXO 8, 9–12 (1979).
    Google Scholar 

    140.
    Mullins, R. B., McKeown, N. J., Sauer, W. H. H. & Shaw, P. W. Genomic analysis reveals multiple mismatches between biological and management units in yellowfin tuna (Thunnus albacares). ICES J. Mar. Sci. 75, 2145–2152 (2018).
    Article  Google Scholar 

    141.
    Fonteneau, A. An overview of Indian Ocean albacore: Fisheries, stocks and research. IOTC-2004-WPTMT-02. (2004).

    142.
    Clemens, H. B. The migration, age and growth of Pacific albacore (Thunnus germo), 1951–1958. (1961).

    143.
    Talbot, F. H. & Penrith, M. J. Tunnies and Marlins of South Africa. Nature 193, 558–559 (1962).
    ADS  Article  Google Scholar 

    144.
    Flittner, G. A. Review of the 1962 seasonal movement of albacore tuna off the Pacific coast of the United States. Commer. Fish. Rev. 25(4), 7–13 (1963).
    Google Scholar 

    145.
    Laurs, R. M. & Lynn, R. J. Seasonal migration of North Pacific albacore, Thunnus alalunga, into North America coastal waters: Distribution, relative abundance and association with transition zone waters. US Fish. Bull. 75, 795–822 (1977).
    Google Scholar 

    146.
    Johnsson, J. H. Sea temperatures and the availability of albacore (Thunnus germo) off the coasts of Oregon and Washington. Paper presented to the Pacific Tuna biology conference (1961).

    147.
    Santiago, J. Dinamica de la poblacion de atun blanco (Thunnus alalunga, Bonaterre 1788) del Atlantico Norte. Thèse de Doctorat, Euskal Erico (2004).

    148.
    Boyce, D., Tittensor, D. P. & Worm, B. Effects of temperature on global patterns of tuna and billfish richness. Mar. Ecol. Prog. Ser. 355, 267–276 (2008).
    ADS  Article  Google Scholar 

    149.
    Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).
    Article  Google Scholar 

    150.
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).
    Article  Google Scholar 

    151.
    Logan, C. A., Alter, S. E., Haupt, A. J., Tomalty, K. & Palumbi, S. R. An impediment to consumer choice: Overfished species are sold as Pacific red snapper. Biol. Conserv. 141, 1591–1599 (2008).
    Article  Google Scholar 

    152.
    Primmer, C. R., Koskinen, M. T. & Piironen, J. The one that did not get away: Individual assignment using microsatellite data detects a case of fishing competition fraud. Proc. Biol. Sci. 267, 1699–1704 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    153.
    Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. in Molecular Genetics in Fisheries (eds. Carvalho, G. R. & Pitcher, T. J.) 55–79 (1995).

    154.
    Waples, R. S., Punt, A. E. & Cope, J. M. Integrating genetic data into management of marine resources: How can we do it better?. Fish Fish. 9, 423–449 (2008).
    Article  Google Scholar 

    155.
    Chouvelon, T. et al. Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations. Sci. Total Environ. 597, 481–495 (2017).
    ADS  Article  CAS  Google Scholar 

    156.
    Penrith, M. J. G. The systematics and biology of the South African Tunas. (Masters Dissertation, University of Cape Town, 1963).

    157.
    IOTC. Report of the Fifteenth Session of the IOTC Scientific Committee. (2012).

    158.
    Stequert, B. & Marsac, F. Tropical tuna—surface fisheries in the Indian Ocean. Fisheries Technical Paper FAO, 282 (1989).

    159.
    Pecoraro, C. et al. The population genomics of yellowfin tuna (Thunnus albacares) at global geographic scale challenges current stock delineation. Sci. Rep. 8, 13890 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Nutritional benefit of fungal spores for honey bee workers

    1.
    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
    Article  Google Scholar 
    2.
    Klein, D. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
    Article  Google Scholar 

    3.
    Southwick, E. E. & Southwick, L. Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J. Econ. Entomol. 85, 621–633 (1992).
    Article  Google Scholar 

    4.
    Brodschneider, R. & Crailsheim, K. Nutrition and health in honey bees. Apidologie 41, 278–294. https://doi.org/10.1051/apido/2010012 (2010).
    Article  Google Scholar 

    5.
    Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE 11, e0152685. https://doi.org/10.1371/journal.pone.0152685 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?. PLoS ONE 8, e72016. https://doi.org/10.1371/journal.pone.0072016 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Simone-Finstrom, M. et al. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. 6, 32023 (2016).
    ADS  CAS  Article  Google Scholar 

    8.
    de Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 42838. https://doi.org/10.1038/srep42838 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Ahn, K., Xie, X., Riddle, J., Pettis, J. & Huang, Z. Y. Effects of long distance transportation on honey bee physiology. Psyche A J. Entomol. 2012, 1–9 (2012).
    Article  Google Scholar 

    10.
    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect. Sci. 10, 133–141 (2015).
    Article  Google Scholar 

    11.
    Shaw, D. E. The incidental collection of fungal spores by bees and the collection of spores in lieu of pollen. Bee World 71, 158–176 (1990).
    Article  Google Scholar 

    12.
    Shaw, D. E. Bees and fungi, with special reference to certain plant pathogens. Aust. Plant Pathol. 28, 269–282. https://doi.org/10.1071/ap99044 (1999).
    Article  Google Scholar 

    13.
    Parker, R. L. The collection of pollen by the honey bee. Memoir: Cornell University Agricultural experiment Station 98, 1–55 (1926).

    14.
    Doull, K. M. An analysis of bee behaviour as it relates to pollination in The Indispensable pollinators (ed Warren L.O.). Report 9th Pollination Conference 12-15 (Hot Springs, Arkansas 1970).

    15.
    Inouye, D. W., Gill, D. E., Dudash, M. R. & Fenster, C. B. A model and lexicon for pollen fate. Am. J. Bot. 81, 1517–1530 (1994).
    Article  Google Scholar 

    16.
    Westerkamp, C. P. Pollen in bee flower relations. Some considerations on melittophily. Botanica. Acta 109, 325–332 (1996).
    Article  Google Scholar 

    17.
    Thorp, R. W. The collection of pollen by bees. Plant Syst. Evol. 222, 211–223 (2000).
    Article  Google Scholar 

    18.
    Portman, Z. M. & Tepedino, V. J. Convergent evolution of pollen transport mode in two distantly related bee genera (Hymenoptera: Andrenidae and Melittidae). Apidologie 48, 461–472 (2017).
    Article  Google Scholar 

    19.
    Schmidt, J. O., Thoenes, S. C. & Levin, M. D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 80, 176–183 (1987).
    Article  Google Scholar 

    20.
    Renzi, M. T. et al. Combined effect of pollen quality and thiamethoxam on hypopharyngeal gland development and protein content in Apis mellifera. Apidologie 47, 779–788 (2016).
    CAS  Article  Google Scholar 

    21.
    Hrassnigg, N. & Crailsheim, K. Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J Insect Physiol 44, 929–939 (1998).

    22.
    Heylen, K., Gobin, B., Arckens, L., Huybrechts, R. & Billen, J. The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie 42, 103–116 (2011).
    CAS  Article  Google Scholar 

    23.
    Hoover, S. E., Higo, H. A. & Winston, M. L. Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. J. Comput. Physiol. B 176, 55–63 (2006).
    Article  Google Scholar 

    24.
    Modro, A. F. H., Silva, I. C., Message, D. & Luz, C. F. P. Saprophytic fungus collection by africanized bees in Brazil. Neotrop. Entomol. 38, 434–436 (2009).
    Article  Google Scholar 

    25.
    Gasparoto, M. C. G. et al. Honeybees can spread Colletotrichum acutatum and C. gloeosporioides among citrus plants. Plant Pathol. 66, 777–782. https://doi.org/10.1111/ppa.12625 (2017).
    CAS  Article  Google Scholar 

    26.
    Brouwers, E. Measurement of hypopharyngeal gland activity in the honeybee. J. Apic. Res. 21, 193–198 (1982).
    Article  Google Scholar 

    27.
    Pernal, S. F. & Currie, R. W. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31, 387–409. https://doi.org/10.1051/apido:2000130 (2000).
    Article  Google Scholar 

    28.
    Bartnicki-Garcia, S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22, 87–108 (1968).
    CAS  Article  Google Scholar 

    29.
    Page, R. E. Jr. & Peng, C.Y.-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711 (2001).
    Article  Google Scholar 

    30.
    Schmidt, L. S., Schmidt, J. O., Rao, H., Wang, W. & Xu, L. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88, 1591–1595 (1995).
    Article  Google Scholar 

    31.
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Kleinschmidt, G., Kondos, A., Harden, J. & Turner, J. Colony management for eucalypt honey flows. Aust. Beekeeper 75, 261–264 (1974).
    Google Scholar 

    33.
    Anke, S., Niemüller, D., Moll, S., Hänsch, R. & Ober, D. Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol. 136, 4037–4047 (2004).

    34.
    Boppré, M., Colegate, S. M. & Edgar, J. A. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agr. Food. Chem. 53, 594–600 (2005).
    Article  Google Scholar 

    35.
    Hartmann, T. & Ober, D. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores in Topics in Current Chemistry: Biosynthesis—Aromatic Polyketides, Isoprenoids, Alkaloids (ed Vederas J.C. Leeper F.J.) 207–243 (Springer, Berlin 2000).

    36.
    Praz, C. J., Müller, A. & Dorn, S. Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. Ecology 89, 795–804 (2008).
    Article  Google Scholar 

    37.
    San-Blas, G., Guanipa, O., Moreno, B., Pekerar, S. & San-Blas, F. Cladosporium carrionii and Hormoconis resinae (C. resinae): cell wall and melanin studies. Curr. Microbiol. 32, 11–16 (1996).
    CAS  Article  Google Scholar 

    38.
    Szaniszlo, P., Cooper, B. & Voges, H. S. Chemical compositions of the hyphal walls of three chromomycosis agents. Sabouraudia: J Med Vet Mycol 10, 94–102 (1972).

    39.
    Soltanian, S., Stuyven, E., Cox, E., Sorgeloos, P. & Bossier, P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35, 109–138 (2009).
    CAS  Article  Google Scholar 

    40.
    Mazzei, M. et al. Effect of 1, 3–1, 6 β-glucan on natural and experimental deformed wing virus infection in newly emerged honeybees (Apis mellifera ligustica). PLoS ONE 11, e0166297 (2016).
    Article  Google Scholar 

    41.
    Stevanovic, J. et al. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies. Anais da Academia Brasileira de Ciências 90, 219–229 (2018).
    CAS  Article  Google Scholar 

    42.
    Erdtman, G. Handbook of Palynology: Morphology, Taxonomy, Ecology (Munksgaard, Copenhagen, 1969).
    Google Scholar 

    43.
    Kearns, C. A. & Inouye, D. W. Techniques for pollination biologists. (University Press of Colorado, 1993).

    44.
    APSA. Australasian Pollen and Spore Atlas, (2007).

    45.
    Graystock, P. et al. Hygienic food to reduce pathogen risk to bumblebees. J. Invert. Pathol. 136, 68–73. https://doi.org/10.1016/j.jip.2016.03.007 (2016).
    CAS  Article  Google Scholar 

    46.
    Meeus, I. et al. Gamma irradiation of pollen and eradication of Israeli acute paralysis virus. J. Invert. Pathol. 121, 74–77. https://doi.org/10.1016/j.jip.2014.06.012 (2014).
    Article  Google Scholar 

    47.
    Bradstreet, R. B. Kjeldahl method for organic nitrogen. Anal. Chem. 26, 185–187 (1954).
    CAS  Article  Google Scholar 

    48.
    National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]–[October 2019]. Available from: https://www.ncbi.nlm.nih.gov/

    49.
    Bensch, K. et al. Cladosporium species in indoor environments. Stud. Mycol. 89, 177–301 (2018).
    CAS  Article  Google Scholar 

    50.
    Scheuerell, S. J. & Mahaffee, W. F. Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis. 90, 1201–1208 (2006).
    Article  Google Scholar 

    51.
    Preston, F. W. The volume of an egg. AOS 91, 132–138. https://doi.org/10.2307/4084667 (1974).
    Article  Google Scholar 

    52.
    R Core Team. R: A Language and Environment for Statistical Computing. v. 1.2.1335 (Vienna, Austria; 2019).

    53.
    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar  More

  • in

    Parasite intensity drives fetal development and sex allocation in a wild ungulate

    1.
    Stien, A. et al. The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. J. Anim. Ecol. 71, 937–945 (2002).
    Article  Google Scholar 
    2.
    Budischak, S. A., O’Neal, D., Jolles, A. E. & Ezenwa, V. O. Differential host responses to parasitism shape divergent fitness costs of infection. Funct. Ecol. 32, 324–333 (2018).
    Article  Google Scholar 

    3.
    Albon, S. D. et al. The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. Lond. B 269, 1625–1632 (2002).
    CAS  Article  Google Scholar 

    4.
    Festa-Bianchet, M. Numbers of lungworm larvae in feces of bighorn sheep: yearly changes, influence of host sex, and effects on host survival. Can. J. Zool. 69, 547–554 (1991).
    Article  Google Scholar 

    5.
    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).
    Article  Google Scholar 

    6.
    Fitze, P. S., Tschirren, B. & Richner, H. Life history and fitness consequences of ectoparasites. J. Anim. Ecol. 73, 216–226 (2004).
    Article  Google Scholar 

    7.
    Patterson, J. E. H., Neuhaus, P., Kutz, S. J. & Ruckstuhl, K. E. Parasite removal improves reproductive success of female North American red squirrels (Tamiasciurus hudsonicus). PLoS ONE 8, e55779 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Gilbert, S. F. Ecological developmental biology: developmental biology meets the real world. Dev. Biol. 233, 1–12 (2001).
    CAS  PubMed  Article  Google Scholar 

    9.
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos Trans. R. Soc. Lond. B Biol. Sci. 363, 1635–1645 (2008).
    PubMed  Article  Google Scholar 

    10.
    Bowers, E. K. et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology 95, 3027–3034 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Gluckman, P. D., Hanson, M. A., Morton, S. M. B. & Pinal, C. S. Life-long echoes–a critical analysis of the developmental origins of adult disease model. Neonatology 87, 127–139 (2005).
    Article  Google Scholar 

    12.
    Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Early life events and their consequences for later disease: A life history and evolutionary perspective. Am. J. Hum. Biol. 19, 1–19 (2007).
    PubMed  Article  Google Scholar 

    13.
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).
    PubMed  Article  Google Scholar 

    14.
    Wu, G., Bazer, F. W., Wallace, J. M. & Spencer, T. E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337 (2006).
    CAS  PubMed  Article  Google Scholar 

    15.
    Greenwood, P. L. & Bell, A. W. Prenatal nutritional influences on growth and development of ruminants. Recent Adv. Animal Nutr. Aust. 14, 57 (2003).
    Google Scholar 

    16.
    Alexander, G. & Williams, D. Heat stress and development of the conceptus in domestic sheep. J. Agric. Sci. 76, 53–72 (1971).
    Article  Google Scholar 

    17.
    Holland, M. D. & Odde, K. G. Factors affecting calf birth weight: a review. Theriogenology 38, 769–798 (1992).
    CAS  PubMed  Article  Google Scholar 

    18.
    Reynolds, L. P., Ferrell, C. L., Nienaber, J. A. & Ford, S. P. Effects of chronic environmental heat stress on blood flow and nutrient uptake of the gravid bovine uterus and foetus. J. Agric. Sci. 104, 289–297 (1985).
    Article  Google Scholar 

    19.
    Johnson, J. S. et al. The impact of in utero heat stress and nutrient restriction on progeny body composition. J. Therm. Biol. 53, 143–150 (2015).
    PubMed  Article  Google Scholar 

    20.
    Lindström, J. & Kokko, H. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. Biol. Sci. 265, 483–488 (1998).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    de Figueiredo, P., Ficht, T. A., Rice-Ficht, A., Rossetti, C. A. & Adams, L. G. Pathogenesis and Immunobiology of Brucellosis: Review of Brucella-Host Interactions. Am. J. Pathol. 185, 1505–1517 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Donahoe, S. L., Lindsay, S. A., Krockenberger, M., Phalen, D. & Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 4, 216–238 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Robbins, C. T. & Robbins, B. L. Fetal and Neonatal Growth Patterns and Maternal Reproductive Effort in Ungulates and Subungulates. Am. Nat. 114, 101–116 (1979).
    Article  Google Scholar 

    24.
    Martin, R. D. & MacLarnon, A. M. Gestation period, neonatal size and maternal investment in placental mammals.pdf. Nature 313, 220–223 (1985).
    ADS  Article  Google Scholar 

    25.
    O’Callaghan, D. & Boland, M. P. Nutritional effects on ovulation, embryo development and the establishment of pregnancy in ruminants. Anim. Sci. 68, 299–314 (1999).
    Article  Google Scholar 

    26.
    Blackwell, A. D. Helminth infection during pregnancy: insights from evolutionary ecology. Int. J. Womens Health 8, 651–661 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 92, 108–134 (2017).
    PubMed  Article  Google Scholar 

    28.
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Silk, J. B. Local Resource Competition and Facultative Adjustment of Sex Ratios in Relation to Competitive Abilities. Am. Nat. 121, 56–66 (1983).
    Article  Google Scholar 

    30.
    Ryan, C. P., Anderson, W. G., Gardiner, L. E. & Hare, J. F. Stress-induced sex ratios in ground squirrels: support for a mechanistic hypothesis. Behav. Ecol. 23, 160–167 (2012).
    Article  Google Scholar 

    31.
    Cameron, E. Z. Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism. Proc. Biol. Sci. 271, 1723–1728 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schwanz, L. E. & Robert, K. A. Proximate and ultimate explanations of mammalian sex allocation in a marsupial model. Behav. Ecol. Sociobiol. 68, 1085–1096 (2014).
    Article  Google Scholar 

    33.
    Silk, J. B. & Brown, G. R. Local resource competition and local resource enhancement shape primate birth sex ratios. Proc. Biol. Sci. 275, 1761–1765 (2008).
    PubMed  PubMed Central  Google Scholar 

    34.
    Ruckstuhl, K. E., Colijn, G. P., Amiot, V. & Vinish, E. Mother’s occupation and sex ratio at birth. BMC Public Health 10, 269 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Flegr, J. & Kaňková, Š. The effects of toxoplasmosis on sex ratio at birth. Early Hum. Dev. 141, 104874 (2020).
    CAS  PubMed  Article  Google Scholar 

    36.
    Kanková, S. et al. Women infected with parasite Toxoplasma have more sons. Naturwissenschaften 94, 122–127 (2007).
    ADS  PubMed  Article  CAS  Google Scholar 

    37.
    Kanková, S. et al. Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology 134, 1709–1717 (2007).
    PubMed  Article  Google Scholar 

    38.
    Simmons, N. M., Bayer, M. B. & Sinkey, L. O. Demography of Dall’s Sheep in the Mackenzie Mountains Northwest Territories. J. Wildl. Manage 48, 156–162 (1984).
    Article  Google Scholar 

    39.
    Aleuy, O. A. et al. Diversity of gastrointestinal helminths in Dall’s sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators. PLoS ONE 13, e0192825 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Geist, V. Mountain Sheep: A Study in Behavior and Evolution (University of Chicago Press, Chicago, 1971).
    Google Scholar 

    41.
    Rachlow, J. L. & Bowyer, R. T. Interannual Variation in Timing and Synchrony of Parturition in Dall’s Sheep. J. Mammal. 72, 487–492 (1991).
    Article  Google Scholar 

    42.
    Goodrowe, K. L., Smak, B., Presley, N. & Nlonfort, S. L. Reproductive, behavioral, and endocrine characteristics of the Dall’s Sheep (Ovis dalli). Zoo Biol. 15, 45–54 (1996).
    Article  Google Scholar 

    43.
    Bunnell, F. L. & Nichols, L. Natural history of thinhorn sheep. In Mountain sheep of North America (ed. Valdez, R.) 23–77 (University of Arizona Press, Arizona, 1999).
    Google Scholar 

    44.
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 20, 3256–3269 (2014).
    ADS  PubMed  Article  Google Scholar 

    45.
    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).
    PubMed  Google Scholar 

    46.
    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).
    PubMed  Article  Google Scholar 

    47.
    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69 (2009).
    Article  Google Scholar 

    49.
    Pettorelli, N., Pelletier, F. & von Hardenberg, A. Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates. Ecology 88(2), 381–390 (2007).
    PubMed  Article  Google Scholar 

    50.
    Sanchez, G. PLS Path Modeling with R. (Trowchez Editions, Berkeley, 2013). http://www.gastonsanchez.com/PLSPathModelingwithR.pdf.

    51.
    Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    52.
    Hair, J. F., Ringle, C. M. & Sarstedt, M. Partial least squares structural equation modeling: rigorous applications, better results and higher acceptance. Long Range Plann. 46, 1–12 (2013).
    Article  Google Scholar 

    53.
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Article  Google Scholar 

    54.
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).
    Article  Google Scholar 

    55.
    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for partial least squares path modeling (PLS-PM). R package version 0.4. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2017).
    Article  Google Scholar 

    56.
    Lê, S., Josse, J., Husson, F. Facto. & Mine, R. An R Package for multivariate analysis. J. Stat. Softw. https://doi.org/10.18637/jss.v025.i0 (2008).
    Article  Google Scholar 

    57.
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308, 358–360 (1984).
    ADS  Article  Google Scholar 

    58.
    De Roos, A. M., Galic, N. & Heesterbeek, H. How resource competition shapes individual life history for nonplastic growth: ungulates in seasonal food environments. Ecology 90, 945–960 (2009).
    PubMed  Article  Google Scholar 

    59.
    Festa-Bianchet, M. Individual Differences, Parasites, and the Costs of Reproduction for Bighorn Ewes (Ovis canadensis). J. Anim. Ecol. 58, 785–795 (1989).
    Article  Google Scholar 

    60.
    Festa-Bianchet, M., Jorgenson, J. T. & Wuhart, W. D. Early weaning in bighorn sheep, Ovis canadensis affects growth of males but not of females. Behav. Ecol. 5, 21–27 (1994).
    Article  Google Scholar 

    61.
    Singer, F. J., Williams, E., Miller, M. W. & Zeigenfuss, L. C. Population Growth, Fecundity, and Survivorship in Recovering Populations of Bighorn Sheep. Restor. Ecol. 8, 75–84 (2000).
    Article  Google Scholar 

    62.
    Simmons, N. M. Seasonal Ranges of Dall’s Sheep, Mackenzie Mountains Northwest Territories. Arctic 35, 512–518 (1982).
    Article  Google Scholar 

    63.
    Neilsen, C. & Neiland, K. Sheep Disease Report, Project Progress Report, Federal Aid in Wildlife Restoration. (1974).

    64.
    Kutz, S. J. et al. Chapter 2: parasites in ungulates of Arctic North America and Greenland—a view of contemporary diversity, ecology, and impact in a world under change. In Adv Parasit (ed. Rollinson, D.) 99–252 (Academic Press, Cambridge, 2012).
    Google Scholar 

    65.
    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. The effect of Marshallagia marshalli on Serum Gastrin concentrations in experimentally infected lambs. J. Parasitol. 102, 436–439 (2016).
    CAS  PubMed  Article  Google Scholar 

    66.
    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. Pathophysiology of Marshallagia marshalli in experimentally infected lambs. Parasitology 140, 1762–1767 (2013).
    PubMed  Article  Google Scholar 

    67.
    Simcock, D. C. et al. Hypergastrinaemia, abomasal bacterial population densities and pH in sheep infected with Ostertagia circumcincta. Int. J. Parasitol. 29, 1053–1063 (1999).
    CAS  PubMed  Article  Google Scholar 

    68.
    Jacobs, D., Fox, M., Gibbons, L. & Hermosilla, C. Principles of Veterinary Parasitology (Wiley, Hoboken, 2015).
    Google Scholar 

    69.
    Berger, T. Fertilization in ungulates. Anim. Reprod. Sci. 42, 351–360 (1996).
    MathSciNet  Article  Google Scholar 

    70.
    Hayward, A. D. Causes and consequences of intra- and inter-host heterogeneity in defence against nematodes. Parasite Immunol. https://doi.org/10.1111/pim.12054 (2013).
    Article  PubMed  Google Scholar 

    71.
    Hayward, A. D. et al. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS Biol. 12, e1001917 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Reimers, E. Growth rate and body size differences in Rangifer, a study of causes and effects. Rangifer 3, 3–15 (1983).
    Article  Google Scholar 

    73.
    Sontakke, S. D. Monitoring and controlling ovarian activities in wild ungulates. Theriogenology 109, 31–41 (2018).
    PubMed  Article  Google Scholar 

    74.
    Festa-Bianchet, M. Birthdate and survival in bighorn lambs (Ovis canadensis). J. Zool. 214, 653–661 (1988).
    Article  Google Scholar 

    75.
    Feder, C., Martin, J. G. A., Festa-Bianchet, M., Bérubé, C. & Jorgenson, J. Never too late? Consequences of late birthdate for mass and survival of bighorn lambs. Oecologia 156, 773–781 (2008).
    ADS  PubMed  Article  Google Scholar 

    76.
    Hewison, A. J. M. & Gaillard, J.-M. Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends Ecol. Evol. 14, 229–234 (1999).
    CAS  PubMed  Article  Google Scholar 

    77.
    Leimar, O. Life-history analysis of the Trivers and Willard sex-ratio problem. Behav. Ecol. 7, 316–325 (1996).
    Article  Google Scholar 

    78.
    Sheldon, B. C. & West, S. A. Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am. Nat. 163, 40–54 (2004).
    PubMed  Article  Google Scholar 

    79.
    Julliard, R. Sex-specific dispersal in spatially varying environments leads to habitat-dependent evolutionary stable offspring sex ratios. Behav. Ecol. 11, 421–428 (2000).
    Article  Google Scholar 

    80.
    Schindler, S. et al. Sex-specific demography and generalization of the Trivers-Willard theory.PDF. Nature 526, 249–252 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    81.
    Festa-Bianchet, M. Offspring sex ratio studies of mammals: Does publication depend upon the quality of the research or the direction of the results?. Écoscience 3, 42–44 (1996).
    Article  Google Scholar 

    82.
    Douhard, M. Offspring sex ratio in mammals and the Trivers-Willard hypothesis: In pursuit of unambiguous evidence. Bioessays 39(9), 1700043 (2017).
    Article  Google Scholar 

    83.
    Larson, M. A., Kimura, K., Michael Kubisch, H. & Michael Roberts, R. Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-τ. Proc. Natl. Acad. Sci. U. S. A. 98, 9677–9682 (2001).

    84.
    Cameron, E. Z., Lemons, P. R., Bateman, P. W. & Bennett, N. C. Experimental alteration of litter sex ratios in a mammal. Proc. Biol. Sci. 275, 323–327 (2008).
    PubMed  Google Scholar 

    85.
    Shea-Donohue, T., Qin, B. & Smith, A. Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol. 39, e12422 (2017).
    Article  Google Scholar 

    86.
    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).
    PubMed  Article  Google Scholar 

    87.
    Kutz, S. J., Hoberg, E. P., Molnár, P. K., Dobson, A. & Verocai, G. G. A walk on the tundra: Host–parasite interactions in an extreme environment. Int. J. Parasitol. Parasites Wildl. 3, 198–208 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    88.
    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).
    PubMed  Article  Google Scholar 

    89.
    Rose, H., Hoar, B., Kutz, S. J. & Morgan, E. R. Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants. Int. J. Parasitol. Parasites Wildl. 3, 209–219 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Morgan, E. R. et al. Assessing risks of disease transmission between wildlife and livestock: The Saiga antelope as a case study. Biol. Conserv. 131, 244–254 (2006).
    Article  Google Scholar  More

  • in

    COVID19: an announced pandemic

    1.
    Barrett, R., Kuzawa, C. W., McDade, T. & Armelagos, G. J. Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu. Rev. Anthropol. 27, 247–271 (1998).
    Article  Google Scholar 
    2.
    McMichael, A. J. Human culture, ecological change, and infectious disease: are we experiencing history’s fourth great transition? Ecosyst. Health 7, 107–115 (2001).
    Article  Google Scholar 

    3.
    Horby, P. W., Hoa, N. ., Pfeiffer, D. U. & Wertheim, H. F. L. Drivers of emerging zoonotic infectious diseases. Confronting Emerging Zoonoses (eds Yamada, A., Kahn, L., Kaplan, B., Monath, T., Woodall, J. & Conti, L.) (Springer Press, Tokyo, 2014).

    4.
    Wilcox, B. A. & Gubler, D. J. Disease ecology and the global emergence of zoonotic pathogens. Environ. Health Prev. Med. 10, 263–272 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Wilcox, B. A. & Colwell, R. R. Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. Ecohealth 2, 244–257 (2005).
    PubMed Central  Article  PubMed  Google Scholar 

    7.
    Hooper, D. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
    PubMed  Article  CAS  Google Scholar 

    8.
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Woo, P. C. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180–187 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Wolfe, N. D., Daszak, P., Kilpatrick, A. M. & Burke, D. S. Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg. Infect. Dis. 11, 1822–1827 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lai, M. M. C. & Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res. 48, 1–100 (1997).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Ziebuhr, J. The Coronavirus replicase. Curr. Top. Microbiol. Immunol. 287, 57–94 (2005).
    PubMed  CAS  Google Scholar 

    14.
    Brian, D. A. & Baric, R. S. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 287, 1–30 (2005).
    PubMed  CAS  Google Scholar 

    15.
    Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Walls, A. et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114–117 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Hoffmann, M., Hofmann-Winkler, H. & Poehlmann, S. Priming time: how cellular proteases arm coronavirus spike proteins, in Activation of viruses by host proteases. (eds Eva Boettger –Friebertsaeuser, Wolfgang Gartner, Hans Dieter Klenk) 71-–98 (Springer, Cham, 2018).

    18.
    Li, F., Li, W., Farzan, M. & Harrison, S. C. Interactions between Sars coronavirus and its receptors. Adv. Exp. Med. Biol. 581, 229–234 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Hoffmann, M. et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 1–10 (2020).
    Article  CAS  Google Scholar 

    20.
    Hoffmann, M. et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Preprint at BioRxiv https://doi.org/10.1101/2020.01.31.929042 (2020).

    21.
    Snijder, E. J., Decroly, E. & Ziebhur, J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96, 59–126 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Gao, Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Preprint at BioRxiv https://doi.org/10.1101/2020.04.08.032763 (2020).

    24.
    Zhang, X. et al. Nucleocapsid protein of SARS.CoV activates Interleukin-6 expression through cellular transcription factor NF-kB. Virology 365, 324–335 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
    PubMed  Article  CAS  Google Scholar 

    27.
    Yang, X.-L. et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J. Virol. 90, 3253–3256 (2016).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    28.
    Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).
    PubMed  Article  CAS  Google Scholar 

    29.
    Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).
    PubMed  Article  CAS  Google Scholar 

    30.
    Tang, X. C. et al. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80, 7481–7490 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Cui, J., Li, F. & Shi, Z. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
    PubMed  Article  CAS  Google Scholar 

    32.
    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the Spike protein. Curr. Biol. 30, 2196–2203 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Wang, N. et al. Serological evidence of bat SARS-related Coronavirus infection in humans, China. Virol. Sin. 33, 104–107 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Joyjinda, Y. et al. First complete genome sequence of human coronavirus HKU1 from a non hill bat guano miner in Thailand. Microbiol. Resour. Announc. 8, 1–3 (2019).
    Article  Google Scholar 

    35.
    Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).
    PubMed  Article  CAS  Google Scholar 

    36.
    Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).
    PubMed  Article  CAS  Google Scholar 

    37.
    Centers for Disease Control. Prevalence of IgG antibody to SARS-associated coronavirus in animal traders: Guangdong Province, China. MMWR 52, 986–987 (2003).
    Google Scholar 

    38.
    Normile, D. Viral DNA match spurs China’s civet roundup. Science 303, 292 (2004).
    PubMed  Article  CAS  Google Scholar 

    39.
    Watts, J. China culls wild animals to prevent new SARS threat. Lancet 363, 134 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Xu, H. F. et al. An epidemiologic investigation on infection with severe acute respiratory syndrome coronavirus in wild animals traders in Guangzhou. Zhonghua Yu Fang Yi Xue Za Zhi 38, 81–83 (2004).
    PubMed  Google Scholar 

    41.
    Wu, D. et al. Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J. Virol. 79, 2620–26255 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Kan, B. et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892–11900 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Wang, L. F. et al. Review of bats and SARS. Emerg. Infect. Dis. 12, 1834–1840 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Tommy, T. L. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).
    Article  CAS  Google Scholar 

    45.
    Liu, P. et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLOS Pathog. 16, 1–13 (2020).
    Google Scholar 

    46.
    Damas, J. et al. Broad host range of SARS-CoV-2 predicted Comparative and structural analysis of ACE2 in vertebrates. Preprint at BioRxiv https://doi.org/10.1101/2020.04.16.045302 (2020).

    47.
    Lee, J. et al. No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife trade via Malaysia. Preprint at BioRxiv https://doi.org/10.1101/2020.06.19.158717 (2020).

    48.
    Xiang, X. Sichuan villager capture 33 bats isolated from their homes and have eaten them. Morning Post (February, 2020).

    49.
    Xu, D. Huanan market has more than a dozen of wildlife animals. China Business Network (March, 2020).

    50.
    Zhang, L., Zhu, G., Jones, G. & Zhang, S. Conservation of bats in China: problems and recommendations. Oryx 43, 179–182 (2009).
    Article  Google Scholar 

    51.
    Yu, W. B., Tang, G. D., Zhang, L. & Corlett, R. T. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool. Res. 41, 247–257 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Chen, W. et al. SARS-associated coronavirus transmitted from human to pig. Emerg. Infect. Dis. 11, 446–448 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Ling, H. Beijing Xinfa wholesale market temporarily closed! Imported salmon case board detected with new coronavirus. Science and Technology Daily Beijing (2020).

    54.
    Josephine M. Coronavirus: China’s first confirmed COVID-19 case traced back to November 17th. South China Morning Post (2020).

    55.
    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Cohen, J. Wuhan seafood market may not be source of novel virus spreading globally. Science 367, 234–235 (2020).
    PubMed  Article  CAS  Google Scholar 

    57.
    Deslandes, A. et al. SARS-CoV-2 was already spreading in France in late December 2019. Int. J. Antimicrob. Agents https://doi.org/10.1016/j.ijantimicag.2020.106006 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Forster, P., Forster, L., Renfrew, C. & Forster, M. M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl Acad. Sci. USA 117, 9241–9243 (2020).
    PubMed  Article  CAS  Google Scholar 

    59.
    Korber, B. et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. Preprint at BioRxiv https://doi.org/10.1101/2020.04.29.069054 (2020).

    60.
    Bhattacharyya, C., et al. Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. Preprint at BioRxiv https://doi.org/10.1101/2020.05.04.075911 (2020).

    61.
    Zhang, L. et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. Preprint at BioRxiv https://doi.org/10.1101/2020.06.12.148726 (2020).

    62.
    Balboni, A., Palladini, A., Bogliani, G. & Battilani, M. Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol. Infect. 139, 216–219 (2011).
    PubMed  Article  CAS  Google Scholar 

    63.
    Mousavizadeh, L. & Ghasemi, S. Genotype and phenotype of COVID-19: Their role in patghogenesis. J. Microbiol. Immunol. Infection, 1–5 https://doi.org/10.1016/j.jmil.2020.03.022 (2020).

    64.
    Ellinghaus D. et al. Genome-wide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med., 1–13 https://doi.org/10.1056/NEJMoa2020283 (2020).

    65.
    Zeberg, H. & Paabo, S. The major genetic risk factor for severe COVID-19 is inherited from Neandertals. Preprint at BioRxiv https://doi.org/10.1101/2020.07.03.186296 (2020).

    66.
    Drexler, J. F. et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84, 11336–11349 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Pfefferle, S. et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats. Ghana. Emerg. Infect. Dis. 15, 1377–1384 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Quan, P. L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. mBio 1(4), e00208–e00210 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Ren, W. et al. Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J. Gen. Virol. 87, 3355–3359 (2006).
    PubMed  Article  CAS  Google Scholar 

    70.
    Wu, Z. et al. ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus. J. Infect. Dis. 213, 579–583 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Lau, S. K. P. et al. Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. J. Virol. 89, 10532–10547 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Phytoliths in selected broad-leaved trees in China

    1.
    Pearsall, D. M. et al. Distinguishing rice (Oryza Sativa Poaceae) from wild Oryza species through phytolith analysis—results of preliminary research. Econ. Bot. 49, 183–196. https://doi.org/10.1007/Bf02862923 (1995).
    Article  Google Scholar 
    2.
    Ball, T. et al. Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. J. Archaeol. Sci. 68, 32–65 (2016).
    Article  Google Scholar 

    3.
    Lu, H. et al. Culinary archaeology: millet noodles in Late Neolithic China. Nature 437, 967–968. https://doi.org/10.1038/437967a (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Wang, Y. J. & Lu, H. Y. The Study of Phytolith and Its Application (China Ocean Press, Beijing, 1993).
    Google Scholar 

    5.
    Piperno, D. R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (AltaMira Press, Lanham, 2006).
    Google Scholar 

    6.
    Pearsall, D. M. Paleoethnobotany: A Handbook of Procedures (Academic Press, London, 1989).
    Google Scholar 

    7.
    Piperno, D. R. Phytolyth Analysis: An Archaeological and Geological Perspective (Academic Press, London, 1988).
    Google Scholar 

    8.
    Prebble, M., Schallenberg, M., Carter, J. & Shulmeister, J. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, otago, South Island, New Zealand I. Modern assemblages and transfer functions. J. Paleolimnol. 27, 393–413. https://doi.org/10.1023/A:1020318803497 (2002).
    ADS  Article  Google Scholar 

    9.
    Lu, H. Y. et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions. Quatern. Sci. Rev. 25, 945–959. https://doi.org/10.1016/j.quascirev.2005.07.014 (2006).
    ADS  Article  Google Scholar 

    10.
    Bremond, L. et al. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global Planet Change 61, 209–224. https://doi.org/10.1016/j.gloplacha.2007.08.016 (2008).
    ADS  Article  Google Scholar 

    11.
    Iriarte, J. & Paz, E. A. Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quatern. Int. 193, 99–123. https://doi.org/10.1016/j.quaint.2007.10.008 (2009).
    Article  Google Scholar 

    12.
    Mercader, J., Bennett, T., Esselmont, C., Simpson, S. & Walde, D. Phytoliths in woody plants from the Miombo woodlands of Mozambique. Ann. Bot. 104, 91–113. https://doi.org/10.1093/aob/mcp097 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Mercader, J. et al. Poaceae phytoliths from the Niassa Rift, Mozambique. J. Archaeol. Sci. 37, 1953–1967. https://doi.org/10.1016/j.jas.2010.03.001 (2010).
    Article  Google Scholar 

    14.
    Patterer, N. I., Passeggi, E. & Zucol, A. F. Phytolith analysis of soils from the southwestern Entre Rios Province (Argentina) as a tool to understand their pedological processes. Rev. Mex. Cienc. Geol. 28, 132–146 (2011).
    Google Scholar 

    15.
    Pearce, M. & Ball, T. A study of phytoliths produced by selected native plant taxa commonly used by Great Basin Native Americans. Veg. Hist. Archaeobot. https://doi.org/10.1007/s00334-019-00738-1 (2019).
    Article  Google Scholar 

    16.
    Carter, J. A. Phytoliths from loess in Southland, New Zealand. N. Z. J. Bot. 38, 325–332 (2000).
    Article  Google Scholar 

    17.
    Ball, T. B., Ehlers, R. & Standing, M. D. Review of typologic and morphometric analysis of phytoliths produced by wheat and barley. Breed. Sci. 59, 505–512. https://doi.org/10.1270/jsbbs.59.505 (2009).
    Article  Google Scholar 

    18.
    18Lu, H., Wu, N. & Liu, K. In The state of the art of phytoliths in plants and soils (eds A. Pinilla, J. Juan-Tresseras, & J. Machado) Ch. 159, 15 (Monogra as del Centro de Ciencias Medambioentales, 1997).

    19.
    Lu, H. et al. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS ONE 4, e4448. https://doi.org/10.1371/journal.pone.0004448 (2009).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Ge, Y. et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeol. Anthrop. Sci. 10, 61–73. https://doi.org/10.1007/s12520-016-0341-0 (2018).
    Article  Google Scholar 

    21.
    Piperno, D. R. A comparison and differentiation of phytoliths from maize and wild grasses: use of morphological criteria. Am. Antiq. 49, 361–383. https://doi.org/10.2307/280024 (1984).
    Article  Google Scholar 

    22.
    Ge, Y., Lu, H., Zhang, J., Wang, C. & Gao, X. Phytoliths in inflorescence bracts: preliminary results of an investigation on common Panicoideae plants in China. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01736 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Huan, X. et al. Bulliform phytolith research in wild and domesticated rice paddy soil in South China. PLoS ONE 10, e0141255 (2015).
    Article  Google Scholar 

    24.
    Prebble, M. & Shulmeister, J. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand II. Paleoenvironmental reconstruction. J. Paleolimnol. 27, 415–427. https://doi.org/10.1023/a:1020314719427 (2002).
    ADS  Article  Google Scholar 

    25.
    Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quatern. Sci. Rev. 26, 759–772. https://doi.org/10.1016/j.quascirev.2006.10.006 (2007).
    ADS  Article  Google Scholar 

    26.
    Carter, J. A. & Lian, O. B. Palaeoenvironmental reconstruction from last interglacial using phytolith analysis, southeastern North Island New Zealand. J. Quatern. Sci. 15, 733–743. https://doi.org/10.1002/1099-1417(200010)15:7%3c733::Aid-Jqs532%3e3.0.Co;2-J (2000).
    ADS  Article  Google Scholar 

    27.
    Novello, A. et al. Phytoliths indicate significant arboreal cover at Sahelanthropus type locality TM266 in northern Chad and a decrease in later sites. J. Hum. Evol. 106, 66–83. https://doi.org/10.1016/j.jhevol.2017.01.009 (2017).
    Article  PubMed  Google Scholar 

    28.
    He, K. et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu culture in the lower Yangtze River, China. Quatern. Sci. Rev. 188, 90–103. https://doi.org/10.1016/j.quascirev.2018.03.034 (2018).
    ADS  Article  Google Scholar 

    29.
    Deng, Z. et al. The first discovery of Neolithic rice remains in eastern Taiwan: phytolith evidence from the Chaolaiqiao site. Archaeol. Anthrop. Sci. 10, 1477–1484. https://doi.org/10.1007/s12520-017-0471-z (2018).
    Article  Google Scholar 

    30.
    Piperno, D. R. The origins of plant cultivation and domestication in the New World tropics. Curr. Anthropol. 52, S453–S470 (2011).
    Article  Google Scholar 

    31.
    Yang, X. et al. Barnyard grasses were processed with rice around 10000 years ago. Sci. Rep. Uk 5, 16251. https://doi.org/10.1038/srep16251 (2015).
    ADS  CAS  Article  Google Scholar 

    32.
    Lu, H. et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. U.S.A. 106, 7367–7372. https://doi.org/10.1073/pnas.0900158106 (2009).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Stromberg, C. Phytoliths in Paleoecology (Springer, Berlin, 2018).
    Google Scholar 

    34.
    Stromberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J. & Carlini, A. A. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat. Commun. 4, 1–8. https://doi.org/10.1038/Ncomms2508 (2013).
    Article  Google Scholar 

    35.
    Nurse, A. M., Reavie, E. D., Ladwig, J. L. & Yost, C. L. Pollen and phytolith paleoecology in the St. Louis River Estuary, Minnesota, USA, with special consideration of Zizania palustris L. Rev. Palaeobot. Palyno 246, 216–231. https://doi.org/10.1016/j.revpalbo.2017.07.003 (2017).
    Article  Google Scholar 

    36.
    Liu, H., Gu, Y., Lun, Z., Qin, Y. & Cheng, S. Phytolith-inferred transfer function for paleohydrological reconstruction of Dajiuhu peatland, central China. Holocene 28, 1623–1630. https://doi.org/10.1177/0959683618782590 (2018).
    ADS  Article  Google Scholar 

    37.
    Li, D. et al. Holocene climate reconstruction based on herbaceous phytolith indices from an AMS 14 C-dated peat profile in the Changbai Mountains, northeast China. Quatern. Int. 447, 144–157 (2017).
    Article  Google Scholar 

    38.
    Zuo, X. et al. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc. Natl. Acad. Sci. 114, 6486–6491. https://doi.org/10.1073/pnas.1704304114 (2017).
    CAS  Article  PubMed  Google Scholar 

    39.
    Luo, W. et al. Evidence for crop structure from phytoliths at the Dongzhao site on the Central Plains of China from Xinzhai to Erligang periods. J. Archaeol. Sci. Rep. 17, 852–859. https://doi.org/10.1016/j.jasrep.2017.12.018 (2018).
    Article  Google Scholar 

    40.
    Deng, Z., Hung, H.-C., Fan, X., Huang, Y. & Lu, H. The ancient dispersal of millets in southern China: New archaeological evidence. Holocene 28, 34–43 (2017).
    ADS  Article  Google Scholar 

    41.
    Piperno, D. R., Holst, I., Moreno, J. E. & Winter, K. Experimenting with domestication: understanding macro- and micro-phenotypes and developmental plasticity in teosinte in its ancestral pleistocene and early holocene environments. J. Archaeol. Sci. 108, 104970. https://doi.org/10.1016/j.jas.2019.05.006 (2019).
    Article  Google Scholar 

    42.
    Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J. & Dickau, R. Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. U.S.A. 106, 5019–5024. https://doi.org/10.1073/pnas.0812525106 (2009).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Wang, J. et al. Revealing a 5,000-y-old beer recipe in China. Proc. Natl. Acad. Sci. 113, 6444–6448. https://doi.org/10.1073/pnas.1601465113 (2016).
    CAS  Article  PubMed  Google Scholar 

    44.
    Hilbert, L. et al. Evidence for mid-Holocene rice domestication in the Americas. Nat. Ecol. Evol. 1, 1693–1698. https://doi.org/10.1038/s41559-017-0322-4 (2017).
    Article  PubMed  Google Scholar 

    45.
    Kondo, R., Childs, C. & Atkinson, I. Opal Phytoliths of New Zealand Vol. 85 (Manaaki Whenua Press, Lincoln, 1994).
    Google Scholar 

    46.
    Geis, J. W. Biogenic silica in selected species of deciduous angiosperms. Soil Sci. 116, 113. https://doi.org/10.1097/00010694-197308000-00008 (1973).
    ADS  Article  Google Scholar 

    47.
    Kondo, R. & Peason, T. Opal phytoliths in tree leaves: 2. Opal phytoliths in dicotyledonous angiosperm tree leaves (in Japanese). Res. Bull. Obihiro Univ. Ser. I(12), 217–229 (1981).
    Google Scholar 

    48.
    Kealhofer, L. & Piperno, D. R. Opal phytoliths in Southeast Asian Flora (Smithsonian Institution Press, Washington, 1998).
    Google Scholar 

    49.
    Morris, L. R., Baker, F. A., Morris, C. & Ryel, R. J. Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and pinyon-juniper woodlands of the Great Basin, USA. Rev. Palaeobot. Palyno 157, 339–357. https://doi.org/10.1016/j.revpalbo.2009.06.007 (2009).
    Article  Google Scholar 

    50.
    Lisztes-Szabó, Z., Braun, M., Csík, A. & Pető, Á. Phytoliths of six woody species important in the Carpathians: characteristic phytoliths in Norway spruce needles. Veg. Hist. Archaeobot. https://doi.org/10.1007/s00334-019-00720-x (2019).
    Article  Google Scholar 

    51.
    Carnelli, A. L., Theurillat, J. P. & Madella, A. Phytolith types and type-frequencies in subalpine-alpine plant species of the European Alps. Rev. Palaeobot. Palyno 129, 39–65. https://doi.org/10.1016/j.revpalbo.2003.11.002 (2004).
    Article  Google Scholar 

    52.
    Runge, F. The opal phytolith inventory of soils in central Africa—quantities, shapes, classification, and spectra. Rev. Palaeobot. Palyno 107, 23–53. https://doi.org/10.1016/S0034-6667(99)00018-4 (1999).
    Article  Google Scholar 

    53.
    Mercader, J., Bennett, T., Esselmont, C., Simpson, S. & Walde, D. Soil phytoliths from miombo woodlands in Mozambique. Quatern. Res. 75, 138–150. https://doi.org/10.1016/j.yqres.2010.09.008 (2011).
    ADS  Article  Google Scholar 

    54.
    Kondo, R. Phytoliths Images by Scanning Electron Microscope—An Introduction to Phytoliths (in Japanese) (Hokkaido University Press, Hokkaido, 2010).
    Google Scholar 

    55.
    Ge, Y., Jie, D. M., Sun, Y. L. & Liu, H. M. Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implication. Plant Syst. Evol. 292, 55–62. https://doi.org/10.1007/s00606-010-0406-y (2011).
    CAS  Article  Google Scholar 

    56.
    Gao, G. et al. Phytolith characteristics and preservation in trees from coniferous and broad-leaved mixed forest in an eastern mountainous area of Northeast China. Rev. Palaeobot. Palyno 255, 43–56 (2018).
    Article  Google Scholar 

    57.
    Bremond, L., Alexandre, A., Hely, C. & Guiot, J. A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest-savanna transect in southeastern Cameroon. Global Planet Change 45, 277–293. https://doi.org/10.1016/j.gloplacha.2004.09.002 (2005).
    ADS  Article  Google Scholar 

    58.
    Esteban, I. et al. Phytoliths in plants from the south coast of the Greater Cape Floristic Region (South Africa). Rev. Palaeobot. Palyno https://doi.org/10.1016/j.revpalbo.2017.05.001 (2017).
    Article  Google Scholar 

    59.
    Scurfield, G., Anderson, C. A. & Segnit, E. R. Silica in woody stems. Aust. J. Bot. 22, 211–229. https://doi.org/10.1071/Bt9740211 (1974).
    CAS  Article  Google Scholar 

    60.
    Collura, L. V. & Neumann, K. Wood and bark phytoliths of West African woody plants. Quatern. Int. https://doi.org/10.1016/j.quaint.2015.12.070 (2016).
    Article  Google Scholar 

    61.
    Lu, H. Y. & Liu, K. B. Phytoliths of common grasses in the coastal environments of southeastern USA. Estuar. Coast Shelf Sci. 58, 587–600. https://doi.org/10.1016/S0272-7714(03)00137-9 (2003).
    ADS  Article  Google Scholar 

    62.
    Neumann, K. et al. International Code for Phytolith Nomenclature (ICPN) 2.0. Ann. Bot. Lond. 124, 189–199. https://doi.org/10.1093/aob/mcz064 (2019).
    Article  Google Scholar 

    63.
    Juggins, S. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation (Newcastle University, Newcastle, 2007).
    Google Scholar 

    64.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).
    Google Scholar 

    65.
    Biswas, O., Mukherjee, B., Mukherjee, M. & Bera, S. Phytolith spectra in some selected fern-allies of eastern Himalaya. J. Bot. Soc. Bengal 1, 35–39 (2015).
    Google Scholar 

    66.
    Piperno, D. R., Holst, I., Wessel-Beaver, L. & Andres, T. C. Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc. Natl. Acad. Sci. U.S.A. 99, 10923–10928. https://doi.org/10.1073/pnas.152275499 (2002).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Unsustainable charcoal, COVID spreads on plane and antibody cocktails

    NEWS ROUND-UP
    23 September 2020

    The latest science news, in brief.

    Most charcoal sold in Europe is used for barbecues — but its provenance is not always clear.Credit: Getty

    Unsustainable charcoal
    Nearly half of charcoal bought in Europe contains wood from tropical and subtropical forests, with little of it certified as sustainable, raising fears that some is illegally logged.
    “This is just an overview but it’s absolutely enough to cause alarm,” says study leader Volker Haag, a wood anatomist at the Thünen Institute of Wood Research in Hamburg, Germany (V. Haag et al. IAWA J. https://doi.org/d9n8; 2020).
    Haag’s team used a microscopy technique that digitally reconstructs sections of charcoal from irregular lumps to create images from which the wood can be identified. They analysed 4,500 samples from 150 charcoal bags bought in 11 countries. Some 46% included wood from subtropical and tropical forests, which have high rates of deforestation. Of these, only one-quarter of bags bore the logos of sustainable-certification organizations. In addition, only one-quarter of the bags specified the species or origin of the wood — and only half of these were correct. A wrongly labelled product is a strong indicator of illegality, says co-author Johannes Zahnen, a forest-policy specialist at WWF Germany in Berlin.

    Source: V. Haag et al. IAWA J. https://doi.org/10.1163/22941932-bja10017 (2020).

    Genomes show coronavirus spread on flight
    Genetic evidence strongly suggests that at least one member of a married couple flying from the United States to Hong Kong infected two flight attendants during the trip.
    Researchers led by Leo Poon at the University of Hong Kong and Deborah Watson-Jones at the London School of Hygiene & Tropical Medicine studied four people on the early-March flight (E. M. Choi et al. Emerg. Infect. Dis. https://doi.org/d9jn; 2020). Two were a husband and wife travelling in business class. The others were crew members: one in business class and one whose cabin assignment is unknown. The passengers had travelled in Canada and the United States before the flight and tested positive for the new coronavirus soon after arriving in Hong Kong. The flight attendants tested positive shortly thereafter.
    The team found that the viral genomes of all four were identical and that their virus was a close genetic relative of some North American SARS‑CoV-2 samples — but not of the SARS‑CoV-2 prevalent in Hong Kong. This suggests that one or both of the passengers transmitted the virus to the crew members during the flight, the authors say. The authors add that no previous reports of in-flight spread have been supported by genetic evidence.

    Blood plasma donated by people who have recovered from COVID-19 contains antibodies that could help to treat the disease.Credit: Ben Stansall/AFP via Getty

    A guide to making ‘cocktails’ to treat COVID-19
    A new method pinpoints every mutation that a crucial SARS‑CoV-2 protein could use to evade an attacking antibody. The results could inform the development of antibody treatments for COVID-19.
    The immune system produces molecules called antibodies to fend off invaders. Antibodies that bind to an important region of the SARS-CoV-2 spike protein can inactivate the viral particles, making such antibodies attractive as therapies. But over time, viruses can accumulate mutations — and some can interfere with antibody binding and allow viral particles to ‘escape’ immune forces.
    James Crowe at the Vanderbilt University Medical Center in Nashville, Tennessee, Jesse Bloom at the Fred Hutchinson Cancer Center in Seattle, Washington, and their colleagues created the most detailed map so far of the spike-protein mutations that could prevent binding by ten human antibodies (A. J. Greaney et al. Preprint at bioRxiv https://doi.org/d8zm; 2020). The team then used that information to design three antibody cocktails, each consisting of two antibodies.
    In laboratory tests of the cocktails against SARS-CoV-2, the virus did not develop mutations that could escape antibody binding. The findings have not yet been peer reviewed.

    Nature 585, 487 (2020)
    doi: 10.1038/d41586-020-02696-5

    Latest on:

    Microscopy

    SARS-CoV-2

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday. More

  • in

    Successful breeding predicts divorce in plovers

    1.
    Halimubieke, N. et al. Mate fidelity in a polygamous shorebird, the snowy plover (Charadrius nivosus). Ecol. Evol. 9, 10734–10745. https://doi.org/10.1002/ece3.5591 (2019).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Reynolds, J. D. Animal breeding systems. Trends Ecol. Evol. 11, 68–72. https://doi.org/10.1016/0169-5347(96)81045-7 (1996).
    CAS  Article  PubMed  Google Scholar 

    3.
    Neff, B. D. & Pitcher, T. E. Genetic quality and sexual selection: An integrated framework for good genes and compatible genes. Mol. Ecol. 14, 19–38. https://doi.org/10.1111/j.1365-294X.2004.02395.x (2005).
    CAS  Article  PubMed  Google Scholar 

    4.
    Székely, T., Thomas, G. H. & Cuthill, I. C. Sexual conflict, ecology, and breeding systems in shorebirds. Bioscience 56, 801–808. https://doi.org/10.1641/0006-3568(2006)56[801:SCEABS]2.0.CO;2 (2006).
    Article  Google Scholar 

    5.
    Culina, A., Radersma, R. & Sheldon, B. C. Trading up: The fitness consequences of divorce in monogamous birds. Biol. Rev. Camb. Philos. Soc. 90, 1015–1034. https://doi.org/10.1111/brv.12143 (2014).
    Article  PubMed  Google Scholar 

    6.
    Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512. https://doi.org/10.1111/jeb.12415 (2014).
    Article  PubMed  Google Scholar 

    7.
    Culina, A., Lachish, S., Pradel, R., Choquet, R. & Sheldon, B. C. A multievent approach to estimating pair fidelity and heterogeneity in state transitions. Ecol. Evol. 3, 4326–4338. https://doi.org/10.1002/ece3.729 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Møller, A. P. The evolution of monogamy: Mating relationships, parental care and sexual selection. In Monogamy Mating Strategies and Partnerships in Birds, Humans and Other Mammals (eds Reichard, U. H. & Boesch, C.) 29–41 (Cambridge University Press, Cambridge, 2003).
    Google Scholar 

    9.
    Lukas, D. & Clutton-Brock, T. H. The evolution of social monogamy in mammals. Science 314, 526–530. https://doi.org/10.1126/science.1238677 (2013).
    CAS  Article  ADS  Google Scholar 

    10.
    Black, J. M. Partnerships in birds (Oxford University Press, Oxford, 1996).
    Google Scholar 

    11.
    Black, J. M. Fitness consequences of long-term pair bonds in barnacle geese: Monogamy in the extreme. Behav. Ecol. 12, 640–645. https://doi.org/10.1093/beheco/12.5.640 (2001).
    Article  Google Scholar 

    12.
    Reichard, U. H. & Boesch, C. Monogamy: Mating Strategies and Partnerships in Birds, Humans and Other Mammals (Cambridge University Press, Cambridge, 2003).
    Google Scholar 

    13.
    Sánchez-Macouzet, O., Rodríguez, C. & Drummond, H. Better stay together: Pair bond duration increases individual fitness independent of age-related variation. Proc. R. Soc. B Biol. Sci. 281, 20132843. https://doi.org/10.1098/rspb.2013.2843 (2014).
    Article  Google Scholar 

    14.
    Botero, C. A. & Rubenstein, D. R. Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds. PLoS ONE 7, e32311. https://doi.org/10.1371/journal.pone.0032311 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    15.
    Blomqvist, D., Wallander, J. & Andersson, M. Successive clutches and parental roles in waders: The importance of timing in multiple clutch systems. Biol. J. Linn. Soc. 74, 549–555. https://doi.org/10.1111/j.1095-8312.2001.tb01412.x (2001).
    Article  Google Scholar 

    16.
    Eberhart-Phillips, L. J. Plover breeding systems: Diversity and evolutionary origins. In The Population Ecology and Conservation of Charadrius Plovers (eds Colwell, M. A. & Haig, S. M.) 65–88 (CRC Press, Boca Raton, 2019).
    Google Scholar 

    17.
    Green, G. H., Greenwood, J. J. D. & Lloyd, C. S. The influence of snow conditions on the date of breeding of wading birds in north-east Greenland. J. Zool. 183, 311–328. https://doi.org/10.1111/j.1469-7998.1977.tb04190.x (1977).
    Article  Google Scholar 

    18.
    Saalfeld, S. T. & Lanctot, R. B. Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk 132, 212–234. https://doi.org/10.1642/AUK-13-193.1 (2015).
    Article  Google Scholar 

    19.
    Székely, T., Cuthill, I. C. & Kis, J. Brood desertion in Kentish plover sex differences in remating opportunities. Behav. Ecol. 10, 185–190. https://doi.org/10.1093/beheco/10.2.185 (1999).
    Article  Google Scholar 

    20.
    Yasué, M. & Dearden, P. Replacement nesting and double-brooding in Malaysian plovers Charadrius peronii: Effects of season and food availability. Ardea 96, 59–72. https://doi.org/10.5253/078.096.0107 (2008).
    Article  Google Scholar 

    21.
    Gilburn, A. S. & Day, T. H. Evolution of female choice in seaweed flies: Fisherian and good genes mechanisms operate in different populations. Proc. R. Soc. B Biol. Sci. 255, 159–165. https://doi.org/10.1098/rspb.1994.0023 (1994).
    Article  ADS  Google Scholar 

    22.
    Candolin, U., Salesto, T. & Evers, M. Changed environmental conditions weaken sexual selection in sticklebacks. J. Evol. Biol. 20, 233–239. https://doi.org/10.1111/j.1420-9101.2006.01207.x (2007).
    CAS  Article  PubMed  Google Scholar 

    23.
    Welch, A. M. Genetic benefits of a female mating preference in gray tree frogs are context-dependent. Evolution 57, 883–893. https://doi.org/10.1111/j.0014-3820.2003.tb00299.x (2003).
    Article  PubMed  Google Scholar 

    24.
    Lode, T., Holveck, M. J., Lesbarreres, D. & Pagano, A. Sex-biased predation by polecats influences the mating system of frogs. Proc. R. Soc. B Biol. Sci. 271, 399–401. https://doi.org/10.1098/rsbl.2004.0195 (2004).
    Article  Google Scholar 

    25.
    Liker, A., Freckleton, R. P. & Székely, T. Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr. Biol. 24, 880–884. https://doi.org/10.1016/j.cub.2014.02.059 (2014).
    CAS  Article  PubMed  Google Scholar 

    26.
    Parra, J. E., Beltrán, M., Zefania, S., dos Remedios, N. & Székely, T. Experimental assessment of mating opportunities in three shorebird species. Anim. Behav. 90, 83–90. https://doi.org/10.1016/j.anbehav.2013.12.030 (2014).
    Article  Google Scholar 

    27.
    Jeschke, J. M. & Kokko, H. Mortality and other determinants of bird divorce rate. Behav. Ecol. Sociobiol. 63, 1–9. https://doi.org/10.1007/s00265-008-0646-9 (2008).
    Article  Google Scholar 

    28.
    Bried, J., Pontier, D. & Jouventin, P. Mate fidelity in monogamous birds: A re-examination of the Procellariiformes. Anim. Behav. 65, 235–246. https://doi.org/10.1006/anbe.2002.2045 (2003).
    Article  Google Scholar 

    29.
    Andersson, M. Sexual selection (Princeton University Press, Princeton, 1994).
    Google Scholar 

    30.
    Choudhury, S. Divorce in birds: A review of the hypotheses. Anim. Behav. 50, 413–429. https://doi.org/10.1006/anbe.1995.0256 (1995).
    Article  Google Scholar 

    31.
    Wheelwright, N. T. & Teplitsky, C. Divorce in Savannah sparrows: Causes, consequences and lack of inheritance. Am. Nat. 190, 557–569. https://doi.org/10.1086/693387 (2017).
    Article  PubMed  Google Scholar 

    32.
    Adkins-Regan, E. & Tomaszycki, M. Monogamy on the fast track. Biol. Lett. 3, 617–619. https://doi.org/10.1098/rsbl.2007.0388 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Perfito, N., Zann, R. A., Bentley, G. E. & Hau, M. Opportunism at work: Habitat predictability affects reproductive readiness in free-living zebra finches. Funct. Ecol. 21, 291–301. https://doi.org/10.1111/j.1365-2435.2006.01237.x (2007).
    Article  Google Scholar 

    34.
    Ens, B. J., Choudhury, S. & Black, J. M. Mate fidelity and divorce in monogamous birds. In Partnerships in Birds: The Study of Monogamy (ed. Black, J. M.) 344–401 (Oxford University Press, Oxford, 1996).
    Google Scholar 

    35.
    Gabriel, P. O., Black, J. M. & Foster, S. Correlates and consequences of the pair bond in Steller’s Jays. Ethology 119, 178–187. https://doi.org/10.1111/eth.12051 (2013).
    Article  Google Scholar 

    36.
    Coulson, J. C. The influence of the pair-bond and age on the breeding biology of the kittiwake gull Rissa tridactyla. J. Anim. Ecol. 35, 269–279. https://doi.org/10.2307/2394 (1966).
    Article  Google Scholar 

    37.
    Kempenaers, B., Adriaensen, F. & Dhondt, A. A. Inbreeding and divorce in blue and great tits. Anim. Behav. 56, 737–740. https://doi.org/10.1006/anbe.1998.0800 (1998).
    CAS  Article  PubMed  Google Scholar 

    38.
    Pyle, P., Sydeman, W. J. & Hester, M. Effects of age, breeding experience, mate fidelity and site fidelity on breeding performance in declining populations of Cassin’s auklets. J. Anim. Ecol. 70, 1088–1097. https://doi.org/10.1046/j.0021-8790.2001.00567.x (2001).
    Article  Google Scholar 

    39.
    Flodin, L. A. & Blomqvist, D. Divorce and breeding dispersal in the dunlin Calidris alpina: Support for the better option hypothesis?. Behaviour 149, 67–80. https://doi.org/10.1163/156853912X626295 (2012).
    Article  Google Scholar 

    40.
    Arnqvist, G. & Nilsson, T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 60, 145–164. https://doi.org/10.1006/anbe.2000.1446 (2000).
    CAS  Article  PubMed  Google Scholar 

    41.
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162. https://doi.org/10.1016/S0003-3472(80)80103-5 (1980).
    Article  Google Scholar 

    42.
    Clobert, J., Danchin, E., Dhondt, A. & Nichols, J. D. Dispersal (Oxford University Press, Oxford, 2001).
    Google Scholar 

    43.
    Trochet, A. et al. Evolution of sex-biased dispersal. Q. Rev. Biol. 91, 297–320. https://doi.org/10.1086/688097 (2016).
    Article  PubMed  Google Scholar 

    44.
    D’Urban Jackson, J. et al. Polygamy slows down population divergence in shorebirds. Evolution 71, 1313–1326. https://doi.org/10.1111/evo.13212 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Székely, T. Why study plovers? The significance of non-model organisms in avian ecology, behaviour and evolution. J. Ornithol. 160, 923–933. https://doi.org/10.1007/s10336-019-01669-4 (2019).
    Article  Google Scholar 

    46.
    Morse, D. H. & Kress, S. W. The effect of burrow loss on mate choice in the Leach’s Storm-Petrel. Auk 101, 158–160 (1984).
    Article  Google Scholar 

    47.
    Pietz, P. J. & Parmelee, D. F. Survival, site and mate fidelity in south polar skuas Catharacta maccormicki at Anvers Island, Antarctica. Ibis 136, 32–38. https://doi.org/10.1111/j.1474-919X.1994.tb08128.x (2014).
    Article  Google Scholar 

    48.
    Thibault, J.-C. Nest-site tenacity and mate fidelity in relation to breeding success in Cory’s Shearwater Calonectris diomedea. Bird Study 41, 25–28. https://doi.org/10.1080/00063659409477193 (1994).
    Article  Google Scholar 

    49.
    Dubois, F. & Cézilly, F. Breeding success and mate retention in birds: A meta-analysis. Behav. Ecol. Sociobiol. 52, 357–364. https://doi.org/10.1007/s00265-002-0521-z (2002).
    Article  Google Scholar 

    50.
    Kosztolányi, A., Székely, T., Cuthill, I. C., Yilmaz, K. T. & Berberoǧlu, S. Ecological constraints on breeding system evolution: The influence of habitat on brood desertion in Kentish plover. J. Anim. Ecol. 75, 257–265. https://doi.org/10.1111/j.1365-2656.2006.01049.x (2006).
    Article  PubMed  Google Scholar 

    51.
    del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2018). (retrieved from https://www.hbw.com/ on 30 October 2019).

    52.
    Maher, K. H. et al. High fidelity: Extra-pair fertilisations in eight Charadrius plover species are not associated with parental relatedness or social mating system. J. Avian. Biol. 48, 910–920. https://doi.org/10.1111/jav.01263 (2017).
    Article  Google Scholar 

    53.
    Székely, T., Freckleton, R. P. & Reynolds, J. D. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl. Acad. Sci. USA 101, 12224–12227. https://doi.org/10.1073/pnas.0404503101 (2004).
    Article  PubMed  ADS  Google Scholar 

    54.
    Székely, T., Lislevand, T. & Figuerola, J. Sexual size dimorphism in birds. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) (Oxford University Press, Oxford, 2007). https://doi.org/10.1093/acprof:oso/9780199208784.003.0004
    Google Scholar 

    55.
    Lessells, C. M. The mating system of Kentish plovers Charadrius alexandrinus. Ibis 126, 474–483. https://doi.org/10.1111/j.1474-919X.1984.tb02074.x (1984).
    Article  Google Scholar 

    56.
    Székely, T. & Lessells, C. M. Mate change by Kentish plovers Charadrius alexandrinus. Ornis. Scand. 24, 317–322 (1993).
    Article  Google Scholar 

    57.
    Amat, J. A., Fraga, R. M. & Arroyo, G. M. Brood desertion and polygamous breeding in the Kentish plover Charadrius alexandrinus. Ibis 141, 596–607. https://doi.org/10.1111/j.1474-919X.1999.tb07367.x (1999).
    Article  Google Scholar 

    58.
    Carmona-Isunza, M. C., Küpper, C., Serrano-Meneses, M. A. & Székely, T. Courtship behavior differs between monogamous and polygamous plovers. Behav. Ecol. Sociobiol. 69, 2035–2042. https://doi.org/10.1007/s00265-015-2014-x (2015).
    Article  Google Scholar 

    59.
    Warriner, J. S., Warriner, J. C., Page, G. W. & Stenzel, L. E. Mating system and reproductive success of a small population of polygamous snowy plover. Wilson Bull. 98, 15–37 (1986).
    Google Scholar 

    60.
    Eberhart-Phillips, L. J. et al. Demographic causes of adult sex ratio variation and their consequences for parental cooperation. Nat. Commun. 9, 1651. https://doi.org/10.1038/s41467-018-03833-5 (2018).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    61.
    Kappeler, P. M. & van Schaik, C. P. Evolution of primate social systems. Int. J. Primatol. 23, 707–740. https://doi.org/10.1023/A:1015520830318 (2002).
    Article  Google Scholar 

    62.
    Avise, J. C. et al. Genetic mating systems and reproductive natural histories of fishes: Lessons for ecology and evolution. Annu. Rev. Genet. 36, 19–45. https://doi.org/10.1146/annurev.genet.36.030602.090831 (2002).
    CAS  Article  PubMed  Google Scholar 

    63.
    Bowyer, R. T., McCullough, D. R., Rachlow, J. L., Ciuti, S. & Whiting, J. C. Evolution of ungulate mating systems: Integrating social and environmental factors. Ecol. Evol. 10, 5160–5178. https://doi.org/10.1002/ece3.62 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Johnson, M. & Walters, J. R. Effects of mate and site fidelity on nest survival of western sandpipers (Calidris mauri). Auk 125, 76–86. https://doi.org/10.1525/auk.2008.125.1.76 (2008).
    Article  Google Scholar 

    65.
    Brandt, E. E., Kelley, J. P. & Elias, D. O. Temperature alters multimodal signaling and mating success in an ectotherm. Behav. Ecol. Sociobiol. 72, 191. https://doi.org/10.1007/s00265-018-2620-5 (2018).
    Article  Google Scholar 

    66.
    Conrad, T., Stöcker, C. & Ayasse, M. The effect of temperature on male mating signals and female choice in the red mason bee, Osmia bicornis (L.). Ecol. Evol. 7, 8966–8975. https://doi.org/10.1002/ece3.3331 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Silva, K., Vieira, M. N., Almada, V. C. & Monteiro, N. M. The effect of temperature on mate preferences and female–female interactions in Syngnathus abaster. Anim. Behav. 74, 1525–1533. https://doi.org/10.1016/j.anbehav.2007.03.008 (2007).
    Article  Google Scholar 

    68.
    Twiss, S. D., Thomas, C., Poland, V., Graves, J. A. & Pomeroy, P. The impact of climatic variation on the opportunity for sexual selection. Biol. Lett. 3, 12–15. https://doi.org/10.1098/rsbl.2006.0559 (2007).
    Article  PubMed  Google Scholar 

    69.
    Olsson, M. et al. In hot pursuit: Fluctuating mating system and sexual selection in sand lizards. Evolution 65, 574–583. https://doi.org/10.1111/j.1558-5646.2010.01152.x (2011).
    Article  PubMed  Google Scholar 

    70.
    Suzaki, Y. et al. Temperature variations affect postcopulatory but not precopulatory sexual selection in the cigarette beetle. Anim. Behav. 144, 115–123. https://doi.org/10.1016/j.anbehav.2018.08.010 (2018).
    Article  Google Scholar 

    71.
    Eberhart-Phillips, L. J. et al. Sex-specific early survival drives adult sex ratio bias in snowy plovers and impacts mating system and population growth. Proc. Natl. Acad. Sci. USA 114, E5474–E5481. https://doi.org/10.1073/pnas.1620043114 (2017).
    CAS  Article  PubMed  Google Scholar 

    72.
    Liker, A., Freckleton, R. P. F. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1587 (2013).
    Article  ADS  Google Scholar 

    73.
    Kosztolányi, A., Barta, Z., Küpper, C. & Székely, T. Persistence of an extreme male-biased adult sex ratio in a natural population of polyandrous bird. J. Evol. Biol. 24, 1842–1846. https://doi.org/10.1111/j.1420-9101.2011.02305.x (2011).
    Article  PubMed  Google Scholar 

    74.
    Handel, C. M. & Gill, R. E. Mate fidelity and breeding site tenacity in a monogamous sandpiper, the black turnstone. Anim. Behav. 60, 471–481. https://doi.org/10.1006/anbe.2000.1505 (2000).
    CAS  Article  PubMed  Google Scholar 

    75.
    Cruz-López, M. et al. The plight of a plover: Viability of an important snowy plover population with flexible brood care in Mexico. Biol. Conserv. 209, 440–448. https://doi.org/10.1016/j.biocon.2017.03.009 (2017).
    Article  Google Scholar 

    76.
    Székely, T., Webb, J. N., Houston, A. I. & McNamara, J. M. An evolutionary approach to offspring desertion in birds. In Current Ornithology (eds Nolan, V. & Ketterson, E. D.) 271–330 (Springer, Berlin, 1996).
    Google Scholar 

    77.
    McNamara, J. M., Forslund, P. & Lang, A. An ESS model for divorce strategies in birds. Philos. Trans. R. Soc. B 354, 223–236. https://doi.org/10.1098/rstb.1999.0374 (1999).
    Article  Google Scholar 

    78.
    Houston, A. I., Székely, T. & McNamara, J. M. The parental investment models of Maynard Smith: A retrospective and prospective view. Anim. Behav. 86, 667–674. https://doi.org/10.1016/j.anbehav.2013.08.001 (2013).
    Article  Google Scholar 

    79.
    Zann, R. A. Reproduction in a zebra finch colony in south-eastern Australia: The significance of monogamy, precocial breeding and multiple broods in a highly mobile species. Emu 94, 285–299. https://doi.org/10.1071/MU9940285 (1994).
    Article  Google Scholar 

    80.
    Fowler, G. S. Stages of age-related reproductive success in birds: Simultaneous effects of age, pair-bond duration and reproductive experience. Am. Zool. 35, 318–328. https://doi.org/10.1093/icb/35.4.318 (1995).
    Article  Google Scholar 

    81.
    Champion de Crespigny, F. E., Hurst, L. D. & Wedell, N. Do Wolbachia-associated incompatibilities promote polyandry?. Evolution 62, 107–122. https://doi.org/10.1111/j.1558-5646.2007.00274.x (2007).
    Article  PubMed  Google Scholar 

    82.
    Schwensow, N., Eberle, M. & Sommer, S. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc. R. Soc. B Biol. Sci. 275, 555–564. https://doi.org/10.1098/rspb.2007.1433 (2008).
    Article  Google Scholar 

    83.
    Fraga, R. M. & Amat, J. A. Breeding biology of a Kentish plover (Charadrius alexandrinus) population in an inland saline lake. Ardeola 43, 69–85 (1996).
    Google Scholar 

    84.
    Ferreira-Rodríguez, N. & Pombal, M. A. Predation pressure on the hatching of the Kentish plover (Charadrius alexandrinus) in clutch protection projects: A case study in north Portugal. Wildl. Res. 45, 55–63. https://doi.org/10.1071/WR17122 (2018).
    Article  Google Scholar 

    85.
    Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683. https://doi.org/10.1126/science.aat8695 (2018).
    CAS  Article  PubMed  ADS  Google Scholar 

    86.
    Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Evol. Syst. 13, 1–21. https://doi.org/10.1146/annurev.es.13.110182.000245 (1982).
    Article  Google Scholar 

    87.
    Sandercock, B. K., Lank, D. B., Lanctot, R. B., Kempenaers, B. & Cooke, F. Ecological correlates of mate fidelity in two Arctic-breeding sandpipers. Can. J. Zool. 78, 1948–1958. https://doi.org/10.1139/z00-146 (2000).
    Article  Google Scholar 

    88.
    Liu, Y. & Zhang, Z. Research progress in avian dispersal behavior. Front. Biol. 3, 375. https://doi.org/10.1007/s11515-008-0066-2 (2008).
    Article  Google Scholar 

    89.
    Végvári, Z. et al. Sex-biased breeding dispersal is predicted by social environment in birds. Ecol. Evol. 8, 6483–6491. https://doi.org/10.1002/ece3.4095 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    90.
    Pearson, W. J. & Colwell, M. A. Effects of nest success and mate fidelity on breeding dispersal in a population of snowy plovers Charadrius nivosus. Bird Conserv. Int. 24, 342–353. https://doi.org/10.1017/S0959270913000403 (2013).
    Article  Google Scholar 

    91.
    Lloyd, P. Adult survival, dispersal and mate fidelity in the white-fronted plover Charadrius marginatus. Ibis 150, 182–187. https://doi.org/10.1111/j.1474-919X.2007.00739.x (2008).
    Article  Google Scholar 

    92.
    McNamara, J. M. & Forslund, P. Divorce rates in birds: Predictions from an optimization model. Am. Nat. 147, 609–640 (1996).
    Article  Google Scholar 

    93.
    Székely, T., Kosztolányi, A. & Küpper, C. Practical guide for investigating breeding ecology of Kentish plover Charadrius alexandrinus. https://www.pennuti.net/wp-content/uploads/2010/08/KP_Field_Guide_v3.pdf (University of Bath, 2008).

    94.
    Chamberlain, S. et al. rnoaa: “NOAA” Weather data from R. R package version 0.7. 0. 2017. https://cran.r-project. org/web/packages/rnoaa/ (2017).

    95.
    Sparks, A. H., Hengl, T. & Nelson, A. GSODR: Global summary daily weather 800 data in R. J. Open Source Softw. https://doi.org/10.21105/joss.00177 (2017).
    Article  Google Scholar 

    96.
    Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, Boca Raton, 2008).
    Google Scholar 

    97.
    Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 25. https://doi.org/10.18637/jss.v040.i03 (2011).
    Article  Google Scholar 

    98.
    Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34, 216–221. https://doi.org/10.1080/00031305.1980.10483031 (1980).
    MathSciNet  Article  MATH  Google Scholar 

    99.
    Vincze, O. et al. Parental cooperation in a changing climate: Fluctuating environments predict shifts in care division. Global Ecol. Biogeogr. 26, 347–358. https://doi.org/10.1111/geb.12540 (2017).
    Article  Google Scholar 

    100.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22. https://doi.org/10.18637/jss.v033.i02 (2010).
    Article  Google Scholar 

    101.
    R Core Team. R: A language and environment for statistical computing in R Foundation for Statistical Computing. https://www.R-project.org (2018). More