1.
Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).
CAS Google Scholar
2.
Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).
CAS Google Scholar
3.
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
Google Scholar
4.
Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).
Google Scholar
5.
Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039 (2018).
CAS Google Scholar
6.
Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019 (2016).
Google Scholar
7.
Jia, X., Shao, M. A., Zhu, Y. & Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 546, 113–122 (2017).
Google Scholar
8.
Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).
Google Scholar
9.
Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 11, 129 (2020).
CAS Google Scholar
10.
Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).
CAS Google Scholar
11.
Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).
Google Scholar
12.
Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).
CAS Google Scholar
13.
Branch, O. & Wulfmeyer, V. Deliberate enhancement of rainfall using desert plantations. Proc. Natl Acad. Sci. USA 116, 18841–18847 (2019).
CAS Google Scholar
14.
Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).
Google Scholar
15.
McDonnell, J. J. et al. Water sustainability and watershed storage. Nat. Sustain. 1, 378–379 (2018).
Google Scholar
16.
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
CAS Google Scholar
17.
Mirzabaev, A. et al. in IPCC Special Report on Climate Change and Land (eds Akhtar-Schuster, M., Driouech, F. & Sankaran, M.) Ch. 3 (IPCC, Cambridge Univ. Press, 2019).
18.
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
CAS Google Scholar
19.
Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080 (2018).
CAS Google Scholar
20.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE Measurements of Mass Variability in the Earth System. Science 305, 503–505 (2004).
CAS Google Scholar
21.
Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).
Google Scholar
22.
Tian, H. et al. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 82, 276–289 (2015).
Google Scholar
23.
Zhang, Z. & Huisingh, D. Combating desertification in China: monitoring, control, management and revegetation. J. Clean. Prod. 182, 765–775 (2018).
Google Scholar
24.
Huang, Y., Wang, N.-a, He, T., Chen, H. & Zhao, L. Historical desertification of the Mu Us Desert, Northern China: A multidisciplinary study. Geomorphology 110, 108–117 (2009).
Google Scholar
25.
Xu, D. Y., Kang, X. W., Zhuang, D. F. & Pan, J. J. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification–a case study of the Ordos Plateau, China. J. Arid Environ. 74, 498–507 (2010).
Google Scholar
26.
Yan, F., Wu, B. & Wang, Y. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 200, 119–128 (2015).
Google Scholar
27.
Li, S. et al. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 569–570, 1032–1039 (2016).
Google Scholar
28.
Xu, Z. et al. Recent greening (1981–2013) in the Mu Us dune field, north-central China, and its potential causes. Land Degrad. Dev. 29, 1509–1520 (2018).
Google Scholar
29.
Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).
Google Scholar
30.
Xu, Z., Mason, J. A. & Lu, H. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China. Geomorphology 228, 486–503 (2015).
Google Scholar
31.
Review of the Kubuqi Ecological Restoration Project: A Desert Green Economy Pilot Initiative (United Nations Environment Programme, 2015).
32.
Cheng, D.-h et al. Estimation of groundwater evaportranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China. J. Hydrol. 490, 106–113 (2013).
Google Scholar
33.
Yu, X., Huang, Y., Li, E., Li, X. & Guo, W. Effects of rainfall and vegetation to soil water input and output processes in the Mu Us Sandy Land, northwest China. CATENA 161, 96–103 (2018).
Google Scholar
34.
Li, Q. et al. Feasibility of the combination of CO2 Geological storage and saline water development in sedimentary basins of China. Energy Proc. 37, 4511–4517 (2013).
CAS Google Scholar
35.
Xie, X., Xu, C., Wen, Y. & Li, W. Monitoring groundwater storage changes in the Loess Plateau using GRACE satellite gravity data, hydrological models and coal mining data. Remote Sens. 10, 605 (2018).
Google Scholar
36.
Griffin-Nolan, R. J. et al. Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecol. 219, 505–515 (2018).
Google Scholar
37.
Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).
CAS Google Scholar
38.
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
Google Scholar
39.
Cho, S., Ser-Oddamba, B., Batkhuu, N.-O. & Seok Kim, H. Comparison of water use efficiency and biomass production in 10-year-old Populus sibirica and Ulmus pumila plantations in Lun soum, Mongolia. For. Sci. Technol. 15, 147–158 (2019).
Google Scholar
40.
Swenson, S. C. & Lawrence, D. M. A GRACE-based assessment of interannual groundwater dynamics in the Community Land Model. Water Resour. Res. 51, 8817–8833 (2015).
Google Scholar
41.
Guo, J., Huang, G., Wang, X., Li, Y. & Lin, Q. Investigating future precipitation changes over China through a high-resolution regional climate model ensemble. Earth’s Future 5, 285–303 (2017).
Google Scholar
42.
Gong, T., Lei, H., Yang, D., Jiao, Y. & Yang, H. Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland. Hydrol. Earth Syst. Sci. 21, 863–877 (2017).
Google Scholar
43.
Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).
Google Scholar
44.
Famiglietti, J. S. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).
Google Scholar
45.
Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).
CAS Google Scholar
46.
Chen, X. et al. Detecting significant decreasing trends of land surface soil moisture in eastern China during the past three decades (1979–2010). J. Geophys. Res. Atmos. 121, 5177–5192 (2016).
Google Scholar
47.
Peng, D. & Zhou, T. Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos. 122, 9060–9075 (2017).
Google Scholar
48.
Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).
Google Scholar
49.
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645 (2017).
CAS Google Scholar
50.
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
CAS Google Scholar
51.
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).
Google Scholar
52.
Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).
Google Scholar
53.
Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).
Google Scholar
54.
Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K. & Brown, P. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 26, 139–168 (2007).
Google Scholar
55.
Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).
Google Scholar
56.
Fan, X. & Liu, Y. Multisensor normalized difference vegetation index intercalibration: A comprehensive overview of the causes of and solutions for multisensor differences. IEEE Geosci. Remote Sens. Mag. 6, 23–45 (2018).
Google Scholar
57.
Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).
Google Scholar
58.
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Google Scholar
59.
Zhou, Y., Shi, C., Du, J. & Fan, X. Characteristics and causes of changes in annual runoff of the Wuding River in 1956–2009. Environ. Earth Sci. 69, 225–234 (2013).
Google Scholar
60.
Rodell, M. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).
Google Scholar
61.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286, 249–270 (2004).
CAS Google Scholar
62.
Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).
Google Scholar
63.
Haxeltine, A. & Prentice, I. C. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10, 693–709 (1996).
CAS Google Scholar
64.
Prestele, R. et al. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth Syst. Dyn. 8, 369–386 (2017).
Google Scholar
65.
Piao, S. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 11, 739–743 (2018).
CAS Google Scholar
66.
Tian, H. et al. The Global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 99, 1231–1251 (2018).
Google Scholar
67.
Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 101, 4115–4128 (1996).
CAS Google Scholar
68.
Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).
CAS Google Scholar More