Bimodal diel pattern in peatland ecosystem respiration rebuts uniform temperature response
1.
Turunen, J., Tomppo, E., Tolonen, K. & Reinikainen, A. Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. Holocene 12, 69–80 (2002).
ADS Google Scholar
2.
Gorham, E. Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).
PubMed Google Scholar
3.
Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).
ADS Google Scholar
4.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
ADS Google Scholar
5.
Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (2014).
CAS Google Scholar
6.
Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).
ADS CAS Google Scholar
7.
Nijp, J. J. et al. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Glob. Change Biol. 21, 2309–2320 (2015).
ADS Google Scholar
8.
Petrescu, A. M. R. et al. The uncertain climate footprint of wetlands under human pressure. Proc. Natl Acad. Sci. USA. 112, 4594–4599 (2015).
ADS PubMed Google Scholar
9.
Wu, J. & Roulet, N. T. Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: the different responses of bogs and fens. Glob. Biogeochem. Cycles 28, 1005–1024 (2014).
ADS CAS Google Scholar
10.
Wang, X. et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 20, 3229–3237 (2014).
ADS Google Scholar
11.
Mäkiranta, P. et al. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol. Biochem. 41, 695–703 (2009).
Google Scholar
12.
Bond-Lamberty, B., Wang, C. & Gower, S. T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Change Biol. 10, 1756–1766 (2004).
ADS Google Scholar
13.
Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M. & Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Change Biol. 24, 3436–3451 (2018).
ADS Google Scholar
14.
Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315 (1994).
Google Scholar
15.
van’t Hoff, J. H. Lectures on theoretical and physical chemistry: chemical dynamics. Part I (Edward Arnold, London, 1898).
16.
Arrhenius, S. Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Z. f.ür. Phys. Chem. 4, 226–248 (1889).
Google Scholar
17.
Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).
ADS Google Scholar
18.
Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).
ADS Google Scholar
19.
Lasslop, G. et al. On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning. Biogeosciences 9, 5243–5259 (2012).
ADS CAS Google Scholar
20.
Wohlfahrt, G. & Galvagno, M. Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning. Agric. Meteorol. 237–238, 135–142 (2017).
Google Scholar
21.
Phillips, S. C. et al. Interannual, seasonal, and diel variation in soil respiration relative to ecosystem respiration at a wetland to upland slope at Harvard Forest. J. Geophys. Res. Biogeosciences 115, G02019 (2010).
22.
Savage, K., Davidson, E. A. & Tang, J. Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Glob. Change Biol. 19, 1151–1159 (2013).
ADS CAS Google Scholar
23.
Thorne, R., Khomik, M., Hayman, E. & Arain, A. Response of soil CO2 efflux to shelterwood harvesting in a mature temperate pine forest. Forests 11, 304 (2020).
Google Scholar
24.
Carbone, M. S., Winston, G. C. & Trumbore, S. E. Soil respiration in perennial grass and shrub ecosystems: linking environmental controls with plant and microbial sources on seasonal and diel timescales. J. Geophys. Res. Biogeosciences 113, G02022 (2008).
25.
Keane, J. Ben & Ineson, P. Technical note: differences in the diurnal pattern of soil respiration under adjacent Miscanthus × giganteus and barley crops reveal potential flaws in accepted sampling strategies. Biogeosciences 14, 1181–1187 (2017).
ADS CAS Google Scholar
26.
Wutzler, T. et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15, 5015–5030 (2018).
ADS CAS Google Scholar
27.
Luo, Y. & Zhou, X. Soil respiration and the environment. (Academic Press, An Imprint of Elsevier Science, London, 2006).
28.
Hoffmann, M. et al. Automated modeling of ecosystem CO2 fluxes based on periodic closed chamber measurements: a standardized conceptual and practical approach. Agric. Meteorol. 200, 30–45 (2015).
Google Scholar
29.
Rochette, P. & Hutchinson, G. Measurement of soil respiration in situ: chamber techniques. in Micrometeorology in agricultural systems, Agron. Monogr. 47 (ASA, CSSA and SSSA, Madison, WI 2005).
30.
Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 055006 (2014).
ADS Google Scholar
31.
Nilsson, M. et al. Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes. Glob. Change Biol. 14, 2317–2332 (2008).
ADS Google Scholar
32.
Qiu, C. et al. ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales. Geosci. Model Dev. 11, 497–519 (2018).
ADS CAS Google Scholar
33.
Abdalla, M. et al. Simulation of CO2 and attribution analysis at Six European Peatland sites using the ECOSSE model. Water, Air, Soil Pollut. 225, 2182 (2014).
ADS Google Scholar
34.
Metzger, C., Nilsson, M. B., Peichl, M. & Jansson, P.-E. Parameter interactions and sensitivity analysis for modelling carbon heat and water fluxes in a natural peatland, using CoupModel v5. Geosci. Model Dev. 9, 4313–4338 (2016).
ADS CAS Google Scholar
35.
Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).
Google Scholar
36.
Ai, J. et al. MODIS-based estimates of global terrestrial ecosystem respiration. J. Geophys. Res. Biogeosciences 123, 326–352 (2018).
ADS Google Scholar
37.
Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).
38.
Badawy, B., Arora, V. K., Melton, J. R. & Nassar, R. Modeling the diurnal variability of respiratory fluxes in the Canadian Terrestrial Ecosystem Model (CTEM). J. Adv. Model. Earth Syst. 8, 614–633 (2016).
ADS Google Scholar
39.
Wu, Y., Verseghy, D. L. & Melton, J. R. Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0. Geosci. Model Dev. 9, 2639–2663 (2016).
ADS CAS Google Scholar
40.
Waddington, J. M., Rotenberg, P. A. & Warren, F. J. Peat CO2 production in a natural and cutover peatland: implications for restoration. Biogeochemistry 54, 115–130 (2001).
CAS Google Scholar
41.
Glatzel, S., Basiliko, N. & Moore, T. Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24, 261–267 (2004).
Google Scholar
42.
Hoyos-Santillan, J. et al. Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biol. Biochem. 103, 86–96 (2016).
CAS Google Scholar
43.
Moore, T. R. & Dalva, M. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Biochem. 29, 1157–1164 (1997).
CAS Google Scholar
44.
Nilsson, M. & Öquist, M. Partitioning litter mass loss into carbon dioxide and methane in peatland ecosystems. in Carbon Cycling in Northern Peatlands (American Geophysical Union, Washington, DC, 2009).
45.
Blodau, C., Basiliko, N. & Moore, T. R. Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67, 331–351 (2004).
CAS Google Scholar
46.
D’Angelo, B. et al. Soil temperature synchronisation improves representation of diel variability of ecosystem respiration in Sphagnum peatlands. Agric. Meteorol. 223, 95–102 (2016).
Google Scholar
47.
Phillips, C. L., Nickerson, N., Risk, D. & Bond, B. J. Interpreting diel hysteresis between soil respiration and temperature. Glob. Change Biol. 17, 515–527 (2011).
ADS Google Scholar
48.
Chapin, F. S. III, Matson, P. A. & Mooney, H. A. Carbon input to terrestrial ecosystems. in principles of terrestrial ecosystem. Ecology. (Springer, New York, NY, 2002).
Google Scholar
49.
Vargas, R. & Allen, M. F. Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. N. Phytol. 179, 460–471 (2008).
CAS Google Scholar
50.
Bahn, M., Schmitt, M., Siegwolf, R., Richter, A. & Brüggemann, N. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? N. Phytol. 182, 451–460 (2009).
CAS Google Scholar
51.
Laine, A. M. et al. Abundance and composition of plant biomass as potential controls for mire net ecosytem CO2 exchange. Botany 90, 63–74 (2012).
CAS Google Scholar
52.
Goulden, M. L. & Crill, P. M. Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiol. 17, 537–542 (1997).
CAS PubMed Google Scholar
53.
Bubier, J., Crill, P., Mosedale, A., Frolking, S. & Linder, E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob. Biogeochem. Cycles 17, 1066 (2003).
ADS Google Scholar
54.
Bond-Lamberty, B., Bronson, D., Bladyka, E. & Gower, S. T. A comparison of trenched plot techniques for partitioning soil respiration. Soil Biol. Biochem. 43, 2108–2114 (2011).
CAS Google Scholar
55.
Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R. & Dalva, M. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences 9, 3305–3322 (2012).
ADS CAS Google Scholar
56.
Brændholt, A., Larsen, K. S., Ibrom, A. & Pilegaard, K. Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence. Biogeosciences 14, 1603–1616 (2017).
ADS Google Scholar
57.
Peichl, M., Sonnentag, O. & Nilsson, M. B. Bringing color into the picture: using digital repeat photography to investigate phenology controls of the carbon dioxide exchange in a boreal mire. Ecosystems 18, 115–131 (2015).
CAS Google Scholar
58.
Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).
ADS Google Scholar
59.
Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967).
ADS Google Scholar More