More stories

  • in

    Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India

    Isolation and identification of rhizobacteria from tea rhizosphere
    Soil microorganisms play a crucial role in plant health and development. Moreover, they contribute immensely to the agricultural production of different crops. In the district of Darjeeling, tea is cultivated as the major cash crop. Besides tea, a number of other crops such as rice, maize, wheat, mustard, millet, ginger, orange, large cardamom, and vegetable crops are cultivated19 (Source: https://darjeeling.gov.in/agriculture.html). Rice and maize are the most important food grain crops grown in this region. However, because of the acidic nature of the soil of this region, crop cultivation becomes increasingly difficult. Agrochemicals, including N fertilizers, make the situation even more complicated as they further assist soil acidification. In the slightly acidic soils of Darjeeling district (4.2  More

  • in

    A higher-order finite element reactive transport model for unstructured and fractured grids

    Flow and transport
    In this section the governing equations are provided in a general multiphase and multicomponent formulation in which all phases are treated equally (e.g., allowing for compressibility and density changes).
    The transport equations are written in terms of molar conservation of each component i out of (n_{c}) total number of components, including all reacting and non-reacting components (defined in more detail in the next subsection):

    $$begin{aligned} phi frac{partial c_i}{partial t} + nabla cdot vec {U}_i= & {} F^{{mathrm {well}}}_i + F^{{mathrm {react}}}_{i}, quad i = 1, ldots , n_c, end{aligned}$$
    (1)

    with (phi [cdot ]) the porosity, (c_i [{mathrm {mol}}/{{mathrm {m}}}^{3}]) the molar density of component i (total molar density in the case of multiphase mixtures), (F^{{mathrm {well}}}_i [{mathrm {mol}}/({{mathrm {s}}} {{mathrm {m}}}^{3})]) a source or sink of component i (e.g., a contaminant spill site or a way to prescribe inflow and outflow conditions), and (F^{mathrm {react}}_i [{mathrm {mol}}/({mathrm {s}} {{mathrm {m}}}^{3})]) the source or sink of component i due to geochemical reactions.
    The component flux (U_{i}) contains both the advective and dispersive contributions. In the most general case of (n_{mathrm {ph}}) number of phases that are labeled by (alpha = 1, ldots , n_{mathrm {ph}}), (U_{i}) is given by

    $$begin{aligned} vec {U}_i= & {} sum _{alpha =1}^{n_{mathrm {ph}}} left( c_{i,alpha } vec {u}_alpha + f(phi ,tau ) S_alpha vec {J}_{i,alpha }right) ,quad i = 1, ldots , n_c, end{aligned}$$
    (2)

    with (c_{i,alpha } [{mathrm {mol}}/{{mathrm {m}}}^{3}]) the molar density of component i in phase (alpha), (vec {u}_alpha [{{mathrm {m}}}/{mathrm {s}}]) the fiducial Darcy velocity

    $$begin{aligned} vec {u}_alpha= & {} – lambda _{alpha }{mathrm {K}} (nabla p_{alpha } – rho _alpha vec {g}), quad alpha = 1, ldots , {n_{mathrm {ph}}} end{aligned}$$
    (3)

    in which (p_{alpha } [{mathrm {Pa}}]) is the phase pressure, (vec {g}) is the gravitational vector, and (lambda _{alpha } [{{mathrm {m}}} {mathrm {s}}/{mathrm {kg}}]= lambda _alpha (S_alpha )) is the phase mobility, (rho _alpha [{mathrm {kg}}/{mathrm {m}}^{3}]) the phase mass density, (S_{alpha } [cdot ]) the phase saturation, and (mathrm {K} [{mathrm {m}}^{2}]) the full permeability tensor. The diffusive term (f(phi ,tau ) S_alpha vec {J}_{i,alpha }) is discussed in detail below.
    For a fully compressible multiphase system, the pressure (of a reference phase) evolves as41,42:

    $$begin{aligned}&phi C_{f} frac{partial p}{partial t} + sum _{i=1}^{n_c} {overline{nu }_i(nabla cdot vec {U}_i}-F^{mathrm {well}}_i – F^{mathrm {react}}_{i}) =0, end{aligned}$$
    (4)

    with (C_{f} [mathrm {Pa}^{{-1}}]) the total fluid compressibility of the multiphase mixture, and (overline{nu }_i [{mathrm {m}}^{3}/{mathrm {mol}}]) the total partial molar volume of each component. The algorithm to compute these parameters for multiphase mixtures is highly non-linear43.
    For the case of a single aqueous phase the expressions for compressibility and partial molar volumes are considerably simpler, and (n_{mathrm {ph}} =1), (alpha = w), (c_{i,alpha } = c_{i}), (lambda _{alpha } = lambda _{w} = 1/mu _{w}) with (mu _{w} [{mathrm {m}} {mathrm {s}}/{mathrm {kg}}]) the water viscosity, (S_{w}=1), and (p_{alpha }=p) (no capillary effects).
    Geochemical reactions
    When several species react through a number of different reactions, the concentrations of each of the species are not independent. For example, in the equilibrium reaction (hbox {H}_{2}hbox {O} rightleftharpoons hbox {H}^{+} + hbox {OH}^{-}), if one mole of (hbox {H}_{2}hbox {O}) reacts, the increase in (hbox {H}^{+}) and (hbox {OH}^{-}) concentrations equals the decrease in (hbox {H}_{2}hbox {O}) concentration. A mathematical consequence is that not all species concentrations need to be transported explicitly. One can split the total number of species into a subset of independent primary components and a set of secondary components that can be constructed from the primary ones44. The process has been described in the literature18 but is perhaps best illustrated by example.
    Consider a typical mixture in the context of geological carbon dioxide ((hbox {CO}_{2})) sequestration consisting of seven species dissolved in water: (hbox {CaCO}_{3}), (hbox {Ca}^{2+}), (hbox {CO}_{3}^{2-}), (hbox {H}^{+}), (hbox {OH}^{-}), (hbox {H}_2hbox {CO}_{3}), (hbox{HCO}^{-}_{3}) that interact through the following four equilibrium reactions:

    $$begin{aligned} hbox {CaCO}_3&rightleftharpoons hbox {Ca}^{2+} + hbox {CO}_{3}^{2-} , end{aligned}$$
    (5)

    $$begin{aligned} hbox {HCO}^{-}_{3}&rightleftharpoons hbox {CO}_{3}^{2-} + hbox {H}^{+} , end{aligned}$$
    (6)

    $$begin{aligned} hbox {H}_{2}hbox {CO}_{3}&rightleftharpoons hbox {CO}_{3}^{2-} + 2 hbox{H}^{+} , end{aligned}$$
    (7)

    $$begin{aligned} hbox {H}^{+} + hbox {OH}^{-}&rightleftharpoons hbox {H}_{2}hbox{O}. end{aligned}$$
    (8)

    If we denote concentrations by square brackets, changes in concentrations (time-derivatives) by, e.g., ([hbox {CaCO}_{3}]^{prime }), and rates (R_{1}, ldots , R_{4}) for the four reactions (positive in the leftward direction), the evolution of all concentrations can be solved from

    $$begin{aligned} left[ hbox {CaCO}_{3} right] ^{prime }= & {} – R_1, end{aligned}$$
    (9)

    $$begin{aligned} left[ hbox {HCO}^{-}_{3} right] ^{prime }= & {} -R_2, end{aligned}$$
    (10)

    $$begin{aligned} left[ hbox {H}_2hbox {CO}_{3} right] ^{prime }= & {} – R_3, end{aligned}$$
    (11)

    $$begin{aligned} left[ hbox {OH}^{-} right] ^{prime }= & {} – R_4, end{aligned}$$
    (12)

    $$begin{aligned} left[ {mathrm {tot}} (hbox {H}) right] ^{prime }= & {} left( [hbox {H}^{+}]+ [hbox {HCO}^{-}_{3}]+2[hbox {H}_2hbox {CO}_{3}] – [hbox {OH}^{-}]right) ^{prime } =0, end{aligned}$$
    (13)

    $$begin{aligned} left[ {mathrm {tot}} (hbox {Ca}) right] ^{prime }= & {} left( [hbox {Ca}^{2+}]+[hbox {CaCO}_{3}] right) ^{prime } = 0, end{aligned}$$
    (14)

    $$begin{aligned} left[ {mathrm {tot}} (hbox {CO}_{3}) right] ^{prime }= & {} left( [hbox {CO}_{3}^{2-}]+ [hbox {CaCO}_{3}] + [hbox {HCO}^{-}_{3}] + [hbox {H}_2hbox {CO}_{3}] right) ^{prime } = 0. end{aligned}$$
    (15)

    The first four equations define the primary species (hbox {CaCO}_{3}) , (hbox {HCO}^{-}_{3}), (hbox {H}_2hbox {CO}_{3}), (hbox {OH}^{-}), while the last three equations involve the secondary species (hbox {H}^{+}), (hbox {Ca}^{2+}), (hbox {CO}_{3}^{2-}), as well as defining the (conservation of) total concentrations of those elements across all species. Following common notations18 and writing (Psi _{j=1, ldots , 3}) for the total concentrations, (C_{j=1, ldots , 3}) for the secondary species, and (C_{i=1, ldots , 4}) for the primary species, Eqs. (13)–(15) can be written succinctly in terms of the stoichiometry coefficients (nu _{ij}) as

    $$begin{aligned} Psi _{j} = C_{j} + sum _{i=1}^{4} nu _{ij} C_{i}, quad quad nu _{ij} = left( begin{array}{cccc} 0 &{} 1 &{} 2 &{} -1\ 1 &{} 0 &{} 0 &{} 0 \ 1 &{} 1 &{} 1 &{} 0 end{array} right) . end{aligned}$$
    (16)

    From the definitions Eqs. (13)–(15) it is clear that the total concentrations (or ‘total components’) are conserved in the reacting system and thus a natural choice as primary variables in the molar conservation Eq. (1) for species transport. More generally, all problems of interest involve water itself and we usually choose ({mathrm {tot}} (hbox {H})) and ({mathrm {tot}} (hbox {O})) as two of the total concentrations. We will refer to the number of total or primary components that need to be transported as (n_{p}) and note that those are, in a sense, ‘bookkeeping’ quantities, whereas we will continue to use (n_{c}) for the total number of actual molecular species in the mixture.
    The different symbols (c_{i}) versus (C_{i}) refer to different unit systems: Phreeqc typically expresses all concentrations per kilogram or liter of water, whereas Eq. (1) involves intrinsic molar densities (([{mathrm {mol}}/{mathrm {m}}^{3}])). In coupling the transport and geochemistry, a unit conversion is made between Osures and Phreeqc that involves the (temperature, pressure, and composition dependent) aqueous phase mass density as computed from the CPA EOS38 (equivalently, PhreeqcRM can be provided with ([{mathrm {mol}}/mathrm {l}]) concentrations together with a mass density).
    Just as in most other reactive transport codes, a (sequential non-iterative) operator splitting approach is adopted in which the flow-transport problem is solved first without considering reactions, followed by the equivalent of a batch reaction calculation for each grid-cell (or node in the case of higher-order methods). More implementation details are provided below.
    Diffusion of chemical species
    Molecular diffusion, as defined in irreversible thermodynamics, is driven fundamentally by gradients in chemical potentials. Under the assumptions of negligible temperature and pressure diffusion an expression is obtained in terms of gradients in compositions, which is the commonly used generalized Fick’s law. Thus, while total concentrations, as the conserved quantity, are a suitable choice for advective transport they are not natural variables for the diffusive flux45. The following equations are therefore for the (n_{c}) physical species.
    Diffusion of particles through a porous medium is affected by the geometry and connectivity of the pore network, and is different from diffusion in open space. The longer pathways in a porous medium are represented empirically in Eq. (2) by the factor (f(phi ,tau ) [cdot ]), which is a function of porosity and tortuosity (tau [cdot ]). The simplest option is (f(phi ,tau )=phi).
    Both molecular diffusion and mechanical dispersion are considered, e.g., (vec {J}_{i,alpha } = vec {J}_{alpha , i}^{mathrm {diff}} + vec {J}_{alpha , i}^{{mathrm {disp}}}). Mechanical dispersion is computed from

    $$begin{aligned} vec {J}_{alpha , i}^{{mathrm {disp}}} = – c_alpha sum _{k=1}^{n_c -1} vec {D}^{mathrm {disp}}_{alpha } nabla x_{alpha , k}, end{aligned}$$
    (17)

    with the coefficients given by the tensor

    $$begin{aligned}&vec {D}^{mathrm {disp}}_{alpha } = d_{t,alpha } | vec {u}_{alpha } | vec {I} + (d_{l,alpha } – d_{t,alpha }) frac{vec {u}_{alpha } vec {u}^{T}_{alpha }}{|vec {u}_{alpha }|}, end{aligned}$$
    (18)

    with (d_{l,alpha } [{mathrm {m}}]) and (d_{t,alpha } [{mathrm {m}}]) the longitudinal and transverse phase dispersivities, respectively, and (vec {I}) the identity matrix. There are only (n_{c}-1) independent equations because by definition (sum _{i} J_{i} = 0), such that (J_{n_{c}} = – sum _{i=1}^{n_{c}-1} J_{i}). The (n_{c}-1) equations for Fickian molecular diffusion are:

    $$begin{aligned} vec {J}_{alpha , i}^{mathrm {diff}} = – c_alpha sum _{k=1}^{n_c -1} D^{mathrm {Fick}}_{alpha , ik} nabla x_{alpha , k}, end{aligned}$$
    (19)

    with (x_{alpha , i} [cdot ]) the phase compositions (molar fractions) and (D^{mathrm {Fick}}_{alpha , ik} [{mathrm {m}}^{2}/{mathrm {s}}]) a full matrix of composition-dependent diffusion coefficients as derived from irreversible thermodynamics30,39,46.
    It can easily be shown47 that only considering diagonal (‘self’) diffusion coefficients violates molar balance, because the commonly used (J_{i} sim -D_{i} nabla x_{i}) cannot simultaneously satisfy (sum _{i} J_{i} = 0) and (sum _{i} x_{i} = 1). Specifically, for (n_{c}) species we have (sum _{i=1}^{n_c} x_{i } = 1), which means that (sum _{i=1}^{n_c}nabla x_{i} = 0). In other words, the compositional gradients are not all independent and one can be expressed in terms of the others. Choosing the last component, for instance, we have

    $$begin{aligned} nabla x_{n_{c}} = – sum _{i=1}^{n_c-1}nabla x_{i} . end{aligned}$$
    (20)

    The diffusive fluxes are also not all independent because, by definition (i.e., diffusion being the deviation of individual species fluxes from the average advective flux) (sum _{i=1}^{n_c} J_{i} = 0). Similar to Eq. (20), we choose to express the diffusive flux of the last component in terms of the other fluxes (J_{n_{c}} = – D_{c} nabla x_{c} = – sum _{i=1}^{n_c-1} J_{i} = – sum _{i=1}^{n_c-1} D_{i} nabla x_{i}). Inserting (nabla x_{n_{c}}) from Eq. (20) that requires

    $$begin{aligned} sum _{i=1}^{n_c – 1} (D_{n_c} – D_{i}) nabla x_{i} = 0. end{aligned}$$
    (21)

    For Eq. (21) to be true for any composition (x_{i}) requires all (D_{i}= D_{n_{c}}), i.e. all diagonal diffusion coefficients have to be the same. In other words, molar conservation is only guaranteed either for a single scalar diffusion coefficient for all components (which is not justified by experimental data) or requires a full matrix of multicomponent diffusion coefficients.
    In terms of implementation, for diffusion problems Phreeqc is instructed to output not only the (n_{p}) concentrations (Psi _{j}) but also the (n_{c}) concentrations (C_{i}) and (C_{j}) (this requires more memory, but not more computational effort). Eq. (19) is then updated for each ‘real’ species across each grid face in the domain, and the contributions to the molar densities of (n_{p}) total components follows from the stoichiometry (using Eq. (16)). An operator splitting step is used in the implementation: first the diffusive fluxes are computed as described, then, in updating Eq. (1) the divergence of the diffusive flux is essentially treated as a sink-source term of the total number of moles of (c_{i}) entering or leaving the grid cell through all its faces in a given time-step.
    Nernst–Planck electromigration
    Electrochemical migration refers to electrostatic forces coupling to charged particles that diffuse at different rates, which causes charge imbalance. Electric fields can force charged particles to diffuse when there are no compositional gradients or even diffuse from low to high concentrations, due to interaction with other species. Similar effects have been observed even in charge-neutral non-ideal mixtures such as hydrocarbon fluids48. Because the flux of one species can depend on the compositional gradients in all other species, this is another reason that a full matrix of diffusion coefficients is required.
    The following expression has been used to model both Fickian ((J^{{mathrm {Fick}}}_{i})) and electrochemical ((J^{mathrm {EK}}_{i})) diffusion in the absence of externally induced currents and advective fluxes49:

    $$begin{aligned} J_{i} = J^{{mathrm {Fick}}}_{i} + J^{mathrm {EK}}_{i} = – D_{i} nabla C_{i} + D_{i} C_{i} q_{i} frac{sum _{k} D_{k} q_{k} nabla C_{k} }{sum _{k} D_{k} q^2_{k} C_{k}} end{aligned}$$
    (22)

    with (q_{k}) the species charge, (C_{i}) concentrations, and summations over all dissolved species. Eq. (22) is a simplified form of the Nernst-Planck equation.
    To be consistent with the molar balance equation (1) and allowing for variable aqueous densities (compressibility), Eq. (22) is written in terms of aqueous phase molar density c and molar fractions (x_{i}=c_{i}/c), similar to Eq. (19), as

    $$begin{aligned} J_{i} = – c D_{i} nabla x_{i} + D_{i} x_{i} q_{i} frac{sum _{k} c D_{k} q_{k} nabla x_{k} }{sum _{k} D_{k} q^2_{k} x_{k}}, end{aligned}$$
    (23)

    which assumes that diffusion coefficients have already been corrected for porosity and tortuosity effects.
    As discussed in the previous section, this type of relation for diffusion in multicomponent mixtures is physically inconsistent. However it can be a reasonable approximation (when off-diagonal diffusion coefficients are small) and is implemented in this work as an option to allow comparisons to other reactive transport codes that rely on this formulation.
    Implementation
    The numerical implementation of the mathematical framework described in the previous sections relies heavily on operator splitting, which permits choosing the most suitable numerical method for each subproblem. First, diffusive fluxes (Eqs. (17)–(19)) are computed using compositions, molar densities, and advective fluxes from the previous time-step. Second, the flow problem Eqs. (3)–(4) is simultaneously solved for pressures and fluxes by the implicit MHFE method. Third, the transport equations (Eqs. (1)–(2)) are updated by the DG method, using the previously computed diffusive fluxes. Other than the interpretation of total components (Eq. (16)) and the implementation of the Nernst-Planck Eq. (23) for electromigration, the implementation is identical to prior (non-reactive) works20,32,33, and is thus not repeated here in further detail.
    After the transport equations have been updated for all components, PhreeqcRM is invoked to update the geochemistry. The geochemistry computations alter the compositions of reactive species, which is indicated by the (F^{mathrm {react}}_i) term in Eq. (1). As discussed above, PhreeqcRM is requested to output both the total component concentrations that are advected in Eq. (1) as well as all the physical species concentrations that are used to compute the diffusive fluxes (Eqs. (17)–(19)). The diffusive flux contributions of each species to the total component transport is derived using the stoichiometry as in Eq. (16).
    The full reactive transport step is followed by an EOS-based update of fluid properties (molar and mass densities, compressibility, viscosity), as well as rock properties (porosity, permeability, fracture apertures) when dissolution and precipitation reactions are considered. For multiphase problems this would also involve phase stability and phase split computations that are iteratively coupled to the PhreeqcRM geochemistry update.
    Explicit, implicit, and adaptive implicit Euler time-discretizations have been implemented, where the adaptive method uses an implicit update for grid cells that have a small Courant-Friedrichs-Lewy (CFL) time-step constraint50 and an explicit update elsewhere33. The advantage of implicit methods is that they are unconditionally stable and thus allow for larger time-steps. However, implicit methods are also known to exhibit excessive numerical dispersion. Moreover, (1) larger time-steps imply bigger changes in concentrations, which results in numerical convergence issues for PhreeqcRM, and (2) rock-fluid interactions and kinetic reactions are quite sensitive to time-step sizes. For these reasons, unless a fully coupled approach is used, an explicit transport update appears to provide the most accurate results (smaller time-steps also reduce the decoupling errors inherent to any operator splitting approach). The cost of using relatively small time-steps can be alleviated by (1) faster convergence of the non-linear geochemistry (similar to phase-split computations), and (2) the more trivial parallelization of an element-wise explicit transport and geochemistry update. The numerical examples, presented next, therefore all rely on the common implicit-pressure-explicit-composition (IMPEC) scheme. More

  • in

    Independent iron and light limitation in a low-light-adapted Prochlorococcus from the deep chlorophyll maximum

    1.
    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Micro. 2015;13:13–27.
    CAS  Article  Google Scholar 
    2.
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature. 1998;393:464–7.
    CAS  Article  Google Scholar 

    3.
    Raven JA. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. N Phytol. 1990;116:1–18.
    CAS  Article  Google Scholar 

    4.
    Sunda WG, Huntsman SA. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature. 1997;390:389–92.
    CAS  Article  Google Scholar 

    5.
    Sunda WG, Huntsman SA. High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris. Front Microbiol. 2015;6:561.
    Article  Google Scholar 

    6.
    Fitzsimmons JN, Hayes CT, Al-Subiai SN, Zhang R, Morton PL, Weisend RE, et al. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim Cosmochim Acta. 2015;171:303–24.
    CAS  Article  Google Scholar 

    7.
    Hogle SL, Dupont CL, Hopkinson BM, King AL, Buck KN, Roe KL, et al. Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. Proc Natl Acad Sci. 2018;115:13300–5.
    CAS  Article  Google Scholar 

    8.
    Rii YM, Karl DM, Church MJ. Temporal and vertical variability in picophytoplankton primary productivity in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser. 2016;562:1–18.
    CAS  Article  Google Scholar 

    9.
    Malmstrom RR, Coe A, Kettler GC, Martiny AC, Frias-Lopez J, Zinser ER, et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J. 2010;4:1252.
    Article  Google Scholar 

    10.
    Letelier RM, Karl DM, Abbott MR, Bidigare RR. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol Oceanogr. 2004;49:508–19.
    CAS  Article  Google Scholar 

    11.
    Hawco NJ, Mcilvin MR, Bundy RM, Tagliabue A, Moran DM, Valentin-Alvarado L, et al. Minimal cobalt metabolism in the marine cyanobacterium Prochlorococcus. Proc Natl Acad Sci. 2020;117:15740–7.
    CAS  Article  Google Scholar 

    12.
    Strzepek RF, Boyd PW, Sunda WG. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. Proc Natl Acad Sci. 2019;116:4388–93.
    CAS  Article  Google Scholar 

    13.
    Bibby TS, Mary I, Nield J, Partensky F, Barber J. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature. 2003;424:1051–4.
    CAS  Article  Google Scholar 

    14.
    Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. Elife. 2019;8:e41043.
    Article  Google Scholar 

    15.
    Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci. 2010;107:16184–9.
    CAS  Article  Google Scholar 

    16.
    Hayes CT, Fitzsimmons JN, Boyle EA, McGee D, Anderson RF, Weisend R, et al. Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA. Geochim Cosmochim Acta. 2015;169:1–16.
    Article  Google Scholar 

    17.
    Rafter PA, Sigman DM, Mackey KRM. Recycled iron fuels new production in the eastern equatorial Pacific Ocean. Nat Commun. 2017;8:1–10.
    Article  Google Scholar 

    18.
    Boyd PW, Law CS, Hutchins DA, Abraham ER, Croot PL, Ellwood M, et al. FeCycle: attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters. Global Biogeochem Cycles. 2005;19:GB4S20. https://doi.org/10.1029/2005GB002494.
    CAS  Article  Google Scholar 

    19.
    Bundy RM, Boiteau RM, McLean C, Turk-Kubo KA, McIlvin MR, Saito MA, et al. Distinct siderophores contribute to iron cycling in the mesopelagic at station ALOHA. Front Mar Sci. 2018;5:61.
    Article  Google Scholar  More

  • in

    Mapping carbon accumulation potential from global natural forest regrowth

    1.
    Rogelj, J. et al. Paris Agreement climate proposals need boost to keep warming well below 2 °C. Nat. Clim. Chang. 534, 631–639 (2016).
    CAS  Google Scholar 
    2.
    Masson-Delmotte, V. et al. (eds) Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (IPCC, 2018).

    3.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).

    5.
    Dong, H., MacDonald, J. D., Ogle, S. M., Sanz Sanchez, M. J. & Rocha, M. T. (eds) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).

    6.
    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).
    ADS  Google Scholar 

    7.
    International Union for Conservation of Nature infoFLR https://infoflr.org/ (IUCN, accessed 20 June 2018).

    8.
    Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. Lond. B 375, 20190120 (2020).
    Google Scholar 

    10.
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    11.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Lewis, S., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Regenerate natural forests to store carbon. Nature 568, 25–28 (2019).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manage. 352, 109–123 (2015).
    Google Scholar 

    14.
    United Nations Adoption of the Paris Agreement https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (UN, 2015).

    15.
    Holl, K. D. & Brancalion, P. S. Tree planting is not a simple solution. Science 368, 580–582 (2020).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 4, 503–507 (2014).
    ADS  Google Scholar 

    17.
    Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. Ann. Missouri Botan. Gardens 102, 251–257 (2017).
    Google Scholar 

    18.
    Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2014).
    ADS  Google Scholar 

    19.
    Meli, P. et al. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS One 12, e0171368 (2017).
    PubMed  PubMed Central  Google Scholar 

    20.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    21.
    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. Lond. B 285, 20172577 (2018).
    Google Scholar 

    22.
    Shimamoto, C. Y., Padial, A. A., Da Rosa, C. M. & Marques, M. C. M. Restoration of ecosystem services in tropical forests: a global meta-analysis. PLoS One 13, e0208523 (2018).
    PubMed  PubMed Central  Google Scholar 

    23.
    Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, eaas9143 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    24.
    Betts, R. A. Climate science: afforestation cools more or less. Nat. Geosci. 4, 504–505 (2011).
    ADS  CAS  Google Scholar 

    25.
    Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl Acad. Sci. USA 115, 2776–2781 (2018).
    CAS  PubMed  Google Scholar 

    26.
    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds) The Global Assessment Report on Biodiversity and Ecosystem Services https://ipbes.net/global-assessment (IPBES, 2019).

    27.
    Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291, 73–86 (2013).
    Google Scholar 

    28.
    Tuomisto, H. L., Ellis, M. J. & Haastrup, P. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2014).
    Google Scholar 

    29.
    Arneth, A. et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, And Greenhouse Gas Fluxes In Terrestrial Ecosystems https://www.ipcc.ch/srccl/ (IPCC, 2019).

    30.
    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).
    ADS  Google Scholar 

    31.
    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).
    ADS  CAS  Google Scholar 

    33.
    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Paul, K. I. & Roxburgh, S. H. Predicting carbon sequestration of woody biomass following land restoration. For. Ecol. Manage. 460, 117838 (2020).
    Google Scholar 

    35.
    Anderson-Teixeira, K. J. et al. ForC: a global database of forest carbon stocks and fluxes. Ecology 99, 1507 (2018).
    PubMed  Google Scholar 

    36.
    Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).
    ADS  CAS  PubMed  Google Scholar 

    37.
    Stocker, T.F. et al (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

    38.
    Zahawi, R. a., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).
    Google Scholar 

    39.
    Ashton, M. S. et al. Restoration of rain forest beneath pine plantations: a relay floristic model with special application to tropical South Asia. For. Ecol. Manage. 329, 351–359 (2014).
    Google Scholar 

    40.
    Teixeira, A. M. G., Soares-Filho, B. S., Freitas, S. R. & Metzger, J. P. Modeling landscape dynamics in an Atlantic rainforest region: implications for conservation. For. Ecol. Manage. 257, 1219–1230 (2009).
    Google Scholar 

    41.
    Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).
    Google Scholar 

    42.
    Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. of Chicago Press, 2014).

    43.
    Speed, J. D. M., Martinsen, V., Mysterud, A., Holand, O. & Austrheim, G. Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems 17, 1138–1150 (2014).
    CAS  Google Scholar 

    44.
    Reid, J. L. et al. How long do restored ecosystems persist? Ann. Missouri Botan. Gardens 102, 258–265 (2017).
    Google Scholar 

    45.
    Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).
    Google Scholar 

    46.
    Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
    ADS  Google Scholar 

    47.
    Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 8165 (2008).
    ADS  Google Scholar 

    48.
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).
    Google Scholar 

    49.
    Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).
    ADS  CAS  PubMed  Google Scholar 

    50.
    Crouzeilles, R., Ferreira, M. S. & Curran, M. Forest restoration: a global dataset for biodiversity and vegetation structure. Ecology 97, 2167 (2016).
    PubMed  Google Scholar 

    51.
    Deng, L., Shangguan, Z. P. & Sweeney, S. ‘Grain for Green’ driven land use change and carbon sequestration on the Loess Plateau, China. Sci. Rep. 4, 7039 (2015).
    Google Scholar 

    52.
    Bárcena, T. G. et al. Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob. Change Biol. 20, 2393–2405 (2014).
    ADS  Google Scholar 

    53.
    Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013).
    Google Scholar 

    54.
    Deng, L., Zhu, G., Tang, Z. & Shangguan, Z. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
    Google Scholar 

    55.
    Zhang, K., Dang, H., Zhang, Q. & Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Glob. Change Biol. 21, 2762–2772 (2015).
    ADS  Google Scholar 

    56.
    Becknell, J. M., Kissing, L. & Powers, J. S. Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For. Ecol. Manage. 276, 88–95 (2012).
    Google Scholar 

    57.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 1–15 (2016).
    Google Scholar 

    58.
    Guo, Q. & Ren, H. Productivity as related to diversity and age in planted versus natural forests. Glob. Ecol. Biogeogr. 23, 1461–1471 (2014).
    Google Scholar 

    59.
    Krankina, O. NPP Boreal Forests: Siberian Scots Pine Forests, Russia, 1968–1974, R1 http://daac.ornl.gov (Oak Ridge National Laboratory, 1995).

    60.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
    PubMed  PubMed Central  Google Scholar 

    61.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 

    62.
    Chew, S. T. & Gallagher, J. B. Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep. 8, 2553 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    63.
    James, J., Devine, W., Harrison, R. & Terry, T. Deep soil carbon: quantification and modeling in subsurface layers. Soil Sci. Soc. Am. J. 78, S1–S10 (2014).
    Google Scholar 

    64.
    Aalde, H. et al. Forest land. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 4 (IPCC, 2006).

    65.
    Aalde, H. et al. Generic methodologies applicable to multiple land-use categories. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 2 (IPCC, 2006).

    66.
    Russell, M. B. et al. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manage. 350, 107–128 (2015).
    Google Scholar 

    67.
    Pribyl, D. W. A critical review of the convential SOC to SOM conversion factor. Geoderma 156, 75–83 (2010).
    ADS  CAS  Google Scholar 

    68.
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).
    PubMed  PubMed Central  Google Scholar 

    69.
    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).
    ADS  Google Scholar 

    70.
    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Google Scholar 

    71.
    Swedish National Forest Inventory Sample Plot Data https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/listor/sample-plot-data/ (SNFI, 2019).

    72.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Google Scholar 

    73.
    Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

    74.
    Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
    MATH  Google Scholar 

    75.
    Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).
    CAS  PubMed  Google Scholar 

    76.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. & Thirion, B. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    MathSciNet  MATH  Google Scholar 

    77.
    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    78.
    Shono, K., Cadaweng, E. A. & Durst, P. B. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 15, 620–626 (2007).
    Google Scholar 

    79.
    Nieuwenhuis, M. Terminology of forest management. In International Union of Forest Research Organizations World Series Vol. 9-en (IUFRO, 2000).

    80.
    Winrock International AFOLU Carbon Calculator. The Agroforestry Tool: Underlying Data and Methods (USAID and Winrock International, 2014).

    81.
    Vieira, D. L. M., Holl, K. D. & Peneireiro, F. M. Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor. Ecol. 17, 451–459 (2009).
    Google Scholar  More

  • in

    Abiotic and past climatic conditions drive protein abundance variation among natural populations of the caddisfly Crunoecia irrorata

    1.
    West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, Oxford, 2003).
    Google Scholar 
    2.
    Beldade, P., Mateus, A. R. A. & Keller, R. A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 20, 1347–1363 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Dall, S. R. X., McNamara, J. M. & Leimar, O. Genes as cues: Phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends Ecol. Evol. 30, 327–333 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
    Article  Google Scholar 

    5.
    Ovaskainen, O. & Meerson, B. Stochastic models of population extinction. Trends Ecol. Evol. 25, 643–652 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Lawson, C. R., Vindenes, Y., Bailey, L. & van de Pol, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Mayr, E. The growth of biological thought: Diversity, evolution, and inheritance. Am. Biol. Teach. 46, 462–463 (1984).
    Article  Google Scholar 

    8.
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
    ADS  Article  Google Scholar 

    9.
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Riddell, E. A., Odom, J. P., Damm, J. D. & Sears, M. W. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 4, eaar5471 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Noble, D. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. 93, 16–26 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Whitehead, A. & Crawford, D. L. Variation within and among species in gene expression: Raw material for evolution. Mol. Ecol. 15, 1197–1211 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Regulatory changes underlying expression differences within and between Drosophila species. Nat. Genet. 40, 346–350 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gonzalez, E. G. et al. Population proteomics of the European hake (Merluccius merluccius). J. Proteome Res. 9, 6392–6404 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Papakostas, S. et al. A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (Coregonus lavaretus ). Mol. Ecol. 21, 3516–3530 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Chevalier, F. et al. Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 4, 1372–1381 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Mueller, R. S. et al. Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 6, 374 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12, 119–125 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. In Advances in Genetics Vol. 13 (eds Caspari, E. W. & Thoday, J. M.) 115–155 (Academic Press, New York, 1965).
    Google Scholar 

    21.
    Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Fisher, M. A. & Oleksiak, M. F. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics 8, 108 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Pujolar, J. M. et al. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel. BMC Genomics 13, 507 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Davies, S. W., Marchetti, A., Ries, J. B. & Castillo, K. D. Thermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coral. Front. Mar. Sci. 3, 112 (2016).

    25.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Bludau, I. & Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0231-2 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Lodish, H. et al. Molecular Cell Biology (W. H. Freeman, New York, 2000).
    Google Scholar 

    30.
    Watson, J. D. Molecular Biology of the Gene (Pearson Education, London, 2004).
    Google Scholar 

    31.
    Giardi, M. T., Masojídek, J. & Godde, D. Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol. Plant. 101, 635–642 (1997).
    CAS  Article  Google Scholar 

    32.
    Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135, 216–226 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: From theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Nikinmaa, M., Tiihonen, K. & Paajaste, M. Adrenergic control of red cell pH in salmonid fish: Roles of the sodium/proton exchange, Jacobs-Stewart cycle and membrane potential. J. Exp. Biol. 154, 257–271 (1990).
    CAS  Google Scholar 

    35.
    Pavlov, M. Y. & Ehrenberg, M. Optimal control of gene expression for fast proteome adaptation to environmental change. Proc. Natl. Acad. Sci. USA 110, 20527–20532 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Adams, S. M., Giesy, J. P., Tremblay, L. A. & Eason, C. T. The use of biomarkers in ecological risk assessment: recommendations from the Christchurch conference on Biomarkers in Ecotoxicology. Biomarkers 6, 1–6 (2001).
    CAS  PubMed  Article  Google Scholar 

    37.
    Diz, A. P., Truebano, M. & Skibinski, D. O. F. The consequences of sample pooling in proteomics: An empirical study. Electrophoresis 30, 2967–2975 (2009).
    CAS  PubMed  Article  Google Scholar 

    38.
    Karp, N. A. & Lilley, K. S. Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9, 388–397 (2009).
    CAS  PubMed  Article  Google Scholar 

    39.
    Bennike, T. B. et al. Comparing the proteome of snap frozen, RNAlater preserved, and formalin-fixed paraffin-embedded human tissue samples. EuPA Open Proteomics 10, 9–18 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Johnsen, I. K. et al. Evaluation of a standardized protocol for processing adrenal tumor samples: Preparation for a European adrenal tumor bank. Horm. Metab. Res. 42, 93–101 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Kruse, C. P. S., Basu, P., Luesse, D. R. & Wyatt, S. E. Transcriptome and proteome responses in RNAlater preserved tissue of Arabidopsis thaliana. PLoS ONE 12, e0175943–e0175943 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    43.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.3-13. https://CRAN.R-project.org/package=raster. (2020).

    44.
    Cox, J. et al. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Ebner, J. N., Ritz, D. & von Fumetti, S. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Mol. Ecol. 28, 4453–4469 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Jimenez-Morales, D., Campos, A.R. & Von Dollen, J. artMS: Analytical R tools for Mass Spectrometry. R package version 1.5.3. https://github.com/bioadavidjm/artMS. (2020).

    49.
    Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. R package version 1.6.20. https://CRAN.R-project.org/package=VennDiagram. (2018).

    50.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2019).

    51.
    Carrillo, B., Yanofsky, C., Laboissiere, S., Nadon, R. & Kearney, R. E. Methods for combining peptide intensities to estimate relative protein abundance. Bioinform. Oxf. Engl. 26, 98–103 (2010).
    CAS  Article  Google Scholar 

    52.
    Bolstad, B. preprocessCore: A collection of pre-processing functions. R package version 1.48.0. https://github.com/bmbolstad/proprocessCore. (2019).

    53.
    Hastie, T., Tibshirani, R., Balasubramanian, N. & Chu, G. impute: Imputation for microarray data. R package version 1.60.0. (2019).

    54.
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
    Article  Google Scholar 

    55.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. (2019).

    56.
    Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559–559 (2008).
    Article  CAS  Google Scholar 

    57.
    Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–498 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Campbell-Staton, S. C., Bare, A., Losos, J. B., Edwards, S. V. & Cheviron, Z. A. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline. Mol. Ecol. 27, 2243–2255 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Horvath, S. Weighted network analysis: Applications in genomics and systems biology (Springer, New York, 2011).
    Google Scholar 

    60.
    Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

    61.
    Smyth, G. K. limma: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds Gentleman, R. et al.) 397–420 (Springer, New York, 2005). https://doi.org/10.1007/0-387-29362-0_23.
    Google Scholar 

    62.
    Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.17.4. (Comprehensive R Archive Network (CRAN), 2018).

    63.
    Stearns, S. C. & Koella, J. C. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40, 893–913 (1986).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection (Blakiston, Philadelphia, 1949).
    Google Scholar 

    65.
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
    Article  Google Scholar 

    66.
    Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5-10. https://CRAN.R-project.org/package=geosphere. (2019).

    67.
    Rieder, V. et al. DISMS2: A flexible algorithm for direct proteome-wide distance calculation of LC-MS/MS runs. BMC Bioinform. 18, 148 (2017).

    68.
    Grüning, B. et al. Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.38.1. (2019).

    75.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Fang, H. & Gough, J. dcGO: Database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Res. 41, D536–D544 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Kuhn, N. J., Setlow, B. & Setlow, P. Manganese(II) activation of 3-phosphoglycerate mutase of Bacillus megaterium: pH-Sensitive interconversion of active and inactive forms. Arch. Biochem. Biophys. 306, 342–349 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Chander, M., Setlow, B. & Setlow, P. The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn2+ and is pH sensitive. Can. J. Microbiol. 44, 759–767 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Ferrer, M., Chernikova, T. N., Yakimov, M. M., Golyshin, P. N. & Timmis, K. N. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21, 1266–1267 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Strocchi, M., Ferrer, M., Timmis, K. N. & Golyshin, P. N. Low temperature-induced systems failure in Escherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics 6, 193–206 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Visudtiphole, V., Watthanasurorot, A., Klinbunga, S., Menasveta, P. & Kirtikara, K. Molecular characterization of Calreticulin: A biomarker for temperature stress responses of the giant tiger shrimp Penaeus monodon. Aquaculture 308, S100–S108 (2010).
    CAS  Article  Google Scholar 

    82.
    Wehrly, K. E., Wang, L. & Mitro, M. Field-based estimates of thermal tolerance limits for trout: Incorporating exposure time and temperature fluctuation. Trans. Am. Fish. Soc. 136, 365–374 (2007).
    Article  Google Scholar 

    83.
    Alberts, B. et al. Molecular Biology of the Cell (Garland Science, New York, 2002).
    Google Scholar 

    84.
    Hagner-Holler, S., Pick, C., Girgenrath, S., Marden, J. H. & Burmester, T. Diversity of stonefly hexamerins and implication for the evolution of insect storage proteins. Insect Biochem. Mol. Biol. 37, 1064–1074 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Descazeaud, V., Mestre, E., Marquet, P. & Essig, M. Calcineurin regulation of cytoskeleton organization: A new paradigm to analyse the effects of calcineurin inhibitors on the kidney. J. Cell. Mol. Med. 16, 218–227 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Urra, H. et al. IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat. Cell Biol. 20, 942–953 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Tong, M. & Jiang, Y. FK506-binding proteins and their diverse functions. Curr. Mol. Pharmacol. 9, 48–65 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    88.
    Miranti, C. K. & Brugge, J. S. Sensing the environment: A historical perspective on integrin signal transduction. Nat. Cell Biol. 4, E83–E90 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).
    CAS  Article  Google Scholar 

    90.
    Snape, J. R., Maund, S. J., Pickford, D. B. & Hutchinson, T. H. Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat. Toxicol. 67, 143–154 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Nikinmaa, M. & Rytkönen, K. T. Functional genomics in aquatic toxicology—Do not forget the function. Aquat. Toxicol. 105, 16–24 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    92.
    Kearney, E. B., Ackrell, B. A. C., Mayr, M. & Singer, T. P. Activation of succinate dehydrogenase by anions and pH. J. Biol. Chem. 249, 2016–2020 (1974).
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Bissoli, G. et al. Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J. Cell Mol. Biol. 70, 704–716 (2012).
    CAS  Article  Google Scholar 

    94.
    Simčič, T. & Brancelj, A. Effects of pH on electron transport system (ETS) activity and oxygen consumption in Gammarus fossarum, Asellus aquaticus and Niphargus sphagnicolus. Freshw. Biol. 51, 686–694 (2006).
    Article  CAS  Google Scholar 

    95.
    Kadrmas, J. L. & Beckerle, M. C. The LIM domain: From the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol. 5, 920–931 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    van der Flier, A. & Sonnenberg, A. Structural and functional aspects of filamins. Biochim. Biophys. Acta BBA Mol. Cell Res. 1538, 99–117 (2001).
    Article  Google Scholar 

    97.
    Sun, H. Q., Yamamoto, M., Mejillano, M. & Yin, H. L. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274, 33179–33182 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    98.
    Diskin, S. et al. Galectin-8 promotes cytoskeletal rearrangement in trabecular meshwork cells through activation of rho signaling. PLoS ONE 7, e44400 (2012).

    99.
    Motizuki, M., Yokota, S. & Tsurugi, K. Effect of low pH on organization of the actin cytoskeleton in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1780, 179–184 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Wang, F., Sampogna, R. V. & Ware, B. R. pH dependence of actin self-assembly. Biophys. J. 55, 293–298 (1989).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Sperelakis, N. Cell Physiology Source book (Academic Press, Amsterdam, 2012).
    Google Scholar 

    102.
    Tomanek, L. Proteomics to study adaptations in marine organisms to environmental stress. J. Proteomics 105, 92–106 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    103.
    Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E. & Sokolova, I. M. Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: Evidence for oxidative stress. J. Exp. Biol. 214, 1836–1844 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    104.
    Koritzinsky, M. et al. Two phases of disulfide bond formation have differing requirements for oxygen. J. Cell Biol. 203, 615–627 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    L’Haridon, F. et al. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog. 7, e1002148 (2011).

    106.
    Richards, A. G. Studies on arthropod cuticle—XIII: The penetration of dissolved oxygen and electrolytes in relation to the multiple barriers of the epicuticle. J. Insect Physiol. 1, 23–39 (1957).
    CAS  Article  Google Scholar 

    107.
    Wang, K. et al. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4, e537–e537 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Szablowska-Gadomska, I., Zayat, V. & Buzanska, L. Influence of low oxygen tensions on expression of pluripotency genes in stem cells. Acta Neurobiol. Exp. (Warsz.) 71, 86–93 (2011).
    Google Scholar 

    109.
    Dreffs, A., Henderson, D., Dmitriev, A. V., Antonetti, D. A. & Linsenmeier, R. A. Retinal pH and acid regulation during metabolic acidosis. Curr. Eye Res. 43, 902–912 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    110.
    Raeker, M. Ö et al. Targeted deletion of the zebrafish obscurin A RhoGEF domain affects heart, skeletal muscle and brain development. Dev. Biol. 337, 432 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    111.
    Serafim, A. et al. Application of an integrated biomarker response index (IBR) to assess temporal variation of environmental quality in two Portuguese aquatic systems. Ecol. Indic. 19, 215–225 (2012).
    CAS  Article  Google Scholar 

    112.
    Berra, E., Forcella, M., Giacchini, R., Rossaro, B. & Parenti, P. Biomarkers in Caddisfly Larvae of the Species Hydropsyche pellucidula (Curtis, 1834) (Trichoptera: Hydropsychidae) measured in natural populations and after short term exposure to fenitrothion. Bull. Environ. Contam. Toxicol. 76, 863–870 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    113.
    Wernersson, A.-S. et al. The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ. Sci. Eur. 27, 7 (2015).
    Article  CAS  Google Scholar 

    114.
    Ryan, J. A. & Hightower, L. E. Stress proteins as molecular biomarkers for environmental toxicology. In Stress-Inducible Cellular Responses (eds Feige, U. et al.) (Birkhäuser, Basel, 1996). https://doi.org/10.1007/978-3-0348-9088-5_28.
    Google Scholar 

    115.
    Sanders, B. M. Stress proteins in aquatic organisms: An environmental perspective. Crit. Rev. Toxicol. 23, 49–75 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    116.
    Barata, C. et al. Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ. Toxicol. Chem. 26, 370–379 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    117.
    Dorts, J. et al. Ecotoxicoproteomics in gills of the sentinel fish species, Cottus gobio, exposed to perfluorooctane sulfonate (PFOS). Aquat. Toxicol. 103, 1–8 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    118.
    Daborn, P. J. et al. A single P450 allele associated with insecticide resistance in Drosophila. Science 297, 2253–2256 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    119.
    Amichot, M. et al. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem. 271, 1250–1257 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Dunkov, B. C. et al. The Drosophila cytochrome P450 gene Cyp6a2: Structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol. 16, 1345–1356 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Nat. Preced. https://doi.org/10.1038/npre.2010.4282.2 (2010).
    Article  Google Scholar 

    122.
    Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform. 14, 91 (2013).
    Article  Google Scholar 

    123.
    Kim, S. & Coulombe, P. A. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat. Rev. Mol. Cell Biol. 11, 75–81 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    124.
    Parker, A. L., Kavallaris, M. & McCarroll, J. A. Microtubules and their role in cellular stress in cancer. Front. Oncol. 4, 153 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    125.
    Skelly, D. A., Ronald, J. & Akey, J. M. Inherited variation in gene expression. Annu. Rev. Genomics Hum. Genet. 10, 313–332 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    126.
    Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    127.
    Arias, M. B., Poupin, M. J. & Lardies, M. A. Plasticity of life-cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: Effect of temperature variability. J. Therm. Biol. 36, 355–362 (2011).
    CAS  Article  Google Scholar 

    128.
    Place, S. P. & Hofmann, G. E. Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish. Polar Biol. 28, 261–267 (2005).
    Article  Google Scholar 

    129.
    Hotaling, S. et al. Mountain stoneflies may tolerate warming streams: evidence from organismal physiology and gene expression. bioRxiv 2019.12.16.878926 (2019). https://doi.org/10.1101/2019.12.16.878926.

    130.
    Cuellar, J. et al. Assisted protein folding at low temperature: Evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins. Biol. Open 3, 261–270 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    131.
    Cantonati, M., Füreder, L., Gerecke, R., Jüttner, I. & Cox, E. J. Crenic habitats, hotspots for freshwater biodiversity conservation: Toward an understanding of their ecology. Freshw. Sci. 31, 463–480 (2012).
    Article  Google Scholar 

    132.
    Hofmann, G. E. & Todgham, A. E. Living in the now: Physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    133.
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: An integrative view. Philos. Trans. R. Soc. B Biol. Sci. 362, 2233–2258 (2007).
    Article  CAS  Google Scholar 

    134.
    Shah, A. A. et al. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct. Ecol. https://doi.org/10.1111/1365-2435.12906 (2018).
    Article  Google Scholar 

    135.
    Treanor, H. B., Giersch, J. J., Kappenman, K. M., Muhlfeld, C. C. & Webb, M. A. H. Thermal tolerance of meltwater stonefly Lednia tumana nymphs from an alpine stream in Waterton-Glacier International Peace Park, Montana, USA. Freshw. Sci. 32, 597–605 (2013).
    Article  Google Scholar 

    136.
    Forsman, A. & Wennersten, L. Inter-individual variation promotes ecological success of populations and species: Evidence from experimental and comparative studies. Ecography 39, 630–648 (2016).
    Article  Google Scholar 

    137.
    Cogne, Y. et al. Comparative proteomics in the wild: Accounting for intrapopulation variability improves describing proteome response in a Gammarus pulex field population exposed to cadmium. Aquat. Toxicol. 214, 105244 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    138.
    Gotelli, N. J., Ellison, A. M. & Ballif, B. A. Environmental proteomics, biodiversity statistics and food-web structure. Trends Ecol. Evol. 27, 436–442 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    139.
    Liu, F. et al. New Perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLOS Pathog. 2, e29 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    140.
    Nold, S. C. & Zwart, G. Patterns and governing forces in aquatic microbial communities. Aquat. Ecol. 32, 17–35 (1998).
    CAS  Article  Google Scholar 

    141.
    Pass, D. A. et al. The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environ. Microbiol. 17, 1884–1896 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    142.
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
    CAS  Article  Google Scholar  More

  • in

    Play fighting social networks do not predict injuries from later aggression

    1.
    Smith, P. L. Play fighting and real fighting. Perspectives on their relationship. In New Aspects of Human Ethology (eds Schmitt, A. et al.) 47–64 (Plenum Press, New York, 1997).
    Google Scholar 
    2.
    Burghardt, G. M. The Genesis of Animal Play: Testing the Limits (MIT Press, Cambridge, 2005).
    Google Scholar 

    3.
    Byers, J. A. Play in ungulates. In Play in Animals and Humans (ed. Smith, P. K.) 43–65 (Blackwell, New York, 1984).
    Google Scholar 

    4.
    Thompson, K. V. Self assessment in juvenile play. In Animal Play: Evolutionary, Comparative, and Ecological Perspectives (eds Bekoff, M. & Byers, J. A.) 183–204 (Cambridge University Press, Cambridge, 1998).
    Google Scholar 

    5.
    Špinka, M., Newberry, R. C. & Bekoff, M. Mammalian play: training for the unexpected. Q. Rev. Biol. 76, 141–168 (2001).
    PubMed  Article  Google Scholar 

    6.
    Pellis, S. M. & Pellis, V. C. What is play fighting and what is it good for?. Learn. Behav. 45, 355–366 (2017).
    PubMed  Article  Google Scholar 

    7.
    Smith, P. K. Does play matter? Functional and evolutionary aspects of animal and human play. Behav. Brain Sci. 5, 139–184 (1982).
    Article  Google Scholar 

    8.
    Rothstein, A. & Griswold, G. R. Age and sex preferences for social partners by juvenile bison bulls, Bison bison. Anim. Behav. 41, 227–237 (1991).
    Article  Google Scholar 

    9.
    Watson, D. M. & Croft, D. B. Playfighting in captive red-necked wallabies, Macropus rufogriseus banksianus. Behaviour 126, 219–245 (1993).
    Article  Google Scholar 

    10.
    Bekoff, M. Social play behaviour: cooperation, fairness, trust and the evolution of morality. J. Consciousness Stud. 8, 81–90 (2001).
    Google Scholar 

    11.
    Petit, O., Bertrand, F. & Thierry, B. Social play in crested and Japanese macaques: testing the covariation hypothesis. Dev. Psychobiol. 50, 399–407 (2008).
    PubMed  CAS  Article  Google Scholar 

    12.
    Horback, K. Nosing around: play in pigs. Anim. Behav. Cogn. 1, 186–196 (2014).
    Article  Google Scholar 

    13.
    Pellis, S. M. & Pellis, V. C. Play-fighting in the Syrian golden hamster Mesocricetus auratus Waterhouse, and its relationship to serious fighting during postweaning development. Dev. Psychobiol. 21, 323–337 (1988).
    PubMed  CAS  Article  Google Scholar 

    14.
    Sharpe, L. L. Play fighting does not affect subsequent fighting success in wild meerkats. Anim. Behav. 69, 1023–1029 (2005).
    Article  Google Scholar 

    15.
    Blumstein, D. T., Chung, L. K. & Smith, J. E. Early play may predict later dominance relationships in yellow-bellied marmots (Marmota faviventris). Proc. R. Soc. B. 280, 20130485 (2013).
    PubMed  Article  Google Scholar 

    16.
    Weller, J. E., Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. Socialisation and its effect on play behaviour and aggression in the domestic pig (Sus scrofa). Sci. Rep. 9, 4180 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Cenni, C. & Fawcett, T. W. The co-evolution of juvenile play-fighting and adult competition. Ethology 124, 290–301 (2017).
    Article  Google Scholar 

    18.
    Pellis, S. M. & Pellis, V. C. Play fighting in Visayan warty pigs (Sus cebifrons): insights on restraint and reciprocity in the maintenance of play. Behaviour 153, 727–747 (2016).
    Article  Google Scholar 

    19.
    Šilerová, J., Špinka, M., Šarova, R. & Algers, B. Playing and fighting by piglets around weaning on farms, employing individual or group housing of lactating sows. Appl. Anim. Behav. Sci. 124, 83–89 (2010).
    Article  Google Scholar 

    20.
    Mauget, R. Behavioural and reproductive strategies in wild forms of Sus scrofa (European wild boar and feral pigs). In The Welfare of Pigs (ed. Sybesma, W.) 3–13 (Martinus Nijhoff, The Hague, 1981).
    Google Scholar 

    21.
    Mendl, M. The social behaviour of non-lactating sows and its implications for managing sow aggression. Pig J. 34, 9–20 (1995).
    Google Scholar 

    22.
    Gonyou, H. W. The social behaviour of pigs. In Social Behaviour in Farm Animals (eds Keeling, L. J. & Gonyou, H. W.) 147–176 (CABI, Wallingford, 2001).
    Google Scholar 

    23.
    Turner, S. P. et al. The accumulation of skin lesions and their use as a predictor of individual aggressiveness in pigs. Appl. Anim. Behav. Sci. 96, 245–259 (2006).
    Article  Google Scholar 

    24.
    Jensen, P. & Yngvesson, J. Aggression between unacquainted pigs: sequential assessment and effects of familiarity and weight. Appl. Anim. Behav. Sci. 58, 49–61 (1998).
    Article  Google Scholar 

    25.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. The influence of experience on contest assessment strategies. Sci. Rep. 7, 14492 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Martin, J. E., Ison, S. H. & Baxter, E. M. The influence of neonatal environment on piglet play behaviour and post-weaning social and cognitive development. Appl. Anim. Behav. Sci. 163, 69–79 (2015).
    Article  Google Scholar 

    27.
    Govindarajulu, P., Hunte, W., Vermeer, L. A. & Horrocks, J. A. The ontogeny of social play in a feral troop of vervet monkeys (Cercopithecus aethiops sabaeus): the function of early play. Int. J. Primatol. 14, 701–719 (1993).
    Article  Google Scholar 

    28.
    Thompson, K. V. Play-partner preferences and the function of social play in infant sable antelope, Hippotragus niger. Anim. Behav. 52, 1143–1155 (1996).
    Article  Google Scholar 

    29.
    Llamazares-Martín, C., Scopa, C., Guillén-Salazar, F. & Palagi, E. Strong competition does not always predict play asymmetry: the case of South American sea lions (Otaria flavescens). Ethology 123, 270–282 (2017).
    Article  Google Scholar 

    30.
    Lutz, M. C., Ratsimbazafy, J. & Judge, P. G. Use of social network models to understand play partner choice strategies in three primate species. Primates https://doi.org/10.1007/s10329-018-00708-7 (2018).
    Article  Google Scholar 

    31.
    Foister, S. et al. Social network properties predict chronic aggression in commercial pig systems. PLoS ONE 13, e0205122 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Stanton, M. A. & Mann, J. Early social networks predict survival in wild bottlenose dolphins. PLoS ONE 7, e47508 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Gilby, I. C. et al. Fitness benefits of coalitionary aggression in male chimpanzees. Behav. Ecol. Sociobiol. 67, 373 (2013).
    PubMed  Article  Google Scholar 

    34.
    Cheney, D. L., Silk, J. B. & Seyfarth, R. M. Network connections, dyadic bonds and fitness in wild female baboons. R. Soc. Open Sci. 3, 160255 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Lehmann, J., Majolo, B. & McFarland, R. The effects of social network position on the survival of wild Barbary macaques, Macaca sylvanus. Behav. Ecol. 27, 20–28 (2016).
    Article  Google Scholar 

    36.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. Advantages of social skills for contest resolution. R. Soc. Open Sci. 6, 181456 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    D’Eath, R. B. & Pickup, H. E. Behaviour of young growing pigs in a resident-intruder test designed to measure aggressiveness. Aggress. Behav. 28, 401–415 (2002).
    Article  Google Scholar 

    38.
    Koolhaas, J. M. et al. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J. Vis. Exp. 77, e4367 (2013).
    Google Scholar 

    39.
    Luescher, U. A., Friendship, R. M. & McKeown, D. B. Evaluation of methods to reduce fighting among regrouped gilts. Can. J. Anim. Sci. 70, 363–370 (1990).
    Article  Google Scholar 

    40.
    Turner, S. P., Sinclair, A. G. & Edwards, S. A. The interaction of liveweight and the degree of competition on drinking behaviour of growing pigs at different group sizes. Appl. Anim. Behav. Sci. 67, 321–334 (2000).
    PubMed  CAS  Article  Google Scholar 

    41.
    Newberry, R. C., Wood-Gush, D. G. M. & Hall, J. W. Playful behaviour of piglets. Behav. Process. 17, 205–216 (1988).
    CAS  Article  Google Scholar 

    42.
    Fraser, D., Phillips, P. A., Thompson, B. K. & Tennessen, T. Effect of straw on the behavior of growing pigs. Appl. Anim. Behav. Sci. 30, 307–318 (1991).
    Article  Google Scholar 

    43.
    Brown, S. M., Peters, R., Nevison, I. M. & Lawrence, A. B. Playful pigs: evidence of consistency and change in play depending on litter and developmental stage. Appl. Anim. Behav. Sci. 198, 36–43 (2018).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    44.
    Brown, S. M., Klaffenböck, M., Nevison, I. M. & Lawrence, A. B. Evidence for litter differences in play behaviour in pre-weaned pigs. Appl. Anim. Behav. Sci. 172, 17–25 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Asher, L. et al. Recent advances in the analysis of behavioural organization and interpretation as indicators of animal welfare. J. R. Soc. Interface 6, 1103–1119 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Büttner, K., Scheffler, K., Czycholl, I. & Krieter, J. Network characteristics and development of social structure of agonistic behaviour in pigs across three repeated rehousing and mixing events. Appl. Anim. Behav. Sci. 168, 24–30 (2015).
    Article  Google Scholar 

    48.
    Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).
    Article  Google Scholar 

    49.
    Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29, 555–564 (2007).
    Article  Google Scholar 

    50.
    Madden, J. R., Drewe, J. A., Pearce, G. P. & Clutton-Brock, T. H. The social network structure of a wild meerkat population: 3. Position of individuals within networks. Behav. Ecol. Sociobiol. 65, 1857–1871 (2011).
    Article  Google Scholar 

    51.
    Farine, D. assortnet: calculate the assortativity coefficient of weighted and binary networks. R package version 0.12 (2016).

    52.
    Shizuka, D. & Farine, D. R. Measuring the robustness of network community structure using assortativity. Anim. Behav. 112, 237–246 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2(1), 74 (2007).
    Google Scholar 

    55.
    Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. Package ‘mass’. Cran R 538 (2013).

    56.
    Taylor, G. T. Fighting in juvenile rats and the ontogeny of agonistic behavior. J. Comp. Physiol. Psychol. 94, 953–961 (1980).
    Article  Google Scholar 

    57.
    Pellis, S. M., Pellis, V. C. & Kolb, B. Neonatal testosterone augmentation increases juvenile play fighting but does not influence the adult dominance relationships of male rats. Aggress. Behav. 18, 437–447 (1992).
    CAS  Article  Google Scholar 

    58.
    Chaloupková, H., Illman, G., Bartoš, L. & Špinka, M. The effect of pre-weaning housing on the play and agonistic behaviour of domestic pigs. Appl. Anim. Behav. Sci. 103, 25–34 (2007).
    Article  Google Scholar 

    59.
    Flack, J. C., Girvan, M., de Waal, F. B. M. & Krakauer, D. C. Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006).
    ADS  PubMed  CAS  Article  Google Scholar 

    60.
    Abell, J. et al. A social network analysis of social cohesion in a constructed pride: implications for ex situ reintroduction of the African lion (Panthera leo). PLoS ONE 8, e82541 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Shimada, M. & Sueur, C. Social play among juvenile wild Japanese macaques (Macaca fuscata) strengthens their social bonds. Am. J. Primatol. 80, e22728 (2018).
    Article  Google Scholar 

    62.
    Shimada, M. & Sueur, C. The importance of social play networks for wild chimpanzees at Mahale Mountains National Park, Tanzania. Am. J. Primatol. 76, 1025–1036 (2014).
    PubMed  Article  Google Scholar 

    63.
    Camerlink, I., Arnott, G., Farish, M. & Turner, S. P. Complex contests and the influence of aggressiveness in pigs. Anim. Behav. 121, 71–78 (2016).
    Article  Google Scholar 

    64.
    Antonacci, D., Norscia, I. & Palagi, E. Stranger to familiar: wild strepsirhines manage xenophobia by playing. PLoS ONE 5, e13218 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Gentsch, C., Lichtsteiner, M., Frischknecht, H. R., Feer, H. & Siegfried, B. Isolation-induced locomotor hyperactivity and hypoalgesia in rats are prevented by handling and reversed by resocialization. Physiol. Behav. 43, 13–16 (1988).
    PubMed  CAS  Article  Google Scholar 

    66.
    Potegal, M. & Einon, D. Aggressive behaviors in adult rats deprived of playfighting experience as juveniles. Dev. Psychobiol. 22, 159–172 (1989).
    PubMed  CAS  Article  Google Scholar 

    67.
    Drea, C. M., Hawk, J. E. & Glickman, S. E. Aggression decreases as play emerges in infant spotted hyaenas: preparation for joining the clan. Anim. Behav. 51, 1323–1336 (1996).
    Article  Google Scholar 

    68.
    Newberry, R. C. & Wood-Gush, D. G. M. Development of some behaviour patterns in piglets under semi-natural conditions. Anim. Prod. 46, 103–109 (1988).
    Google Scholar 

    69.
    Petersen, H. V., Vestergaard, K. & Jensen, P. Integration of piglets into social groups of free-ranging domestic pigs. Appl. Anim. Behav. Sci. 23, 223–236 (1989).
    Article  Google Scholar 

    70.
    Ellis, L. et al. Sex Differences: Summarizing More Than a Century of Scientific Research (Psychology Press, New York, 2008).
    Google Scholar 

    71.
    Carter, R. N., Romanow, C. A., Pellis, S. M. & Lingle, S. Play for prey: do deer fawns play to develop species-typical anti-predator tactics or to prepare for the unexpected?. Anim. Behav. 156, 31–40 (2019).
    Article  Google Scholar 

    72.
    Byers, J. A. Play partner preferences in Siberian ibex, Capra ibex sibirica. Z. Tierpsychol. 53, 23–40 (1980).
    Article  Google Scholar 

    73.
    Berger, J. The ecology, structure and functions of social play in bighorn sheep (Ovis canadensis). J. Zool. 192, 531–542 (1980).
    Article  Google Scholar 

    74.
    Sachs, B. D. & Harris, V. S. Sex differences and developmental changes in selected juvenile activities (play) of domestic lambs. Anim. Behav. 26, 678–684 (1978).
    Article  Google Scholar 

    75.
    Reinhardt, V., Mutiso, F. & Reinhardt, A. Social behaviour and social relationships between female and male prepubertal bovine calves (Bos indicus). Appl. Anim. Behav. Sci. 4, 43–54 (1978).
    Google Scholar 

    76.
    Crowell-Davis, S. L., Houpt, K. A. & Kane, L. Play development in Welsh pony (Equus caballus) foals. Appl. Anim. Behav. Sci. 18, 119–131 (1987).
    Article  Google Scholar 

    77.
    Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. Maternal investment results in better foal condition through increased play behaviour in horses. Anim. Behav. 76, 1511–1518 (2008).
    Article  Google Scholar 

    78.
    Dobao, M. T., Rodribanez, J. & Siliŏ, L. Choice of companions in social play in piglets. Appl. Anim. Behav. Sci. 13, 259–266 (1985).
    Article  Google Scholar 

    79.
    D’Eath, R. D. & Turner, S. P. The natural behaviour of the pig. In The Welfare of Pigs (ed. Marchant-Forde, J. N.) 13–45 (Springer, Berlin, 2007).
    Google Scholar  More

  • in

    Ethnopharmacological study of native medicinal plants and the impact of pastoralism on their loss in arid to semiarid ecosystems of southeastern Iran

    1.
    Asfaw, Z. & Tadesse, M. Prospects for sustainable use and development of wild food plants in Ethiopia. Econ. Bot. 55, 47–62 (2001).
    Article  Google Scholar 
    2.
    Della, A., Paraskeva-Hadjichambi, D. & Hadjichambis, A. C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2, 34 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    WHO. Health of Indigenous Peoples. Factsheets No 326 (World Health Organisation, Geneva, 2007).
    Google Scholar 

    4.
    Kawarty, A. M. A. M. A., Behçet, L. & Cakilcioğlu, U. An ethnobotanical survey of medicinal plants in Ballakayati (Erbil, North Iraq). Turk. J. Bot. 44, 345–357 (2020).
    Article  Google Scholar 

    5.
    Satıl, F. & Selvi, S. Ethnobotanical features of Ziziphora L. (Lamiaceae) Taxa in Turkey. Int. J. Nat. Life Sci. 4, 56–65 (2020).
    Google Scholar 

    6.
    Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present) (Nobel Medicine Publication, Istanbul, 1999).
    Google Scholar 

    7.
    Nikbakht, A., Kafi, M. & Haghighi, M. The abilities and potentials of medicinal plants production and herbal medicine in Iran. Acta Hortic. 790, 259–262. https://doi.org/10.17660/actahortic.2008.790.38 (2008).
    Article  Google Scholar 

    8.
    Zeder, M. A. & Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Rÿser, R. C. Indigenous people and traditional knowledge. Berkshire Encyclopedia of Sustainability. https://www.academia.edu/841635/Indigenous_and_Traditional_Knowledge (2011).

    10.
    Gemedo-Dalle, T., Maass, B. L. & Isselstein, J. Plant biodiversity and ethnobotany of Borana pastoralists in Southern Oromia, Ethiopia. Econ. Bot. 59, 43–65 (2005).
    Article  Google Scholar 

    11.
    Little, P. D. Pastoral ecologies: Rethinking interdisciplinary paradigms and the political ecology of pastoralism in East Africa. In African Savannas: Global Narratives and Local Knowledge of Environmental Change (eds Bassett, T. J. & Crummey, D.) 161–177 (James Currey, Oxford, 2003).
    Google Scholar 

    12.
    Boardman, J., Poesen, J. & Evans, R. Socio-economic factors in soil erosion and conservation. Environ. Sci. Policy 6, 1–6 (2003).
    Article  Google Scholar 

    13.
    Gaikwad, J. et al. Combining ethnobotany and informatics to discover knowledge from data. In Ethnomedicinal Plants: Revitalizing of Traditional Knowledge of Herbs (eds Rai, M. et al.) 447–457 (Science Publishers, Enfield, 2011).
    Google Scholar 

    14.
    Brouwer, N. et al. An ethnopharmacological study of medicinal plants in New South Wales. Molecules 10, 1252–1262 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lambert, J., Srivastava, J. P. & Vietmeyer, N. Medicinal plants. World Bank Technical Papers (1997).

    16.
    Walter, K. S. & Gillett, H. J. 1997 IUCN Red List of Threatened Plants (IUCN, World Conservation Union, Cambridge, 1998).
    Google Scholar 

    17.
    Ansari-Renani, H. R., Rischkowsky, B., Mueller, J. P., Momen, S. M. S. & Moradi, S. Nomadic pastoralism in southern Iran. Pastor. Res. Policy Pract. 3, 11 (2013).
    Article  Google Scholar 

    18.
    Tashakkori, A. & Teddlie, C. SAGE Handbook of Mixed Methods in Social & Behavioral Research (SAGE, Thousand Oaks, 2010).
    Google Scholar 

    19.
    Rechinger, K.H. (ed.) Flora Iranica (Graz, 1963–2012).

    20.
    Assadi, M. et al. (eds.). Flora of Iran: No 1-89 (Iran Research Institute of Forests and Rangelands, Tehran , 1989–2016).

    21.
    Napagoda, M. T., Sundarapperuma, T., Fonseka, D., Amarasiri, S. & Gunaratna, P. An ethnobotanical study of the medicinal plants used as anti-inflammatory remedies in Gampaha District, Western Province, Sri Lanka. Scientifica (Cairo) 2018, 9395052 (2018).
    Google Scholar 

    22.
    Bano, A. et al. Quantitative ethnomedicinal study of plants used in the skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. J. Ethnobiol. Ethnomed. 10, 43 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Reyes-García, V., Huanca, T., Vadez, V., Leonard, W. & Wilkie, D. Cultural, practical, and economic value of wild plants: A quantitative study in the Bolivian Amazon. Econ. Bot. 60, 62–74 (2006).
    Article  Google Scholar 

    24.
    Tardío, J. & Pardo-de-Santayana, M. Cultural importance indices: A comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ. Bot. 62, 24–39 (2008).
    Article  Google Scholar 

    25.
    Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38, 297–306 (1997).
    Google Scholar 

    26.
    González-Hernández, M. P., Mouronte, V., Romero, R., Rigueiro-Rodríguez, A. & Mosquera-Losada, M. R. Plant diversity and botanical composition in an Atlantic heather-gorse dominated understory after horse grazing suspension: Comparison of a continuous and rotational management. Glob. Ecol. Conserv. 23, e01134 (2020).
    Article  Google Scholar 

    27.
    Davies, K. W., Bates, J. D. & Boyd, C. S. Response of planted sagebrush seedlings to cattle grazing applied to decrease fire probability. Rangel. Ecol. Manag. https://doi.org/10.1016/j.rama.2020.05.002 (2020).
    Article  Google Scholar 

    28.
    Hailu, H. Analysis of vegetation phytosociological characteristics and soil physico-chemical conditions in Harishin Rangelands of Eastern Ethiopia. Land 6, 4 (2017).
    Article  Google Scholar 

    29.
    Spellmeier, J., Périco, E., Haetinger, C., Freitas, E. M. & Morás, A. P. B. Effect of grazing on the plant community of a southern Brazilian swamp. Floresta e Ambiente 26, e20180339 (2019).
    Article  Google Scholar 

    30.
    Curtis, J. T. & McIntosh, R. P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32, 476–496 (1951).
    Article  Google Scholar 

    31.
    Mishra, R. Ecology Workbook (IBH Publishing Company, Oxford, 1968).
    Google Scholar 

    32.
    Murphy, K. P. Machine Learning a Probabilistic Perspective (MIT Press, Cambridge, 2012).
    Google Scholar 

    33.
    Tang, C., Yi, Y., Yang, Z. & Sun, J. Risk analysis of emergent water pollution accidents based on a Bayesian network. J. Environ. Manag. 165, 199–205 (2016).
    Article  Google Scholar 

    34.
    Taylor, D., Hicks, T. & Champod, C. Using sensitivity analyses in Bayesian networks to highlight the impact of data paucity and direct future analyses: A contribution to the debate on measuring and reporting the precision of likelihood ratios. Sci. Justice 56, 402–410 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Alimirzaei, F., Mohammadi Kalayeh, A., Shahraki, M. R. & Behmanesh, B. Local knowledge of medicinal plants from the point of view of nomads in the rangelands of Chehel-Kaman, North Khorasan province. J. Indig. Knowl. 4, 156–201 (2017).
    Google Scholar 

    36.
    Hosseini, M., Forouzeh, R. & Barani, H. Identification and investigation of ethnobotany of some medicinal plants in Razavi Khorasan Province. J. Med. Plants 18, 212–231 (2019).
    Google Scholar 

    37.
    Okoye, T. C., Uzor, P. F., Onyeto, C. A. & Okereke, E. K. Safe African medicinal plants for clinical studies. In Toxicological Survey of African Medicinal Plants (ed. Kuete, V.) 535–555 (Elsevier, Amsterdam, 2014).
    Google Scholar 

    38.
    Freidin, B. & Timmermans, S. Complementary and alternative medicine for children’s asthma: Satisfaction, care provider responsiveness, and networks of care. Qual. Health Res. 18, 43–55 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Simbo, D. J. An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon. J. Ethnobiol. Ethnomed. 6, 8 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Tangjitman, K., Wongsawad, C., Kamwong, K., Sukkho, T. & Trisonthi, C. Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailand. J. Ethnobiol. Ethnomed. 11, 27 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Chen, Y. et al. Phytochemical profiles and antioxidant activities in six species of ramie leaves. PLoS ONE 9, e108140–e108140 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Bahmani, M., Baharvand-Ahmadi, B., Tajeddini, P., Rafieian-Kopaei, M. & Naghdi, N. Identification of medicinal plants for the treatment of kidney and urinary stones. J. Ren. Inj. Prev. 5, 129–133 (2016).
    PubMed  Article  Google Scholar 

    43.
    Ahmed, H. M. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J. Ethnobiol. Ethnomed. 12, 8 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Nimrouzi, M. & Zarshenas, M. M. Phytochemical and pharmacological aspects of Descurainia sophia Webb ex Prantl: Modern and traditional applications. Avicenna J. Phytomed. 6, 266–272 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Miraj, S. & Kiani, S. Pharmacological activities of Carum carvi L. Der. Pharm. Lett. 8, 135–138 (2016).
    CAS  Google Scholar 

    46.
    de Lucena, R. F. P., de Lima Araújo, E. & de Albuquerque, U. P. Does the local availability of woody Caatinga plants (Northeastern Brazil) explain their use value. Econ. Bot. 61, 347–361 (2007).
    Article  Google Scholar 

    47.
    Thomas, E., Vandebroek, I. & Van Damme, P. valuation of forests and plant species in Indigenous Territory and National Park Isiboro-Sécure, Bolivia. Econ. Bot. 63, 229–241 (2009).
    Article  Google Scholar 

    48.
    Berlin, B. The common flora = the medicinal flora: Theoretical implications of a comparison of medical ethnobotanical and general floristic surveys in the Chiapas Highlands. In Symposium “Ethnobotany of southern Mexico” (Society of Economic Botany, 2003).

    49.
    Guèze, M. et al. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon. Econ. Bot. 68, 1–15 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ouarghidi, A., Powell, B., Martin, G. J. & Abbad, A. Traditional sustainable harvesting knowledge and distribution of a vulnerable wild medicinal root (A. pyrethrum var. pyrethrum) in Ait M’hamed Valley, Morocco. Econ. Bot. 71, 83–95 (2017).
    Article  Google Scholar 

    51.
    Posthouwer, C., Verheijden, T. M. S. & van Andel, T. R. A rapid sustainability assessment of wild plant extraction on the Dutch Caribbean Island of St. Eustatius. Econ. Bot. 70, 320–331 (2016).
    Article  Google Scholar 

    52.
    Papageorgiou, D., Bebeli, P. J., Panitsa, M. & Schunko, C. Local knowledge about sustainable harvesting and availability of wild medicinal plant species in Lemnos Island, Greece. J. Ethnobiol. Ethnomed. 16, 36 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Donaghy, D. J. & Fulkerson, W. J. The importance of water-soluble carbohydrate reserves on regrowth and root growth of Lolium perenne (L.). Grass Forage Sci. 52, 401–407 (1997).
    CAS  Article  Google Scholar 

    54.
    González-Tejero, M. R. et al. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. J. Ethnopharmacol. 116, 341–357 (2008).
    PubMed  Article  Google Scholar 

    55.
    Tuttolomondo, T. et al. Ethnobotanical investigation on wild medicinal plants in the Monti Sicani Regional Park (Sicily, Italy). J. Ethnopharmacol. 153, 568–586 (2014).
    PubMed  Article  Google Scholar 

    56.
    Weber, K. T. & Horst, S. Desertification and livestock grazing: The roles of sedentarization, mobility and rest. Pastor. Res. Policy Pract. 1, 19 (2011).
    Article  Google Scholar 

    57.
    Miara, M. D., Bendif, H., Ait Hammou, M. & Teixidor-Toneu, I. Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. J. Ethnopharmacol. 219, 248–256 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Rana, D., Bhatt, A. & Lal, B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari’s) of Churah subdivision, district Chamba, Western Himalaya. J. Ethnobiol. Ethnomed. 15, 10 (2019).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota

    1.
    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 1–10 (2017).
    Article  Google Scholar 

    3.
    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Marchesi, J. R. et al. The gut microbiota and host health: A new clinical frontier. Gut 65, 330–339 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lee, W. J. & Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of microbiota in immunity and inflammation. Cell 157, 121–141 (2018).
    Article  CAS  Google Scholar 

    8.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Pickard, J. M. & Núñez, G. Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. Am. J. Pathol. 189, 1300–1310 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Rosshart, S. P. et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171, 1015–1028 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Blanga-Kanfi, S. et al. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. T. Roy. Soc. B 370, 20140295 (2015).
    Article  Google Scholar 

    14.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Weldon, L. et al. The gut microbiota of wild mice. PLoS ONE 10, 1–15 (2015).
    Article  CAS  Google Scholar 

    16.
    Lavrinienko, A., et al. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME J 12 (2018).

    17.
    Lavrinienko, A., Tukalenko, E., Mappes, T. & Watts, P. C. Skin and gut microbiomes of a wild mammal respond to different environmental cues. Microbiome 6, 209 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Lavrinienko, A. et al. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment. J. Anim. Ecol. In press, https://doi.org/10.1111/1365-2656.13342 (2020).

    19.
    Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotech. 33, 1103–1108 (2015).
    CAS  Article  Google Scholar 

    20.
    Pan, H. et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. GigaScience 7, 1–8 (2018).
    CAS  Google Scholar 

    21.
    Hutterer, R., et al. Myodes glareolus. The IUCN Red List of Threatened Species e.T4973A115070929 (2016); erratum (2017).

    22.
    Lonn, E. et al. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc. Natl. Acad. Sci. USA 114, 3690–3695 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Van Cann, J., Koskela, E., Mappes, T., Sims, A. & Watts, P. C. Intergenerational fitness effects of the early life environment in a wild rodent. J. Anim. Ecol. 88, 1355–1365 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Kohl, K. D., Sadowska, E. T., Rudolf, A. M., Dearing, M. D. & Koteja, P. Experimental evolution on a wild mammal species results in modifications of gut microbial communities. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 

    25.
    Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).
    Article  Google Scholar 

    26.
    Lagkouvardos, I. et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7, 1–15 (2019).
    Article  Google Scholar 

    27.
    Tonteri, E. J. et al. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 17, 72–75 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc Natl. Acad. Sci. USA 112, 7039–7044 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasite. Vector. 8, 13–15 (2015).
    Article  Google Scholar 

    31.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP254056 (2020).

    32.
    Didion, J. P., Martin, M. & Collins, F. S. Atropos: Specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e3720 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 1–8 (2018).
    Article  CAS  Google Scholar 

    35.
    Li, D. et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Li, W. et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Sommer, D. D. et al. Minimus: A fast, lightweight genome assembler. BMC Bioinform. 8, 1–11 (2007).
    Article  CAS  Google Scholar 

    38.
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Binsanity: Unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ 5, e3035 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Parks, D. H. et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Delmont, T. O. & Eren, A. M. Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ 4, e1839 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Campbell, J. H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. USA. 110, 5540–5545 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Chen, L.-X. et al. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
    Article  CAS  Google Scholar 

    45.
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, 501–504 (2005).
    Article  CAS  Google Scholar 

    47.
    Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Edgar, R. C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 1–19 (2004).
    Article  CAS  Google Scholar 

    50.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. figshare https://doi.org/10.6084/m9.figshare.c.4910601 (2020).

    54.
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Ecol. Evol. 27, 105–117 (2019).
    CAS  Google Scholar  More