More stories

  • in

    Population genetic structure of the great star coral, Montastraea cavernosa, across the Cuban archipelago with comparisons between microsatellite and SNP markers

    1.
    Carson, H. S., Cook, G. S., López-Duarte, P. C. & Levin, L. A. Evaluating the importance of demographic connectivity in a marine metapopulation. Ecology 92, 1972–1984. https://doi.org/10.1890/11-0488.1 (2011).
    PubMed  Article  Google Scholar 
    2.
    Jackson, J. B. C., Donovan, M. K., Cramer, K. L., Lam, V. & Lam, W. Status and trends of Caribbean coral reefs: 1970–2012. Glob. Coral Reef Monit. Network, IUCN, Gland. Switz. 306 (2014).

    3.
    Palumbi, S. R. Population genetics, demographic connectivity, and the design of marine reserves. 13, 146–158, https://doi.org/10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2 (2003).

    4.
    Botsford, L. W. et al. Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28, 327–337. https://doi.org/10.1007/s00338-009-0466-z (2009).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    5.
    Galindo, H. M., Olson, D. B. & Palumbi, S. R. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr. Biol. 16, 1622–1626. https://doi.org/10.1016/j.cub.2006.06.052 (2006).
    PubMed  CAS  Article  Google Scholar 

    6.
    Rippe, J. P. et al. Population structure and connectivity of the mountainous star coral, Orbicella faveolata, throughout the wider Caribbean region. Ecol. Evol. 7, 9234–9246. https://doi.org/10.1002/ece3.3448 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Studivan, M. S. & Voss, J. D. Population connectivity among shallow and mesophotic Montastraea cavernosa corals in the Gulf of Mexico identifies potential for refugia. Coral Reefs 37, 1183–1196. https://doi.org/10.1007/s00338-018-1733-7 (2018).
    ADS  Article  Google Scholar 

    8.
    Baums, I. B., Johnson, M. E., Devlin-Durante, M. K. & Miller, M. W. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean. Coral Reefs 29, 835–842. https://doi.org/10.1007/s00338-010-0645-y (2010).
    ADS  Article  Google Scholar 

    9.
    Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619. https://doi.org/10.1038/srep21619 (2016).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    10.
    Serrano, X. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240. https://doi.org/10.1111/mec.12861 (2014).
    PubMed  CAS  Article  Google Scholar 

    11.
    Bongaerts, P. et al. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373. https://doi.org/10.1126/sciadv.1602373 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 7200. https://doi.org/10.1038/s41598-019-43479-x (2019).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    13.
    Goodbody-Gringley, G., Vollmer, S. V., Woollacott, R. M. & Giribet, G. Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Mar. Biol. 157, 2591–2602. https://doi.org/10.1007/s00227-010-1521-6 (2010).
    Article  Google Scholar 

    14.
    Goodbody-Gringley, G., Woollacott, R. M. & Giribet, G. Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar. Ecol. 33, 32–48. https://doi.org/10.1111/j.1439-0485.2011.00452.x (2012).
    ADS  CAS  Article  Google Scholar 

    15.
    Nunes, F. L. D., Norris, R. D. & Knowlton, N. Long distance dispersal and connectivity in Amphi-Atlantic corals at regional and basin scales. PLoS ONE 6, e22298. https://doi.org/10.1371/journal.pone.0022298 (2011).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    16.
    Brazeau, D. A., Lesser, M. P. & Slattery, M. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS ONE 8, e65845. https://doi.org/10.1371/journal.pone.0065845 (2013).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    17.
    Foster, N. L. et al. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol. Ecol. 21, 1143–1157. https://doi.org/10.1111/j.1365-294X.2012.05455.x (2012).
    PubMed  Article  Google Scholar 

    18.
    García-Machado, E., Ulmo-Díaz, G., Castellanos-Gell, J. & Casane, D. Patterns of population connectivity in marine organisms of Cuba. Bull. Mar. Sci. 94, 193–211. https://doi.org/10.5343/bms.2016.1117 (2018).
    Article  Google Scholar 

    19.
    Ulmo-Díaz, G. et al. Genetic differentiation in the mountainous star coral Orbicella faveolata around Cuba. Coral Reefs 37, 1217–1227. https://doi.org/10.1007/s00338-018-1722-x (2018).
    ADS  Article  Google Scholar 

    20.
    Creary, M. et al. Status of coral reefs in the northern Caribbean and western Atlantic GCRMN node in 2008. in Status of Coral Reefs of the World (ed. Wilkinson, C.) 239–252 (2008).

    21.
    Claro, R., Reshetnikov, Y. S. & Alcolado, P. M. Physical attributes of coastal Cuba. Ecol. Mar. fishes Cuba 1–20 (2001).

    22.
    Whittle, D. & Rey Santos, O. Protecting Cuba’s environment: efforts to design and implement effective environmental laws and policies in Cuba. Cuban Stud. 37, 73–103. https://doi.org/10.1353/cub.2007.0018 (2006).
    Article  Google Scholar 

    23.
    Caballero, H., Alcolado, P. M. & Semidey, A. Condición de los arrecifes de coral frente a costas con asentamientos humanos y aportes terrígenos: el caso del litoral habanero. Cuba. Rev. Ciencias Mar. y Costeras 1, 49. https://doi.org/10.15359/revmar.1.3 (2009).
    Article  Google Scholar 

    24.
    González-Díaz, P. et al. Status of Cuban coral reefs. Bull. Mar. Sci. 94, 229–247. https://doi.org/10.5343/bms.2017.1035 (2018).
    Article  Google Scholar 

    25.
    Alcolado, P. M., Caballero, H. & Perera, S. Tendencia del cambio en el cubrimiento vivo por corales pétreos en los arrecifes coralinos de Cuba. Ser. Ocean. 5, 1–14 (2009).
    Google Scholar 

    26.
    Toth, L. T. et al. Do no-take reserves benefit Florida’s corals? 14 years of change and stasis in the Florida Keys National Marine Sanctuary. Coral Reefs 33, 565–577. https://doi.org/10.1007/s00338-014-1158-x (2014).
    ADS  Article  Google Scholar 

    27.
    Zlatarski, V. N. & Estalella, N. M. Los esclaractinios de Cuba. (2017).

    28.
    Zlatarski, V. N. Investigations on mesophotic coral ecosystems in Cuba (1970–1973) and Mexico (1983–1984). CICIMAR Oceánides 33, 27–43 (2018).
    Google Scholar 

    29.
    Reed, J. et al. Cuba’s mesophotic coral reefs and associated fish communities. Rev. Investig. Mar. 38, 56–125 (2018).
    Google Scholar 

    30.
    Baisre, J. A. An overview of Cuban commercial marine fisheries: the last 80 years. Bull. Mar. Sci. 94, 359–375. https://doi.org/10.5343/bms.2017.1015 (2018).
    Article  Google Scholar 

    31.
    Gil-Agudelo, D. L. et al. Coral reefs in the Gulf of Mexico large marine ecosystem: conservation status, challenges, and opportunities. Front. Mar. Sci. 6, 807. https://doi.org/10.3389/fmars.2019.00807 (2020).
    Article  Google Scholar 

    32.
    Perera Valderrama, S. et al. Marine protected areas in Cuba. Bull. Mar. Sci. 94, 423–442. https://doi.org/10.5343/bms.2016.1129 (2018).
    Article  Google Scholar 

    33.
    NOAA. Sister Sanctuary: Memorandum of Understanding. (2015).

    34.
    Budd, A. F., Nunes, F. L. D., Weil, E. & Pandolfi, J. M. Polymorphism in a common Atlantic reef coral (Montastraea cavernosa) and its long-term evolutionary implications. Evol. Ecol. 26, 265–290. https://doi.org/10.1007/s10682-010-9460-8 (2012).
    Article  Google Scholar 

    35.
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the `deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29, 309–327. https://doi.org/10.1007/s00338-009-0581-x (2010).
    Article  Google Scholar 

    36.
    Reed, J. K. Deepest distribution of Atlantic hermaptypic corals discovered in the Bahamas. Proc. Fifth Int. Coral Reef Congr. 6, 249–254 (1985).
    Google Scholar 

    37.
    Szmant, A. M. Sexual reproduction by the Caribbean reef corals Montastrea annularis and M. cavernosa. Mar. Ecol. Prog. Ser. 74, 13–25. https://doi.org/10.3354/meps074013 (1991).
    ADS  Article  Google Scholar 

    38.
    Highsmith, R. C., Lueptow, R. L. & Schonberg, S. C. Growth and bioerosion of three massive corals on the Belize barrier reef. Mar. Ecol. Prog. Ser. 13, 261–271 (1983).
    ADS  Article  Google Scholar 

    39.
    Kitchen, S. A., Crowder, C. M., Poole, A. Z., Weis, V. M. & Meyer, E. De novo assembly and characterization of four anthozoan (Phylum Cnidaria) transcriptomes. G3 (Genes|Genomes|Genetics). 5, 2441–2452, https://doi.org/10.1534/g3.115.020164 (2015).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    40.
    Matz Lab. Montastraea cavernosa annotated genome. (2018).

    41.
    Drury, C., Pérez Portela, R., Serrano, X. M., Oleksiak, M. & Baker, A. C. Fine-scale structure among mesophotic populations of the great star coral Montastraea cavernosa revealed by SNP genotyping. Ecol. Evol. 1–11, https://doi.org/10.1002/ece3.6340 (2020).

    42.
    Ellegren, H. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445. https://doi.org/10.1038/nrg1348 (2004).
    PubMed  CAS  Article  Google Scholar 

    43.
    Joshi, D., Ram, R. N. & Lohani, P. Microsatellite markers and their application in fisheries. Int. J. Adv. Agric. Sci. Technol. 4, 67–104 (2017).
    Google Scholar 

    44.
    Jarne, P. & Lagoda, P. J. L. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424–429. https://doi.org/10.1016/0169-5347(96)10049-5 (1996).
    PubMed  CAS  Article  Google Scholar 

    45.
    Flores-Rentería, L. & Krohn, A. Scoring microsatellite loci. in Methods in molecular biology (ed. Kantartzi, S. K.) 319–336, https://doi.org/10.1007/978-1-62703-389-3_21 (Elsevier, 2013).

    46.
    Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92. https://doi.org/10.1038/nrg.2015.28 (2016).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    47.
    Davey, J. L. & Blaxter, M. W. RADseq: next-generation population genetics. Brief. Funct. Genomics 9, 416–423. https://doi.org/10.1093/bfgp/elq031 (2010).
    PubMed  CAS  Article  Google Scholar 

    48.
    Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810. https://doi.org/10.1038/nmeth.2023 (2012).
    PubMed  CAS  Article  Google Scholar 

    49.
    Bradbury, I. R. et al. Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol. Ecol. 24, 5130–5144. https://doi.org/10.1111/mec.13395 (2015).
    PubMed  CAS  Article  Google Scholar 

    50.
    Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius. L. Mol. Ecol. 25, 2997–3018. https://doi.org/10.1111/mec.13613 (2016).
    PubMed  Article  Google Scholar 

    51.
    Bohling, J., Small, M., Von Bargen, J., Louden, A. & DeHaan, P. Comparing inferences derived from microsatellite and RADseq datasets: a case study involving threatened bull trout. Conserv. Genet. 20, 329–342. https://doi.org/10.1007/s10592-018-1134-z (2019).
    CAS  Article  Google Scholar 

    52.
    Thornhill, D. J., Xiang, Y., Fitt, W. K. & Santos, S. R. Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS ONE https://doi.org/10.1371/journal.pone.0006262 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Eckert, R. J., Reaume, A. M., Sturm, A. B., Studivan, M. S. & Voss, J. D. Depth influences Symbiodiniaceae associations among Montastraea cavernosa corals on the Belize Barrier Reef. Front. Microbiol. 11, 1–13. https://doi.org/10.3389/fmicb.2020.00518 (2020).
    Article  Google Scholar 

    54.
    Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080. https://doi.org/10.1111/1755-0998.13004 (2019).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    55.
    Pochon, X., Putnam, H. M., Burki, F. & Gates, R. D. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS ONE https://doi.org/10.1371/journal.pone.0029816 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    LaJeunesse, T. C. & Thornhill, D. J. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE https://doi.org/10.1371/journal.pone.0029013 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Manzello, D. P. et al. Role of host genetics and heat-tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob. Change Biol. 25, 1016–1031. https://doi.org/10.1111/gcb.14545 (2018).
    ADS  Article  Google Scholar 

    58.
    Warner, M. E., LaJeunesse, T. C., Robison, J. D. & Thur, R. M. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Ocean. https://doi.org/10.4319/lo.2006.51.4.1887 (2006).
    Article  Google Scholar 

    59.
    Finney, J. C. et al. The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb. Ecol. 60, 250–263. https://doi.org/10.1007/s00248-010-9681-y (2010).
    PubMed  Article  Google Scholar 

    60.
    Bongaerts, P. et al. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci. Rep. https://doi.org/10.1038/srep07652 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Reed, J. et al. Cruise report Cuba’s twilight zone reefs: Remotely Operated Vehicle surveys of deep/mesophotic coral reefs and associated fish communities of Cuba. (2017).

    62.
    Arriaza, L. et al. Modelación numérica de corrientes marinas alrededor del occidente de Cuba. Serie Oceanológica. 10, 11–22. (2012).
    Google Scholar 

    63.
    Gordon, A. & Hannon, G. FASTX-Toolkit. FASTQ/A short-reads pre-processing tools. (2010). Available at: https://hannonlab.cshl.edu/fastx_toolkit/.

    64.
    Bayer, T. et al. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS ONE https://doi.org/10.1371/journal.pone.0035269 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Davies, S. W., Ries, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the coral Siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification. Front. Mar. Sci. 5, 1–14. https://doi.org/10.3389/fmars.2018.00150 (2018).
    Article  Google Scholar 

    66.
    Ladner, J. T., Barshis, D. J. & Palumbi, S. R. Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evol. Biol. 12, 217. https://doi.org/10.1186/1471-2148-12-217 (2012).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    67.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    68.
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356. https://doi.org/10.1186/s12859-014-0356-4 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Peakall, R. & Smouse, P. E. GenALEx 65: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    70.
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of Molecular Variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
    PubMed  PubMed Central  CAS  Google Scholar 

    71.
    Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
    MathSciNet  MATH  Article  Google Scholar 

    72.
    Prevosti, A., Ocaña, J. & Alonso, G. Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theor. Appl. Genet. 45, 231–241. https://doi.org/10.1007/BF00831894 (1975).
    PubMed  CAS  Article  Google Scholar 

    73.
    Kamvar, Z. N., Tabima, J. F. & Gr̈unwald, N. J. ,. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 1–14. https://doi.org/10.7717/peerj.281 (2014).
    Article  Google Scholar 

    74.
    R Core Team. R: A language and environment for statistical computing. (2019).

    75.
    Jombart, T. & Ahmed, I. adegenet 13–1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    76.
    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).
    PubMed  CAS  Google Scholar 

    77.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    PubMed  PubMed Central  CAS  Google Scholar 

    78.
    Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8, 1–5. https://doi.org/10.1371/journal.pone.0070651 (2013).
    CAS  Article  Google Scholar 

    79.
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
    Article  Google Scholar 

    80.
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140. https://doi.org/10.1111/mec.12354 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952. https://doi.org/10.1111/1755-0998.12129 (2013).
    PubMed  CAS  Article  Google Scholar 

    82.
    Oksanen, J. et al. Vegan: community ecology package. (2019).

    83.
    Alexander, D. H. D., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    84.
    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702. https://doi.org/10.1534/genetics.113.154138 (2013).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    85.
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993. https://doi.org/10.1534/genetics.108.092221 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
    PubMed  CAS  Article  Google Scholar 

    87.
    Centurioni, L. R. & Niiler, P. P. On the surface currents of the Caribbean Sea. Geophys. Res. Lett. 30, 10–13. https://doi.org/10.1029/2002GL016231 (2003).
    Article  Google Scholar 

    88.
    Candela, J. et al. The flow through the gulf of Mexico. J. Phys. Oceanogr. 49, 1381–1401. https://doi.org/10.1175/JPO-D-18-0189.1 (2019).
    ADS  Article  Google Scholar 

    89.
    Kourafalou, V., Androulidakis, Y., Le Hénaff, M. & Kang, H. S. The Dynamics of Cuba Anticyclones (CubANs) and interaction with the Loop Current/Florida Current system. J. Geophys. Res. Ocean. 122, 7897–7923. https://doi.org/10.1002/2017JC012928 (2017).
    ADS  Article  Google Scholar 

    90.
    Arriaza, L. et al. Marine current estimations in southeast Cuban shelf. Ser. Ocean. 4, 1–10 (2008).
    Google Scholar 

    91.
    Carracedo-Hidalgo, D., Reyes-Perdomo, D., Calzada-estrada, A., Chang-Domínguez, D. & Rodríguez-Pupo, A. Characterization of sea currents in sea adjacent to Cuba . Main trends in the last years. Rev. Cuba. Meteorol. 25, (2019).

    92.
    Frys, C. et al. Fine-scale coral connectivity pathways in the Florida Reef Tract: implications for conservation and restoration. Front. Mar. Sci. 7, 1–42. https://doi.org/10.3389/fmars.2020.00312 (2020).
    Article  Google Scholar 

    93.
    Kuba, A. Transgenerational effects of thermal stress: impacts on and beyond coral reproduction. (Nova Southeastern University, 2016).

    94.
    Claro, R., Lindeman, K. C., Kough, A. S. & Paris, C. B. Biophysical connectivity of snapper spawning aggregations and marine protected area management alternatives in Cuba. Fish. Oceanogr. 28, 33–42. https://doi.org/10.1111/fog.12384 (2019).
    Article  Google Scholar 

    95.
    Holstein, D. M., Paris, C. B. & Mumby, P. J. Consistency and inconsistency in multispecies population network dynamics of coral reef ecosystems. Mar. Ecol. Prog. Ser. 499, 1–18. https://doi.org/10.3354/meps10647 (2014).
    ADS  Article  Google Scholar 

    96.
    Szmant, A. M. Reproductive ecology of Caribbean reef corals. Coral Reefs 5, 43–53. https://doi.org/10.1007/BF00302170 (1986).
    ADS  Article  Google Scholar 

    97.
    Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286. https://doi.org/10.1186/s12864-016-2583-8 (2016).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    98.
    Devlin-Durante, M. K. & Baums, I. B. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral. Acropora palmata. PeerJ 5, e4077. https://doi.org/10.7717/peerj.4077 (2017).
    PubMed  CAS  Article  Google Scholar 

    99.
    Wang, J., Feng, C., Jiao, T., Von Wettberg, E. B. & Kang, M. Genomic signature of adaptive divergence despite strong nonadaptive forces on Edaphic Islands: a case study of Primulina juliae. Genome Biol. Evol. 9, 3495–3508. https://doi.org/10.1093/gbe/evx263 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    100.
    Ramos-Silva, P. et al. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol. Biol. Evol. 30, 2099–2112. https://doi.org/10.1093/molbev/mst109 (2013).
    PubMed  PubMed Central  CAS  Article  Google Scholar 

    101.
    Takeuchi, T., Yamada, L., Shinzato, C., Sawada, H. & Satoh, N. Stepwise evolution of coral biomineralization revealed with genome-wide proteomics and transcriptomics. PLoS ONE https://doi.org/10.1371/journal.pone.0156424 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    102.
    Aranda, M. et al. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol. Ecol. 20, 2955–2972. https://doi.org/10.1111/j.1365-294X.2011.05153.x (2011).
    PubMed  CAS  Article  Google Scholar 

    103.
    Reynolds, W. S., Schwarz, J. A. & Weis, V. M. Symbiosis-enhanced gene expression in cnidarian-algal associations: cloning and characterization of a cDNA, sym32, encoding a possible cell adhesion protein. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 33–44. https://doi.org/10.1016/S0742-8413(00)00099-2 (2000).
    CAS  Article  Google Scholar 

    104.
    Iguchi, A. et al. Apparent involvement of a β1 type integrin in coral fertilization. Mar. Biotechnol. 9, 760–765. https://doi.org/10.1007/s10126-007-9026-0 (2007).
    PubMed  CAS  Article  Google Scholar 

    105.
    Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91, 990–1003. https://doi.org/10.1890/09-0313.1 (2010).
    PubMed  Article  Google Scholar 

    106.
    Klepac, C. et al. Seasonal stability of coral-Symbiodinium associations in the subtropical coral habitat of St. Lucie Reef, Florida. Mar. Ecol. Prog. Ser. 532, 137–151. https://doi.org/10.3354/meps11369 (2015).
    ADS  Article  Google Scholar 

    107.
    Polinski, J. M. & Voss, J. D. Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank. Coral Reefs 37, 779–789. https://doi.org/10.1007/s00338-018-1701-2 (2018).
    ADS  Article  Google Scholar 

    108.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 1–11. https://doi.org/10.1016/j.cub.2018.07.008 (2018).
    CAS  Article  Google Scholar 

    109.
    Swain, T. D., Chandler, J., Backman, V. & Marcelino, L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct. Ecol. 31, 172–183. https://doi.org/10.1111/1365-2435.12694 (2017).
    Article  Google Scholar 

    110.
    Hodel, R. G. J. et al. Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Sci. Rep. 7, 1–14. https://doi.org/10.1038/s41598-017-16810-7 (2017).
    CAS  Article  Google Scholar 

    111.
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness — implications for brown trout conservation. Ecol. Evol. 9, 2106–2120. https://doi.org/10.1002/ece3.4905 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    112.
    Puckett, E. E. Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. Conserv. Genet. Resour. 9, 289–304. https://doi.org/10.1007/s12686-016-0643-7 (2017).
    Article  Google Scholar 

    113.
    Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170. https://doi.org/10.1371/journal.pone.0045170 (2012).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    114.
    Luikart, G., Sherwin, W. B., Steele, B. M. & Allendorf, F. W. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 7, 963–974. https://doi.org/10.1046/j.1365-294x.1998.00414.x (1998).
    PubMed  CAS  Article  Google Scholar 

    115.
    Willing, E.-M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS ONE 7, e42649. https://doi.org/10.1371/journal.pone.0042649 (2012).
    ADS  PubMed  PubMed Central  CAS  Article  Google Scholar 

    116.
    Nazareno, A. G., Bemmels, J. B., Dick, C. W. & Lohmann, L. G. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol. Ecol. Resour. 17, 1136–1147. https://doi.org/10.1111/1755-0998.12654 (2017).
    PubMed  CAS  Article  Google Scholar  More

  • in

    China’s researchers have valuable experiences that the world needs to hear about

    EDITORIAL
    22 September 2020

    As China prepares to take on a crucial role in the governance of global biodiversity, its researchers must be at the table.

    China’s researchers have shown that the country’s largest body of fresh water, Poyang Lake (pictured) in Jianxi province, has been drying out, in part because of the Three Gorges Dam.Credit: Fu Jianbin/Xinhua/ZUMA Wire

    Last week, the United Nations confirmed that the world has failed, again, to achieve its goals to protect nature. This grim conclusion was delivered in the fifth edition of the United Nations Global Biodiversity Outlook report.
    The report from the UN Convention on Biological Diversity reviewed progress towards 20 biodiversity targets that the convention’s participating countries set for themselves in Aichi, Japan, a decade ago (www.cbd.int/gbo).
    None of the targets, which include making progress towards the sustainable harvesting of fish, controlling the spread of invasive species and preventing the extinction of threatened wildlife, will have been achieved by the deadline at the end of this year.
    This is no time for regret or apology, but for urgency to act. Last year, an analysis by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services revealed that some one million plant and animal species are at risk of extinction. And the wildlife charity WWF’s latest Living Planet Index, published earlier this month (see go.nature.com/32wzvdz), was similarly sobering, stating that vertebrate populations monitored between 1970 and 2017 have declined by an average of 68%.
    All nations must do more, but some of the greatest responsibility now rests on the shoulders of China: the nation, along with the leaders of the UN biodiversity convention, will jointly host the next Conference of the Parties (COP) in Kunming next year. That summit, originally scheduled for this year, is where biodiversity targets for the next decade must be set.
    As we have written before, the previous targets were destined to fail, in part because their format made progress hard to measure, and because countries did not need to report on what they were doing. This must now change. The targets, furthermore, need to be more closely aligned with the UN System of Environmental Economic Accounting, which is becoming the global standard for environmental reporting. Without these changes, the next set of biodiversity targets will almost certainly fail again.
    At the same time, China’s biodiversity scientists and policy researchers should be at the table, too, as plans for Kunming start to take shape. The country has decades of experience of studying how to — and how not to — balance economic development with controlling species and ecosystems loss. The world needs to hear these stories, in all their complexity.
    Learn from China
    The Global Biodiversity Outlook report confirms that known species are on an accelerated path to extinction, with cycad and coral species among the groups most at risk. The report shows that, although deforestation has slowed in the past decade, forests are still being splintered by agriculture, tree-felling and urban growth. Such fragmentation will further harm biodiversity and increase carbon emissions.
    Demand for food and agricultural production continue to be the main drivers of biodiversity loss. And governments are not helping. On average, they invest some US$500 billion per year in initiatives that harm the environment — eclipsing financing for biodiversity projects by a factor of 6, the report says.
    China has a set of experiences that could help the world learn valuable lessons. Its rapid economic growth lifted a generation out of poverty; however, this created a cascade of environmental problems, not least elevated pollution in the air and on land. People in China rightly questioned their leaders for underestimating — if not downplaying — the environmental and social impacts of its industrialization. Partly in response, China’s authorities have been working with researchers from China and around the world to chart a greener way forward.
    For example, national and local administrations have been devising and experimenting with environmental targets, and creating mechanisms for monitoring and reporting progress towards them — albeit with mixed success.
    China’s national biodiversity strategy includes creating what it calls ‘redlines’ — areas where human activities are restricted to protect biodiversity — across the country.
    Then there’s China’s US$6-trillion Belt and Road Initiative — a massive programme to build roads, ports and infrastructure, which will run through natural habitats across Asia, Europe and Africa. Much of this investment did not initially come with safeguards to mitigate environmental risks — but these are now being actively studied.
    And last but not least, China has a large community of researchers working to quantify, in monetary terms, the value of natural capital and ecosystem services, so that people and policymakers can more clearly understand that nature’s services to people do not come for free.
    On 30 September, heads of governments will meet at the UN for a day of talks on biodiversity, ahead of next year’s Kunming COP. Nature spoke to a number of representatives of national delegations who plan to attend this meeting, including researchers and non-governmental observers. All want the Kunming COP to succeed in bringing nations together and reaching an agreement on targets that are measurable and meaningful. But they expressed concern over the limited public engagement from China’s government about its goals or strategy for Kunming — and the relatively limited involvement of its researchers in the process so far.
    Scientists in China have been central to their country’s conservation and economic-development journey. Their collective experience on what works, and what doesn’t, can provide important learning opportunities for countries as they look to slow down and eventually reverse bio-diversity and ecosystem loss. These researchers are in the academy of sciences; in universities; in the academy of environmental planning; and in the community of Chinese and international non-governmental organizations.
    Many are also active in the China Council for Inter-national Cooperation on Environment and Development, an organization located in both Canada and China, which last week concluded a two-day conference presenting its latest research outputs. This important but little-known advisory body, now nearly three decades old, has been instrumental in connecting China’s environmental-science and environmental-policy communities with international counterparts.
    Next year will be the first time that China has hosted an international environmental meeting — similar to the 2015 Paris climate accords — where the stakes are too high to fail. It must draw on its rich diversity of talent and experience. Other nations’ researchers must be equally forthcoming with their knowledge. All sides must put aside political differences to agree on ambitious targets, ways to achieve them and methods to measure that progress.
    The best way to preserve and revive biodiversity is to acknowledge where we’ve all failed it before, to learn from that and to try again, together.

    Nature 585, 481-482 (2020)
    doi: 10.1038/d41586-020-02697-4

    Latest on:

    Biodiversity

    Government

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More

  • in

    Estimating retention benchmarks for salvage logging to protect biodiversity

    1.
    Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 4, 806–810 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Kurz, W. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
    PubMed  Google Scholar 

    4.
    Müller, J. et al. Increasing disturbance demands new policies to conserve intact forest. Conserv. Lett. 12, e12449 (2019).
    Google Scholar 

    5.
    Lindenmayer, D., Burton, P. J. & Franklin, J. F. Salvage Logging and its Ecological Consequences. (Island Press, 2008).

    6.
    Leverkus, A. B. et al. Salvage logging effects on regulating ecosystem services and fuel loads. Front. Ecol. Environ. 18, 391–400 (2020).
    Google Scholar 

    7.
    Thorn, S. et al. Impacts of salvage logging on biodiversity-a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).
    PubMed  Google Scholar 

    8.
    Cobb, T. P. et al. Effects of postfire salvage logging on deadwood-associated beetles. Conserv. Biol. 25, 94–104 (2011).
    CAS  PubMed  Google Scholar 

    9.
    Leverkus, A. B., Lindenmayer, D. B., Thorn, S. & Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27, 1140–1154 (2018).
    Google Scholar 

    10.
    Morissette, J. L., Cobb, T. P., Brigham, R. M. & James, P. C. The response of boreal forest songbird communities to fire and post-fire harvesting. Can. J. Res. Can. Rech. 32, 2169–2183 (2002).
    Google Scholar 

    11.
    Georgiev, K. B. et al. Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. J. Appl. Ecol. 1365-2664, 13599 (2020).
    Google Scholar 

    12.
    Lindenmayer, D. B., Mcburney, L., Blair, D., Wood, J. & Banks, S. C. From unburnt to salvage logged: quantifying bird responses to different levels of disturbance severity. J. Appl. Ecol. 55, 1626–1636 (2018).

    13.
    Blair, D. P., McBurney, L. M., Blanchard, W., Banks, S. C. & Lindenmayer, D. B. Disturbance gradient shows logging affects plant functional groups more than fire. Ecol. Appl. 26, 2280–2301 (2016).
    PubMed  Google Scholar 

    14.
    Noss, R. F. & Lindenmayer, D. B. The ecological effects of salvage logging after natural disturbance. Conserv. Biol. 20, 946–948 (2006).
    Google Scholar 

    15.
    Hutto, R. L. Toward meaningful snag-management guidelines for postfire salvage logging in North American conifer forests. Conserv. Biol. 20, 984–993 (2006).
    PubMed  Google Scholar 

    16.
    Hutto, R. L. The ecological importance of severe wildfires: some like it hot. Ecol. Appl. 18, 1827–1834 (2008).
    PubMed  Google Scholar 

    17.
    Thorn, S., Müller, J. & Leverkus, A. B. Preventing European forest diebacks. Science 365, 1388.2–1388 (2019).
    Google Scholar 

    18.
    Stokstad, E. Salvage logging research continues to generate sparks. Science 311, 761 (2006).
    CAS  PubMed  Google Scholar 

    19.
    Franklin, J. F. et al. Threads of continuity: ecosystem disturbances, biological legacies and ecosystem recovery. Conserv. Biol. Pract. 1, 8–16 (2000).
    Google Scholar 

    20.
    Lindenmayer, D., Thorn, S. & Banks, S. Please do not disturb ecosystems further. Nat. Ecol. Evol. 1, 0031 (2017).
    Google Scholar 

    21.
    Burivalova, Z., Şekercioğlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).
    CAS  PubMed  Google Scholar 

    22.
    França, F. M., Frazão, F. S., Korasaki, V., Louzada, J. & Barlow, J. Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biol. Conserv. 216, 115–122 (2017).
    Google Scholar 

    23.
    Gustafsson, L. et al. Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62, 633–645 (2012).
    Google Scholar 

    24.
    Schmiegelow, F. K. A., Stepnisky, D. P., Stambaugh, C. A. & Koivula, M. Reconciling salvage logging of boreal forests with a natural-disturbance management model. Conserv. Biol. 20, 971–983 (2006).
    PubMed  Google Scholar 

    25.
    Ministry of Agriculture and Forestry, F. Forest Damages Prevention Act (1087/2013). (2013).

    26.
    De Grandpré, L. et al. Incorporating insect and wind disturbances in a natural disturbance-based management framework for the boreal forest. Forests 9, 1–20 (2018).
    Google Scholar 

    27.
    Chao, A., Colwell, R. K., Gotelli, N. J. & Thorn, S. Proportional mixture of two rarefaction/extrapolation curves to forecast biodiversity changes under landscape transformation. Ecol. Lett. 22, 1913–1922 (2019).
    PubMed  Google Scholar 

    28.
    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).
    ADS  PubMed  Google Scholar 

    29.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Thorn, S. et al. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology 0, 1–8 (2020).
    Google Scholar 

    31.
    Hyvärinen, E., Kouki, J. & Martikainen, P. Fire and green-tree retention in conservation of red-listed and rare deadwood-dependent beetles in Finnish boreal forests. Conserv. Biol. 20, 1711–1719 (2006).
    PubMed  Google Scholar 

    32.
    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679 (2014).
    PubMed  PubMed Central  Google Scholar 

    33.
    Entling, W., Schmidt, M. H., Bacher, S., Brandl, R. & Nentwig, W. Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr. 16, 440–448 (2007).
    Google Scholar 

    34.
    Swanson, M. E. et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 9, 117–125 (2011).
    Google Scholar 

    35.
    Lindenmayer, D. B. & Ough, K. Salvage logging in the montane ash eucalypt forests of the Central Highlands of Victoria and its potential impacts on biodiversity. Conserv. Biol. 20, 1005–1015 (2006).
    CAS  PubMed  Google Scholar 

    36.
    Banks-Leite, C. et al. Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. J. Appl. Ecol. 51, 849–859 (2014).
    PubMed  PubMed Central  Google Scholar 

    37.
    Kortmann, M. et al. Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Anim. Conserv. 21, 21–30 (2018).
    Google Scholar 

    38.
    Mikoláš, M. et al. Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. Ecol. Manag. 405, 210–218 (2017).
    Google Scholar 

    39.
    Leverkus, A. B., Gustafsson, L., Rey Benayas, J. M. & Castro, J. Does post-disturbance salvage logging affect the provision of ecosystem services? A systematic review protocol. Environ. Evid. 4, 16 (2015).
    Google Scholar 

    40.
    Hutto, R. L. & Young, J. Regional landbird monitoring: perspectives from the Northern Rocky Mountains. Wildl. Soc. Bull. 30, 738–750 (2002).
    Google Scholar 

    41.
    Zmihorski, M. The effect of windthrow and its management on breeding bird communities in a managed forest. Biodivers. Conserv. 19, 1871–1882 (2010).
    Google Scholar 

    42.
    Thorn, S. et al. Changes in the dominant assembly mechanism drive species loss caused by declining resources. Ecol. Lett. 19, 163–170 (2016).
    MathSciNet  PubMed  Google Scholar 

    43.
    Leverkus, A. B. et al. Salvage logging effects on regulating and supporting ecosystem services–a systematic map. Can. J. Res. 18, 1–18 (2018).
    Google Scholar 

    44.
    Mehr, M., Brandl, R., Kneib, T. & Müller, J. The effect of bark beetle infestation and salvage logging on bat activity in a national park. Biodivers. Conserv. 21, 2775–2786 (2012).
    Google Scholar 

    45.
    Fontaine, J. B., Donato, D. C., Robinson, W. D., Law, B. E. & Kauffman, J. B. Bird communities following high-severity fire: response to single and repeat fires in a mixed-evergreen forest, Oregon, USA. Ecol. Manag. 257, 1496–1504 (2009).
    Google Scholar 

    46.
    Cahall, R. E. & Hayes, J. P. Influences of postfire salvage logging on forest birds in the Eastern Cascades, Oregon, USA. Ecol. Manag. 257, 1119–1128 (2009).
    Google Scholar 

    47.
    Castro, J., Moreno-Rueda, G. & Hódar, J. Experimental test of postfire management in pine forests: impact of salvage logging versus partial cutting and nonintervention on bird-species assemblages. Conserv. Biol. 24, 810–819 (2010).
    PubMed  Google Scholar 

    48.
    Rost, J., Clavero, M., Brotons, L. & Pons, P. The effect of postfire salvage logging on bird communities in Mediterranean pine forests: the benefits for declining species. J. Appl. Ecol. 49, 644–651 (2012).
    Google Scholar 

    49.
    Zmihorski, M. et al. Early post-fire bird community in European boreal forest: comparing salvage-logged with non-intervention areas. Glob. Ecol. Conserv. 18, e00636 (2019).
    Google Scholar 

    50.
    Choi, C. Y., Lee, E. J., Nam, H. Y. & Lee, W. S. Effects of postfire logging on bird populations and communities in burned forests. J. Korean . Soc. 96, 115–123 (2007).
    Google Scholar 

    51.
    Lee, E.-J., Lee, W.-S., Son, S. H. & Rhim, S.-J. Differences in bird communities in postfire silvicultural practices stands within pine forest of South Korea. Landsc. Ecol. Eng. 7, 137–143 (2011).
    Google Scholar 

    52.
    Koivula, M. & Spence, J. R. Effects of post-fire salvage logging on boreal mixed-wood ground beetle assemblages (Coleoptera, Carabidae). Ecol. Manag. 236, 102–112 (2006).
    Google Scholar 

    53.
    Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. Ecol. Manag. 391, 9–18 (2017).
    Google Scholar 

    54.
    Hernández-Hernández, R., Castro, J., Del Arco Aguilar, M., Fernández-López, Á. B. & González-Mancebo, J. M. Post-fire salvage logging imposes a new disturbance that retards succession: the case of bryophyte communities in a Macaronesian laurel forest. Forests 8, 1–16 (2017).
    Google Scholar 

    55.
    Thorn, S. et al. Guild-specific responses of forest Lepidoptera highlight conservation-oriented forest management – implications from conifer-dominated forests. Ecol. Manag. 337, 41–47 (2015).
    Google Scholar 

    56.
    Durska, E. Effects of disturbances on scuttle flies (Diptera: Phoridae) in Pine Forests. Biodivers. Conserv. 22, 1991–2021 (2013).
    Google Scholar 

    57.
    Donato, D. C., Fontaine, J. B., Kauffman, J. B., Robinson, D. & Law, B. E. Fuel mass and forest structure following stand-replacement fire and post-fire logging in a mixed-evergreen forest. Int. J. Wildl. Fire 22, 652–666 (2013).
    Google Scholar 

    58.
    Kurulok, S. E. & Macdonald, S. E. Impacts of postfire salvage logging on understory plant communities of the boreal mixedwood forest 2 and 34 years after disturbance. Can. J. Res. 37, 2637–2651 (2007).
    Google Scholar 

    59.
    Macdonald, S. E. Effects of partial post-fire salvage harvesting on vegetation communities in the boreal mixedwood forest region of northeastern Alberta, Canada. Ecol. Manag. 239, 21–31 (2007).
    Google Scholar 

    60.
    Fornwalt, P. J. et al. Short-term understory plant community responses to salvage logging in beetle-affected lodgepole pine forests. Ecol. Manag. 409, 84–93 (2018).
    Google Scholar 

    61.
    Waldron, K., Ruel, J.-C., Gauthier, S., De Grandpré, L. & Peterson, C. J. Effects of post-windthrow salvage logging on microsites, plant composition and regeneration. Appl. Veg. Sci. 17, 323–337 (2014).
    Google Scholar 

    62.
    Leverkus, A. B., Lorite, J., Navarro, F. B., Sánchez-Cañete, E. P. & Castro, J. Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities. J. Environ. Manag. 133, 323–331 (2014).
    Google Scholar 

    63.
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Google Scholar 

    64.
    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).
    Google Scholar 

    65.
    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).
    MathSciNet  CAS  Google Scholar 

    66.
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).
    PubMed  PubMed Central  Google Scholar 

    67.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933 (2001).
    Google Scholar  More

  • in

    The use of light spectrum blocking films to reduce populations of Drosophila suzukii Matsumura in fruit crops

    1.
    Asplen, M. K. et al. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).
    Google Scholar 
    2.
    Lee, J. C. et al. In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag. Sci. 67, 1349–1351 (2011).
    CAS  PubMed  Google Scholar 

    3.
    Bolda, M. P., Goodhue, R. E. & Zalom, F. G. Spotted wing drosophila: potential economic impact of a newly established pest. Agric. Resour. Econ. Updat. 13, 5–8 (2010).
    Google Scholar 

    4.
    Haviland, D. R. & Beers, E. H. Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integr. Pest Manag. 3, F1–F6 (2012).
    Google Scholar 

    5.
    Van Timmeren, S., Mota-Sanchez, D., Wise, J. C. & Isaacs, R. Baseline susceptibility of spotted wing drosophila (Drosophila suzukii) to four key insecticide classes. Pest Manag. Sci. 74, 78–87 (2018).
    PubMed  Google Scholar 

    6.
    Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 75, 1270–1276 (2019).
    CAS  PubMed  Google Scholar 

    7.
    Bale, J., Van Lenteren, J. & Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B: Biol. Sci. 363, 761–776 (2008).

    8.
    Iglesias, L. E., Nyoike, T. W. & Liburd, O. E. Effect of trap design, bait type, and age on captures of Drosophila suzukii (Diptera: Drosophilidae) in berry crops. J. Econ. Entomol. 107, 1508–1518 (2014).
    PubMed  Google Scholar 

    9.
    Tonina, L. et al. Comparison of attractants for monitoring Drosophila suzukii in sweet cherry orchards in Italy. J. Appl. Entomol. 142, 18–25 (2018).
    CAS  Google Scholar 

    10.
    Rajapakse, N. C. & Kelly, J. W. Regulation of chrysanthemum growth by spectral filters. J. Am. Soc. for Hortic. Sci. 117, 481–485 (1992).
    Google Scholar 

    11.
    Van Haeringen, C. et al. The development of solid spectral filters for the regulation of plant growth. Photochem. Photobiol. 67, 407–413 (1998).
    Google Scholar 

    12.
    West, J. et al. Spectral filters for the control of Botrytis cinerea. Ann. Appl. Biol. 136, 115–120 (2000).
    ADS  Google Scholar 

    13.
    Antignus, Y., Mor, N., Ben Joseph, R., Lapidot, M. & Cohen, S. Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environ. Entomol. 25, 919–924 (1996).
    Google Scholar 

    14.
    Fennell, J. T., Fountain, M. T. & Paul, N. D. Direct effects of protective cladding material on insect pests in crops. Crop. Prot. (2019).

    15.
    Doukas, D. & Payne, C. The use of ultraviolet-blocking films in insect pest management in the UK; effects on naturally occurring arthropod pest and natural enemy populations in a protected cucumber crop. Ann. Appl. Biol. 151, 221–231 (2007).
    Google Scholar 

    16.
    Solaiman, A. H. M., Nishizawa, T., Arefin, S. A., Sarkar, M. D. & Shahjahan, M. Effect of partially UV-blocking films on the growth, yield, pigmentation, and insect control of red amaranth (Amaranthus tricolor). Curr. J. Appl. Sci. Technol. 1–11 (2016).

    17.
    Hardie, R. C. Functional organization of the fly retina. In Progress in Sensory Physiology, 1–79 (Springer, New York, 1985).

    18.
    Schnaitmann, C., Pagni, M. & Reiff, D. F. Color vision in insects: insights from drosophila. J. Comp. Physiol. A 206, 1–16 (2020).
    Google Scholar 

    19.
    Schnaitmann, C., Garbers, C., Wachtler, T. & Tanimoto, H. Color discrimination with broadband photoreceptors. Curr. Biol. 23, 2375–2382 (2013).
    CAS  PubMed  Google Scholar 

    20.
    Wardill, T. J. et al. Multiple spectral inputs improve motion discrimination in the drosophila visual system. Science 336, 925–931 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Schümperli, R. A. Evidence for colour vision in Drosophila melanogaster through spontaneous phototactic choice behaviour. J. Comp. Physiol. A 86, 77–94 (1973).
    Google Scholar 

    22.
    Bernard, G. D. & Stavenga, D. G. Spectral sensitivities of retinular cells measured in intact, living flies by an optical method. J. Comp. Physiol. 134, 95–107 (1979).
    Google Scholar 

    23.
    Hardie, R. C. Polarization vision: Drosophila enters the arena. Curr. Biol. 22, R12–R14 (2012).
    CAS  PubMed  Google Scholar 

    24.
    Zhu, E. Y., Guntur, A. R., He, R., Stern, U. & Yang, C.-H. Egg-laying demand induces aversion of UV light in drosophila females. Curr. Biol. 24, 2797–2804 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Kane, E. A. et al. Sensorimotor structure of drosophila larva phototaxis. Proc. Natl. Acad. Sci. 110, E3868–E3877 (2013).
    ADS  CAS  PubMed  Google Scholar 

    26.
    Kelber, A. & Henze, M. J. Colour vision: parallel pathways intersect in drosophila. Curr. Biol. 23, R1043–R1045 (2013).
    CAS  PubMed  Google Scholar 

    27.
    Rice, K. B., Short, B. D., Jones, S. K. & Leskey, T. C. Behavioral responses of Drosophila suzukii (Diptera: Drosophilidae) to visual stimuli under laboratory, semifield, and field conditions. Environ. Entomol. 45, 1480–1488 (2016).
    PubMed  Google Scholar 

    28.
    Kirkpatrick, D., McGhee, P., Hermann, S., Gut, L. & Miller, J. Alightment of spotted wing drosophila (Diptera: Drosophilidae) on odorless disks varying in color. Environ. Entomol. 45, 185–191 (2016).
    CAS  PubMed  Google Scholar 

    29.
    Little, C. M., Chapman, T. W. & Hillier, N. K. Effect of color and contrast of highbush blueberries to host-finding behavior by drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 47, 1242–1251 (2018).
    CAS  PubMed  Google Scholar 

    30.
    Little, C. M., Rizzato, A. R., Charbonneau, L., Chapman, T. & Hillier, N. K. Color preference of the spotted wing drosophila. Drosophila suzukii. Sci. Rep. 9, 1–12 (2019).
    Google Scholar 

    31.
    Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of color in drosophila. Proc. Natl. Acad. Sci. 105, 4910–4915 (2008).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Paulk, A., Millard, S. S. & van Swinderen, B. Vision in drosophila: seeing the world through a model’s eyes. Annu. Rev. Entomol. 58, 313–332 (2013).
    CAS  PubMed  Google Scholar 

    33.
    Humberg, T.-H. & Sprecher, S. G. Age-and wavelength-dependency of drosophila larval phototaxis and behavioral responses to natural lighting conditions. Front. Behav. Neurosci. 11, 66 (2017).
    PubMed  PubMed Central  Google Scholar 

    34.
    Cronin, T. W. & Bok, M. J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 219, 2790–2801 (2016).
    PubMed  Google Scholar 

    35.
    Stone, T., Mangan, M., Ardin, P., Webb, B. et al. Sky segmentation with ultraviolet images can be used for navigation. In Robotics: Science and Systems (2014).

    36.
    Kirk, R., Cielniak, G. & Mangan, M. L* a* b* fruits: A rapid and robust outdoor fruit detection system combining bio-inspired features with one-stage deep learning networks. Sensors 20, 275 (2020).
    Google Scholar 

    37.
    Clymans, R. et al. Olfactory preference of Drosophila suzukii shifts between fruit and fermentation cues over the season: effects of physiological status. Insects 10, 200 (2019).
    PubMed Central  Google Scholar 

    38.
    Keesey, I. W., Knaden, M. & Hansson, B. S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41, 121–128 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Kumar, P. & Poehling, H.-M. UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ. Entomol. 35, 1069–1082 (2006).
    Google Scholar 

    40.
    Legarrea, S., Karnieli, A., Fereres, A. & Weintraub, P. G. Comparison of UV-absorbing nets in pepper crops: Spectral properties, effects on plants and pest control. Photochem. Photobiol. 86, 324–330 (2010).
    CAS  PubMed  Google Scholar 

    41.
    Costa, H. S. & Robb, K. L. Effects of ultraviolet-absorbing greenhouse plastic films on flight behavior of Bemisia argentifolii (homoptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae). J. Econ. Entomol. 92, 557–562 (1999).
    Google Scholar 

    42.
    Chyzik, R., Dobrinin, S. & Antignus, Y. Effect of a UV-deficient environment on the biology and flight activity of Myzus persicae and its hymenopterous parasite Aphidius matricariae. Phytoparasitica 31, 467–477 (2003).
    Google Scholar 

    43.
    Costa, H., Robb, K. & Wilen, C. Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. J. Econ. Entomol. 95, 113–120 (2002).
    CAS  PubMed  Google Scholar 

    44.
    Dáder, B., Gwynn-Jones, D., Moreno, A., Winters, A. & Fereres, A. Impact of uv-a radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants. J. Photochem. Photobiol. B: Biol. 138, 307–316 (2014).
    Google Scholar 

    45.
    Díaz, B. M., Biurrún, R., Moreno, A., Nebreda, M. & Fereres, A. Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infesting crisp lettuce. HortScience 41, 711–716 (2006).
    Google Scholar 

    46.
    Kuhlmann, F. & Müller, C. Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects. Environ. Exp. Bot. 66, 61–68 (2009).
    CAS  Google Scholar 

    47.
    Paul, N. D. et al. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. Physiol. Plantarum 145, 565–581 (2012).
    CAS  Google Scholar 

    48.
    Sal, J. et al. Influence of UV-absorbing nets in the population of Macrosiphum euphorbiae Thomas (Homoptera: Aphididae) and the parasitoid Aphidius ervi (Haliday) (Hymenoptera: Aphidiidae) in lettuce crops. In Proceedings of Third International Symposium Biological Control Arthropods, Christ Church, New Zealand, 329–337 (2009).

    49.
    Legarrea, S., Weintraub, P., Plaza, M., Viñuela, E. & Fereres, A. Dispersal of aphids, whiteflies and their natural enemies under photoselective nets. Biocontrol 57, 523–532 (2012).
    Google Scholar 

    50.
    Legarrea, S. et al. Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets. Virus Res. 165, 1–8 (2012).
    CAS  PubMed  Google Scholar 

    51.
    Legarrea, S. et al. Diminished uv radiation reduces the spread and population density of Macrosiphum euphorbiae (Thomas) [Hemiptera: Aphididae] in lettuce crops. Hortic. Sci. 39, 74–80 (2012).
    Google Scholar 

    52.
    Dáder, B., Moreno, A., Gwynn-Jones, D., Winters, A. & Fereres, A. Aphid orientation and performance in glasshouses under different UV-a/UV-b radiation regimes. Entomol. Exp. et Appl. 163, 344–353 (2017).
    Google Scholar 

    53.
    El-Aal, H. A. A., Rizk, A. M. & Mousa, I. E. Evaluation of new greenhouse covers with modified light regime to control cotton aphid and cucumber (Cucumis sativus L.) productivity. Crop. Prot. 107, 64–70 (2018).
    Google Scholar 

    54.
    Kigathi, R. & Poehling, H.-M. UV-absorbing films and nets affect the dispersal of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). J. Appl. Entomol. 136, 761–771 (2012).
    Google Scholar 

    55.
    Bueno, E. et al. Response of wild spotted wing drosophila (Drosophila suzukii) to microbial volatiles. J. Chem. Ecol. 1–11 (2019).

    56.
    Renkema, J. M., Buitenhuis, R. & Hallett, R. H. Reduced Drosophila suzukii infestation in berries using deterrent compounds and laminate polymer flakes. Insects 8, 117 (2017).
    PubMed Central  Google Scholar 

    57.
    Erland, L. A., Rheault, M. R. & Mahmoud, S. S. Insecticidal and oviposition deterrent effects of essential oils and their constituents against the invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Crop. Prot. 78, 20–26 (2015).
    CAS  Google Scholar 

    58.
    Wallingford, A. K., Cha, D. H. & Loeb, G. M. Evaluating a push–pull strategy for management of Drosophila suzukii Matsumura in red raspberry. Pest Manag. Sci. 74, 120–125 (2018).
    CAS  PubMed  Google Scholar 

    59.
    Smirle, M. J., Zurowski, C. L., Ayyanath, M.-M., Scott, I. M. & MacKenzie, K. E. Laboratory studies of insecticide efficacy and resistance in Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) populations from British Columbia, Canada. Pest Manag. Sci. 73, 130–137 (2017).
    CAS  PubMed  Google Scholar 

    60.
    Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Implications of sub-lethal rates of insecticides and daily time of application on Drosophila suzukii lifecycle. Crop. Prot. 121, 182–194 (2019).
    CAS  Google Scholar 

    61.
    van der Blom, J. Applied entomology in spanish greenhouse horticulture. Proc. Neth. Entomol. Soc. Meet 21, 9–17 (2010).
    Google Scholar 

    62.
    Fingerman, M. & Brown, F. A. A “purkinje shift” in insect vision. Science 116, 171–172 (1952).
    ADS  CAS  PubMed  Google Scholar 

    63.
    Meier, U. Phenological growth stages. In Phenology: An Integrative Environmental Science, 269–283 (Springer, New York, 2003).

    64.
    Doukas, D. & Payne, C. C. Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments. J. Econ. Entomol. 100, 389–397 (2014).
    Google Scholar 

    65.
    Palanca, L., Gaskett, A. C., Günther, C. S., Newcomb, R. D. & Goddard, M. R. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS ONE 8 (2013). More

  • in

    Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands

    1.
    Mordecai EA. Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr. 2011;81:429–41.
    Article  Google Scholar 
    2.
    Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46:305–25.
    Article  Google Scholar 

    3.
    van der Heijden MG, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and procductivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310.
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP. Asymmetric density dependence shapes species abundances in a tropical tree community. Science. 2010;329:330–2.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Janzen DH. Herbivores and the number of tree species in tropical forests. Am Naturalist. 1970;104:501–28.
    Article  Google Scholar 

    7.
    Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn Popul. 1971;298:312.
    Google Scholar 

    8.
    Augspurger CK. Seedling survival of tropical tree species: interactions of dispersal distance, light‐gaps, and pathogens. Ecology. 1984;65:1705–12.
    Article  Google Scholar 

    9.
    Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, et al. Plant–soil feedbacks: the past, the present and future challenges. J Ecol. 2013;101:265–76.
    Article  Google Scholar 

    10.
    Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KM, Strand AE, et al. Frequency-dependent feedback constrains plant community coexistence. Nat Ecol evolution. 2018;2:1403.
    Article  Google Scholar 

    11.
    Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ, Mangan SA, et al. When and where plant‐soil feedback may promote plant coexistence: a meta‐analysis. Ecol Lett. 2019;22:1274–84.
    PubMed  Google Scholar 

    12.
    Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion. Nature. 2004;427:731–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, et al. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol Lett. 2009;12:1238–49.
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340.
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Thomson BC, Tisserant E, Plassart P, Uroz S, Griffiths RI, Hannula SE, et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol Biochem. 2015;88:403–13.
    CAS  Article  Google Scholar 

    17.
    Van Agtmaal M, Straathof A, Termorshuizen A, Teurlincx S, Hundscheid M, Ruyters S, et al. Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Appl Soil Ecol. 2017;121:152–60.
    Article  Google Scholar 

    18.
    Rincón A, Santamaría‐Pérez B, Rabasa SG, Coince A, Marçais B, Buée M. Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain. Environ Microbiol. 2015;17:3009–24.
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Change. 2016;6:182.
    Article  Google Scholar 

    20.
    Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:12083.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.
    PubMed  Article  CAS  Google Scholar 

    22.
    McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Micro Ecol. 2012;63:804–12.
    Article  Google Scholar 

    23.
    Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Talley SM, Coley PD, Kursar TA. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2002;2:7.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Spear ER. Phylogenetic relationships and spatial distributions of putative fungal pathogens of seedlings across a rainfall gradient in Panama. Fungal Ecol. 2017;26:65–73.
    Article  Google Scholar 

    26.
    Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, et al. Large‐scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol. 2014;23:2452–72.
    CAS  PubMed  Article  Google Scholar 

    27.
    Rojas JA, Jacobs JL, Napieralski S, Karaj B, Bradley CA, Chase T, et al. Oomycete species associated with soybean seedlings in North America—Part II: diversity and ecology in relation to environmental and edaphic factors. Phytopathology. 2017;107:293–304.
    PubMed  Article  Google Scholar 

    28.
    van West P, Appiah AA, Gow NA. Advances in research on oomycete root pathogens. Physiol Mol plant Pathol. 2003;62:99–113.
    Article  Google Scholar 

    29.
    Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol. 2003;69:2816–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    House GL, Bever JD. Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. Ecol Appl. 2018;28:736–48.
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nat Clim Change. 2014;4:17.
    Article  Google Scholar 

    32.
    IPCC. Climate change 2014: synthesis report. Switzerland: IPCC Geneva; 2014. p. 151.
    Google Scholar 

    33.
    Zhang N, Wan S, Guo J, Han G, Gutknecht J, Schmid B, et al. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biol Biochem. 2015;89:12–23.
    CAS  Article  Google Scholar 

    34.
    Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR. Effect of warming and drought on grassland microbial communities. ISME J. 2011;5:1692.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation. Glob Change Biol. 2011;17:927–42.
    Article  Google Scholar 

    36.
    Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl. 1990;18:315–22.
    Google Scholar 

    38.
    Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci. 2012;109:6241–6.

    39.
    Oliver AK, Callaham MA Jr, Jumpponen A. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. For Ecol Manag. 2015;345:1–9.
    Article  Google Scholar 

    40.
    Riit T, Tedersoo L, Drenkhan R, Runno-Paurson E, Kokko H, Anslan S. Oomycete-specific ITS primers for identification and metabarcoding. MycoKeys. 2016;14:17.
    Article  Google Scholar 

    41.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, et al. Towards a unified paradigm for sequence‐based identification of fungi. Mol Ecol. 2013;22:5271–7.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    43.
    Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, et al. Fungal community analysis by high‐throughput sequencing of amplified markers–a user’s guide. N. Phytologist. 2013;199:288–99.
    CAS  Article  Google Scholar 

    44.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 2006;443:818.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Article  Google Scholar 

    48.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Rujirawat T, Patumcharoenpol P, Lohnoo T, Yingyong W, Kumsang Y, Payattikul P, et al. Probing the phylogenomics and putative pathogenicity genes of pythium insidiosum by oomycete genome analyses. Sci Rep. 2018;8:4135.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. p. 2017.
    Google Scholar 

    51.
    Helmus MR, Bland TJ, Williams CK, Ives AR. Phylogenetic measures of biodiversity. Am Naturalist. 2007;169:E68–83.
    Article  Google Scholar 

    52.
    Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–90.
    CAS  PubMed  Article  Google Scholar 

    53.
    Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolut Bioinforma. 2008;4:EBO. S653.
    Article  Google Scholar 

    54.
    Pearse WD, Cadotte MW, Cavender-Bares J, Ives AR, Tucker CM, Walker SC, et al. Pez: Phylogenetics for the environmental sciences. Bioinformatics. 2015;31:2888–90.
    CAS  PubMed  Article  Google Scholar 

    55.
    Fitzpatrick DA, Logue ME, Stajich JE, Butler G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolut Biol. 2006;6:99.
    Article  CAS  Google Scholar 

    56.
    Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem. 2008;40:2407–15.
    CAS  Article  Google Scholar 

    57.
    Chaudhary VB, O’Dell TE, Rillig MC, Johnson NC. Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecol. 2014;12:32–43.
    Article  Google Scholar 

    58.
    Morisita M. Measuring of interspecific association and similarity between communities. Mem Fac Sci Kyushu Univ Ser E. 1959;3:65–80.
    Google Scholar 

    59.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community ecology package, version. 2013;2.

    60.
    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Ochoa‐Hueso R, Collins SL, Delgado‐Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol. 2018;24:2818–27.
    Article  Google Scholar 

    62.
    Dequiedt S, Saby N, Lelievre M, Jolivet C, Thioulouse J, Toutain B, et al. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Glob Ecol Biogeogr. 2011;20:641–52.
    Article  Google Scholar 

    63.
    Samson FB, Knopf FL, Ostlie WR. Great Plains ecosystems: past, present, and future. Wildl Soc Bull. 2004;32:6–15.
    Article  Google Scholar 

    64.
    Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci USA. 2007;104:4979–83.
    CAS  PubMed  Article  Google Scholar 

    65.
    Robideau GP, de Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11:1002–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Martin LM, Moloney KA, Wilsey BJ. An assessment of grassland restoration success using species diversity components. J Appl Ecol. 2005;42:327–36.
    Article  Google Scholar 

    67.
    Leach MK, Givnish TJ. Ecological determinants of species loss in remnant prairies. Science. 1996;273:1555–8.
    CAS  Article  Google Scholar  More

  • in

    Rapid functional traits turnover in boreal dragonfly communities (Odonata)

    1.
    Bjørnstad, O. N. & Grenfell, B. T. Noisy clockwork: Time series analysis of population fluctuations in animals. Science 293, 638–643 (2001).
    PubMed  Google Scholar 
    2.
    Ricklefs, R. E. & Relyea, R. Ecology, The Economy of Nature 7th edn. (W.H. Freeman & Co., Ltd., New York, 2014).
    Google Scholar 

    3.
    Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).
    Google Scholar 

    4.
    Calijuri, M. D. C., Dos Santos, A. C. A. & Jati, S. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, SP—Brazil). J. Plankton Res. 24, 617–634 (2002).
    CAS  Google Scholar 

    5.
    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl. Acad. Sci. U.S.A. 108, 17034–17039 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Magurran, A. E. & Henderson, P. A. Temporal turnover and the maintenance of diversity in ecological assemblages. Philos. Trans. R. Soc. Lond. Ser. B. 365, 3611–3620 (2010).
    Google Scholar 

    7.
    Poff, N. L. et al. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 25, 730–755 (2006).
    Google Scholar 

    8.
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
    PubMed  Google Scholar 

    9.
    Powney, G. D., Cham, S. S., Smallshire, D. & Isaac, N. J. Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ 3, e1410. https://doi.org/10.7717/peerj.1410 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Moldan, F., Cosby, B. J. & Wright, R. F. Modeling past and future acidification of Swedish lakes. Ambio 42, 577–586 (2013).
    PubMed  PubMed Central  Google Scholar 

    11.
    Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. For. Ecol. Manag. 315, 160–172 (2014).
    Google Scholar 

    12.
    Cousins, S. A., Auffret, A. G., Lindgren, J. & Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 44, 17–27 (2015).
    PubMed Central  Google Scholar 

    13.
    HELCOM, Helsinki Commission. Climate change in the Baltic Sea Area. HELCOM thematic assessment in 2013; https://www.helcom.fi/lists/publications/bsep137.pdf (2013).

    14.
    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169 (2019).
    Google Scholar 

    15.
    Hassall, C. Odonata as candidate macroecological barometers for global climate change. Fresh Sci. 34, 1040–1049 (2015).
    Google Scholar 

    16.
    Sahlén, G. & Ekestubbe, K. Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodiv. Cons. 10, 673–690 (2001).
    Google Scholar 

    17.
    Monteiro-Júnior, C. D. S., Juen, L. & Hamada, N. Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol. Ind. 48, 303–311 (2015).
    Google Scholar 

    18.
    Suhling, F. et al. Order Odonata. In Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates (eds Thorp, J. & Rogers, D. C.) 893–932 (Academic Press, New York, 2015).
    Google Scholar 

    19.
    Appelberg, M., Henrikson, B. I., Henrikson, L. & Svedäng, M. Biotic interactions within the littoral community of Swedish forest lakes during acidification. Ambio 22, 290–297 (1993).
    Google Scholar 

    20.
    Al Jawaheri, R. & Sahlén, G. Negative impact of lake liming programmes on the species richness of dragonflies (Odonata): A study from southern Sweden. Hydrobiologia 788, 99–113 (2017).
    Google Scholar 

    21.
    Sahlén, G. Specialists vs generalists in the Odonata–the importance of forest environments in the formation of diverse species pools. In Forests and dragonflies (ed. Cordero Rivera, A.) 153–179 (Pensoft, Sofia, 2006).
    Google Scholar 

    22.
    Dalzochio, M. S., Périco, E., Renner, S. & Sahlén, G. Effect of tree plantations on the functional composition of Odonata species in the highlands of southern Brazil. Hydrobiologia 808, 283–300 (2018).
    Google Scholar 

    23.
    Renner, S., Périco, E., Dalzochio, M. S. & Sahlén, G. Water body type and land cover shape the dragonfly communities (Odonata) in the Pampa biome, Rio Grande do Sul Brazil. J. Insect Cons. 22, 113–125 (2018).
    Google Scholar 

    24.
    Flenner, I. & Sahlén, G. Dragonfly community re-organisation in boreal forest lakes: rapid species turnover driven by climate change?. Insect Conserv. Diver. 1, 169–179 (2008).
    Google Scholar 

    25.
    Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiv. Cons. 23, 2107–2126 (2014).
    Google Scholar 

    26.
    Buisson, L., Grenouillet, G., Villéger, S., Canal, J. & Laffaille, P. Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biol. 19, 387–400 (2013).
    ADS  Google Scholar 

    27.
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges?. Ecol. Lett. 14, 677–689 (2011).
    PubMed  Google Scholar 

    28.
    Lawson, C., Vindenes, Y., Baley, L. & van de Pol, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736 (2015).
    PubMed  Google Scholar 

    29.
    Shimadzu, H., Dornelas, M. & Magurran, A. E. Measuring temporal turnover in ecological communities. Methods Ecol. Evol. 6, 1384–1394 (2015).
    Google Scholar 

    30.
    Jonsson, M. et al. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw. Biol. 60, 78–88 (2015).
    Google Scholar 

    31.
    Koch, K., Wagner, C. & Sahlén, G. Farmland versus forest: comparing changes in Odonata species composition in western and eastern Sweden. Insect Cons. Divers. 7, 22–31 (2014).
    Google Scholar 

    32.
    Norling, U. & Sahlén, G. Odonata, dragonflies and damselflies in Aquatic insects of North Europe: a taxonomic handbook, Vol. 2 (ed. Nilsson, A.) 13–65 (Apollo books, 1997).

    33.
    Corbet, P. S. Dragonflies–behaviour and ecology of Odonata (Cornell University Press, Cornell, 1999).
    Google Scholar 

    34.
    Pereira, D. F. G., de Oliveira Junior, J. M. B. & Juen, L. Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecol. Ind. 98, 179–192 (2019).
    Google Scholar 

    35.
    Johansson, F., Śniegula, S. & Brodin, T. Emergence patterns and latitudinal adaptations in development time of Odonata in north Sweden and Poland. Odonatologica 39, 97–106 (2010).
    Google Scholar 

    36.
    Suhling, I. & Suhling, F. Thermal adaptation affects interactions between a range-expanding and a native odonate species. Freshw. Biol. 58, 705–714 (2013).
    Google Scholar 

    37.
    Atkinson, D. Temperature and organism size: a biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).
    Google Scholar 

    38.
    Menéndez, R. How are insects responding to global warming?. Tijdschr. Entomol. 150, 355–364 (2007).
    Google Scholar 

    39.
    Hogue, J. N. & Hawkins, C. P. Morphological variation in adult aquatic insects: Associations with developmental temperature and seasonal growth patterns. J. N. Am. Benth. Soc. 10, 309–321 (1991).
    Google Scholar 

    40.
    Waringer, J. A. & Humpesch, U. H. Embryonic development, larval growth and life cycle of Coenagrion puella (Odonata: Zygoptera) from an Austrian pond. Freshw. Biol. 14, 385–399 (1984).
    Google Scholar 

    41.
    Martens, A. Annual development of Libellula quadrimaculata L in a newly setup pond (Anisoptera: Libellulidae). Notul. Odonatol. 2, 133–134 (1986).
    Google Scholar 

    42.
    Norling, U. Life history patterns in the northern expansion of dragonflies. Adv. Odonatol. 2, 127–156 (1984).
    Google Scholar 

    43.
    Hassall, C., Thompson, D. J., French, G. C. & Harvey, I. F. Historical changes in the phenology of British Odonata are related to climate. Glob. Change Biol. 13, 933–941 (2007).
    ADS  Google Scholar 

    44.
    Dingemanse, N. J. & Kalkman, V. J. Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecol. Ent. 33, 394–402 (2008).
    Google Scholar 

    45.
    McCauley, S. J., Hammond, J. I. & Mabry, K. E. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. Ecosphere 9, e02151. https://doi.org/10.1002/ecs2.2151 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Fincke, O. M. & Hadrys, H. Unpredictable offspring survivorship in the damselfly Megaloprepus coerulatus, shapes parental behavior, constraints sexual selection, and challenges traditional fitness-estimates. Evolution 55, 762–772 (2001).
    CAS  PubMed  Google Scholar 

    47.
    Johansson, F. Intraguild predation and cannibalism in odonate larvae: effects of foraging behaviour and zooplankton availability. Oikos 66, 80–87 (1993).
    Google Scholar 

    48.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 

    49.
    SMHI, Swedish Meteorological and Hydrological Institute. Swedish air temperature, snow and wind; https://www.smhi.se/klimatdata (2017).

    50.
    Johansson, F. The slow–fast life style characteristics in a suite of six species of odonate larvae. Freshw. Biol. 43, 149–159 (2000).
    Google Scholar 

    51.
    Rychła, A., Benndorf, J. & Buczyński, P. Impact of pH and conductivity on species richness and community structure of dragonflies (Odonata) in small mining lakes. Fundam. Appl. Limnol. Arch. Hydrobiol. 179, 41–50 (2011).
    Google Scholar 

    52.
    National Register of Survey test-fishing – NORS. Swedish test fishing database; https://www.slu.se/en/departments/aquatic-resources1/databases1/national-register-of-survey-test-fishing-nors/ (2020).

    53.
    Robert, P.-A. Les Libellules (Delachaux & Niestlié, 1958).

    54.
    Harrington, R., Fleming, R. A. & Woiwod, I. P. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted?. Agric. For. Entomol. 3, 233–240 (2001).
    Google Scholar 

    55.
    Bale, J. S. & Hayward, S. A. L. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).
    CAS  PubMed  Google Scholar 

    56.
    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob. Ecol. Biogeogr. 22, 403–409 (2013).
    Google Scholar 

    57.
    Kalkman, V.J. et al. European Red List of Dragonflies. Publications Office of the European Union; https://ec.europa.eu/environment/nature/conservation/species/redlist/downloads/European_dragonflies.pdf (2010).

    58.
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).
    PubMed  Google Scholar 

    59.
    Tsimring, L. S. Noise in biology. Rep. Prog. Phys. 77, 026601. https://doi.org/10.1088/0034-4885/77/2/026601 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Popova, O. N., Haritonov, AYu. & Erdakov, L. N. Cyclicity of long-term population dynamics in dragonflies of the genus Sympetrum (Odonata, Anisoptera) in the basin of Lake Chany. Contemp. Probl. Ecol. 11, 551–562 (2018).
    Google Scholar 

    61.
    Sahlén, G. & Ekestubbe, K. Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodiv. Conserv. 10, 673–690 (2001).
    Google Scholar 

    62.
    Korkeamäki, E., Elo, M., Sahlén, G., Salmela, J. & Suhonen, J. Regional variations in occupancy frequency distribution patterns between odonate assemblages in Fennoscandia. Ecosphere 9, e02192. https://doi.org/10.1002/ecs2.2192 (2018).
    Article  Google Scholar 

    63.
    Angeler, D. G. & Johnson, R. K. Patterns of temporal community turnover are spatially synchronous across boreal lakes. Freshw. Biol. 57, 1782–1793 (2012).
    Google Scholar 

    64.
    MAGIC biblioteket sjöar. Lake data from Sweden; https://magicbiblioteket.ivl.se/ (2016).

    65.
    Swedish Forest Agency. Silvicultural activities; Planted area and Pre-commercially thinned area: 3-year average, 1000 hectares by region, year and ownership class; https://pxweb.skogsstyrelsen.se/pxweb/en/Skogsstyrelsens%20statistikdatabas/ (2016).

    66.
    SCB, Statistics Sweden. Land use in Sweden – Land use: Arable land and forest land by region and land use category; https://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI__MI0803__MI0803A/MarkanvJbSk/ (2019).

    67.
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change Biol. 11, 502–506 (2005).
    ADS  Google Scholar 

    68.
    Conti, L., Schmidt-Kloiber, A., Grenouillet, G. & Graf, W. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721, 297–315 (2014).
    CAS  Google Scholar 

    69.
    Lavorel, S. et al. Assessing functional diversity in the field–methodology matters!. Funct. Ecol. 22, 134–147 (2008).
    Google Scholar 

    70.
    Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12; https://cran.r-project.org/web/packages/FD/index.html (2014).

    71.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2019).

    72.
    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).
    Google Scholar 

    73.
    Dijkstra, K. D. B. & Lewington, R. Field Guide to the Dragonflies of Britain and Europe (British Wildlife Publishing, Devon, 2006).
    Google Scholar 

    74.
    Norling, U. Livscykler hos svenska Odonater. Entomologen 4, 1–14 (1975).
    Google Scholar 

    75.
    Norling, U. The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagrionidae). Odonatologica 13, 429–449 (1984).
    Google Scholar 

    76.
    Norling, U. Photoperiodic control of larval development in Leucorrhinia dubia (Vander Linden): a comparison between populations from northern and southern Sweden (Anisoptera: Libellulidae). Odonatologica 13, 529–550 (1984).
    Google Scholar  More

  • in

    Over 90 endangered fish and invertebrates are caught in industrial fisheries

    1.
    FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020).
    2.
    Diaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES (2019).

    3.
    FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals (FAO, 2018).

    4.
    IUCN. The IUCN Red List of Threatened Species. Version 2019-1 (IUCN, 2019). https://www.iucnredlist.org.

    5.
    McClenachan, L., Cooper, A. B., Carpenter, K. E. & Dulvy, N. K. Extinction risk and bottlenecks in the conservation of charismatic marine species. Conserv. Lett. 5, 73–80 (2012).
    Google Scholar 

    6.
    McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial Megafauna. Curr. Biol. 26, 1640–1646 (2016).
    CAS  PubMed  Google Scholar 

    7.
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction? Conserv. Lett. 12, e12627 (2019).
    Google Scholar 

    8.
    Di Minin, E., Leader-Williams, N. & Bradshaw, C. J. A. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).
    PubMed  Google Scholar 

    9.
    Batavia, C. et al. The elephant (head) in the room: a critical look at trophy hunting. Conserv. Lett. 12, 1–6 (2019).
    ADS  Google Scholar 

    10.
    Nelson, M. P., Bruskotter, J. T., Vucetich, J. A. & Chapron, G. Emotions and the ethics of consequence in conservation decisions: lessons from cecil the lion. Conserv. Lett. 9, 302–306 (2016).
    Google Scholar 

    11.
    Aron, W., Burke, W. & Freeman, M. M. R. The whaling issue. Mar. Pol. 24, 179–191 (2000).
    Google Scholar 

    12.
    Shiffman, D. S., Gallagher, A. J., Wester, J., Macdonald, C. C. & Thaler, A. D. Trophy fishing for species threatened with extinction: a way forward building on a history of conservation. Mar. Pol. 50, 318–322 (2014).
    Google Scholar 

    13.
    Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish Fish. 4, 25–64 (2003).
    Google Scholar 

    14.
    Pinsky, M. L., Jensen, O. P., Ricard, D. & Palumbi, S. R. Unexpected patterns of fisheries collapse in the world’s oceans. Proc. Natl Acad. Sci. USA 108, 8317–8322 (2011).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Sumaila, U. R. et al. Updated estimates and analysis of global fisheries subsidies. Mar. Pol. 109, 103695 (2019).
    Google Scholar 

    16.
    Vincent, A. C. J., Sadovy de Mitcheson, Y. J., Fowler, S. L. & Lieberman, S. The role of CITES in the conservation of marine fishes subject to international trade. Fish Fish. 15, 563–592 (2014).
    Google Scholar 

    17.
    Crespo, G. O. et al. High-seas fish biodiversity is slipping through the governance net. Nat. Ecol. Evol. 3, 1273–1276 (2019).
    PubMed  Google Scholar 

    18.
    Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).
    Google Scholar 

    19.
    Collette, B. B. et al. High value and long life—double jeopardy for tunas and billfi shes. Science 333, 291–292 (2011).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349 (2013).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Hutchings, J. A. Collapse and recovery of marine fishes. Nature 406, 882–885 (2000).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
    ADS  Google Scholar 

    23.
    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).
    Google Scholar 

    24.
    Williams, B. R., Burgess, M. G., Ashe, E., Gaines, S. D. & Randall, R. Marine mammal protections require increased global capacity. Science 354, 1372–1374 (2016).
    ADS  CAS  PubMed  Google Scholar 

    25.
    Watson, R. & Pauly, D. Systematic distortions in world fisheries catch trends. Nature 414, 534–536 (2001).
    ADS  CAS  PubMed  Google Scholar 

    26.
    Powles, H. et al. Assessing and protecting endangered marine species. ICES J. Mar. Sci. 57, 669–676 (2000).
    Google Scholar 

    27.
    Dent, F. & Clarke, S. State of the Global Market for Shark Products. FAO Fisheries and Aquaculture Technical Paper no. 590 (Food and Agriculture Organization of the United Nations, Rome 2015).

    28.
    Oliver, S., Braccini, M., Newman, S. J. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Pol. 54, 86–97 (2015).
    Google Scholar 

    29.
    Davies, R. W. D., Cripps, S. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Pol. 33, 661–672 (2009).
    Google Scholar 

    30.
    Watson, R. A., Green, B. S., Tracey, S. R., Farmery, A. & Pitcher, T. J. Provenance of global seafood. Fish Fish. 17, 585–595 (2016).
    Google Scholar 

    31.
    Jabado, R. W. et al. Troubled waters: threats and extinction risk of the sharks, rays and chimaeras of the Arabian Sea and adjacent waters. Fish Fish. 19, 1043–1062 (2018).
    Google Scholar 

    32.
    Anticamara, J. A., Watson, R., Gelchu, A. & Pauly, D. Global fishing effort (1950-2010): trends, gaps, and implications. Fish. Res. 107, 131–136 (2011).
    Google Scholar 

    33.
    Anderson, S. C., Flemming, J. M., Watson, R. & Lotze, H. K. Serial exploitation of global sea cucumber fisheries. Fish Fish. 12, 317–339 (2011).
    Google Scholar 

    34.
    Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25, 506–511 (2015).
    CAS  PubMed  Google Scholar 

    35.
    Dulvy, et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).
    PubMed  PubMed Central  Google Scholar 

    36.
    Anderson, S. C., Flemming, J. M., Watson, R. & Lotze, H. K. Rapid global expansion of invertebrate fisheries: trends, drivers, and ecosystem effects. PLoS ONE 6, 1–9 (2011).
    Google Scholar 

    37.
    Willette, D. A. & Cheng, S. H. Delivering on seafood traceability under the new U.S. import monitoring program. AMBIO 47, 25–30 (2018).
    PubMed  Google Scholar 

    38.
    Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R97–R98 (2017).
    CAS  PubMed  Google Scholar 

    39.
    Hobbs, C. A. D. et al. Using DNA barcoding to investigate patterns of species utilisation in UK shark products reveals threatened species on sale. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 

    40.
    Porszt, E. J., Peterman, R. M., Dulvy, N. K., Cooper, A. B. & Irvine, J. R. Reliability of indicators of decline in abundance. Conserv. Biol. 26, 894–904 (2012).
    PubMed  Google Scholar 

    41.
    D’Eon-Eggertson, F., Dulvy, N. K. & Peterman, R. M. Reliable identification of declining populations in an uncertain world. Conserv. Lett. 8, 86–96 (2015).
    Google Scholar 

    42.
    Foley, C. M., Lynch, M. A., Thorne, L. H. & Lynch, H. J. Listing foreign species under the endangered species act: a primer for conservation biologists. Bioscience 67, 627–637 (2017).
    Google Scholar 

    43.
    Sky, M. B. Getting on the list: politics and procedural maneuvering in cites appendix I and II decisions for commercially exploited marine and timber species. Sustain. Dev. Law Policy 10, 35–40 (2010).
    Google Scholar 

    44.
    UNEP‐WCMC (2019). The checklist of CITES species website. http://checklist.cites.org.

    45.
    Probst, W. N. How emerging data technologies can increase trust and transparency in fisheries. ICES J. Mar. Sci. 77, 1286–1294 (2019).
    Google Scholar 

    46.
    Lewis, S. G. & Boyle, M. The expanding role of traceability in seafood: tools and key initiatives. J. Food Sci. 82, A13–A21 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Kamilaris, A., Fonts, A. & Prenafeta-Boldύ, F. X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 91, 640–652 (2019).
    CAS  Google Scholar 

    48.
    WWF. WWF-Australia and OpenSc (Panda Labs, 2019). https://www.wwf.org.au/get-involved/panda-labs/opensc#gs.hi7rtb.

    49.
    Boulais, O. Exploring Provenance of Tuna using Distributed Ledgers. (Viral Communications, 2019). https://viral.media.mit.edu/pub/tunaprovenance.

    50.
    Hosch, G. & Blaha, F. Seafood Traceability for Fisheries Compliance: Country-Level Support for Catch Documentation Schemes. FAO Fisheries and Aquaculture Technical Paper 619 (Food and Agriculture Organization of the United Nations, Rome, 2017).

    51.
    Miller, N. A., Roan, A., Hochberg, T., Amos, J. & Kroodsma, D. A. Identifying global patterns of transshipment behavior. Front. Mar. Sci. 5, 1–9 (2018).
    Google Scholar 

    52.
    Miller, A. M. M., Bush, S. R. & Mol, A. P. J. Power Europe: EU and the illegal, unreported and unregulated tuna fisheries regulation in the West and Central Pacific Ocean. Mar. Pol. https://doi.org/10.1016/j.marpol.2013.12.009 (2014).

    53.
    Osterblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, 1–15 (2015).
    Google Scholar 

    54.
    Davies, T. D. & Baum, J. K. Extinction risk and overfishing: reconciling conservation and fisheries perspectives on the status of marine fishes. Sci. Rep. 2, 561 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Hornborg, S., Svensson, M., Nilsson, P. & Ziegler, F. By-catch impacts in fisheries: utilizing the IUCN red list categories for enhanced product level assessment in seafood LCAS. Environ. Manag. 52, 1239–1248 (2013).
    ADS  Google Scholar 

    56.
    Dulvy, N. K., Jennings, S., Goodwin, N. B., Grant, A. & Reynolds, J. D. Comparison of threat and exploitation status in North-East Atlantic marine populations. J. Appl. Ecol. 42, 883–891 (2005).
    Google Scholar 

    57.
    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).
    PubMed  Google Scholar 

    58.
    Fernandes et al. Coherent assessments of Europe’s marine fishes show regional divergence and megafauna loss. Nat. Ecol. Evol. 1, 0170 (2017).
    Google Scholar 

    59.
    Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around us Concepts, Design and Data. seaaroundus.org (University of British Columbia, Vancouver, BC 2020).

    60.
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Pol. 93, 171–177 (2018).
    Google Scholar 

    61.
    Pauly, D. & Zeller, D. Agreeing with FAO: comments on SOFIA 2018. Mar. Pol. 100, 332–333 (2019).
    Google Scholar 

    62.
    Tai, T. C., Cashion, T., Lam, V. W. Y., Swartz, W. & Sumaila, U. R. Ex-vessel fish price database: disaggregating prices for low-priced species from reduction fisheries. Front. Mar. Sci. 4, 1–10 (2017).
    Google Scholar  More

  • in

    Visual mate preference evolution during butterfly speciation is linked to neural processing genes

    1.
    Coyne, J. A., Orr, H. A. Speciation (Sinauer, Sunderland, MA, 2004).
    2.
    Rosenthal, G. G. Mate Choice (Princeton University Press, 2017).

    3.
    Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).

    4.
    Arguello, J. R. & Benton, R. Open questions: tackling Darwin’s “instincts”: the genetic basis of behavioural evolution. BMC Biol. 15, 8–10 (2017).
    Google Scholar 

    5.
    Bay, R. A. et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates stickleback speciation. Curr. Biol. 27, 3344–3349 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Shahandeh, M. P., Pischedda, A., Rodriguez, J. M. & Turner, T. L. The genetics of male pheromone preference difference between Drosophila melanogaster and Drosophila simulans. G3 Genes Genomes Genet. 10, 401–415 (2020).
    Google Scholar 

    7.
    Gould, F. et al. Sexual isolation of male moths explained by a single pheromone response QTL containing four receptor genes. Proc. Natl Acad. Sci. USA. 107, 8660–8665 (2010).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Leary, G. P. et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc. Natl Acad. Sci. USA 109, 14081–14086 (2012).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Fan, P. et al. Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154, 89–102 (2013).
    CAS  PubMed  Google Scholar 

    10.
    Brand, P. et al. The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat. Commun. 11, 1–11 (2020).
    ADS  Google Scholar 

    11.
    Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. B 286, 20191607 (2019).
    CAS  PubMed  Google Scholar 

    12.
    Seehausen, O. et al. Speciation through sensory drive in cichlid fish. Nature 455, 620–626 (2008).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).
    PubMed  Google Scholar 

    14.
    Merrill, R. M. et al. Disruptive ecological selection on a mating cue. Proc. R. Soc. B Biol. Sci. 279, 4907–4913 (2012).
    Google Scholar 

    15.
    Jiggins, C. D., Naisbit, R. E., Coe, R. L. & Mallet, J. Reproductive isolation caused by colour pattern mimicry. Nature 411, 302–305 (2001).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M. & Nosil, P. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol. Evol. 26, 389–397 (2011).
    PubMed  Google Scholar 

    17.
    Jiggins, C. D. Ecological speciation in mimetic butterflies. Bioscience 58, 541–548 (2008).
    Google Scholar 

    18.
    Jiggins, C. D., Estrada, C. & Rodrigues, A. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol. 17, 680–691 (2004).
    CAS  PubMed  Google Scholar 

    19.
    Merrill, R. M. et al. Genetic dissection of assortative mating behaviour. PLoS Biol. 17, e2005902 (2018).
    Google Scholar 

    20.
    Reed, R. D. et al. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333, 1137–1141 (2011).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Martin, A. et al. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl Acad. Sci. USA 109, 12632–12637 (2012).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Nadeau, N. J. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Felsenstein, J. Skepticism Towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35, 124–138 (1981).
    PubMed  Google Scholar 

    24.
    Massey, J. H., Chung, D., Siwanowicz, I., Stern, D. L. & Wittkopp, P. J. The yellow gene influences Drosophila male mating success through sex comb melanization. Elife 8, 1–20 (2019).
    Google Scholar 

    25.
    Merrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B Biol. Sci. 278, 511–518 (2011).
    Google Scholar 

    26.
    Van Schooten, B. et al. Divergence of chemosensing during the early stages of speciation. Proc. Natl. Acad. Sci. USA 117, 16348–16447 (2020).
    Google Scholar 

    27.
    Seeholzer, L. F., Seppo, M., Stern, D. L. & Ruta, V. Evolution of a central neural circuit underlies Drosophila mate preferences. Nature 559, 564–569 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Martin, S. H. et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 23, 1817–1828 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Davey, J. et al. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3 6, 695–708 (2015).
    Google Scholar 

    30.
    Darragh, K. et al. A novel terpene synthase produces an anti-aphrodisiac pheromone in the butterfly Heliconius melpomene. Preprint at https://www.biorxiv.org/content/10.1101/779678v1 (2019).

    31.
    Pinharanda, A. et al. Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fast-Z effect in Heliconius. J. Evol. Biol. 32, 194–204 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics 27, 2325–2329 (2011).
    CAS  PubMed  Google Scholar 

    33.
    Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Thomas, P. D. et al. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 34, 645–650 (2006).
    ADS  Google Scholar 

    35.
    Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Martin, S. H., Davey, J. W. & Jiggins, C. D. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32, 244–257 (2015).
    CAS  PubMed  Google Scholar 

    37.
    Martin, S. H., Davey, J. W., Salazar, C. & Jiggins, C. D. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biol. 17, 1–28 (2019).
    Google Scholar 

    38.
    Nosil, P. Ecological Speciation (Oxford University Press, 2012).

    39.
    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).
    PubMed  Google Scholar 

    40.
    Butlin, R. K. & Smadja, C. M. Coupling, reinforcement, and speciation. Am. Nat. 191, 155–172 (2018).
    PubMed  Google Scholar 

    41.
    Westerman, E. L. et al. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr. Biol. 28, 3469–3474 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Kronfrost, M. R. et al. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc. Natl Acad. Sci. USA 103, 6575–6580 (2006).
    ADS  Google Scholar 

    43.
    Chamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E. & Kronforst, M. R. Polymorphic butterfly reveals the missing link in ecological speciation. Science 326, 847–850 (2009).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    McCulloch, K. J. et al. Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271–2284 (2017).
    CAS  PubMed  Google Scholar 

    45.
    Zaccardi, G., Kelber, A., Sison-Mangus, M. P. & Briscoe, A. D. Colour discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944–1955 (2006).
    PubMed  Google Scholar 

    46.
    Monteiro, A. Gene regulatory networks reused to build novel traits. BioEssays 34, 181–186 (2012).
    CAS  PubMed  Google Scholar 

    47.
    Martin, A. et al. Multiple recent co-options of optix associated with novel traits in adaptive butterfly wing radiations. Evodevo 5, 7 (2014).
    PubMed  PubMed Central  Google Scholar 

    48.
    Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth. A. J. Principles of Neural Science, 2012th edn. (McGraw Hill, New York, 2000).

    49.
    Ramsey, M. E., Vu, W. & Cummings, M. E. Testing synaptic plasticity in dynamic mate choice decisions: N-methyl d-aspartate receptor blockade disrupts female preference. Proc. R. Soc. B Biol. Sci. 281, 20140047 (2014).
    Google Scholar 

    50.
    Bloch, N. I. et al. Early neurogenomic response associated with variation in guppy female mate preference. Nat. Ecol. Evol. 2, 1772–1781 (2018).
    PubMed  PubMed Central  Google Scholar 

    51.
    Delclos, P. J., Forero, S. A. & Rosenthal, G. G. Divergent neurogenomic responses shape social learning of both personality and mate preference. J. Evol. Biol. 223 (2020)

    52.
    Yamaguchi, M. Role of regucalcin in brain calcium signaling. Integr. Biol. 4, 825–837 (2012).
    CAS  Google Scholar 

    53.
    Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).
    CAS  PubMed  Google Scholar 

    54.
    Bashaw, G. J. & Klein, R. Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2, 1–17 (2010).
    Google Scholar 

    55.
    Prud’homme, B., Gompel, N. & Carroll, S. B. Emerging principles of regulatory evolution. Proc. Natl Acad. Sci. USA 104, 8605–8612 (2007).
    ADS  PubMed  Google Scholar 

    56.
    Preger-Ben Noon, E. et al. Comprehensive analysis of a cis-regulatory region reveals pleiotropy in enhancer function. Cell Rep. 22, 3021–3031 (2018).
    CAS  PubMed  Google Scholar 

    57.
    Lewis, J. et al. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc. Natl Acad. Sci. USA. 116, 24174–24183 (2019).
    CAS  PubMed  Google Scholar 

    58.
    Chouteau, M., Llaurens, V., Piron-Prunier, F. & Joron, M. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures. Proc. Natl Acad. Sci. USA 114, 8325–8329 (2017).
    CAS  PubMed  Google Scholar 

    59.
    Southcott, L. & Kronforst, M. R. Female mate choice is a reproductive isolating barrier in Heliconius butterflies. Ethology 124, 862–869 (2018).
    PubMed  PubMed Central  Google Scholar 

    60.
    González-Rojas, M. F. et al. Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies. Proc. R. Soc. B Biol. 287, 20200587 (2020).
    Google Scholar 

    61.
    Zhang, W. et al. Comparative transcriptomics provides insights into reticulate and adaptive evolution of a butterfly radiation. Genome Biol. Evol. 11, 2963–2975 (2019).
    PubMed  PubMed Central  Google Scholar 

    62.
    Weber, J. N., Peterson, B. K. & Hoekstra, H. E. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493, 402–405 (2013).
    ADS  CAS  PubMed  Google Scholar 

    63.
    Cande, J., Andolfatto, P., Prud’homme, B., Stern, D. L. & Gompel, N. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship. PLoS ONE 7, 1–10 (2012).
    Google Scholar 

    64.
    McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Ding, Y., Berrocal, A., Morita, T., Longden, K. D. & Stern, D. L. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. Nature 536, 329–332 (2016).
    ADS  CAS  PubMed  Google Scholar 

    66.
    Bendesky, A. et al. The genetic basis of parental care evolution in monogamous mice. Nature 544, 434–439 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Auer, T. O. et al. Olfactory receptor and circuit evolution promote host specialization. Nature 579, 402–408 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
    MathSciNet  MATH  Google Scholar 

    69.
    Jiggins, C. D. The Ecology and Evolution of Heliconius Butterflies (Oxford University Press, 2016).

    70.
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
    CAS  Google Scholar 

    71.
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Google Scholar 

    72.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq- a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  Google Scholar 

    73.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar 

    74.
    Montgomery, S. H. & Mank, J. E. Inferring regulatory change from gene expression: the confounding effects of tissue scaling. Mol. Ecol. 25, 5114–5128 (2016).
    CAS  PubMed  Google Scholar 

    75.
    Montgomery, S. H., Rossi, M., McMillan, W. O. & Merrill, R. Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies. Preprint at https://www.biorxiv.org/content/10.1101/2020.07.01.182337v1 (2020)

    76.
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).
    CAS  PubMed  Google Scholar 

    78.
    York, R. A. et al. Behaviour-dependent cis regulation reveals genes and pathways associated with bower building in cichlid fishes. Proc. Natl Acad. Sci. USA 115, 1081–1090 (2018).
    Google Scholar 

    79.
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
    CAS  PubMed  PubMed Central  Google Scholar  More