More stories

  • in

    Bioclimatic atlas of the terrestrial Arctic

    Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).ADS 
    CAS 

    Google Scholar 
    Previdi, M., Smith, K. L. & Polvani, L. M. Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett. 16, 093003 (2021).ADS 
    CAS 

    Google Scholar 
    Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 1–10 (2022).ADS 

    Google Scholar 
    Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).ADS 

    Google Scholar 
    Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Natl. Acad. Sci. 113, 46–51 (2016).ADS 
    CAS 

    Google Scholar 
    Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).ADS 

    Google Scholar 
    Overland, J. et al. The urgency of Arctic change. Polar Sci. 21, 6–13 (2019).ADS 

    Google Scholar 
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).ADS 
    CAS 

    Google Scholar 
    Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Change 166, 9 (2021).ADS 

    Google Scholar 
    Dobricic, S., Russo, S., Pozzoli, L., Wilson, J. & Vignati, E. Increasing occurrence of heat waves in the terrestrial Arctic. Environ. Res. Lett. 15, 024022 (2020).ADS 

    Google Scholar 
    Graham, R. M. et al. Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett. 44, 6974–6983 (2017).ADS 

    Google Scholar 
    Knight, J. & Harrison, S. The impacts of climate change on terrestrial Earth surface systems. Nat. Clim. Change 3, 24–29 (2013).ADS 

    Google Scholar 
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).ADS 

    Google Scholar 
    Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).
    Google Scholar 
    Reichle, L. M., Epstein, H. E., Bhatt, U. S., Raynolds, M. K. & Walker, D. A. Spatial Heterogeneity of the Temporal Dynamics of Arctic Tundra Vegetation. Geophys. Res. Lett. 45, 9206–9215 (2018).ADS 

    Google Scholar 
    Sturm, M., Racine, C. & Tape, K. Increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).ADS 
    CAS 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).ADS 

    Google Scholar 
    Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).ADS 

    Google Scholar 
    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).ADS 
    CAS 

    Google Scholar 
    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate-change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).
    Google Scholar 
    Virkkala, A.-M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Glob. Change Biol. 27, 4040–4059 (2021).CAS 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).ADS 

    Google Scholar 
    Rienecker, M. M. et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 24, 3624–3648 (2011).ADS 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
    Google Scholar 
    Karger, D. N., Schmatz, D. R., Dettling, G. & Zimmermann, N. E. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Sci. Data 7, 248 (2020).
    Google Scholar 
    Vega, G. C., Pertierra, L. R. & Olalla-Tárraga, M. Á. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci. Data 4, 170078 (2017).
    Google Scholar 
    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).ADS 

    Google Scholar 
    Slatyer, R. A., Umbers, K. D. L. & Arnold, P. A. Ecological responses to variation in seasonal snow cover. Conserv. Biol. 36, e13727 (2022).
    Google Scholar 
    Serreze, M. C. et al. Arctic rain on snow events: bridging observations to understand environmental and livelihood impacts. Environ. Res. Lett. 16, 105009 (2021).ADS 

    Google Scholar 
    López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Change Biol. 27, 1704–1720 (2021).ADS 

    Google Scholar 
    Ennos, A. R. Wind as an ecological factor. Trends Ecol. Evol. 12, 108–111 (1997).CAS 

    Google Scholar 
    Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).ADS 

    Google Scholar 
    Boussetta, S. et al. ECLand: The ECMWF Land Surface Modelling System. Atmosphere 12, 723 (2021).ADS 
    CAS 

    Google Scholar 
    Munõz-Sabater, J. ERA5-Land hourly data from 1981 to present. ECMWF https://doi.org/10.24381/cds.e2161bac (2019). Munõz-Sabater, J. ERA5-Land hourly data from 1950 to 1980. ECMWF https://doi.org/10.24381/cds.e2161bac (2021).Hoyer, S. & Hamman, J. xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw. 5, 10 (2017).
    Google Scholar 
    Sen, P. K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).MATH 

    Google Scholar 
    Theil, H. A rank-invariant method of linear and polynomial regression analysis I, II and III. Indag. Math. 173 (1950).Hussain, M. M. & Mahmud, I. pyMannKendall: a python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 4, 1556 (2019).ADS 

    Google Scholar 
    Aalto, J. et al. High-resolution analysis of observed thermal growing season variability over northern Europe. Clim. Dyn. 58, 1477–1493 (2022).
    Google Scholar 
    Zhou, B., Zhai, P., Chen, Y. & Yu, R. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world. Environ. Res. Lett. 13, 035004 (2018).ADS 

    Google Scholar 
    Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles 26 (2012).Wu, F., Jiang, Y., Wen, Y., Zhao, S. & Xu, H. Spatial synchrony in the start and end of the thermal growing season has different trends in the mid-high latitudes of the Northern Hemisphere. Environ. Res. Lett. 16, 124017 (2021).ADS 

    Google Scholar 
    Ruosteenoja, K., Räisänen, J., Venäläinen, A. & Kämäräinen, M. Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int. J. Climatol. 36, 3039–3055 (2016).
    Google Scholar 
    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of arctic vegetation. Ecography 41, 1024–1037 (2018).
    Google Scholar 
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).ADS 

    Google Scholar 
    Körner, C. Plant adaptation to cold climates. F1000Research 5, F1000 Faculty Rev-2769 (2016).Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Change 10, 1143–U134 (2020).ADS 

    Google Scholar 
    Cohen, J., Ye, H. & Jones, J. Trends and variability in rain-on-snow events. Geophys. Res. Lett. 42, 7115–7122 (2015).ADS 

    Google Scholar 
    Mooney, P. A. & Li, L. Near future changes to rain-on-snow events in Norway. Environ. Res. Lett. 16, 064039 (2021).ADS 

    Google Scholar 
    Preece, C., Callaghan, T. V. & Phoenix, G. K. Impacts of winter icing events on the growth, phenology and physiology of sub-arctic dwarf shrubs. Physiol. Plant. 146, 460–472 (2012).CAS 

    Google Scholar 
    Putkonen, J. & Roe, G. Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophys. Res. Lett. 30, (2003).Treharne, R., Bjerke, J. W. & Tømmervik, H. & Phoenix, G. K. Development of new metrics to assess and quantify climatic drivers of extreme event driven Arctic browning. Remote Sens. Environ. 243, 111749 (2020).ADS 

    Google Scholar 
    Bokhorst, S. et al. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol. Plant. 140, 128–140 (2010).CAS 

    Google Scholar 
    Russo, S., Sillmann, J. & Fischer, E. M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10, 124003 (2015).ADS 

    Google Scholar 
    Alduchov, O. A. & Eskridge, R. E. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. Climatol. 35, 601–609 (1996).ADS 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 

    Google Scholar 
    De Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).ADS 

    Google Scholar 
    Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).ADS 
    CAS 

    Google Scholar 
    Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, 035002 (2018).ADS 

    Google Scholar 
    Walker, D. A. et al. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J. Geophys. Res. Atmospheres 108, (2003).Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).
    Google Scholar 
    Peng, S. et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ. Res. Lett. 8, 014008 (2013).ADS 

    Google Scholar 
    Wheeler, J. A. et al. Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia 175, 219–229 (2014).ADS 
    CAS 

    Google Scholar 
    Zhu, L., Ives, A. R., Zhang, C., Guo, Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).ADS 

    Google Scholar 
    Vitasse, Y. et al. ‘Hearing’ alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. Int. J. Biometeorol. 61, 349–361 (2017).ADS 

    Google Scholar 
    Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change 10, 868–875 (2020).ADS 

    Google Scholar 
    Dial, R. J., Maher, C. T., Hewitt, R. E. & Sullivan, P. F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 608, 546–551 (2022).ADS 
    CAS 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002).ADS 
    CAS 

    Google Scholar 
    Sakai, A. Mechanism of Desiccation Damage of Conifers Wintering in Soil-Frozen Areas. Ecology 51, 657–664 (1970).
    Google Scholar 
    Wilson, J. W. Notes on Wind and its Effects in Arctic-Alpine Vegetation. J. Ecol. 47, 415–427 (1959).
    Google Scholar 
    Rantanen, M. et al. Bioclimatic atlas of the terrestrial Arctic, figshare, https://doi.org/10.6084/m9.figshare.c.6216368 (2023).Räisänen, J. Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change. The Cryosphere 15, 1677–1696 (2021).ADS 

    Google Scholar 
    Xu, J., Ma, Z., Yan, S. & Peng, J. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol. 605, 127353 (2022).
    Google Scholar 
    Behrangi, A., Singh, A., Song, Y. & Panahi, M. Assessing Gauge Undercatch Correction in Arctic Basins in Light of GRACE Observations. Geophys. Res. Lett. 46, 11358–11366 (2019).ADS 

    Google Scholar 
    Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J. & Lawrimore, J. H. The Global Historical Climatology Network Monthly Temperature Dataset, Version 4. J. Clim. 31, 9835–9854 (2018).ADS 

    Google Scholar 
    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmospheric Ocean. Technol. 29, 897–910 (2012).ADS 

    Google Scholar 
    Atlaskin, E. & Vihma, T. Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Q. J. R. Meteorol. Soc. 138, 1440–1451 (2012).ADS 

    Google Scholar 
    Lindsay, R., Wensnahan, M., Schweiger, A. & Zhang, J. Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic. J. Clim. 27, 2588–2606 (2014).ADS 

    Google Scholar 
    Wang, C., Graham, R. M., Wang, K., Gerland, S. & Granskog, M. A. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution. The Cryosphere 13, 1661–1679 (2019).ADS 

    Google Scholar 
    Wesslén, C. et al. The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data. Atmospheric Chem. Phys. 14, 2605–2624 (2014).ADS 

    Google Scholar  More

  • in

    A new technique to study nutrient flow in host-parasite systems by carbon stable isotope analysis of amino acids and glucose

    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518. https://doi.org/10.1038/nature06970 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts?. Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lafferty, K. D., Dobson, A. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. 103, 11211–11216 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Amundsen, P. A. et al. Food web topology and parasites in the pelagic zone of a subarctic lake. J. Anim. Ecol. 78, 563–572. https://doi.org/10.1111/j.1365-2656.2008.01518.x (2009).Article 

    Google Scholar 
    Thompson, R. M., Mouritsen, K. N. & Poulin, R. Importance of parasites and their life cycle characteristics in determining the structure of a large marine food web. J. Anim. Ecol. 74, 77–85. https://doi.org/10.1111/j.1365-2656.2004.00899.x (2005).Article 

    Google Scholar 
    Thieltges, D. W. et al. Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos 122, 1473–1482. https://doi.org/10.1111/j.1600-0706.2013.00243.x (2013).Article 

    Google Scholar 
    Sato, T. et al. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology 92, 201–207 (2011).Article 

    Google Scholar 
    Lafferty, K. D. & Kuris, A. M. Trophic strategies, animal diversity and body size. Trends Ecol. Evol. 17, 507–513 (2002).Article 

    Google Scholar 
    Goedknegt, M. A. et al. Trophic relationship between the invasive parasitic copepod Mytilicola orientalis and its native blue mussel (Mytilus edulis) host. Parasitology 145, 814–821. https://doi.org/10.1017/S0031182017001779 (2018).Article 
    CAS 

    Google Scholar 
    Timi, J. T. & Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 50, 755–761. https://doi.org/10.1016/j.ijpara.2020.04.007 (2020).Article 

    Google Scholar 
    Barber, I. & Svensson, P. A. Effects of experimental Schistocephalus solidus infections on growth, morphology and sexual development of female three-spined sticklebacks Gasterosteus aculeatus. Parasitology 126, 359–367. https://doi.org/10.1017/s0031182002002925 (2003).Article 
    CAS 

    Google Scholar 
    Scharsack, J. P., Koch, K. & Hammerschmidt, K. Who is in control of the stickleback immune system: Interactions between Schistocephalus solidus and its specific vertebrate host. Proc. Biol. Sci. 274, 3151–3158. https://doi.org/10.1098/rspb.2007.1148 (2007).Article 

    Google Scholar 
    Hopkins, C. A. Studies on cestode metabolism. I. glycogen metabolism in Schistocephalus solidus In vivo. J. Parasitol. 36, 384–390 (1950).Article 
    CAS 

    Google Scholar 
    Körting, W. & Barrett, J. Carbohydrate catabolism in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). Int. J. Parasitol. 7, 411–417 (1977).Article 

    Google Scholar 
    Hebert, F. O., Grambauer, S., Barber, I., Landry, C. R. & Aubin-Horth, N. Major host transitions are modulated through transcriptome-wide reprogramming events in Schistocephalus solidus, a threespine stickleback parasite. Mol. Ecol. 26, 1118–1130. https://doi.org/10.1111/mec.13970 (2017).Article 
    CAS 

    Google Scholar 
    Berger, C. S. et al. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasites Vectors 14, 436. https://doi.org/10.1186/s13071-021-04933-w (2021).Article 
    CAS 

    Google Scholar 
    Jolles, J. W., Mazue, G. P. F., Davidson, J., Behrmann-Godel, J. & Couzin, I. D. Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci. Rep. 10, 12282. https://doi.org/10.1038/s41598-020-69057-0 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Scharsack, J. P. et al. Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes. Glob. Change Biol. 27, 94–107. https://doi.org/10.1111/gcb.15402 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kochneva, A., Borvinskaya, E. & Smirnov, L. Zone of interaction between the parasite and the host: Protein profile of the body cavity fluid of Gasterosteus aculeatus L. infected with the Cestode Schistocephalus solidus (Muller, 1776). Acta Parasitol. 66, 569–583. https://doi.org/10.1007/s11686-020-00318-8 (2021).Article 
    CAS 

    Google Scholar 
    Barber, I. & Scharsack, J. P. The three-spined stickleback-Schistocephalus solidus system: An experimental model for investigating host-parasite interactions in fish. Parasitology 137, 411–424. https://doi.org/10.1017/S0031182009991466 (2010).Article 
    CAS 

    Google Scholar 
    Weber, J. N., Steinel, N. C., Shim, K. C. & Bolnick, D. I. Recent evolution of extreme cestode growth suppression by a vertebrate host. Proc. Natl. Acad. Sci. U. S. A. 114, 6575–6580. https://doi.org/10.1073/pnas.1620095114 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Sabadel, A. J. M., Stumbo, A. D. & MacLeod, C. D. Stable-isotope analysis: A neglected tool for placing parasites in food webs. J. Helminthol. 93, 1–7. https://doi.org/10.1017/S0022149X17001201 (2019).Article 
    CAS 

    Google Scholar 
    Hayes, J. M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Mar. Geol. 113, 111–125 (1993).Article 
    ADS 
    CAS 

    Google Scholar 
    France, R. L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40, 1310–1313 (1995).Article 
    ADS 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    O’Connell, T. C. ‘Trophic’ and ‘source’ amino acids in trophic estimation: A likely metabolic explanation. Oecologia 184, 317–326. https://doi.org/10.1007/s00442-017-3881-9 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    McMahon, K. W., Fogel, M. L., Elsdon, T. S. & Thorrold, S. R. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79, 1132–1141. https://doi.org/10.1111/j.1365-2656.2010.01722.x (2010).Article 

    Google Scholar 
    Liu, H.-z, Luo, L. & Cai, D.-l. Stable carbon isotopic analysis of amino acids in a simplified food chain consisting of the green alga Chlorella spp., the calanoid copepod Calanus sinicus, and the Japanese anchovy (Engraulis japonicus). Can. J. Zool. 96, 23–30. https://doi.org/10.1139/cjz-2016-0170 (2018).Article 
    CAS 

    Google Scholar 
    Wang, Y. V. et al. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chem. 256, 380–389. https://doi.org/10.1016/j.foodchem.2018.02.095 (2018).Article 
    CAS 

    Google Scholar 
    Whiteman, J. P., Kim, S. L., McMahon, K. W., Koch, P. L. & Newsome, S. D. Amino acid isotope discrimination factors for a carnivore: Physiological insights from leopard sharks and their diet. Oecologia 188, 977–989. https://doi.org/10.1007/s00442-018-4276-2 (2018).Article 
    ADS 

    Google Scholar 
    Rogers, M., Bare, R., Gray, A., Scott-Moelder, T. & Heintz, R. Assessment of two feeds on survival, proximate composition, and amino acid carbon isotope discrimination in hatchery-reared Chinook salmon. Fish. Res. 219, 105303. https://doi.org/10.1016/j.fishres.2019.06.001 (2019).Article 

    Google Scholar 
    Choy, K., Smith, C. I., Fuller, B. T. & Richards, M. P. Investigation of amino acid δ13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography–isotope ratio mass spectrometry. Geochim. Cosmochim. Acta 74, 6093–6111. https://doi.org/10.1016/j.gca.2010.07.025 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).Article 
    CAS 

    Google Scholar 
    Raghavan, M., McCullagh, J. S., Lynnerup, N. & Hedges, R. E. Amino acid delta13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: Paleodietary implications from intra-individual comparisons. Rapid Commun. Mass Spectrom. 24, 541–548. https://doi.org/10.1002/rcm.4398 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Honch, N. V., McCullagh, J. S. & Hedges, R. E. Variation of bone collagen amino acid delta13C values in archaeological humans and fauna with different dietary regimes: Developing frameworks of dietary discrimination. Am. J. Phys. Anthropol. 148, 495–511. https://doi.org/10.1002/ajpa.22065 (2012).Article 

    Google Scholar 
    Mora, A. et al. High-resolution palaeodietary reconstruction: Amino acid δ 13 C analysis of keratin from single hairs of mummified human individuals. Quatern. Int. 436, 96–113. https://doi.org/10.1016/j.quaint.2016.10.018 (2017).Article 

    Google Scholar 
    Matos, M. P. V., Konstantynova, K. I., Mohr, R. M. & Jackson, G. P. Analysis of the (13)C isotope ratios of amino acids in the larvae, pupae and adult stages of Calliphora vicina blow flies and their carrion food sources. Anal. Bioanal. Chem. 410, 7943–7954. https://doi.org/10.1007/s00216-018-1416-9 (2018).Article 
    CAS 

    Google Scholar 
    Bontempo, L. et al. Bulk and compound-specific stable isotope ratio analysis for authenticity testing of organically grown tomatoes. Food Chem. 318, 126426. https://doi.org/10.1016/j.foodchem.2020.126426 (2020).Article 
    CAS 

    Google Scholar 
    Gaye-Siessegger, J., McCullagh, J. S. & Focken, U. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue delta13C of rainbow trout. Br. J. Nutr. 105, 1764–1771. https://doi.org/10.1017/S0007114510005696 (2011).Article 
    CAS 

    Google Scholar 
    Newsome, S. D., Fogel, M. L., Kelly, L. & del Rio, C. M. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062. https://doi.org/10.1111/j.1365-2435.2011.01866.x (2011).Article 

    Google Scholar 
    Larsen, T. et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8, e73441. https://doi.org/10.1371/journal.pone.0073441 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Thieltges, D. W., Goedknegt, M. A., O’Dwyer, K., Senior, A. M. & Kamiya, T. Parasites and stable isotopes: A comparative analysis of isotopic discrimination in parasitic trophic interactions. Oikos 128, 1329–1339. https://doi.org/10.1111/oik.06086 (2019).Article 

    Google Scholar 
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. Camb. Philos. Soc. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2011).Article 

    Google Scholar 
    Wang, Y. V., Wan, A. H. L., Krogdahl, A., Johnson, M. & Larsen, T. (13)C values of glycolytic amino acids as indicators of carbohydrate utilization in carnivorous fish. PeerJ 7, e7701. https://doi.org/10.7717/peerj.7701 (2019).Article 

    Google Scholar 
    Hesse, T. et al. Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks. Sci. Rep. 12, 11690. https://doi.org/10.1038/s41598-022-15704-7 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Riekenberg, P. M. et al. Stable nitrogen isotope analysis of amino acids as a new tool to clarify complex parasite–host interactions within food webs. Oikos 130, 1650–1664. https://doi.org/10.1111/oik.08450 (2021).Article 
    CAS 

    Google Scholar 
    Carleton, S. A. & Del Rio, C. M. Growth and catabolism in isotopic incorporation: A new formulation and experimental data. Funct. Ecol. 24, 805–812. https://doi.org/10.1111/j.1365-2435.2010.01700.x (2010).Article 

    Google Scholar 
    Perga, M. E. & Gerdeaux, D. ‘Are fish what they eat’ all year round?. Oecologia 144, 598–606. https://doi.org/10.1007/s00442-005-0069-5 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Grey, J. Trophic fractionation and the effects of diet switch on the carbon stable isotopic ‘signatures’ of pelagic consumers. SIL Proc. 1922–2010(27), 3187–3191. https://doi.org/10.1080/03680770.1998.11898266 (2000).Article 

    Google Scholar 
    Danfaer, A. Nutrient metabolism and utilization in the liver. Livest. Prod. Sci. 39, 115–127 (1994).Article 

    Google Scholar 
    Read, C. P. & Simmons, J. E. Biochemistry and physiology of tapeworms. Physiol. Rev. 43, 263–305 (1963).Article 
    CAS 

    Google Scholar 
    Nachev, M. et al. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen. Parasites Vectors 10, 1–9. https://doi.org/10.1186/s13071-017-2030-y (2017).Article 
    CAS 

    Google Scholar 
    Kanaya, G. et al. Application of stable isotopic analyses for fish host–parasite systems: An evaluation tool for parasite-mediated material flow in aquatic ecosystems. Aquat. Ecol. 53, 217–232. https://doi.org/10.1007/s10452-019-09684-6 (2019).Article 
    CAS 

    Google Scholar 
    Gilbert, B. M. et al. You are how you eat: differences in trophic position of two parasite species infecting a single host according to stable isotopes. Parasitol. Res. 119, 1393–1400. https://doi.org/10.1007/s00436-020-06619-1 (2020).Article 

    Google Scholar 
    Gilbert, B. M. et al. Stable isotope analysis spills the beans about spatial variance in trophic structure in a fish host—Parasite system from the Vaal River System, South Africa. Int. J. Parasitol. Parasites Wildl. 12, 134–141. https://doi.org/10.1016/j.ijppaw.2020.05.011 (2020).Article 

    Google Scholar 
    Felig, P. The glucose-alanine cycle. Metabolism 22, 179–207 (1973).Article 
    CAS 

    Google Scholar 
    Dale, R. A. Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochem. Biophys. Acta. 544, 496–503 (1978).Article 
    CAS 

    Google Scholar 
    Jordan, P. M. & Akhtar, M. The mechanism of action of serine Transhydroxymethylase. Biochem. J. 116, 277–286 (1970).Article 
    CAS 

    Google Scholar 
    Linstead, D. J., Klein, R. A. & Cross, G. A. M. Threonine catabolism in Trypanosoma brucei. J. Gen. Microbiol. 101, 243–251 (1977).Article 
    CAS 

    Google Scholar 
    Hare, P. E., Fogel, M. L., Stafford, T. W. Jr., Mitchell, A. D. & Hoering, T. C. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J. Archaeol. Sci. 18, 277–292 (1991).Article 

    Google Scholar 
    Petzke, K. J., Boeing, H., Klaus, S. & Metges, C. C. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J. Nutr. 135, 1515–1520 (2005).Article 
    CAS 

    Google Scholar 
    McMahon, K. W., Polito, M. J., Abel, S., McCarthy, M. D. & Thorrold, S. R. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol. Evol. 5, 1278–1290. https://doi.org/10.1002/ece3.1437 (2015).Article 

    Google Scholar 
    Fuller, B. T. & Petzke, K. J. The dietary protein paradox and threonine (15) N-depletion: Pyridoxal-5’-phosphate enzyme activity as a mechanism for the delta (15) N trophic level effect. Rapid Commun. Mass Spectrom. 31, 705–718. https://doi.org/10.1002/rcm.7835 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowyer, A. et al. Structure and function of the l-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Struct. Biol. 168, 294–304. https://doi.org/10.1016/j.jsb.2009.07.011 (2009).Article 
    CAS 

    Google Scholar 
    Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: Reaction mechanism, physiological significance and hyperglycinemia. Proc. Jpn. Acad. https://doi.org/10.2183/pjab/84.246 (2008).Article 

    Google Scholar 
    Locasale, J. W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583. https://doi.org/10.1038/nrc3557 (2013).Article 
    CAS 

    Google Scholar 
    Kalhan, S. C. & Hanson, R. W. Resurgence of serine: An often neglected but indispensable amino Acid. J. Biol. Chem. 287, 19786–19791. https://doi.org/10.1074/jbc.R112.357194 (2012).Article 
    CAS 

    Google Scholar 
    Larsen, T., Wang, Y. V. & Wan, A. H. L. Tracing the Trophic fate of aquafeed macronutrients with carbon isotope ratios of amino acids. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.813961 (2022).Article 

    Google Scholar 
    Sweeting, C. J., Polunin, N. V. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601. https://doi.org/10.1002/rcm.2347 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Tarallo, A., Bailey, C., Agnisola, C. & D’Onofrio, G. A theoretical evaluation of the respiration rate partition in the Gasterosteus aculeatus-Schistocephalus solidus host-parasite system. Int. Aquat. Res. 13, 185. https://doi.org/10.22034/IAR.2021.1924974.1142 (2021).Article 

    Google Scholar 
    Takizawa, Y. et al. A new insight into isotopic fractionation associated with decarboxylation in organisms: Implications for amino acid isotope approaches in biogeoscience. Progress Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00364-w (2020).Article 

    Google Scholar 
    Ron-Harel, N. et al. T cell activation depends on extracellular alanine. Cell Rep. 28, 3011-3021.e4. https://doi.org/10.1016/j.celrep.2019.08.034 (2019).Article 
    CAS 

    Google Scholar 
    Wang, W. et al. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids 45, 463–477. https://doi.org/10.1007/s00726-013-1493-1 (2013).Article 
    CAS 

    Google Scholar 
    Mathis, D. & Shoelson, S. E. Immunometabolism: An emerging frontier. Nat. Rev. Immunol. 11, 81. https://doi.org/10.1038/nri2922 (2011).Article 
    CAS 

    Google Scholar 
    Guo, C. et al. Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish Shellfish Immunol. 47, 664–673. https://doi.org/10.1016/j.fsi.2015.09.034 (2015).Article 
    CAS 

    Google Scholar 
    Peuss, R. et al. Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish. Nat. Ecol. Evol. 4, 1416–1430. https://doi.org/10.1038/s41559-020-1234-2 (2020).Article 

    Google Scholar 
    Smyth, J. D. Fertilization of Schistocephalus solidus in vitro. Exp. Parasitol. 3, 64–71 (1954).Article 
    CAS 

    Google Scholar 
    Schärer, L. & Wedekind, C. Lifetime reproductive output in a hermaphrodite cestode when reproducing alone or in pairs. Evol. Ecol. 13, 381–394 (1999).Article 

    Google Scholar 
    McCullagh, J. S. Mixed-mode chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 483–494. https://doi.org/10.1002/rcm.4322 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Dunn, P. J., Honch, N. V. & Evershed, R. P. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid delta13C values for palaeodietary and palaeoecological reconstruction. Rapid Commun. Mass Spectrom. 25, 2995–3011. https://doi.org/10.1002/rcm.5174 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Fry, B., Carter, J. F., Yamada, K., Yoshida, N. & Juchelka, D. Position-specific (13) C/(12) C analysis of amino acid carboxyl groups—Automated flow-injection-analysis based on reaction with ninhydrin. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8126 (2018).Article 

    Google Scholar 
    Marks, R. G. H., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. How to couple LC-IRMS with HRMS─A proof-of-concept study. Anal Chem 94, 2981–2987 (2022).Article 
    CAS 

    Google Scholar 
    Sun, Y. et al. A method for stable carbon isotope measurement of underivatized individual amino acids by multi-dimensional high-performance liquid chromatography and elemental analyzer/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 34, e8885. https://doi.org/10.1002/rcm.8885 (2020).Article 
    CAS 

    Google Scholar 
    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Köster, D., Villalobos, I. M. S., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. New concepts for the determination of oxidation efficiencies in liquid chromatography-isotope ratio mass spectrometry. Anal. Chem. 91, 5067–5073. https://doi.org/10.1021/acs.analchem.8b05315 (2019).Article 
    CAS 

    Google Scholar 
    Boschker, H. T., Moerdijk-Poortvliet, T. C., van Breugel, P., Houtekamer, M. & Middelburg, J. J. A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 22, 3902–3908. https://doi.org/10.1002/rcm.3804 (2008).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Sleep deprivation among adolescents in urban and indigenous-rural Mexican communities

    Our main objective was to test the SJH (positing that adolescents living in “traditional”, non-industrial environments will more closely fulfil their “biological/natural” sleep requirements25,26) by comparing sleep deprivation among adolescents in rural and urban societies. The SJH argues that adolescent “biological/natural” sleep quotas and circadian cycles can be ascertained from free days, when sleep patterns are minimally shaped by social commitments5,37. Therefore, we predicted that sleep deprivation would be rare in the more rural agricultural settings of Puebla and Campeche but more frequent among participants in Mexico City. Likewise, we predicted that we would not see sleep deprivation on free days among any of the rural participants.Our predictions were not supported, instead, we found that short sleep quotas during school nights are common in both rural agricultural settings, with over 75% of adolescents in each group sleeping  More

  • in

    The vulnerability of global forests to human and climate impacts

    Duke, N. C. et al. Mar. Freshw. Res. 68, 1816–1829 (2017).Article 

    Google Scholar 
    Li, W. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-01020-5 (2023).Article 

    Google Scholar 
    Potapov, P. et al. Ecol. Soc. 13, 51 (2008).Article 

    Google Scholar 
    Hancock, S. et al. Earth Space Sci. 6, 294–310 (2019).Article 

    Google Scholar 
    Wade, C. M. et al. Forests 11, 539 (2020).Article 

    Google Scholar 
    Abhilash, P. C. Land 10, 201 (2021).Article 

    Google Scholar 
    Biermann, F., Kanie, N. & Kim, R. E. Curr. Opin. Environ. Sustain. 26–27, 26–31 (2017).Article 

    Google Scholar 
    den Elzen, M. et al. Energy Policy 126, 238–250 (2019).Article 

    Google Scholar 
    Betts, M. G. et al. Nature 547, 441–444 (2017).Article 
    CAS 

    Google Scholar 
    Watson, J. E. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0490-x (2018).Article 

    Google Scholar  More

  • in

    Spring phenology alters vegetation drought recovery

    Mishra, A. K. & Singh, V. P. J. Hydrol. 391, 202–216 (2010).Article 

    Google Scholar 
    Jiao, W. et al. Nat. Commun. 12, 3777 (2021).Article 
    CAS 

    Google Scholar 
    Gampe, D. et al. Nat. Clim. Change 11, 772–779 (2021).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Schwalm, C. R. et al. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01584-2 (2023).Fourth National Climate Assessment: Volume II—Impacts, Risks, and Adaptation in the United States (US Global Change Research Program, 2018).Daryanto, S., Wang, L. & Jacinthe, P. A. PLoS ONE 11, e0156362 (2016).Article 

    Google Scholar 
    Jiao, W. et al. J. Geophys. Res. Biogeosci. 127, e2021JG006431 (2022).Augspurger, C. K. Oecologia 156, 281–286 (2008).Article 

    Google Scholar 
    Lian, X. et al. Nat. Commun. 12, 983 (2021).Article 
    CAS 

    Google Scholar 
    Buermann, W. et al. Nature 562, 110–114 (2018).Article 
    CAS 

    Google Scholar 
    Lian, X. et al. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Jiao, W., Wang, L. & McCabe, M. F. Rem. Sens. Environ. 256, 112313 (2021).Article 

    Google Scholar  More

  • in

    Synthesis of heat-resistant and water/oil-repellent aromatic polyketones bearing tetrakis(nonafluorobutyl)-p-terphenylene units

    Hou J, Sun J, Fang Q. A fluorinated low dielectric polymer at high frequency derived from allylphenol and benzocyclobutene by a facile route. Eur Polym J. 2022;163:110943–9.Article 
    CAS 

    Google Scholar 
    Qiu Z, Wu S, Li Z, Zhang S, Xing W, Liu S. Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules 2006;39:6425–32.Article 
    CAS 

    Google Scholar 
    Schönberger F, Chromik A, Kerres J. Synthesis and characterization of novel (sulfonated) poly(arylene ether)s with pendent trifluoromethyl groups. Polymer 2009;50:2010–24.Article 

    Google Scholar 
    Chen JC, Liu YC, Ju JJ, Chiang CJ, Chern YT. Synthesis, characterization and hydrolysis of aromatic polyazomethines containing non-coplanar biphenyl structures. Polymer 2011;52:954–64.Article 
    CAS 

    Google Scholar 
    Liaw DJ, Huang CC, Chen WH. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2’-dimethyl-4,4’-biphenylene units. Polymer 2006;47:2337–48.Article 
    CAS 

    Google Scholar 
    Shohbuke E, Kobayashi Y, Okubayashi S. Effects of acrylate monomers containing alkyl groups on water and oil repellent treatments of polyester fabrics. Colloids. Surf. A: Physicochem Eng Asp. 2021;631:127632–9.Article 
    CAS 

    Google Scholar 
    Sun Y, Zhao X, Liu R, Chen G, Zhou X. Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog Org Coat. 2018;123:306–13.Article 
    CAS 

    Google Scholar 
    Tang W, Huang Y, Qing FL. Synthesis and characterization of fluorinated polyacrylate graft copolymers capable as water and oil repellent finishing agents. J Appl Polym Sci. 2011;119:84–92.Article 
    CAS 

    Google Scholar 
    Jiang J, Zhang G, Wang Q, Zhang Q, Zhan X, Chen F. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates. ACS Appl Mater Interfaces. 2016;8:10513–23.Article 
    CAS 

    Google Scholar 
    Honda K, Morita M, Otsuka H, Takahara A. Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films. Macromolecules 2005;38:5699–705.Article 
    CAS 

    Google Scholar 
    Shaver AT, Yin K, Borjigin H, Zhang W, Choudhury SR, Baer E, Mecham SJ, Riffle JS, McGrath JE. Fluorinated poly(arylene ether ketone)s for high temperature dielectrics. Polymer 2016;83:199–204.Article 
    CAS 

    Google Scholar 
    Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer. 1981;22:1096–103.Article 
    CAS 

    Google Scholar 
    Yonezawa N, Okamoto A. Synthesis of Wholly Aromatic Polyketones. Polym J. 2009;41:899–928.Article 
    CAS 

    Google Scholar 
    Maeyama K, Ito S. Synthesis of aromatic poly(ether ketone)s bearing 9,9-dialkylfuorene-2,7-diyl units through nucleophilic aromatic substitution polymerization. Polym Bull.2018;75:5763–76.Article 
    CAS 

    Google Scholar 
    Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether ketone). Polymer 1983;24:953–8.Article 
    CAS 

    Google Scholar 
    Maeyama K, Hikiji I, Ogura K, Okamoto A, Ogino K, Saito H, Yonezawa N. Synthesis of Optically Active Aromatic Poly(ether ketone)s via Nucleophilic Aromatic Substitution Polymerization. Polym J. 2005;37:707–10.Article 
    CAS 

    Google Scholar 
    Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Effect of pendent phenyl and bis-phthalazinone moieties on the properties of N-heterocyclic poly(aryl ether ketone ketone)s. Polymer 2020;198:122525–34.Article 
    CAS 

    Google Scholar 
    Eaton PE, Carlson GR, Lee JT. Phosphorus Pentoxide-Methanesulfonic Acid. A Convenient Alternative to Polyphosphoric Acid. J Org Chem. 1973;38:4071–3.Article 
    CAS 

    Google Scholar 
    Nowacki B, Iamazaki E, Cirpan A, Karasz F, Atvars TDZ, Akcelrud L. Highly efficient polymer blends from a polyfluorene derivative and PVK for LEDs. Polymer 2009;50:6057–64.Article 
    CAS 

    Google Scholar 
    Wang TQ, Zhao SL, Zhang WM, Lin HX, Cui YM. Synthesis, X-ray crystal structure, and optical properties of novel 9,9-diethyl-1,2-diaryl-1,9-dihydrofluoreno[2,3-d]imidazoles. Monatsh Chem. 2016;147:1991–9.Article 
    CAS 

    Google Scholar 
    Chen J, Onogi S, Hsieh YC, Hsiao CC, Higashibayashi S, Sakurai H, Wu YT. Palladium-Catalyzed Arylation of Methylene-Bridged Polyarenes: Synthesis and Structures of 9-Arylfluorene Derivatives. Adv Synth Catal. 2012;354:1551–8.Article 
    CAS 

    Google Scholar 
    Manuel S, Anne S, Larissa AC, Stefan M. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nat Commun.2019;10:2592.Article 

    Google Scholar 
    Lee KS, Lee JS. Synthesis of Highly Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguides. Chem Mater. 2006;18:4519–25.Article 
    CAS 

    Google Scholar 
    Natarajan P, Vagicherla VD, Vijayan MT. A mild oxidation of deactivated naphthalenes and anthracenes to corresponding para-quinones by N-bromosuccinimide. Tetrahedron Lett. 2014;55:3511–5.Article 
    CAS 

    Google Scholar 
    Faury T, Dumur F, Clair S, Abel M, Porte L, Gigmes D. Side functionalization of diboronic acid precursors for covalent organic frameworks. Cryst Eng Comm. 2013;15:2067–75.Article 
    CAS 

    Google Scholar 
    Shaposhnikova VV, Tkachenko AS, Zvukova ND, Peregudov AS, Klemenkova ZS, Ponomarev AF, Il´yasov VK, Lachinov AN, Salazkin SN. New possibilities for the effective influence on the charge transport in poly(arylene ether ketones) without using phthalide-containing fragments in the polymer chains. Rus Chem Bull Int Ed. 2016;65:502–6.Article 
    CAS 

    Google Scholar 
    Owens DK, Wendt RC. Estimation of the Surface Free Energy of Polymers. J Appl Polym Sci. 1969;13:1741–7.Article 
    CAS 

    Google Scholar 
    Fox HW, Zisman WA. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci. 1950;5:514–31.Article 
    CAS 

    Google Scholar  More

  • in

    Genome-wide identification and expression profile of Elovl genes in threadfin fish Eleutheronema

    Identification of Elovl genes from E. tetradactylum and E. rhadinumTotally, we successfully identified 9 Elovl genes, including elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl6, elovl6l, elovl7a, and elovl8b, both from E. tetradactylum and E. rhadinum genome (Table 2). In E. rhadinum, the shortest and the longest putative CDS length among all Elovl genes was 810 bp and 2019 bp, respectively. Their encoded protein size ranged from 269 amino acids to 672 amino acids. The theoretical molecular weight of Elovl proteins varied from 31061.48 to 75051.42 Da, with the theoretical isoelectric points (pI) ranging from 7.86 to 9.59. Most of the Elovl proteins were characterized as stable and hydrophilic proteins. Signal peptide prediction analysis showed that the elovl1b, elovl5, and elovl6 contained signal peptide sequences. In addition to elovl8b, all Elovl proteins contained transmembrane domains ranging from 5 to 7. Almost all Elovl proteins were predicted to be endoplasmic reticulum-located except elovl8b, predominantly localized in the nucleus.Table 2 Basic information for the Elovl gene family members.Full size tableIn E. tetradactylum, the putative CDS length of Elovl genes ranged from 810 to 1824 bp, and their encoded protein size ranged from 269 amino acids to 409 amino acids. The molecular weight of Elovl proteins varied from 31049.42 to 68750.14 Da, with the pI ranging from 8.72 to 9.64. Like Elovl proteins in E. rhadinum, most elovl proteins were predicted to be stable and hydrophilic. Signal peptide prediction analysis revealed that elovl1a, elovl5, and elovl6 had signal peptide sequence, which was different from E. rhadinum that elovl1b contained signal peptide sequence, but elovl1a did not. In addition, seven members showed the same number of transmembrane structures with E. rhadinum, while the elovl8b contained three and elovl4b contained seven transmembrane structures in contrast to E. rhadinum. The elovl8b was predicted to be localized in nuclear, while other members were localized in the endoplasmic reticulum, similar to E. rhadinum.Evolution of divergence and conservation of Elovl genesDivergence and conservation accompany the process of species evolution. To elucidate the phylogenetic relationship of Elovl genes among different species, a maximum like-hood tree was constructed on the basis of 18 Elovl genes in E. tetradactylum and E. rhadinum and 106 publicly available Elovl protein sequences. As shown in Fig. 1, these Elovl genes can be divided into eight subfamilies, including elovl1a/1b, elovl2, elovl3, elovl4a, elovl5, elovl6/6 l, elovl7a/7b, elovl8a/8b. However, 6 subfamilies were presented in the Eleutheronema genus, and there was only one subtype for elovl7 (elovl7a) and elovl8 (elovl8b) in E. tetradactylum and E. rhadinum. The elovl3 was mainly identified in mammalians such as Homo sapiens and Mus musculus, while a recent study reported a full repertoire of Elovl genes in the Colossoma macropomum genome, including elovl330. The loss of elovl2 occurred in the vast majority of marine fish lineages, which was only presented in a few fish species, such as C. carpio, D. rerio, S. salar, and S. grahami.Figure 1Phylogenetic tree for 18 Elovl proteins from E. tetradactylum and E. rhadinum, and 106 publicly available Elovl proteins from other species. All these proteins were aligned using ClustalW and then subjected to MEGAX for phylogenetic tree construction using the maximum like-hood method with 1000 replicates.Full size imageWe further performed the gene structure analysis to visualize the exon–intron structure of each gene, and the results revealed that the elovl8b had the largest intron number, while the elovl6/6 l subfamily genes contained three introns (Fig. 2a). Except for elovl8, Elovl genes belonging to the same subfamily shared a similar gene structure. Additionally, we identified ten motifs in Elovl genes, and the conversed motif types, numbers, and distributions in Elovl proteins were much more similar except for the elovl8b (Fig. 2b, TableS1). Two conserved motifs were found in the Elovl gene family except for elovl8b in E. rhadinum, which were related to the ELO domain via SMART evaluation analysis (Fig. 2c and d). Gene structural variation is important for gene evolution. In E. tetradactylum and E. rhadinum, Elovl genes showed similar gene structure, and the proteins shared similar motif compositions, indicating that the Elovl genes were highly conserved in the Eleutheronema genus.Figure 2Gene structure and conserved motifs diagram of Elovl genes. (a) Gene structure of Elovl genes. Exons were represented by pink boxes and introns by black lines; (b) Conserved motifs of Elovl proteins; (c and d) Logo representations of the ELO domains, motifs 1 and 2, respectively.Full size imageIn the process of evolution via natural selection, adaptation to certain environmental conditions likely drove the changes in endogenous capacity for LC-PUFA biosynthesis between marine and freshwater fishes31. The Elovl gene family has been functionally studied and characterized in a variety of fish species, and the member of the Elovl gene family of each species varied greatly. In the present study, for a comprehensive analysis of Elovl genes in the Eleutheronema genus, the Elovl gene ortholog clusters of mammals and various teleosts with different ecological niches and habitats were collected. The results showed that only seven Elovl genes (one gene for each subtype) were observed in mammals; however, more members were variably presented in teleosts, which might be related to the teleost-specific duplication. A previous study revealed that Sinocyclocheilus graham and C. carpio possessed the highest number of Elovl genes, containing 21 members of subtypes, resulting from an extra independent 4th whole-genome duplication event32, 33. Interestingly, only 9 Elovl genes were observed in Eleutheronema genus, the same as T. rubripes, possibly due to gene loss and the asymmetric acceleration of the evolutionary rate in one of the paralogs following the whole-genome duplication in some teleost fishes34. Additionally, the elovl2 and elovl3 were absent, but a novel subtype, elovl8, was present in most marine fishes. The elovl8, the most recently identified and novel active member of the Elovl protein family member, has been proposed to be a fish-specific elongase with two gene paralogs (elovl8a and elovl8b) described in teleost35. In Eleutheronema, we also found that the elovl8b was presented in E. tetradactylum and E. rhadinum, indicating the important roles in the LC-PUFAs biosynthesis of Eleutheronema fish. Similar results were also observed in rabbitfish and zebrafish20. The Elovl gene family member number in Eleutheronema genus is the same as T. rubripes, but less than I. punctatus (10), Gadus morhua (10), D. rerio (14), S. salar (18), and C. carpio (21), which might be due to the differential expansion events during the evolutions of fish species.Predicting the protein structure is a fundamental prerequisite for understanding the function and possible interactions of a protein. In the present study, the secondary structures as well as three-dimensional structures of Elovl proteins in both E. tetradactylum and E. rhadinum were predicted using the SOPMA and Phyre2 programs, respectively. The protein structures of all the candidate Elovl proteins were modeled at  > 90% confidence. The secondary structures of these proteins in E. tetradactylum revealed 40.86–50.30% alpha helixes, 28.10–28.10% random coil, 13.75–20.67% extended strand and 2.38–4.47% beta turn, while these ratios were predicted to be 47.55–53.27, 30.00–36.01, 6.99–18.12 and 2.38–4.75%, respectively, in E. rhadinum (Table 3). High ratio of alpha helixes and random coil in the Elovl protein structure might play important roles in fatty acids biosynthesis in fish, in accordance with the literature for the order Perciformes in Perca fluviatilis36. Additionally, the secondary structure pattern of Elovl proteins in the candidate E. tetradactylum and E. rhadinum species were highly similar (Fig. 3), indicating the probable similar biological functions as well as highly evolutionarily conserved Elovl genes in Eleutheronema species.Table 3 Properties of the secondary structures of Elovl proteins.Full size tableFigure 3The secondary structure pattern, including alpha helix (blue color), random coil (purple color), extended strand (red color), and beta turn (green color), of Elovl proteins in E. tetradactylum and E. rhadinum.Full size imageThe 3D model results showed that all predicted Elovl proteins had complex 3D structures, composing of multiple secondary structures including alpha-helices, random coils, and others (Fig. 4). The Elovl proteins of different subfamilies showed different 3D configurations. The 3D structures of Elovl proteins also revealed the presence of the conserved domain in each Elovl protein, which showed a typical three-dimensional frame comprising of various parallel alpha-helixes. To assay the quality and accuracy of the predicted 3D model for the candidate Elovl proteins, the Ramachandran plot analysis was employed (Figure S1). In model validation, the qualities of the Elovl proteins model varied from 90 to 98% based on the Ramachandran plot analysis, suggesting the reasonably good quality and reliability of the predicted 3D models. These results indicated that the predicted 3D model of Elovl proteins could provide valuable information for the further comprehensive studies of molecular function in the fatty acids biosynthesis in Eleutheronema species. Additionally, the comparisons between these structures in E. tetradactylum and E. rhadinum suggested that the Elovl proteins encompassed the conserved structures. In addition, gene duplication resulted in obvious 3D structural variation in the duplicated genes, such as Elovl4 (elovl4a and elovl4b), Elovl6 (elovl6 and elovl6l). The ascertained variations were revealed in duplicated Elovl proteins, and the diversities in these proteins structure may reflect their different obligations in the fatty acid biosynthesis and other biological processes.Figure 4Three-dimensional modeling of Elovl proteins in E. tetradactylum and E. rhadinum. All models have confidence levels above 90%.Full size imageTo explore the functional selection pressures acting on Elovl gene family, Ka, Ks, and Ka/Ks ratios were calculated for each gene. Generally, Ka/Ks  1 indicates positive selection. In this study, we found that all the Ka/Ks ratios for each gene were less than 0.5, suggesting that they were subjected to strong purifying selection during evolution, and their functions might be evolutionarily conserved (Fig. 5). Therefore, theoretically, the Elovl genes in the Eleutheronema genus had eliminated deleterious mutations in the population through purification selection. Similar results were also observed in Elovl gene family of Gymnocypris przewalskii that no positive selection trace was detected in most members except elovl211. Moreover, elovl6l and elovl8b showed a higher average Ka/Ks ratio than the other seven members, indicating that the evolution of elovl6l and elovl8b might be much less conservative and thereby could provide more variants for natural selection in Eleutheronema species.Figure 5The evolutionary rates of the Elovl genes in (a) E. tetradactylum and (b) E. rhadinum. The Ka, Ks, and Ka/Ks values were demonstrated in boxplots with error lines.Full size imageChromosomal location, collinearity, and protein–protein interaction network analysis of Elovl genesAs shown in Fig. 6a and b, Elovl genes were randomly and unevenly distributed on seven chromosomes in both E. tetradactylum and E. rhadinum, including Chr5, Chr6, Chr8, Chr10, Chr11, Chr13, and Chr25. The Chr5 and Chr6 harbored two Elovl genes (elovl1b and elovl8b in Chr5, elovl5 and elovl6l in Chr6), while other chromosomes each carried a single Elovl gene. Collinearity relationship analysis was performed to further investigate the gene duplication events within the Elovl gene family. The results revealed that a pair of segmental duplication genes (elovl4a/4b) showed collinear relationships. A chromosome-wide collinearity analysis also showed that the chromosomes were highly homologous between E. tetradactylum and E. rhadinum, including the Elovl gene family (Figure S2). To infer the protein interaction within Elovl gene family, we constructed the protein–protein interaction (PPI) network of the Elovl proteins based on the interaction relationship of the homologous Elovl proteins in zebrafish. The results showed that Elovl genes had close interaction with other members except for the elovl4a/4b and elovl8b (Fig. 6c), which suggested that they might participate in diverse functions by interacting with other proteins. Thus far, elovl4a and elovl4b were widely identified in most fish, which could effectively elongate PUFA substrates37. In addition, the elovl4a/4b were identified to be homologous proteins of zebrafish, indicating that the elovl4 subtype was highly conserved during evolution and played important roles in the biosynthesis of LC-PUFA in Eleutheronema.Figure 6Chromosomal location and collinearity analysis of Elovl gene family in (a) E. tetradactylum and (b) E. rhadinum. Colored boxes represented chromosomes. Segmental duplication genes are connected with grey lines; (c) a protein–protein interaction network for Elovl genes based on their orthologs in zebrafish.Full size imageExpression patterns of ELOVL genes in different tissuesIn the present study, we aimed to determine the expression patterns and gained insights into the potential functions of Elovl genes in the brain, eye, gill, heart, kidney, liver, muscle, stomach, and intestine. The expression patterns of Elovl genes in different tissues and species were distinct, suggesting the diverse roles during fish development (Fig. 7a and b). In our present study, the elovl1a and elvovl1b were expressed in a relatively narrow range of tissues, including the liver, stomach, and intestine. Some Elovl genes had much higher relative expression rates, e.g., elovl1a and elovl7a. The elovl4a was primarily distributed in the brain and eye, slightly expressed in gills while hardly detectable in other tissues, consistent with previous studies37, 38, which might play an important role in endogenous biosynthesis of LC-PUFA in the neural system of fish. In contrast to elovl4a, elovl4b was ubiquitously, instead of tissue-specific, expressed in most tissues while hardly examined in the heart and kidney. The elovl4a and elovl4b were two commonly paralogues in evolutionarily diverged fish species, and the striking difference in expression patterns between elovl4a and elovl4b might be due to the potential functional divergence of these two paralogues. In addition, elovl8b, the novel active member of the Elovl protein family, was expressed in several tissues, suggesting the essential roles in LC-PUFAs biosynthesis of teleost as indicated by a previous study20. Moreover, the differences in expression patterns among different Elovl genes indicated that these genes might possibly undergo functional divergence during evolution in the Eleutheronema genus. Overall, our present study firstly provided the preliminary organ-specific expression data of the Elovl gene family in E. tetradactylum and E. rhadinum, which could provide the foundation for further clarifying the function of these genes in the evolutionary development of the Eleutheronema genus.Figure 7qPCR assessment of tissue distribution of elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl6, elovl6l, elovl7a, and elovl8b gene expression in (a) E. tetradactylum and (b) E. rhadinum for various tissues including the brain, eye, gill, heart, kidney, liver, muscle, stomach, and intestine.Full size image More

  • in

    Localized coevolution between microbial predator and prey alters community-wide gene expression and ecosystem function

    Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964;18:586–608.Article 

    Google Scholar 
    Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA. 2012;109:4544–9.Article 
    CAS 

    Google Scholar 
    Hall AR, Scanlan PD, Buckling A. Bacteria-phage coevolution and the emergence of generalist pathogens. Am Nat. 2011;177:44–53.Article 

    Google Scholar 
    Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot. 1998;76:1052–71.CAS 

    Google Scholar 
    Schluter D. The ecology of adaptive radiation. Oxford, UK: University Press; 2000.Buckling A, Maclean CR, Brockhurst MA, Colegrave N. The Beagle in a bottle. Nature. 2009;457:824–9.Article 
    CAS 

    Google Scholar 
    Thompson JN. The coevolutionary process. Chicago, USA: University of Chicago Press; 1994.Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M. Global relationship between phytoplankton diversity and productivity in the ocean. Nat Commun. 2014;5:4299.Article 
    CAS 

    Google Scholar 
    Jürgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81:413–34.Article 

    Google Scholar 
    Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG. Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci USA. 2004;101:10644–9.Article 
    CAS 

    Google Scholar 
    Thompson JN. The geographic mosaic of coevolution. Chicago, USA: University of Chicago Press; 2005.Hahn MW, Höfle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol. 2001;35:113–21.Article 
    CAS 

    Google Scholar 
    Fuhrman JA, Noble RT. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr. 1995;40:1236–42.Article 

    Google Scholar 
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.Article 

    Google Scholar 
    Lankau RA, Strauss SY. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science. 2007;317:1561–3.Article 
    CAS 

    Google Scholar 
    Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett. 2022:25;307–19.Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG Jr. Rapid evolution drives ecological dynamics in a predator-prey system. Nature. 2003;424:303–6.Article 
    CAS 

    Google Scholar 
    McClean D, McNally L, Salzberg LI, Devine KM, Brown SP, Donohue I. Single gene locus changes perturb complex microbial communities as much as apex predator loss. Nat Commun. 2015;6:8235.Article 

    Google Scholar 
    Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.Article 

    Google Scholar 
    Middelboe M, Holmfeldt K, Riemann L, Nybroe O, Haaber J. Bacteriophages drive strain diversification in a marine Flavobacterium: Implications for phage resistance and physiological properties. Environ Microbiol. 2009;11:1971–82.Article 
    CAS 

    Google Scholar 
    Lennon JT, Martiny JBH. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol Lett. 2008;11:1178–88.Article 

    Google Scholar 
    Cairns J, Jokela R, Hultman J, Tamminen M, Virta M, Hiltunen T. Construction and characterization of synthetic bacterial community for experimental ecology and evolution. Front Genet. 2018;9:312.Article 

    Google Scholar 
    Pascual-García A, Bell T. Community-level signatures of ecological succession in natural bacterial communities. Nat Commun. 2020;11:2386.Article 

    Google Scholar 
    Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72.Article 
    CAS 

    Google Scholar 
    Cairns J, Moerman F, Fronhofer EA, Altermatt F, Hiltunen T. Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proc Biol Sci. 2020;287:20200652.
    Google Scholar 
    Cooke DP, Wedge DC, Lunter G. A unified haplotype-based method for accurate and comprehensive variant calling. Nat Biotechnol. 2021;39:885–92.Article 
    CAS 

    Google Scholar 
    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.Article 
    CAS 

    Google Scholar 
    Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.Article 
    CAS 

    Google Scholar 
    Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.Article 
    CAS 

    Google Scholar 
    Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551:45–50.Article 

    Google Scholar 
    Timonen J, Mannerström H, Vehtari A, Lähdesmäki H. lgpr: an interpretable nonparametric method for inferring covariate effects from longitudinal data. Bioinformatics. 2021;37:1860–7.Article 
    CAS 

    Google Scholar 
    Willis AD, Martin BD. Estimating diversity in networked ecological communities. Biostatistics. 2022;23:207–22.Article 

    Google Scholar 
    Willis A, Bunge J, Whitman T. Improved detection of changes in species richness in high diversity microbial communities. J R Stat Soc C. 2017;66:963–77.Article 

    Google Scholar 
    Anderson MJ. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 2001:26;32–46.Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62:245–53.Article 

    Google Scholar 
    Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.Article 

    Google Scholar 
    Zhang Y, Thompson KN, Huttenhower C, Franzosa EA. Statistical approaches for differential expression analysis in metatranscriptomics. Bioinformatics. 2021;37:i34–41.Article 
    CAS 

    Google Scholar 
    Abdi H, Williams LJ, Valentin D, Bennani-Dosse M. STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comp Stat. 2012;4:124–67.Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw. 2014;61:1–36.Article 

    Google Scholar 
    Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35:2084–92.Article 
    CAS 

    Google Scholar 
    Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.Article 
    CAS 

    Google Scholar 
    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.Article 
    CAS 

    Google Scholar 
    Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ. Different trajectories of parallel evolution during viral adaptation. Science. 1999;285:422–4.Article 
    CAS 

    Google Scholar 
    Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet. 2011;43:1275–80.Article 
    CAS 

    Google Scholar 
    Lebeuf-Taylor E, McCloskey N, Bailey SF, Hinz A, Kassen R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. Elife. 2019;8:e45952.Article 

    Google Scholar 
    Bailey SF, Hinz A, Kassen R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat Commun. 2014;5:4076.Article 
    CAS 

    Google Scholar 
    Mukherjee S, Jemielita M, Stergioula V, Tikhonov M, Bassler BL. Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biol. 2019;17:e3000579.Article 
    CAS 

    Google Scholar 
    Segura A, Hurtado A, Duque E, Ramos JL. Transcriptional phase variation at the flhB gene of Pseudomonas putida DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance. J Bacteriol. 2004;186:1905–9.Article 
    CAS 

    Google Scholar 
    Lee X, Reimmann C, Greub G, Sufrin J, Croxatto A. The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Microbes Infect. 2012;14:268–72.Article 
    CAS 

    Google Scholar 
    Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jürgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Micro Ecol. 2008;53:83–98.Article 

    Google Scholar 
    Collins K, editor. Tetrahymena thermophila. New York: Academic Press, Elsevier; 2012.Ruehle MD, Orias E, Pearson CG. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics. 2016;203:649–65.Article 
    CAS 

    Google Scholar 
    Plum K, Tarkington J, Zufall RA. Experimental evolution in Tetrahymena. Microorganisms. 2022;10:1–11.Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157:95–109.Article 
    CAS 

    Google Scholar 
    Jones ML, Rivett DW, Pascual-García A, Bell T. Relationships between community composition, productivity and invasion resistance in semi-natural bacterial microcosms. Elife. 2021;10:1–25.Kertesz MA. Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev. 2000;24:135–75.CAS 

    Google Scholar 
    Park C, Shin B, Park W. Protective role of bacterial alkanesulfonate monooxygenase under oxidative stress. Appl Environ Microbiol. 2020;86:1–14.Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334:986–90.Article 
    CAS 

    Google Scholar 
    Ong C-LY, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 2010;10:183.Article 

    Google Scholar 
    McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc Lond B Biol Sci. 2015;370:1–8.Scheuerl T, Cairns J, Becks L, Hiltunen T. Predator coevolution and prey trait variability determine species coexistence. Proc Biol Sci. 2019;286:20190245.
    Google Scholar 
    Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:916–31.Article 
    CAS 

    Google Scholar 
    Wilhelm Scherer H. Sulfur in soils. J Plant Nutr Soil Sci. 2009;172:326–35.Article 

    Google Scholar 
    Kaya K. Chemistry and biochemistry of taurolipids. Prog Lipid Res. 1992;31:87–108.Article 
    CAS 

    Google Scholar 
    Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.Article 

    Google Scholar 
    Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol. 2022;20:109–21.Article 
    CAS 

    Google Scholar 
    Price TD, Qvarnström A, Irwin DE. The role of phenotypic plasticity in driving genetic evolution. Proc Biol Sci. 2003;270:1433–40.Article 

    Google Scholar  More