More stories

  • in

    Landscape management strategies for multifunctionality and social equity

    The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy-Makers (IPBES, 2019)DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).Article 
    CAS 

    Google Scholar 
    Turkelboom, F. et al. When we cannot have it all: ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 29, 566–578 (2018).Article 

    Google Scholar 
    Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article 

    Google Scholar 
    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).Article 

    Google Scholar 
    Goldstein, J. H. et al. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl Acad. Sci. USA 109, 7565–7570 (2012).Article 
    CAS 

    Google Scholar 
    Vallet, A., Locatelli, B. & Pramova, E. Ecosystem Services and Social Equity: Who Controls, Who Benefits and Who Loses? (CIFOR, 2020); https://doi.org/10.17528/cifor/007849Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).Article 

    Google Scholar 
    Herzig, A., Ausseil, A.-G. & Dymond, J. in Ecosystem Services in New Zealand—Conditions and Trends (ed. Dymond, J. R.) 511–523 (Manaaki Whenua Press, 2014).Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C. & Daily, G. C. Conservation planning for ecosystem services. PLoS Biol. 4, e379 (2006).Article 

    Google Scholar 
    Pennington, D. N. et al. Cost-effective land use planning: optimizing land use and land management patterns to maximize social benefits. Ecol. Econ. 139, 75–90 (2017).Article 

    Google Scholar 
    Hölting, L. et al. Including stakeholders’ perspectives on ecosystem services in multifunctionality assessments. Ecosyst. People 16, 354–368 (2020).Article 

    Google Scholar 
    Plieninger, T. et al. Exploring futures of ecosystem services in cultural landscapes through participatory scenario development in the Swabian Alb, Germany. Ecol. Soc. 18, 39 (2013).Article 

    Google Scholar 
    Tasser, E., Schirpke, U., Zoderer, B. M. & Tappeiner, U. Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosyst. Serv. 42, 101082 (2020).Article 

    Google Scholar 
    Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).Article 
    CAS 

    Google Scholar 
    Vallet, A. et al. Linking equity, power, and stakeholders: roles in relation to ecosystem services. Ecol. Soc. 24, 14 (2019).Article 

    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).Article 

    Google Scholar 
    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).Article 
    CAS 

    Google Scholar 
    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).Article 

    Google Scholar 
    Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).Article 
    CAS 

    Google Scholar 
    Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).Article 
    CAS 

    Google Scholar 
    Gunton, R. M. et al. Beyond ecosystem services: valuing the invaluable. Trends Ecol. Evol. 32, 249–257 (2017).Article 

    Google Scholar 
    Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).Article 

    Google Scholar 
    Haines-Young, R. & Potschin, M. in Ecosystem Ecology (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).Article 

    Google Scholar 
    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Norton, 2017).Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Clapp, J. & Moseley, W. G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peasant Stud. 47, 1393–1417 (2020).Article 

    Google Scholar 
    Kirwan, J. & Maye, D. Food security framings within the UK and the integration of local food systems. J. Rural Stud. 29, 91–100 (2013).Article 

    Google Scholar 
    Ellis, E. C. To conserve nature in the Anthropocene, half Earth is not nearly enough. One Earth 1, 163–167 (2019).Article 

    Google Scholar 
    Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl Acad. Sci. USA 118, e2016038118 (2021).Tyllianakis, E. & Martin-Ortega, J. Agri-environmental schemes for biodiversity and environmental protection: how we are not yet ‘hitting the right keys’. Land Use Policy 109, 105620 (2021).Article 

    Google Scholar 
    Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).Article 

    Google Scholar 
    Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).Article 

    Google Scholar 
    Lindenmayer, D. B. et al. Avoiding bio-perversity from carbon sequestration solutions: avoiding bio-perversity in carbon markets. Conserv. Lett. 5, 28–36 (2012).Article 

    Google Scholar 
    Stoll-Kleemann, S. & O’Riordan, T. in The Encyclopedia of the Anthropocene Vol. 3 (eds DellaSala, D. A. & Goldstein, M. I.) 347–353 (Elsevier, 2018).Schaich, H., Bieling, C. & Plieninger, T. Linking ecosystem services with cultural landscape research. GAIA 19, 269–277 (2010).Article 

    Google Scholar 
    O’Connor, L. M. J. et al. Balancing conservation priorities for nature and for people in Europe. Science 372, 856–860 (2021).Article 

    Google Scholar 
    Büscher, B. et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).Article 

    Google Scholar 
    van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).Article 

    Google Scholar 
    Almeida, I., Rösch, C. & Saha, S. Converting monospecific into mixed forests: stakeholders’ views on ecosystem services in the Black Forest Region. Ecol. Soc. 26, 28 (2021).Meyer, M. A. & Früh-Müller, A. Patterns and drivers of recent agricultural land-use change in southern Germany. Land Use Policy 99, 104959 (2020).Article 

    Google Scholar 
    Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).Rasmussen, L. V. et al. Social–ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).Article 

    Google Scholar 
    Lindborg, R. et al. How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere 8, e01741 (2017).Article 

    Google Scholar 
    Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).Article 

    Google Scholar 
    Le Provost, G. et al. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01918-5 (2022).Martin, D. A. et al. Land-use trajectories for sustainable land system transformations: identifying leverage points in a global biodiversity hotspot. Proc. Natl Acad. Sci. USA 119, e2107747119 (2022).Article 
    CAS 

    Google Scholar 
    Seabloom, E. W., Borer, E. T. & Tilman, D. Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate. Ecol. Lett. 23, 1756–1765 (2020).Article 

    Google Scholar 
    Messinger, J. & Winterbottom, B. African forest landscape restoration initiative (AFR100): restoring 100 million hectares of degraded and deforested land in Africa. Nat. Faune 30, 14–17 (2016).
    Google Scholar 
    Whittingham, M. J. The future of agri-environment schemes: biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 48, 509–513 (2011).Article 

    Google Scholar 
    Le Clec’h, S. et al. Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. J. Environ. Manage. 251, 109372 (2019).Article 

    Google Scholar 
    Forschungsethische Grundsätze und Prüfverfahren in den Sozial‐ und Wirtschaftswissenschaften Output 9, Berufungsperiode 5 (German Data Forum, 2017).Strukturdaten Reutlingen—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-8/kreis-8415.htmlStrukturdaten Uckermark—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-12/kreis-12073.htmlStrukturdaten Unstrut-Hainich-Kreis—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-16/kreis-16064.htmlBlüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).Article 

    Google Scholar 
    Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).Schall, P. et al. The impact of even‐aged and uneven‐aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Ecol. 55, 267–278 (2018).Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland Vol. 63 (Bundesministerium für Ernährung und Landwirtschaft, 2019).Simons, N. K. & Weisser, W. W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0227-2 (2017).Zinke, O. Heupreise steigen: Futter für die Bauern knapp und teuer. Agrarheute https://www.agrarheute.com/markt/futtermittel/heupreise-steigen-futter-fuer-bauern-knapp-teuer-571946 (2020).Bois de Chez Nous (Lignum, 2021); https://www.lignum.ch/files/images/Downloads_francais/Shop/20010_Bois_de_chez_nous.pdfGerman Timber Company—Internationaler Holzhandel (German Timber Company, 2021); https://www.germantimber.company/. Accessed 2021-11-24Holzeinschlag nach Holzartengruppen, Holzsorten, ausgewählten Besitzarten (Statistisches Bundesamt, 2022); https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Wald-Holz/Tabellen/holzeinschlag-deutschland.htmlJahresjagdstrecke Bundesrepublik Deutschland, 2019–2020 (Deutsche Jagdverband, 2020); https://www.jagdverband.de/sites/default/files/2021-01/2021-01_Infografik_Jahresjagdstrecke_Bundesrepublik_Deutschland_2019_2020.jpgHeinze, E. et al. Habitat use of large ungulates in northeastern Germany in relation to forest management. For. Ecol. Manage. 261, 288–296 (2011).Article 

    Google Scholar 
    Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article 

    Google Scholar 
    Hermes, J., Albert, C. & von Haaren, C. Mapping and Assessing Local Recreation as a Cultural Ecosystem Service in Germany. UVP-Report https://doi.org/10.17442/uvp-report.034.08 (2020).Hermes, J., Albert, C. & von Haaren, C. Assessing the aesthetic quality of landscapes in Germany. Ecosyst. Serv. 31, 296–307 (2018).Article 

    Google Scholar 
    Ehrhart, S. & Schraml, U. Perception and evaluation of natural forest dynamics. Allg. Forst Jagdztg. 185, 166–183 (2014).
    Google Scholar 
    Villanueva-Rivera, L. J. & Pijanowski, B. C. soundecology: Soundscape ecology. R package version 1.3.3 (2018).Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in central Germany since the 1950s/60s—a cross-regional analysis. Divers. Distrib. 19, 1175–1187 (2013).Article 

    Google Scholar 
    Sasaki, K., Hotes, S., Kadoya, T., Yoshioka, A. & Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 21, e00891 (2020).Article 

    Google Scholar 
    Peña, L., Casado-Arzuaga, I. & Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 13, 108–118 (2015).Article 

    Google Scholar 
    Schägner, J. P., Brander, L., Paracchini, M.-L., Hartje, V. & Maes, J. Mapping recreational ecosystem services and its values across Europe: a combination of GIS and meta-analysis. In European Association of Environmental and Resource Economists 22nd Annual Conference (2016).R Core Team. R: A Language and Environment for Statistical Computing v.4.2.1 (R Foundation for Statistical Computing, 2022).Rust Programming Language https://www.rust-lang.org/ v 1.44Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).Article 

    Google Scholar 
    Gini, C. On the measurement of concentration and variability of characters (English translation from Italian by Fulvio de Santis in 2005). Metron 63, 1–38 (1914). More

  • in

    Genetic and ecological drivers of molt in a migratory bird

    Stefansson, S. O., Björnsson, B. T., Ebbesson, L. O. E. & McCormick, S. D. Smoltification. In Fish Larval Physiology (eds Finn, R. N. & Kapoor, B. G.) 639–681 (CRC Press, 2020).Chapter 

    Google Scholar 
    Kaleka, A. S., Kaur, N. & Bali, G. K. Larval development and molting. In Edible Insects (ed. Mikkola, H.) 17 (IntechOpen, 2019).
    Google Scholar 
    Butler, L. K. & Rohwer, V. G. Feathers and molt. in Ornithology: Foundation, Analysis, and Application (eds Morrison, M. L. et al.) 242–270 (JHU Press, 2018).
    Google Scholar 
    Swaddle, J. P., Witter, M. S., Cuthill, I. C., Budden, A. & McCowen, P. Plumage condition affects flight performance in common starlings: Implications for developmental homeostasis, abrasion and moult. J. Avian Biol. 27, 103–111 (1996).Article 

    Google Scholar 
    Norris, D. R., Marra, P. P., Montgomerie, R., Kyser, T. K. & Ratcliffe, L. M. Reproductive effort, molting latitude, and feather color in a migratory songbird. Science 306, 2249–2250 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Delhey, K., Peters, A. & Kempenaers, B. Cosmetic coloration in birds: Occurrence, function, and evolution. Am. Nat. 169, S145–S158 (2007).Article 

    Google Scholar 
    Tomotani, B. M. & Muijres, F. T. A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack. J. Exp. Biol. 222, 195396 (2019).Article 

    Google Scholar 
    Galván, I., Negro, J. J., Rodriguez, A. & Carrascal, L. M. On showy dwarfs and sober giants: Body size as a constraint for the evolution of bird plumage colouration. Acta Ornithol. 48, 65–80 (2013).Article 

    Google Scholar 
    Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).
    Google Scholar 
    Wolf, B. O. & Walsberg, G. E. The role of the plumage in heat transfer processes of birds. Am. Zool. 40, 575–584 (2000).
    Google Scholar 
    Berthold, P. & Querner, U. Genetic basis of moult, wing length, and body weight in a migratory bird species, Sylvia atricapilla. Experientia 38, 801–802 (1982).Article 

    Google Scholar 
    Gwinner, E., Neusser, V., Engl, D., Schmidl, D. & Bals, L. Haltung, Zucht und Eiaufzucht afrikanischer und europäischer Schwarzkehlchen Saxicola torquata. Gefied. Welt 111, 118–120 (1987).
    Google Scholar 
    Berthold, P. & Querner, U. Microevolutionary aspects of bird migration based on experimental results. Isr. J. Ecol. Evol. 41, 377–385 (1995).
    Google Scholar 
    Helm, B. & Gwinner, E. Timing of postjuvenal molt in African (Saxicola torquata axillaris) and European (Saxicola torquata rubicola) stonechats: Effects of genetic and environmental factors. Auk 116, 589–603 (1999).Article 

    Google Scholar 
    Helm, B. & Gwinner, E. Timing of molt as a buffer in the avian annual cycle. Acta Zool. Sin. 52, 703–706 (2006).
    Google Scholar 
    Rohwer, S., Ricklefs, R. E., Rohwer, V. G. & Copple, M. M. Allometry of the duration of flight feather molt in birds. PLoS Biol. 7, e1000132 (2009).Article 

    Google Scholar 
    Jenni, L. & Winkler, R. The Biology of Moult in Birds (Bloomsbury Publishing, 2020).
    Google Scholar 
    Tonra, C. M. & Reudink, M. W. Expanding the traditional definition of molt-migration. Auk Ornithol. Adv. 135, 1123–1132 (2018).
    Google Scholar 
    Rohwer, S., Butler, L. K., Froehlich, D. R., Greenberg, R. & Marra, P. P. Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. Birds Two Worlds Ecol. Evol. Migr. (R. Greenb. PP Marra, Eds.). Johns Hopkins Univ. Press. Balt. Maryl., 87–105 (2005).Bensch, S., Åkesson, S. & Irwin, D. E. The use of AFLP to find an informative SNP: Genetic differences across a migratory divide in willow warblers. Mol. Ecol. 11, 2359–2366 (2002).Article 
    CAS 

    Google Scholar 
    Ruegg, K. Genetic, morphological, and ecological characterization of a hybrid zone that spans a migratory divide. Evol. Int. J. Org. Evol. 62, 452–466 (2008).Article 

    Google Scholar 
    Delmore, K. E., Fox, J. W. & Irwin, D. E. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc. R. Soc. B Biol. Sci. 279, 4582–4589 (2012).Article 

    Google Scholar 
    Delmore, K. E. et al. Individual variability and versatility in an eco-evolutionary model of avian migration. Proc. R. Soc. B 287, 20201339 (2020).Article 

    Google Scholar 
    Procházka, P. et al. Across a migratory divide: divergent migration directions and non-breeding grounds of Eurasian reed warblers revealed by geolocators and stable isotopes. J. Avian Biol. 49, 012516 (2018).Article 

    Google Scholar 
    Bensch, S., Grahn, M., Müller, N., Gay, L. & Åkesson, S. Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Mol. Ecol. 18, 3087–3096 (2009).Article 

    Google Scholar 
    Rohwer, S. & Irwin, D. E. Molt, orientation, and avian speciation. Auk 128, 419–425 (2011).Article 

    Google Scholar 
    Pageau, C., Sonnleitner, J., Tonra, C. M., Shaikh, M. & Reudink, M. W. Evolution of winter molting strategies in European and North American migratory passerines. Ecol. Evol. 11, 13247–13258 (2021).Article 

    Google Scholar 
    Butler, L. K., Rohwer, S. & Rogers, M. Prebasic molt and molt-related movements in Ash-throated Flycatchers. Condor 108, 647–660 (2006).Article 

    Google Scholar 
    Barry, J. H., Butler, L. K., Rohwer, S. & Rohwer, V. G. Documenting molt-migration in Western Kingbird (Tyrannus verticalis) using two measures of collecting effort. Auk 126, 260–267 (2009).Article 

    Google Scholar 
    Hobson, K. A. & Wassenaar, L. I. Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109, 142–148 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Hobson, K. A. & Wassenaar, L. I. Tracking Animal Migration with Stable Isotopes (Academic Press, 2018).
    Google Scholar 
    Rubenstein, D. R. & Hobson, K. A. From birds to butterflies: Animal movement patterns and stable isotopes. Trends Ecol. Evol. 19, 256–263 (2004).Article 

    Google Scholar 
    Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Eppig, J. T. et al. The mouse genome database (MGD): Comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 40, D881–D886 (2012).Article 
    CAS 

    Google Scholar 
    Contina, A., Bridge, E. S. & Kelly, J. F. Exploring novel candidate genes from the mouse genome informatics database: Potential implications for avian migration research. Integr. Zool. 11, 240 (2016).Article 

    Google Scholar 
    Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).Article 
    CAS 

    Google Scholar 
    Thompson, C. W. Is the Painted Bunting actually two species? Problems determining species limits between allopatric populations. Condor 93, 987–1000 (1991).Article 

    Google Scholar 
    Contina, A., Bridge, E. S., Seavy, N. E., Duckles, J. M. & Kelly, J. F. Using geologgers to investigate bimodal isotope patterns in Painted Buntings (Passerina ciris). Auk 130, 265 (2013).Article 

    Google Scholar 
    Besozzi, E., Chew, B., Allen, D. C. & Contina, A. Stable isotope analysis of an aberrant Painted Bunting (Passerina ciris) feather suggests post-molt movements. Wilson J. Ornithol. 133, 151 (2021).Article 

    Google Scholar 
    Sharp, A. et al. Spatial and Temporal Scale-Dependence of the Strength of Migratory Connectivity in a North American Passerine. https://assets.researchsquare.com/files/rs-1483049/v1/72236b63-952d-4870-89e7-461056b8625b.pdf?c=1648893558 (2022).Pyle, P. et al. Temporal, spatial, and annual variation in the occurrence of molt-migrant passerines in the Mexican monsoon region. Condor 111, 583–590 (2009).Article 

    Google Scholar 
    Bridge, E. S., Fudickar, A. M., Kelly, J. F., Contina, A. & Rohwer, S. Causes of bimodal stable isotope signatures in the feathers of a molt-migrant songbird. Can. J. Zool. 89, 951 (2011).Article 
    CAS 

    Google Scholar 
    Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. 69, 82–90 (1991).Article 
    CAS 

    Google Scholar 
    Ali, O. A. et al. RAD capture rapture: Flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).Article 
    CAS 

    Google Scholar 
    Contina, A. et al. Characterization of SNP markers for the Painted Bunting (Passerina ciris) and their relevance in population differentiation and genome evolution studies. Conserv. Genet. Resour. 11, 5–10 (2019).Article 
    ADS 

    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).Article 

    Google Scholar 
    Parker, P., Li, B., Li, H. & Wang, J. The genome of Darwin’s Finch (Geospiza fortis). Gigascience 10, 100040 (2012).
    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 

    Google Scholar 
    Van der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 43, 1–33 (2013).
    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Anderson, E. genoscapeRtools: Tools for Building Migratory Bird Genoscapes (2019).Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article 
    CAS 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 
    CAS 

    Google Scholar 
    Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 246 (2011).Article 

    Google Scholar 
    Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).Article 
    CAS 

    Google Scholar 
    Chew, B., Kelly, J. & Contina, A. Stable isotopes in avian research: a step by step protocol to feather sample preparation for stable isotope analysis of carbon (δ13C), nitrogen (δ15N), and hydrogen (δ2H). Version 1.1. https://doi.org/10.17504/protocols.io.z2uf8ew (2019).Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39(3), 211–217 (2003).Article 
    CAS 

    Google Scholar 
    Bowen, G. J., Wassenaar, L. I. & Hobson, K. A. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143, 337–348 (2005).Article 
    ADS 

    Google Scholar 
    R Core Team: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wassenaar, L. I. & Hobson, K. A. Stable-hydrogen isotope heterogeneity in keratinous materials: Mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun. Mass Spectrom. 20, 2505–2510 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).Article 
    CAS 

    Google Scholar 
    Guan, Y. & Stephens, M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 455 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nat. Genet. 36, 512–517 (2004).Article 
    CAS 

    Google Scholar 
    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).Article 
    CAS 

    Google Scholar 
    Chaves, J. A. et al. Genomic variation at the tips of the adaptive radiation of Darwin’s finches. Mol. Ecol. 25, 5282–5295 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, Y.-W. et al. mrMLM v4.0.2: An R platform for multi-locus genome-wide association studies. Genom. Proteom. Bioinform. 18, 481–487 (2020).Article 

    Google Scholar 
    Grabherr, M. G. et al. Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics 26, 1145–1151 (2010).Article 
    CAS 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Anderson, E. C. snps2assays: Prepare SNP Assay Orders from ddRAD or RAD Loci (2015).Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 

    Google Scholar 
    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).Article 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).Article 
    CAS 

    Google Scholar 
    Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21, 1085–1096 (2018).Article 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Hedenström, A. Adaptations to migration in birds: Behavioural strategies, morphology and scaling effects. Philos. Trans. R. Soc. B Biol. Sci. 363, 287–299 (2008).Article 

    Google Scholar 
    Buehler, D. M. & Piersma, T. Travelling on a budget: Predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B Biol. Sci. 363, 247–266 (2008).Article 

    Google Scholar 
    Schieltz, P. C. & Murphy, M. E. The contribution of insulation changes to the energy cost of avian molt. Can. J. Zool. 75, 396–400 (1997).Article 

    Google Scholar 
    Carling, M. D. & Thomassen, H. A. The role of environmental heterogeneity in maintaining reproductive isolation between hybridizing Passerina (Aves: Cardinalidae) buntings. Int. J. Ecol. 2012, 1–11 (2012).Article 

    Google Scholar 
    Irwin, D. E. Incipient ring speciation revealed by a migratory divide. Mol. Ecol. 18, 2923–2925 (2009).Article 

    Google Scholar 
    Thomas, D. W., Blondel, J., Perret, P., Lambrechts, M. M. & Speakman, J. R. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291, 2598–2600 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Rohwer, V. G., Rohwer, S. & Ortiz-Ramirez, M. F. Molt biology of resident and migrant birds of the monsoon region of west Mexico. Ornitol. Neotrop. 20, 565–584 (2009).
    Google Scholar 
    Bensch, S., Andersson, T. & Åkesson, S. Morphological and molecular variation across a migratory divide in willow warblers, Phylloscopus trochilus. Evolution 53, 1925–1935 (1999).Article 

    Google Scholar 
    Turbek, S. P., Scordato, E. S. C. & Safran, R. J. The role of seasonal migration in population divergence and reproductive isolation. Trends Ecol. Evol. 33, 164–175 (2018).Article 

    Google Scholar 
    Scordato, E. S. C. et al. Migratory divides coincide with reproductive barriers across replicated avian hybrid zones above the Tibetan Plateau. Ecol. Lett. 23, 231–241 (2020).Article 

    Google Scholar 
    Battey, C. J. et al. A migratory divide in the Painted Bunting (Passerina ciris). Am. Nat. 191, 259–268 (2018).Article 
    CAS 

    Google Scholar 
    Contina, A. et al. Genetic structure of the Painted Bunting and its implications for conservation of migratory populations. Ibis 161, 372 (2019).Article 

    Google Scholar 
    Butler, L. K. The grass is always greener: Do monsoon rains matter for molt of the Vermilion Flycatcher (Pyrocephalus rubinus)? Auk 130, 297–307 (2013).Article 

    Google Scholar 
    Turbek, S. P. et al. A migratory divide spanning two continents is associated with genomic and ecological divergence. Evolution 76, 722 (2022).Article 

    Google Scholar 
    Dietz, M. W., Daan, S. & Masman, D. Energy requirements for molt in the kestrel Falco tinnunculus. Physiol. Zool. 65, 1217–1235 (1992).Article 

    Google Scholar 
    Vézina, F., Gustowska, A., Jalvingh, K. M., Chastel, O. & Piersma, T. Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a northerly wintering shorebird. Physiol. Biochem. Zool. 82, 129–142 (2009).Article 

    Google Scholar 
    Bazzi, G. et al. Candidate genes have sex-specific effects on timing of spring migration and moult speed in a long-distance migratory bird. Curr. Zool. 63, 479–486 (2017).CAS 

    Google Scholar 
    Busby, L. et al. Sonic hedgehog specifies flight feather positional information in avian wings. Development 147, 188821 (2020).Article 

    Google Scholar 
    Eichberger, T. et al. GLI2-specific transcriptional activation of the bone morphogenetic protein/Activin antagonist Follistatin in human epidermal cells. J. Biol. Chem. 283, 12426–12437 (2008).Article 
    CAS 

    Google Scholar 
    Matzuk, M. M. et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374, 360–363 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Patel, K., Makarenkova, H. & Jung, H.-S. The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mech. Dev. 86, 51–62 (1999).Article 
    CAS 

    Google Scholar 
    Nakamura, M. et al. Control of pelage hair follicle development and cycling by complex interactions between follistatin and activin. FASEB J. 17, 1–22 (2003).Article 
    MathSciNet 

    Google Scholar 
    Pays, L., Charvet, I., Hemming, F. J. & Saxod, R. Close link between cutaneous nerve pattern development and feather morphogenesis demonstrated by experimental production of neo-apteria and ectopic feathers: Implication of chondroitin sulphate proteoglycans and other matrix molecules. Anat. Embryol. 195, 457–466 (1997).Article 
    CAS 

    Google Scholar 
    Pyle, P., Saracco, J. F. & DeSante, D. F. Evidence of widespread movements from breeding to molting grounds by North American landbirds. Auk Ornithol. Adv. 135, 506–520 (2018).
    Google Scholar 
    De Mita, S. et al. Detecting selection along environmental gradients: Analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol. Ecol. 22, 1383–1399 (2013).Article 

    Google Scholar 
    Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192 (2014).Article 

    Google Scholar 
    Frichot, E., Schoville, S. D., de Villemereuil, P., Gaggiotti, O. E. & François, O. Detecting adaptive evolution based on association with ecological gradients: Orientation matters!. Heredity (Edinb.) 115, 22–28 (2015).Article 
    CAS 

    Google Scholar 
    Trivedi, A. K. et al. Temperature alters the hypothalamic transcription of photoperiod responsive genes in induction of seasonal response in migratory redheaded buntings. Mol. Cell. Endocrinol. 493, 110454 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Carcass traits and meat quality of goats fed with cactus pear (Opuntia ficus-indica Mill) silage subjected to an intermittent water supply

    Morphometric measurements are subjective and used to assess the carcass development and quantitatively measure the muscular distribution in the carcass with estimates of its conformation. In the present study there were not significative differences observed for these parameters or for carcass compactness index (CCI), inferring that the use of cactus pear silage as well as intermittent water supply combined or alone did not alter animal growth and/or carcass conformation, maintaining the muscle pattern achieved by the control diet (usual) and demonstrating body and carcass uniformity. Since animals used in this study were homogeneous and had similar age and body performance, as indicated by the carcass morphometric measurements and by the difference between the empty carcass and hot carcass weights, which resulted in the sum of head + limb with an average of 8.2 ± 0.13 kg between treatments, giving an idea that the animals were similar in chronological age, since the allometric growth of the body occurs from the extremities to the interior of the body.The significant difference between treatments with inclusion of cactus pear silage for hot carcass yield (HCY) and cold carcass yield (CCY) may be related to the weight of the full gastrointestinal tract, which showed higher values for animals fed with a higher proportion of Tifton 85 grass hay in the diet (0% CPS). Increasing the NDF content of the diet reduces the passage rate of digesta, and the emptying of the gastrointestinal tract (GT) that cause a distension of the rumen-reticulum and increase the weight of the gastrointestinal tract, resulting in lower HCY and consequently lower CCY. While the diets with inclusion of CPS increase NFC content, such as pectin, which have higher rates of rumen degradability and, higher rates of passage7,8,9.Measurements and evaluations carried out on the carcass, such as the carcass compactness index and loin eye area (LEA), are parameters that quantitatively measure the muscle distribution in the carcass, an edible part of greater financial return, which indicates the conformation of these animals3, while the body condition score (BCS) and the measure C, which are highly correlated, measure the distribution of fat on the carcass, giving an idea of the carcass finish, in which the higher these variables, the greater the proportion of fat that allows for less water loss due to carcass cooling10. These variables in the present study were also not influenced by the levels of cactus pear silage and water restrictions, presenting an overall mean of 0.17 kg/cm, 7.68 cm, 2.42 points and 0.7 mm respectively, and consequently did not influence the losses due to cooling, which presented an average loss of 1.48%.The main cuts of the goat carcass are the neck, leg, shoulder, loin, and rib. Their economic values differ, and their proportions become an important index to evaluate the carcass quality9. The cuts of greatest importance and commercial values are the leg and the loin, called noble cuts because they present greater yield and muscle tenderness, being interesting that they present a good proportion in the carcass, for providing greater edible tissue content, mainly muscle.Carcasses with similar weight tend to have equivalent proportions of cuts, as they exhibit isogonic growth. As the cold carcass weight (CCW) and the conformation of the animals were similar, with similar morphometric measurements, they had a direct relationship in the absence of an effect on commercial cuts.The commercial value of the carcass, whether through carcass yield and/or the proportions of the cuts, is also linked to tissue composition, thus the dissection of the leg represents an estimate of measuring the tissue composition of the carcass, in which is sought a greater proportion of muscle, intermediate proportion of fat and less bone in carcasses11. In this way, diets with cactus pear silage and the different levels of intermittent water supply resulted in the constancy in the amount of muscle, fat, and bone in legs of goats. The similarity in muscle proportion is related to the lack of effects on slaughter weight and CCW, as the weight of muscles is highly correlated to carcass weight. The average muscle yield was above 60% in all treatments, confirming that the animals showed good efficiency to the diets and adapted well to the water supply levels. Although the diets with cactus silage had high amounts of metabolizable energy (ME) and no difference in DM intake, the energy input was similar that not influencing carcass weights and carcass compactness index. That is, it did not influence muscle deposition in the carcass, probably due to synchronicity of energy and protein.As for the weight and proportion of bone tissue, it is believed that because this is a tissue with early development in relation to muscle and fat2, diets in the final stages of growth (average of 8 months) would hardly change their participation in the tissue composition, where the relationship of this tissue with the others is usually only increased when there are changes in the proportion of muscle and/or fat.Water restriction, as long as it is moderate and acute, mainly affects the loss of body water and not tissues, which does not cause deleterious effects on animal productivity and growth.The muscle:fat ratio indicates the state of leg fattening, while the muscle:bone ratio estimates the carcass muscularity, both being attributes of quality3. The similarity previously reported in the weight of fat, bone and muscle corroborates that these relationships also do not have differences. The same occurs for the leg muscularity index (LMI), due to the weight of the five muscles used to determine the index and the length of the femur which had been similar between the animals.Nevertheless, when considering fat as a percentage of participation in leg weight, it is possible to observe that the intermittency in water supply in both intervals (24 and 48 h) reduced the proportion of fat in the leg. Although in this research, the water supply levels did not affect the daily intake of dry matter from animals, with average intake of 650.67 g/kg DM, ranging from 599 to 682 g/kg DM between treatments7, during days of water deprivation, fat mobilization for energy availability may occur, possibly offsetting water stress and influencing not only feed intake, on these days of deprivation but also affecting energy metabolism, which results in the mobilization of energy reserves2.When the physicochemical composition of the meat was evaluated, it was observed that the diets and water supply levels probably did not affect the reserves of muscle glycogen during the pre-slaughter management as can be seen through pHinitial and pHfinal. The pHinitial right after slaughter should be close to neutrality, as well as in the live animal, indicating that the animal did not suffer from stress during the pre-slaughter period. The pHfinal, on the other hand, is expected to show a considerable variation, between 5.55 and 6.2 for goat meat; and due be inversely proportional to the concentration of muscle glycogen at the time of slaughter, that is, a more intense expenditure of glycogen stores results in less lactic acid production and higher pHfinal10,12,13. In this research, the pHfinal had an average of 5.74, a pH higher than the isoelectric point of muscle proteins (5.2–5.3). This result is favorable, since it is above the neutral charge and presenting an excessive negative charge that provides the repulsion of filaments, which allows water molecules to bind and improve the organoleptic characteristics of the meat, through succulence and texture of meat13 evaluated by cooking loss, moisture, and shear force, principally. The cooking loss (CL), moisture and shear force (SF) were within the values recommended (20–35% CL, moisture above 70% and SF up to 44.13 Newton (N) for goat meat) to classify the meat as soft and tender14. Statistically, interactions were found between the supply of silage and intermittent water supply, in which goats on a diet without cactus pear silage and without intermittent water supply showed higher values of cooking losses and shear force.Higher concentrations of collagen content and/or greater activities of calpastatin (which inhibit the action of calpains), as well as larger fascicles and greater number of fibers present in each muscle fascicle, as was visually observed in the meat of the animals in this research, can lead to reductions in meat tenderness15. Because goat carcasses are generally small, with low marbling degree and a thin layer of subcutaneous fat, there is rapid heat dissipation at the beginning of the post-mortem period, which can lead to cold shortening, muscle hardening, and less tender meats16.pHfinal of the meat has a high correlation with color parameters (L*—lightness, a*—redness, b*—yellowness and Chroma), as the pHfinal can affect the reaction of myoglobin to oxymyoglobin. The b* index in meat, on the other hand, may be related to the concentration of fat and/or the presence of carotenoids in the diet which can be affected by forage preservation processes, such as silage and hay, which significantly reduces by up to 80% carotenoids levels13. It is believed that the carotenoid concentrations in the diet of this study were similar between treatments and consequently in values of b* of meat. Values of a* and Chroma directly depend on the content and state of the heme pigments in the muscle, due to the chemical state of iron (Fe), playing an important role in meat color10. These parameters showed no significant difference between treatments, however, higher values of a* and Chroma in meat are desired, as a result of the increase in oxymyoglobin and decrease in metmyoglobin that provides the meat’s “bloom”. According to Dawson et al.17, the minimum critical value for meat luminosity (L*) is 34. Lower values of L are related to elevating pHfinal, which results in the high concentration of metmyoglobin, making the meat darker, which causes rejection by consumers for associating dark meat to as old meat.The meat’s presentation and more precisely its color is an important factor that can influence a consumer’s purchase decision, as it gives us the idea of freshness and meat’ quality. The L* and a* color parameters are the most representative for these characteristics18. Although in our research it did not have a significant effect on the color parameters, we can indicate that the meat obtained in this research would be well accepted by consumers, because Hopkins19 suggests that consumers will consider meat color acceptable when the L* value is equal to or exceeds 34, and a* value below 19 or equal to or exceeds 9.5 according to Khliji et al.18. In the present study, all values for L* remained above this aforementioned threshold and the values of a* remained within these values which suggests that meats from all diets and water supply levels had an acceptable color for consumers.When evaluating the chemical composition of meat, no significant differences were observed between treatments, except for the ash content, that remained above the average values found in the literature, which is 0.99–1.10%16. It is believed that because cactus pear is a rich source of Ca, Mg, K and with increasing level of cactus pear silage in the diet31, these minerals were consumed in larger amounts, which could have resulted in a higher proportion of minerals in the meat of animals that received 42% cactus pear silage.The lipid fatty acid profile in meat has a major impact on sensory properties and nutritional quality, influencing acceptance and health for consumers20,21. Intermittent water supply, cactus pear silage, and interaction between water supply and cactus pear silage did not influence most fatty acids present in the Longissimus lumborum muscle of the animals under study, except only a few saturated fatty acids e.g. docosanoic acid (C22:0), tricosanoic acid (C23:0), BCFA, anteiso-tridecanoic acid (C13:0 anteiso) and anteiso-pentadecanoic acid (C15:0 anteiso).Biohydrogenation of ruminal bacteria results in a circumstantial variety of fatty acids (FA), which will be absorbed in the intestine and later incorporated into the meat of goats. In addition to the diet and the biohydrogenation, the meat lipid profile can vary due to de novo synthesis, desaturation, duration of the feeding period and differences in pathways of various FA by the animal organism22.A high concentration of saturated fatty acids present in meat is not desirable, as there is evidence that saturated fatty acids, mainly C16:0, as well as myristic (C14:0) and lauric (C12:0) increase the blood cholesterol and low-density lipoproteins (LDL) concentration, due to interferences with hepatic LDL receptors23, however, in the studied treatments, there were no significant differences for these fatty acids. On the other hand, C18:0 has no impact on cholesterol levels, due to being poorly digested and easily desaturated to C18:1 by Δ9-desaturase24, present in the cell endoplasmic reticulum. This fatty acid is not harmful to health and is considered the only desirable SFA. As the levels of C18:0 in diets tend to be minimal, their main origin is the biohydrogenation of PUFA and de novo syntheses in diets with a high energy pattern25.In addition to carrying out the biohydrogenation process, ruminal bacteria synthesize a series of FA, mainly those of odd and branched chain, that comprise mainly the lipids of the bacterial membrane26,27, to maintain membrane fluidity. Linear odd-chains fatty acids are formed when propionyl-CoA, instead of acetyl-CoA, is used as a de novo synthesis initiator25. On the other hand, iso and anteiso FA are synthesized by the precursors branched-chain amino acids (valine, leucine, and isoleucine) and their corresponding branched- short-chain carboxylic acids (isobutyric, isovaleric and 2-methyl butyric acids)28.There is an increasing interest to study odd-and branched-chain fatty acids (OBCFAs) from animal products, mainly in milk due to its higher concentration compared to meat. Researchers reported that several OBCFAs have potential health benefits in humans29 as improved gut health30 and presenting anti-cancer activity31, as well as improve the sensory characteristics of the meat, providing a greater sensation of tenderness and juiciness, because BCFA content are associated with a less consistent fat in meat from lambs due to its lower melting point and its chain structure32.The FAs profile in the ruminal bacteria is largely composed by OBCFAs (C15:0; anteiso C15:0; iso C15:0; C17:0; iso C17:0; C17:1 and anteiso C17:0) in the bacteria membrane lipids24. Thus, the higher concentration of OBCFAs might be the result of the difference in the rumen bacterial populations induced by variation in the dietary carbohydrate, that is, a higher concentration of cellulolytic bacteria in relation to amylolytic bacteria, due to the high neutral detergent fiber (NDF) content in the diet with 0% cactus forage silage. It is also known that amylolytic bacteria produce more linear odd chain and anteiso FAs than iso FAs, whereas cellulolytic bacteria produce more iso FAs28,32. As the Tifton 85 grass hay-based diet had the highest neutral detergent fiber corrected for ash and protein (NDFap) and starch content (highest % of ground corn), the meat of those animals had higher concentrations of anteiso C15:0 and anteiso C13:0 compared to animals fed diets with the inclusion of cactus pear silage, also influencing the total sum of branched chain fatty acids.Although levels of intermittent water supply have generated punctual changes in tricosanoic acid (C23:0) SFA, the same was not observed for MUFA and PUFA, due to changes in the rumen environment, promoted by water restrictions, which were not sufficient to circumstantially modify biohydrogenation, resulting in similarities in concentrations of unsaturated fatty acids in goat meat.The animals subjected to 24 h of intermittent water supply (IWS) presented the highest concentration of C23:0 in relation to other treatments, which is interesting because it is involved in the synthesis of ceramide and reduces the risk of diabetes in humans33.The cactus pear has high non-fibrous carbohydrate (NFC) content (mainly pectin), having 59.5% high and medium rumen degradation carbohydrates which provide a higher production rate and removal of short-chain fatty acids and changes in rumen bacterial populations34. The inclusion of CPS resulted in a higher passage rate of digesta, affected biohydrogenation, and resulted in the escape of intermediate fatty acids isomers that are absorbed in the small intestine. Consequently, there was changing composition of fatty acids in the muscle of these animals, with a significant effect being observed only in the cis-13 C18:1. Furthermore, diets with high proportions of cactus pear silage (CPS), such as 42% CPS diet, can decrease ruminal pH and affect the final stages of biohydrogenation, resulting in the escape of intermediate fatty acids isomers, that are absorbed in the small intestine, which can explain the similarity of the C20:1 in 42% CPS diet from the Tifton hay-based diet, with differences between goat meat from 21% CPS diet and Tifton hay-based diet.Oleic acid (c9-C18:1) was the MUFA with the highest participation in the lipid profile of goat meat, which is interesting because it has a hypocholesterolemic effect, being a desirable fatty acid (DFA) for not reducing the serum high density lipoproteins (HDL) levels and thus prevent cardiovascular disease by reducing LDL levels35. The high concentrations of c9-C18:1 in ruminant meat come from the food intake, the effect of biohydrogenation, and mainly of the high activity of Δ9-desaturase, necessary for animal biosynthesis through desaturation of C18:0 to c9-C18:127. This fatty acid in the lipid profile of red meat varies between 30 and 43%36, confirming that the meat in the present study had a good concentration of this fatty acid.Much of unsaturated fatty acids, which have 18 carbons or 16 carbons, are largely converted to C18:0 and C16:0 through biohydrogenation, and when this process is not 100% completed, in addition to the PUFA that pass through this process intact, some product intermediates are formed, reaching the duodenum and are absorbed by the animal, in which significant amounts of cis and trans-monounsaturated, such as vaccenic fatty acid (t11-C18:1), reach the duodenum and are absorbed, later composing the muscle tissue22.The literature indicates that the precursor of conjugated linoleic acid (CLA) in the meat of animals is trans vaccenic acid (t11-C18:1), so the enzyme ∆9-desaturase, besides acting in the conversion of stearic into oleic fatty acid, also converts the trans-vaccenic acid to its corresponding CLA isomer, c9t11-C18:236. This pathway is more expressive in the mammary gland, and as the concentration of vaccenic acid (t11-C18:1) was not different, the concentration of CLA was not affected by the supply of silage and intermittent water supply, in the same way, that there are also no differences in the activity of ∆9-desaturase. Nevertheless, it is worth noting that in the human adipose tissue there is also the presence of ∆9-desaturase, and therefore, increased intake of vaccenic fatty acid could have the same beneficial effects associated with the intake of CLA, where the dietary vaccenic fatty acid shows 19–30% conversion rate37.Tifton hay is a natural source of n-3 fatty acids, mainly C18:3 n-3 with up to 20% participation in the lipid profile2, allowing a certain part of these PUFAs to be absorbed and increased in the tissue muscle, with 10 to 30% PUFAs in the diet generally escaping from biohydrogenation.Linoleic fatty acid (c9c12 C18:2) and α-linolenic acid (C18:3 n-3) are essential fatty acids for humans, that serve as precursors of the n-3 and n-6 pathways, distinct families, but synthesized by some of the same enzymes (∆4-desaturase, ∆5-desaturase, and ∆6-desaturase)25. Arachidonic fatty acid (C20:4 n-6) comes from elongation and desaturation of linoleic acid, where its concentrations, even close to that of its precursor, may indicate that there was a high activity of ∆6-desaturase (desaturation to γ-linolenic), elongase (elongation of γ-linolenic to dihomo-gamma-linolenic) and ∆5-desaturase. This fatty acid was influenced by the diets, presenting lower concentrations in the meat of animals fed the 42% cactus pear silage when compared to the Tifton hay diet (0% cactus pear silage).A higher concentration of long-chain PUFA n-3, docosahexaenoic (C22:6 n-3), was observed in the muscle of animals fed on Tifton hay. This was probably due to the high concentration of C18:3 n-3, precursor of C22:6 n-3, that the hay presents in relation to the cactus pear silage.The ratios and proportions of fatty acids are used to determine nutritional and nutraceutical values of the product or diet, and mainly, to indicate the cholesterolemic potential4. It is interesting that the n-6/n-3 ratio is low due to the pro-inflammatory properties of n-6; it is recommended to decrease its intake to assist in disease prevention38, while n-3 fatty acids are anti-inflammatory, antithrombotic, antiarrhythmic and reduce blood lipids, with vasodilating properties, being interesting that they present a higher proportion24. n-6 fatty acids tend to have a higher percentage in meat, and this directly influences the formation of n-3 isomers, since linoleic acid, when in excess, can reduce the synthesis of linolenic acid metabolites. The percentage of FA in one group can interfere with the metabolism of the other, reducing its incorporation into tissue lipids and altering its general biological effects38. Therefore, it is not recommended that the n-6/n-3 ratio be kept above 5 or 639, demonstrating that the averages of the current research remained acceptable.In relation to atherogenicity index (AI) and thrombogenicity index (TI), Ulbricht and Southgate39 proposed that sheep meat should have values of up to 1.0 and 1.58, respectively, and the lower the values for these indices in the lipid fraction, the greater the prevention of early stages of cardiovascular diseases. In the present study, the general averages observed were 0.29 for the AI, and 0.81 for the TI, although there were no significant differences, all treatments are within the recommended range, despite having been used as comparative standard to sheep, due to the absence of the proposed standard for goat meat.The h:H ratio did not differ for diets and water supply levels, but had an average of 1.90, below the reference value for meat products, which is 2.0. Values above 2.0 are recommended and favorable40, as it indicates a higher proportion of hypocholesterolemic fatty acids, that are beneficial to human health.The ∆9-desaturase enzyme that acts on both the mammary gland and adipose tissue, responsible for the transformation of SFA into unsaturated fatty acids (UFA), as well as in the endogenous conversion of CLA37 did not differ between treatments. On the other hand, the elongase showed less activity. Probably there was a greater “de novo” synthesis which resulted in a greater accumulation of palmitic fatty acid, and a reduction in the activity of the elongase enzyme.The crossbred goats demonstrated to present efficient mechanisms for adapting to water restrictions, especially when receiving feed with higher water content, such as cactus pear silage, being able to replace Tifton hay with 42% cactus pear silage in the diet for goats in confinement without negatively affecting the carcass traits and meat quality. Because, although these animals have shown some differences in the indices of tenderness and juiciness of their meats, however, all presented values of juiciness and tenderness compatible with meat extremely appreciated by the consumer market, and even goat meat showing some fatty acids with different concentrations induced by the supply of silage and water intermittence, the final lipid profile was appropriate to the health of consumers, observed by the absence of differences in the total concentrations of PUFA and in the main nutraceutical parameters (DFA, n-6/n-3; h:H; AI and TI).These results are relevant, indicating that goat feedlots in regions with low water availability may adopt strategies of lesser demand for drinking water and considerable concentrations of cactus pear silage in the diet, can reduce production costs without considerably affecting the product to be marketed, and therefore, provide higher profitability of the system. More

  • in

    The impact of the striped field mouse’s range expansion on communities of native small mammals

    Wilkinson, D. M. Dispersal biogeography. Encyclopedia of Life Science. (Nature Publishing Group, 2001).Jan, P.L. et al. Range expansion is associated with increased survival and fecundity in a long-lived bat species. Proc. R. Soc. B. 286, 1–9. https://doi.org/10.1098/rspb.2019.0384 (2019).Article 

    Google Scholar 
    IUCN. IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species. https://portals.iucn.org/library/node/12413(2000).McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biological Conservation 127, 247–260. https://doi.org/10.1016/j.biocon.2005.09.005 (2006).
    Google Scholar 
    Galko, J. et al. Invázne a nepôvodné druhy v lesoch Slovenska: hmyz—huby—rastliny. (Národné lesnícke centrum, 2018).Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion ecology_draft_2ed. (John Wiley & Sons, 2013).Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species: Defining invasive species. Divers. Distrib. 10, 135–141. https://doi.org/10.1111/j.1366-9516.2004.00061.x (2004).Article 

    Google Scholar 
    Ambros, M., Dudich, A., MIKLÓS, P., Stollmann, A. & Žiak, D. Ryšavka tmavopása (Apodemus agrarius)–novỳ druh cicavca Podunajskej roviny (Rodentia: Muridae). Lynx, series nova 41, (2010).Bradley, B. A. et al. Disentangling the abundance—impact relationship for invasive species. Proc. Natl. Acad. Sci. 116, 9919–9924. https://doi.org/10.5281/zenodo.2605254 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824. https://doi.org/10.1016/j.tree.2017.08.003 (2017).Article 

    Google Scholar 
    Archer, S. Tree-grass dynamics in a Prosopis-thornscrub savanna parkland: reconstructing the past and predicting the future. Ecoscience 2, 83–99. https://doi.org/10.1080/11956860.1995.11682272 (1995).Article 

    Google Scholar 
    Wigley, B. J., Bond, W. J. & Hoffman, M. T. Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biol. 16, 964–976. https://doi.org/10.1111/j.1365-2486.2009.02030.x (2010).Spiegel, C. S., Hart, P. J., Woodworth, B. L., Tweed, E. J. & LeBrun, J. J. Distribution and abundance of forest birds in low-altitude habitat on Hawai’i Island: Evidence for range expansion of native species. Bird Conserv. Int. 16, 175–185. https://doi.org/10.1017/S0959270906000244 (2006).Article 

    Google Scholar 
    Livezey, K. B. Range expansion of Barred Owls, part II: facilitating ecological changes. Am. Midland Nat. 323–349 (2009).Veech, J. A., Small, M. F. & Baccus, J. T. The effect of habitat on the range expansion of a native and an introduced bird species. J. Biogeogr. 38, 69–77. https://doi.org/10.1111/j.1365-2699.2010.02397.x (2011).Article 

    Google Scholar 
    Krupa, J. J. & Haskins, K. E. Invasion of the meadow vole (Microtus pennsylvanicus) in southeastern Kentucky and its possible impact on the southern bog lemming (Synaptomys cooperi). American Midland Naturalist 14–22 (1996).Jareño, D. et al. Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol. Invasions 17, 2315–2327. https://doi.org/10.1007/s10530-015-08774 (2015).Article 

    Google Scholar 
    Malygin, V. M., Baskevich, M. I. & Khlyap, L. A. Invasions of the common vole sibling species. Russ. J. Biol. Invas. 11, 47–65 (2020).Article 

    Google Scholar 
    Tong, X., Wang, R. & Chen, X.-Y. Expansion or invasion? A Response to Nackley et al. Trends Ecol. Evol. 33, 234–235. https://doi.org/10.1016/j.tree.2018.01.008 (2018).Thompson, K. & Davis, M. A. Why research on traits of invasive plants tell us very little. Trends Ecol. Evol. 24,115–116. https://doi.org/10.1016/j.tree.2011.01.007 (2011).Davis, M. A. & Thompson, K. Eight ways to be a colonizer; two ways to be an invader: A proposed nomenclature scheme for invasion ecology. Bull. Ecol. Soc. Am. 81, 226–230 (2000).
    Google Scholar 
    Davis, M. A., Thompson, K., Grime, J. P. & Charles, S. Elton and the dissociation of invasion ecology from the rest of ecology. Diversity and Distribution 7, 97–102. https://doi.org/10.1046/j.1472-4642.2001.00099.x (2001).Article 

    Google Scholar 
    Davis, M. A. Invasion biology. (Oxford University Press on Demand, 2009).Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154 (2011).Article 
    CAS 

    Google Scholar 
    Klempa, B. et al. Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: Definition of genotypes and their characteristics. Adv. Virol. 158, 521–529. https://doi.org/10.1007/s00705-012-1514-5 (2013).CAS 

    Google Scholar 
    Kraljik, J. et al. Genetic diversity of Bartonella genotypes found in the striped field mouse (Apodemus agrarius) in Central Europe. Parasitology 143, 1437–1442. https://doi.org/10.1017/S0031182016000962 (2016).Article 

    Google Scholar 
    Latinne, A. et al. Phylogeography of the striped field mouse, Apodemus agrarius (Rodentia: Muridae), throughout its distribution range in the Palaearctic region. Mamm. Biol. 100, 19–31. https://doi.org/10.1007/s42991-019-00001-0 (2020).Article 

    Google Scholar 
    Dudich, A. & Szabó, I. Über die Verbreitung der Hystrichopsylla Taschenberg, 1880 (Siphonaptera) in Ungarn. Folia Entomol. Hung 45, 27–32 (1984).
    Google Scholar 
    Dudich, A. Dynamika areálu ryšavky tmavopásej (Apodemus agrarius Pall.)–expanzia či invázia. Pp.: 53–62. Invázie a invázne organizmy. SEKOS pre SNK SCOPE, Nitra (1997).Karaseva, E. V., Tikhonova, G. N. & Bogomolov, P. L. Distribution of the Striped field mouse (Apodemus agrarius) and peculiarities of its ecology in different parts of its range. Zoologičeskij žurnal 71, 106–115 (1992).
    Google Scholar 
    Polechová, J. & Graciasová, R. Návrat myšice temnopásé, Apodemus agrarius (Rodentia: Muridae) na jižní Moravu. Lynx (Praha), ns 31, 153–155 (2000).Bryja, J. & Řehák, Z. Další doklady současné expanze areálu myšice temnopásé (Apodemus agrarius) na Moravě. Lynx (Praha), ns (2002).Herzig-Straschil, B., Bihari, Z. & Spitzenberger, F. Recent changes in the distribution of the field mouse (Apodemus agrarius) in the western part of the Carpathian basin. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie 421–428 (2003).Dudich, A., Ambros, M., Stollmann, A., Uhrin, M. & Urban, P. Ryšavka tmavopása Apodemus agrarius (Pallas) v Novohrade. Príroda okresu Veľký Krtíš – 15 rokov od celoslovenského tábora ochrancov prírody 110–115 (2003).Horáček, I. & Ložek, V. Biostratigraphic investigation in the Hámorská cave (Slovak karst). Pp.: 49–60. Krasové sedimenty. Fosilní záznam klimatickỳch oscilací a změn prostředí. Knihovna České speleologické společnosti, Svazek 21, (1993).Pazonyi, P. & Kordos, L. Late Eemian (Late Pleistocene) vertebrate fauna from the Horváti-lik (Uppony, NE Hungary). Fragmenta Palaeontologica Hungarica 22, 107–117 (2004).
    Google Scholar 
    Obuch, J., Danko, S. & Noga, M. Recent and subrecent diet of the barn owl (Tyto alba) in Slovakia. Slovak Raptor J. 10, 1–50 . https://doi.org/10.1515/srj-2016-0003 (2016).Article 

    Google Scholar 
    Obuch, J. Temporal changes in proportions of small mammals in the diet of the mammalian and avian predators in Slovakia. Lynx, n. s 55, 86–106. https://doi.org/10.37520/lynx.2021.007 (2022).Niethammer, J. Die Verbreitung der Brandmaus (Apodemus agrarius) in der Bundesrepublik Deutschland. Acta Sc. Nat. Brno 10, 43–55 (1976).
    Google Scholar 
    von Lehmann, E. Die Brandmaus in Hessen als Beispiel für die Problematik der Verbreitungsgrenzen vieler Säugetierarten. Natur und Museum 106, 112–117.Farský, O. Úlovky myšice temnopásé, Apodemus agrarius (Pallas), na Moravě a ve Slezsku v letech 1920 až 1940 [Caughts of the striped field mouse, Apodemus agrarius (Pallas), in Moravia and Silesia in the years 1920–1940]. Lynx, n. s 5, 11–18 (1965).Heroldová, M., Homolka, M. & Zejda, J. Některé nepublikované nálezy Apodemus agrarius v Čechách a na Moravě v návaznosti na současnỳ stav znalostí o jejím rozšíření (Rodentia: Muridae). Lynx, series nova 44, (2013).Ambros, M., Dudich, A. & Stollmann, A. Fauna drobných hmyzožravcov a hlodavcov (Insectivora, Rodentia) vybraných mokraďných biotopov južného Slovenska. Rosalia (Nitra) 14, 195–202 (1999).
    Google Scholar 
    Balát, F. Potrava sovy pálené na jižní Moravě a na jižním Slovensku [Food of Barn owl on the south Moravia and south Slovakia]. Zoologické listy 5, 237–256 (1956).
    Google Scholar 
    Baláž, I., Stollmann, A., Ambros, M. & Dudich, A. Drobné cicavce rezervácie Lohótsky močiar. Chránené územia Slovenska 58, 27–29 (2003).
    Google Scholar 
    Bridišová, Z., Baláž, I. & Ambros, M. Drobné cicavce prírodnej rezervácie Alúvium Žitavy [Small mammals of Alúvium Žitavy natural reservation]. Chránené územia Slovenska 69, 7–9 (2006).
    Google Scholar 
    Dudich, A., Lysỳ, J. & Štollmann, A. Súčasné poznatky o rozšírení drobnỳch zemnỳch cicavcov (Insectivora, Rodentia) južnej časti Podunajskej nížiny. Spravodaj Oblastného múzea v Komárne, Prírodné vedy 5, 157–186 (1985).
    Google Scholar 
    Kristofik, J. Small mammals in floodplain forests. Folia Zoologica (Czech Republic) (1999).Méhely, L. Két új poczokfaj a magyar faunában. Állattani közlemények 7, 3–14 (1908).
    Google Scholar 
    Noga, M. The wintering and food ecology of Long-eared Owl in South-Western part of Slovakia (Comenius University in Bratislava, 2007).
    Google Scholar 
    Pachinger, K., Novackỳ, M., Facuna, V. & Ambruš, B. Dynamika a zloženie synúzií mikromammálií na izolovanỳch ostrovoch vnútozemskej delty Dunaja v oblasti vodného diela Gabčíkovo. Acta Environ. Universitatis Comenianae 9, 71–77 (1997).
    Google Scholar 
    Poláčiková, Z. Small terrestrial mammals’ (Eulipotyphla, Rodentia) synusia of selected localities in western Slovakia. Ekológia (Bratislava) 29, 131–139. https://doi.org/10.4149/ekol_2010_02_131 (2010).
    Google Scholar 
    Reiterová, K. et al. Úloha drobnỳch cicavcov–dôležitỳch rezervoárov v cirkulácii larválnej toxoplazmózy. Slovenskỳ Veterinárny Časopis 4, 217–222 (2010).
    Google Scholar 
    Stanko, M., Mošanský, L. & Fričová, J. Small mammal communities (Eulipotyphla, Rodentia) of the middle part of alluvium Ipeľ river (Lučenská and Ipeľská basins). Ochrana prírody 26, 43–52 (2010).
    Google Scholar 
    Spitzenberger, F. & Engelberg, S. A new look at the dynamic western distribution border of Apodemus agrarius in Central Europe (Rodentia: Muridae). Lynx, series nova 45, (2014).Sládkovičová, V. H., Žiak, D. & Miklós, P. Synúzie drobných zemných cicavccov mokradných biotopov Podunajskej roviny. Folia faunistica Slovaca 18, 13–19 (2013).
    Google Scholar 
    Tulis, F. et al. Expansion of the Striped field mouse (Apodemus agrarius) in the south-western Slovakia during 2010–2015. Folia Oecologica 43, 64–73 (2016).
    Google Scholar 
    Ambros, M. et al. Zmeny v rozšírení ryšavky tmavopásej (Apodemus agrarius) na Slovensku. in Zborník príspevkov z vedeckého kongresu ‘Zoológia 2022’ 10 (2022).Dudich, A. Ektoparazitofauna cicavcov a vtákov južnej časti Podunajskej nížiny so zreteľom na Žitný ostrov. 1. Siphonaptera. Žitnoostrovské múzeum Dunajská Streda—Spravodaj múzea 9, 61–96 (1986).Dudich, A. Príspevok k poznaniu drobných zemných cicavcov (Insectivora, Rodentia) a ich ektoparazitov (Acarina, Anoplura, Siphonaptera) okolia ŠPR Čenkovská lesostep (Podunajská nížina). Iuxta Danubium (Komárno) 10, 186–191 (1993).
    Google Scholar 
    Cyprich, D., Krumpál, M. & Dúha, J. Blchy (Siphonaptera) cicavcov (Mammalia) Štátnej prírodnej rezervácii Šúr. Ochrana prírody 8, 241–289 (1987).
    Google Scholar 
    Lapin, M., Faško, P., Melo, M., Štastný, P. & Tomlain, J. Climate zones. in Landscape Atlas of the Slovak Republic (Harmanec: VKÚ, 2002).Faško, P. & Štastný, P. Average annual precipitation. in Landscape Atlas of the Slovak Republic (2002).Russell, J. C., Stjernman, M., Lindström, Å. & Smith, H. G. Community occupancy before-after-control-impact (CO-BACI) analysis of Hurricane Gudrun on Swedish forest birds. Ecol. Appl. 25, 685–694.  https://doi.org/10.1890/14-0645.1 (2015).Article 

    Google Scholar 
    Desrosiers, M., Planas, D. & Mucci, A. Short-term responses to watershed logging on biomass mercury and methylmercury accumulation by periphyton in boreal lakes. Can. J. Fish. Aquat. Sci. 63, 1734–1745. https://doi.org/10.1139/f06-077 (2006).Article 
    CAS 

    Google Scholar 
    Hanisch, J. R., Tonn, W. M., Paszkoswki, C. A. & Scrimgeour, G. J. Stocked trout have minimal effects on littoral invertebrate assemblages of productive fish-bearing lakes: A whole-lake BACI study: Stocked trout have minimal effects on littoral invertebrates. Freshw. Biol. 58, 895–907. https://doi.org/10.1111/fwb.12095 (2013).Article 

    Google Scholar 
    Louhi, P., Mäki-Petäys, A., Erkinaro, J., Paasivaara, A. & Muotka, T. Impacts of forest drainage improvement on stream biota: A multisite BACI-experiment. For. Ecol. Manage. 260, 1315–1323. https://doi.org/10.1016/j.foreco.2010.07.024 (2010).Article 

    Google Scholar 
    Conner, M. M., Saunders, W. C., Bouwes, N. & Jordan, C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ Monit Assess 188, 555. https://doi.org/10.1007/s10661-016-5526-6
    (2016).Article 

    Google Scholar 
    Popescu, V. D., de Valpine, P., Tempel, D. & Peery, M. Z. Estimating population impacts via dynamic occupancy analysis of Before-After Control–Impact studies. Ecol. Appl. 22, 1389–1404. https://doi.org/10.1890/11-1669.1 (2012).Article 

    Google Scholar 
    Horváth, G. F. & Herczeg, R. Site occupancy response to natural and anthropogenic disturbances of root vole: Conservation problem of a vulnerable relict subspecies. J. Nat. Conserv. 21, 350–358. https://doi.org/10.1016/j.jnc.2013.03.004 (2013).Article 

    Google Scholar 
    Pounder, K. C. et al. Novel Hantavirus in Wildlife, United Kingdom. Emerg. Infect. Dis. 19, 673–675. https://doi.org/10.3201/eid1904.121057 (2013).Article 

    Google Scholar 
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Phil. Trans. R. Soc. B 370, 20140295. https://doi.org/10.1098/rstb.2014.0295 (2015).Article 

    Google Scholar 
    Kim, H.-C. et al. Hantavirus surveillance and genetic diversity targeting small mammals at Camp Humphreys, a US military installation and new expansion site Republic of Korea. PLoS ONE 12, e0176514. https://doi.org/10.1371/journal.pone.0176514 (2017).Article 

    Google Scholar 
    Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections: Further analysis of the data by akaike’ s. Commun. Stat. Theory Methods 7, 13–26 (1978).Article 
    MATH 

    Google Scholar 
    Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524. https://doi.org/10.1002/ece3.1155 (2014).Article 

    Google Scholar 
    Ingram, J. C. Berger–Parker Index. in Encyclopedia of Ecology 332–334 (Elsevier, 2008). https://doi.org/10.1016/B978-008045405-4.00091-4.Bürkner, P.-C. brms : An R package for bayesian multilevel models using Stan. J. Stat. Soft. 80, (2017).Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. (2022).Warton, D. I., Thibaut, L. & Wang, Y. A. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses. PLoS ONE 12, e0181790. https://doi.org/10.1371/journal.pone.0181790 (2017).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2022).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).Szacki, J. & Liro, A. Movements of small mammals in the heterogeneous landscape. Landsc. Ecol. 5, 219–224 (1991).Article 

    Google Scholar 
    Szacki, J., Babinska-Werka, J. & Liro, A. The influence of landscape spatial structure on small mammal movements. Acta Theriol. 2, (1993).Pimentel, D., Pimentel, M. & Wilson, A. Plant, animal, and microbe invasive species in the United States and World. Biol. Invasions 193 (2007).Valéry, L., Hervé, F., Lefeuvre, J. C. & Simberloff, D. Invasive species can also be native. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2009.07.003 (2009).Article 

    Google Scholar 
    Deinet, S. et al. Wildlife comeback in Europe: The recovery of selected mammal and bird species. (2013).Gompper, M. Top Carnivores in the Suburbs? Ecological and Conservation Issues Raised by Colonization of North-eastern North America by Coyotes: The expansion of the coyote’s geographical range may broadly influence community structure, and rising coyote densities in the suburbs may alter how the general public views wildlife. BioScience 52, 185–190. https://doi.org/10.1641/0006-3568 (2002).Dalecky, A. et al. Range expansion of the invasive house mouse Mus musculus domesticus in Senegal, West Africa: A synthesis of trapping data over three decades, 1983–2014. Mammal. Rev. 45, 176–190. https://doi.org/10.1111/mam.12043 (2015).Article 

    Google Scholar 
    Konečnỳ, A. et al. Invasion genetics of the introduced black rat (Rattus rattus) in Senegal West Africa. Mol. Ecol. 22, 286–300. https://doi.org/10.1111/mec.12112 (2013).Article 

    Google Scholar 
    Bramley, G. N. Home ranges and interactions of kiore (Rattus exulans) and Norway rats (R. norvegicus) on Kapiti Island, New Zealand. New Zeal. J. Ecol. 328–334 (2014).O’Rourke, R. L., Anson, J. R., Saul, A. M. & Banks, P. B. Limits to alien black rats (Rattus rattus) acting as equivalent pollinators to extinct native small mammals: The influence of stem width on mammal activity at native Banksia ericifolia inflorescences. Biol. Invasions 22, 329–338. https://doi.org/10.1007/s10530-019-02090-x (2020).Article 

    Google Scholar 
    White, T. A. et al. Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biol. Invasions 14, 2203–2215. https://doi.org/10.1007/s10530-012-0225-x (2012).Article 

    Google Scholar 
    McDevitt, A. D. et al. Invading and expanding: Range dynamics and ecological consequences of the greater white-toothed shrew (Crocidura russula) invasion in Ireland. PLoS ONE 9, e100403. https://doi.org/10.1371/journal.pone.0100403 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Aguilar, J.-P., Pélissié, T., Sigé, B. & Michaux, J. Occurrence of the stripe field mouse lineage (Apodemus agrarius Pallas 1771; Rodentia; Mammalia) in the Late Pleistocene of southwestern France. C.R. Palevol 7, 217–225 (2008).Article 

    Google Scholar 
    Kordos, L. Historico-zoogeographical and ecological investigation of the subfossil vertebrate fauna of the Aggtelek Karst. Vert. Hung. 18, 85–100 (1978).
    Google Scholar 
    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).Article 

    Google Scholar 
    Krebs, C. J. Beyond population regulation and limitation. Wildl. Res. 29, 1–10 (2002).Article 

    Google Scholar 
    Huitu, O., Norrdahl, K. & Korpimäki, E. Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography 27, 197–206.  https://doi.org/10.1111/j.0906-7590.2003.03684.x (2004).Article 

    Google Scholar 
    Lofgren, O. Niche expansion and increased maturation rate of Clethrionomys glareolus in the absence of competitors. J. Mammal. 76, 1100–1112 (1995).Article 

    Google Scholar 
    Hansson, L. Competition between Rodents in Successional Stages of Taiga Forests: Microtus agrestis vs. Clethrionomys glareolus. Oikos 40, 258 (1983).Article 

    Google Scholar 
    Eccard, J. A. & Ylönen, H. Direct interference or indirect exploitation? An experimental study of fitness costs of interspecific competition in voles. Oikos 99, 580–590. https://doi.org/10.1034/j.1600-0706.2002.11833.x (2002).Article 

    Google Scholar 
    Gliwicz, J. Competition among forest rodents: Effects of Apodemus flavicollis and Clethrionomys glareolus on A. agrarius. Acta Zool. Fennica 1984. (1984).Neet, C. R. & Hausser, J. Habitat selection in zones of parapatric contact between the common shrew Sorex araneus and Millet’s shrew S. coronatus. J. Anim. Ecol. 235–250 (1990).Zub, K., Jędrzejewska, B., Jędrzejewski, W. & Bartoń, K. A. Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest. Acta Theriol. 57, 205–216 (2012).Article 
    CAS 

    Google Scholar 
    Henttonen, H. et al. Long-term population dynamics of the common shrew Sorex araneus in Finland. in Annales Zoologici Fennici 349–355 (JSTOR, 1989).Gębczyńska, Z., Gębczyński, M., Morzuch, K. & Zielińska, D. M. Food eaten by four species of rodents in polluted forests. Acta Theriol. 34, 465–477 (1989).Article 

    Google Scholar 
    Babinska-Werka, J. Response of rodents to an increased and quantitatively diverse food base. Acta theriologica 35, (1990).Margaletic, J., Glavaš, M. & Bäumler, W. The development of mice and voles in an oak forest with a surplus of acorns. J. Pest Sci. 75, 95–98 (2002).Holisova, V. The food of Apodemus agrarius (Pall.). Zoologické listy 16, 1–14 (1967).Obrtel, R. & Hološová, V. The trophic niche of Apodemus agrarius in northern Moravia. Folia Zool. 30, 125–138 (1981).
    Google Scholar 
    Grant, P. R. Interspecific competition among rodents. Annu. Rev. Ecol. Syst. 3, 79–106 (1972).Article 

    Google Scholar 
    Redfield, J. A., Krebs, C. J. & Taitt, M. J. Competition between Peromyscus maniculatus and Microtus townsendii in grasslands of coastal British Columbia. J. Anim. Ecol. 607–616 (1977).Kincaid, W. B. & Cameron, G. N. Effects of species removal on resource utilization in a Texas rodent community. J. Mammal. 63, 229–235 (1982).Article 

    Google Scholar 
    Yurkonis, K. A., Meiners, S. J. & Wachholder, B. E. Invasion impacts diversity through altered community dynamics. J. Ecol. 93, 1053–1061 (2005).Article 

    Google Scholar 
    Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548. https://doi.org/10.3732/ajb.1000402 (2011).Article 

    Google Scholar 
    Jaksic, F. M. Vertebrate invaders and their ecological impacts in Chile. Biodivers. Conserv. 7, 1427–1445 (1998).Article 

    Google Scholar 
    Richter-Boix, A. et al. Effects of the non-native amphibian species Discoglossus pictus on the recipient amphibian community: Niche overlap, competition and community organization. Biol. Invasions 15, 799–815. https://doi.org/10.1007/s10530-012-0328-4 (2013).Article 

    Google Scholar 
    Kumschick, S., Bacher, S. & Blackburn, T. M. What determines the impact of alien birds and mammals in Europe? Biol. Invasions 15, 785–797. https://doi.org/10.1007/s10530-012-0326-6 (2013).Article 

    Google Scholar 
    Tedeschi, L., Biancolini, D., Capinha, C., Rondinini, C. & Essl, F. Introduction, spread, and impacts of invasive alien mammal species in Europe. Mam. Rev. Mam. 12277. https://doi.org/10.1111/mam.12277 (2021).Harris, D. B. Review of negative effects of introduced rodents on small mammals on islands. Biol. Invasions 11, 1611–1630. https://doi.org/10.1007/s10530-008-9393-0 (2009).Article 

    Google Scholar 
    Traveset, A. et al. A review on the effects of alien rodents in the Balearic (Western Mediterranean Sea) and Canary Islands (Eastern Atlantic Ocean). Biol. Invasions 11, 1653–1670. https://doi.org/10.1007/s10530-008-9395-y (2009).Article 

    Google Scholar 
    Jung, T. S., Nagorsen, D. W., Kukka, P. M. & Barker, O. E. Alien invaders: recent establishment of an urban population of house mice (Mus musculus) in the Yukon. Northwest. Nat. 93, 240–242 (2012).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453. https://doi.org/10.1016/S0169-5347(99)01679-1 (1999).Article 
    CAS 

    Google Scholar 
    MacGregor-Fors, I., Morales-Pérez, L., Quesada, J. & Schondube, J. E. Relationship between the presence of House Sparrows (Passer domesticus) and Neotropical bird community structure and diversity. Biol. Invasions 12, 87–96. https://doi.org/10.1007/s10530-009-9432-5 (2010).Article 

    Google Scholar 
    Phillips, B. L. Behaviour on Invasion Fronts, and the Behaviour of Invasion Fronts. in Biological Invasions and Animal Behaviour (eds. Weis, J. S. & Sol, D.) 82–95 (Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781139939492.007.Pietrek, A. G., Goheen, J. R., Riginos, C., Maiyo, N. J. & Palmer, T. M. Density dependence and the spread of invasive big-headed ants (Pheidole megacephala) in an East African savanna. Oecologia 195, 667–676. https://doi.org/10.1007/s00442-021-04859-1 (2021).Article 
    ADS 

    Google Scholar 
    Stanko, M. Ryšavka tmavopása (Apodemus agrarius, Rodentia) na Slovensku. (Parazitologický ústav SAV, 2014).Thompson, K., Hodgson, J. G. & Rich, T. C. Native and alien invasive plants: more of the same?. Ecography 18, 390–402 (1995).Article 

    Google Scholar  More

  • in

    Partial COVID-19 closure of a national park reveals negative influence of low-impact recreation on wildlife spatiotemporal ecology

    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A.. Can. J. Zool. 79, 1401–1409 (2001).Article 

    Google Scholar 
    Laundré, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: Ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).Article 

    Google Scholar 
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).Article 

    Google Scholar 
    Miller, S. G., Knight, R. L. & Miller, C. K. Wildlife responses to pedestrians and dogs. Wildl. Soc. B. 29, 124–132 (2001).
    Google Scholar 
    Larson, C., Reed, S., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systemic review. PLoS ONE 11, 1–21 (2016).Article 

    Google Scholar 
    Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol 13, 1–6 (2015).Article 

    Google Scholar 
    Baker, A. D. & Leberg, P. L. Impacts of human recreation on carnivores in protected areas. PLoS Biol 13, 1–21 (2018).
    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Cons. Lett. 11, 1–10 (2018).Article 

    Google Scholar 
    Suraci, J. P. et al. Disturbance type and species life history predict mammal responses to humans. Glob. Change Biol. 27, 3718–3731 (2021).Article 
    CAS 

    Google Scholar 
    Reilly, M. L., Tobler, M. W., Sonderegger, D. L. & Beier, P. Spatial and temporal response of wildlife to recreational activities in the San Francisco Bay ecoregion. Biol. Conserv. 207, 117–126 (2017).Article 

    Google Scholar 
    Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).
    Google Scholar 
    Nickel, B. A., Suraci, J. P., Allen, M. L. & Wilmers, C. C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Conserv. 241, 1–11 (2020).Article 

    Google Scholar 
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).Article 

    Google Scholar 
    Poggiato, G. et al. On the interpretations of joint modeling in community ecology. TREE 36, 391–401 (2021).
    Google Scholar 
    Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 1–6 (2020).Article 

    Google Scholar 
    Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159 (2020).Article 

    Google Scholar 
    Wang, Y., Allen, M. L. & Wilmers, C. C. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol. Conserv. 190, 23–33 (2015).Article 

    Google Scholar 
    Lewis, J. S. et al. Human activity influences wildlife populations and activity patterns: implications for spatial and temporal refuges. Ecosphere 12, 1–16 (2021).Article 

    Google Scholar 
    Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 108818 (2021).Article 

    Google Scholar 
    Soule, M. E. et al. Dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv. Biol. 2, 75–92 (1988).Article 

    Google Scholar 
    Feit, B., Feit, A. & Letnic, M. Apex predators decouple population dynamics between mesopredators and their prey. Ecosystems 22, 1606–1617 (2019).Article 

    Google Scholar 
    Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).Article 

    Google Scholar 
    Sarmento, W., Biel, M. & Berger, J. Redistribution, human shields and loss of migratory behavior in the crown of the continent. Intermt. J. Sci. 22, 2016 (2016).
    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Microsoft. AI for Earth camera trap image processing API (2020).Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: an R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207. https://doi.org/10.1890/02-3090 (2003).Article 

    Google Scholar 
    MacKenzie, D. I. et al. Occupancy estimation and modeling (Elsevier, 2018).
    Google Scholar 
    Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Soft. 4, 1–23 (2011).
    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1 (2020). https://cran.r-project.org/package=AICcmodavg.Ladle, A., Steenweg, R., Shepherd, B. & Boyce, M. S. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence. PLoS ONE 13, 1–16 (2018).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Agostinelli, C. & Lund, U. R package ‘circular’: circular statistics (version 0.4-94.1 (2022). https://r-forge.r-project.org/projects/circular/.Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS ONE 14, 1–23 (2019).Article 

    Google Scholar 
    Olea, P. P., Iglesias, N. & Mateo-Tomás, P. Temporal resource partitioning mediates vertebrate coexistence at carcasses: the role of competitive and facilitative interactions. Basic Appl. Ecol. 60, 63–75 (2022).Article 

    Google Scholar 
    Shilling, F. et al. A reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biol. Conserv. 256, 109013 (2021).Article 

    Google Scholar 
    Behera, A. K. et al. The impacts of COVID-19 lockdown on wildlife in Deccan Plateau. India. Sci. Total Environ. 822, 153268 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Procko, M., Naidoo, R., LeMay, V. & Burton, A. C. Human impacts on mammals in and around a protected area before, during, and after COVID-19 lockdowns. Conserv. Sci. Pract. 4, e12743. https://doi.org/10.1111/csp2.12743 (2022).Article 

    Google Scholar 
    Sanderfoot, O. V., Kaufman, J. D. & Gardner, B. Drivers of avian habitat use and detection of backyard birds in the Pacific Northwest during COVID-19 pandemic lockdowns. Sci. Rep. 12, 12655 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Nevin, J. A. & Grace, R. C. Behavioral momentum and the law of effect. Behav. Brain Sci. 23, 73–90 (2000).Article 
    CAS 

    Google Scholar 
    Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).Article 

    Google Scholar 
    Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J. & Fisher, J. T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 129, 1128–1140 (2020).Article 

    Google Scholar 
    Schwartz, C. C. et al. Contrasting activity patterns of sympatric and allopatric black and grizzly bears. J. Wildl. Manag. 74, 1628–1638 (2010).Article 

    Google Scholar 
    Fortin, J. K. et al. Impacts of human recreation on brown bears (Ursus arctos): a review and new management tool. PLoS ONE 11, 1–26 (2016).Article 

    Google Scholar 
    Kendall, K. C. et al. Grizzly bear density in Glacier National Park. Montana. J. Wildl. Manag. 72, 1693–1705 (2008).Article 

    Google Scholar 
    Stetz, J. B., Kendall, K. C. & Macleod, A. C. Black bear density in Glacier National Park, Montana. Wildl. Soc. Bull. 38, 60–70 (2014).Article 

    Google Scholar 
    Sargeant, A. B. & Allen, S. H. Observed interactions between coyotes and red foxes. J. Mamm. 70, 631–633 (1989).Article 

    Google Scholar 
    Newsome, T. M. & Ripple, W. J. A continental scale trophic cascade from wolves through coyotes to foxes. J. Anim. Ecol. 84, 49–59 (2015).Article 

    Google Scholar 
    Naylor, L. M., Wisdom, M. J. & Anthony, R. G. Behavioral responses of North American elk to recreational activity. J. Wildl. Manag. 73, 328–338 (2009).Article 

    Google Scholar 
    Sarmento, W. M. & Berger, J. Human visitation limits the utility of protected areas as ecological baselines. Biol. Conserv. 212, 316–326 (2017).Article 

    Google Scholar 
    Garber, S. D. & Burger, J. A 20-year study documenting the relationship between turtle decline and human recreation. Ecol. Appl. 5, 1151–1162 (1995).Article 

    Google Scholar 
    Winter, P. L., Selin, S., Cerveny, L. & Bricker, K. Outdoor recreation, nature-based tourism, and sustainability. Sustainability 12, 1–12 (2020).
    Google Scholar 
    Geffroy, B., Samia, D. S. M., Bessa, E. & Blumstein, D. T. How nature-based tourism might increase prey vulnerability to predators. TREE 30, 755–765 (2015).
    Google Scholar 
    Eagles, P. F. J., McCool, S. F. & Haynes, C. D. Sustainable Tourism in Protected Areas: Guidelines for Planning and Management Vol. 8 (IUCN, 2002).Book 

    Google Scholar  More

  • in

    Global patterns of climate change impacts on desert bird communities

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).Article 

    Google Scholar 
    Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).Article 
    ADS 

    Google Scholar 
    Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. In transition: Avian biogeographic responses to a century of climate change across desert biomes. Glob. Change Biol. 26, 3268–3284 (2020).Article 
    ADS 

    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).Article 
    ADS 

    Google Scholar 
    Ward, D. The Biology of Deserts (OUP Oxford, 2016).Reid, V. W. et al. Millennium Ecosystem Assessment, 2005. In Ecosystems and Human Well-being: Synthesis (Island Press, 2005).Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 10, 064012 (2015).Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 175-312, https://doi.org/10.1017/9781009157940.005.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 2283–2288 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).Article 

    Google Scholar 
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).Article 

    Google Scholar 
    Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, J. B. & Tieleman, B. I. Physiological adaptation in desert birds. BioScience 55, 416–425 (2005).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl Acad. Sci. USA 115, 8597–8602 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Albright, T. P. et al. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1, art12 (2010).Article 

    Google Scholar 
    Cruz-McDonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Change Biol. 22, 237–253 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, W. R. Temperature Regulation and Water Requirements of the Brown and Abert Towhees, Pipilo Fuscus and Pipilo Aberti.[With Plates.] (University of California Press, 1954).Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1908791116 (2019).Wolf, B. Global warming and avian occupancy of hot deserts; a physiological and behavioral perspective. Rev. Chil. Hist. Nat. 73, 395–400 (2000).Article 

    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Ioffe, S. Improved consistent sampling, weighted Minhash and L1 sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining 246–255 (IEEE Computer Society, 2010).Losos, E., Hayes, J., Phillips, A., Wilcove, D. & Alkire, C. Taxpayer-subsidized resource extraction harms species. BioScience 45, 446–455 (1995).Article 

    Google Scholar 
    Rodríguez-Estrella, R. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Divers. Distrib. 13, 877–889 (2007).Article 

    Google Scholar 
    Stralberg, D. et al. Climate-change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article 

    Google Scholar 
    Hinkel, J. et al. Sea-level rise scenarios and coastal risk management. Nat. Clim. Change 5, 188–190 (2015).Article 
    ADS 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).Article 
    CAS 

    Google Scholar 
    C. B. D. Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3. https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf Convention on Biology Diversity, Montreal, Canada (2020).Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Meigs, P. World distributions of arid and semi-arid homoclimates. In Review of Research on Arid Zone Hydrology (UNESCO, 1953).Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns? J. Avian Biol. 51, e02350 (2020).Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).Article 

    Google Scholar 
    Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).
    Google Scholar 
    Kearney, M. NicheMapR: R implementation of Niche Mapper software for biophysical modelling. https://github.com/mrke/NicheMapR. (2020).Cunningham, S. J., Martin, R. O. & Hockey, P. A. Can behaviour buffer the impacts of climate change on an arid-zone bird? Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).Worcester, S. E. The scaling of the size and stiffness of primary flight feathers. J. Zool. 239, 609–624 (1996).Article 

    Google Scholar 
    Wang, X., Nudds, R. L., Palmer, C. & Dyke, G. J. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. J. Evol. Biol. 25, 547–555 (2012).Article 
    CAS 

    Google Scholar 
    McKechnie, A. E., Gerson, A. R. & Wolf, B. O. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. J. Exp. Biol. 224, jeb229211 (2021).Flint, L. E., Flint, A. L., Thorne, J. H. & Boynton, R. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol. Process. 2, 25 (2013).Article 

    Google Scholar 
    Handbook of the Birds of the World and BirdLife International. Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. Version 5. http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v5_Dec20.zip (2020).Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977–986 (2019).Article 

    Google Scholar 
    Pastore, M. Overlapping: a R package for estimating overlapping in empirical distributions. J. Open Source Softw. 3, 1023 (2018).Article 
    ADS 

    Google Scholar 
    UNEP-WCMC and IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Online], June 2021, Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    Dudley, N. Guidelines for Applying Protected Area Management Categories (ICUN, 2008).Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. https://CRAN.R-project.org/package=rcompanion. (2021).Crawford, C. L., Estes, L. D., Searchinger, T. D. & Wilcove, D. S. Consequences of underexplored variation in biodiversity indices used for land-use prioritization. Ecol. Appl. 31, e02396 (2021).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Genetic basis of thiaminase I activity in a vertebrate, zebrafish Danio rerio

    Sequence analysisProtein sequence searches were conducted in the GenBank nr database with BLASTP42 using default parameters, including automatically adjusting parameters for short input sequences (Table S1). Conserved domain searches were run against the GenBank Conserved Domain Database (CDD)43. Sequence alignments were conducted in CLC Main Workbench 20.0.4 (Qiagen) with the fast alignment algorithm, gap open cost = 10, and gap extension cost = 1. Biochemical properties of the fish putative thiaminase I protein sequences were predicted with the Create Sequence Statistics function in CLC Main Workbench 20.0.4 (Qiagen, Hilden, Germany). The molecular weights were calculated from the sum of the amino acids in the sequence, and the isoelectric points (pIs) were calculated from the pKa values for the individual amino acids in the sequence.Bacteria culturePure cultures of P. thiaminolyticus strain 818822 were cultured at 37 °C in Terrific Broth (MO BIO Laboratories, Carlsbad, CA) in either a shaking incubator or in a beveled flask with a stir bar and were harvested after 48–80 h of culture. Upon harvest, cultures were processed immediately or frozen whole in 50 mL Falcon tubes at − 80 °C. Fresh or thawed cultures were spun at 14,000×g, and culture supernatant was concentrated using Amicon-ultra 10 kDa molecular weight cut-off (MWCO) filters (EMD Millipore, Billerica, MA).The zebrafish and alewife candidate thiaminase I genes were cloned and overexpressed in E. coli to determine whether they produced functional thiaminases. The recombinant thiaminase I gene from P. thiaminolyticus was overexpressed in E. coli as a positive control. Candidate and control genes were synthesized (Integrated DNA Technologies, Inc., Coralville, Iowa) and placed into the pET52b vector (EMD Millipore). Insert sequences are provided in Supplementary Figs. S10–S13. The empty pET52b vector was used as a negative control. The plasmid was transformed into E. coli (Rosetta 2(DE3)pLysS Singles Competent Cells, EMD Millipore) according to the manufacturer’s instructions, and expression of candidate genes was induced by the addition of IPTG. Cells were lysed in 1X BugBuster (Millipore) according to the manufacturer’s instructions in the presence of benzonase nuclease, and soluble and insoluble fractions were separated by centrifugation.Tissue collectionsAdult common carp were captured from Lake Erie using short-set gill nets. Adult alewife and quagga mussels (Dreissena bugensis) were collected from Sturgeon Bay, Lake Michigan using bottom trawls. Fish collections were completed during July 2007. Sex of sampled fish was not identified. Upon collection, unanesthetized animals were immediately euthanized by flash freezing between slabs of dry ice and stored at − 80 °C. Fish were harvested by the Great Lakes Science Center, U.S. Geological Survey (USGS). Laboratory use of frozen animal tissues and wild type and recombinant bacteria was in accordance with institutional guidelines and biosafety procedures at Oregon State University and USGS. Animal care and use procedures were approved by the Great Lakes Science Center, USGS. All USGS sampling and handling of fish during research are carried out in accordance with guidelines for the care and use of fishes by the American Fisheries Society44. All methods are reported in accordance with applicable ARRIVE guidelines (https://arriveguidelines.org). Zebrafish from OSU’s zebrafish facility were anesthetized and euthanized by overdose with waterborne 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) following protocols approved by the OSU Animal Institutional Care and Use Committee and were frozen at − 80 °C after euthanization. Gills, liver, spleen, and the intestinal tract were dissected, and gill tissue was homogenized separately from liver, spleen, and gut, which were homogenized together and designated “viscera.” Homogenization and protein preparation procedures were the same as that for alewife. Zebrafish from Columbia Environmental Research Center (CERC), USGS cultures were anesthetized and euthanized by overdose with 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) in water following protocols approved by CERC Institutional Animal Care and Use Committee (IACUC). Whole fish (0.2–0.6 g) were homogenized in 10 mL cold phosphate buffer, pH 6.5. Whole common carp and alewife were thawed until they could just be dissected. Preliminary trial extractions on alewife stomach and intestines, spleen, and gills revealed similar results and revealed that gills and spleen tissue produced the cleanest protein preparations. Therefore, subsequent extractions for common carp and alewife used gill tissue. Samples were pooled from 3 to 5 individual fish, haphazardly chosen from the sampled fish without exclusions. Quagga mussels were thawed just sufficiently to be husked from their shell and were used whole. Researchers were aware of the species and tissue designation of each sample throughout the experiments. Animal tissues were placed in ice-cold (4 °C) beakers containing cold extraction buffer (16 mM K3HPO4, 84 mM KH2PO4, 100 mM NaCl, pH 6.5 with 1 mM DTT, 2 mM EDTA, 3 mM Pepstatin, 1X Protease inhibitor cocktail (Sigma), and 1 mM AEBSF). All extractions were carried out at 4 °C in pre-chilled glassware. Samples were mechanically homogenized using a rotor–stator tissue grinder. Samples were stirred gently for several hours to overnight at 4 °C, centrifuged at 14,000×g to remove debris, and strained through cheesecloth to remove any insoluble lipids. Extracts were then subjected to 30–75% ammonium sulfate precipitation. Pellets from the precipitation were resuspended in buffer (83 mM KH2PO4, 17 mM K2HPO4, and 100 mM NaCl), centrifuged to remove any remaining debris, and stored in 30% glycerol at − 20 °C.Protein electrophoresisNative PAGE was run using either pre-cast TGX gels (BioRad, Hercules, California) of varying percentage (7.5% to 12% or 8–16% gradient gels) or on hand-cast gels (TGX FastCast, BioRad) made according to the manufacturer’s instructions.Blue-native PAGE was used to estimate the mass of thiaminases in their native conformation. Blue-native PAGE45 gels were run using the NativePage Novex Bis–Tris system (Life Technologies) or hand-cast equivalents46. Light blue cathode buffer was used to facilitate visualization of the activity stain.Standard denaturing SDS-PAGE was used to estimate the molecular mass of thiaminases after denaturation. Denaturing SDS-PAGE was run using one of three relatively equivalent methods: pre-cast TGX gels (BioRad) according to the manufacturer’s instructions, hand-cast Tris–HCl gels using standard Laemmli chemistry47 with an operating pH of approximately 9.5, or hand-cast Bis–Tris gels (MOPS buffer) with an operating pH of approximately 7. For all denaturing and non-denaturing SDS-PAGE applications, standard Laemmli sample buffer was used, and samples were heated to 75 °C for 15 min to facilitate denaturation followed by brief centrifugation to eliminate any precipitated debris.Non-denaturing PAGE was used as an alternative to denaturing PAGE for the common carp thiaminase that could not be renatured (i.e., activity could not be recovered) following a denaturing SDS-PAGE. Non-denaturing PAGE was conducted using any of the three aforementioned gel chemistries with SDS-containing running buffers including reductant (DTT), but samples were not heated prior to application to the gel. Samples for non-denaturing PAGE were allowed to incubate in sample buffer at room temperature for 30 min prior to gel loading. This preserves the charge-shift induced by SDS but does not result in protein denaturation, facilitating in-gel analysis of thiaminase I activity after separation.To visualize proteins following electrophoresis, gels were stained with Coomassie stain (CBR-250 at 1 g/L in methanol/acetic acid/water (4:5:1) and destained with methanol/acetic acid/water (1.7:1:11.5). Mini-gels were run on BioRad’s mini-protean gel rigs. Midi-gels (16 cm length) were run on Hoefer’s SE660, and large-format gels (32 cm length) were run on a BioRad’s Protean Slab Cell. Mini-gels were generally run at room temperature, and midi- and large-format gels were run at 4 °C. Blue-native PAGE was always run at 4 °C.Two-dimensional electrophoresis (2DE) separated proteins in the first dimension based on pI and in the second dimension based on mass (either native or denatured). 2DE was performed by combining in-gel IEF with either denaturing SDS-PAGE, non-denaturing SDS-PAGE, or native PAGE. IPG strips were incubated in TRIS-buffered equilibration solution48 either with 6 M urea, SDS, and iodacetamide (denaturing) or without urea, SDS, and iodacetamide (non-denaturing) for 20 min. Low melting point agarose was used to solidify IGP strips in place. Agarose was cooled to just above the gelling temperature, as hot agarose inactivated thiaminase I activity.Isoelectric focusingIsoelectric focusing (IEF) was conducted both in-gel and in-liquid. In-gel IEF was conducted in immobilized pH gradient (IPG) strips using a Multifor II (GE Healthcare Life Sciences). Prior to rehydration, all protein preparations were desalted in low-salt (~ 5 to 10 mM) sodium or potassium phosphate buffer (pH 6.5) using 10 kDA MWCO filters. All samples were applied using sample volumes and protein concentrations recommended by the manufacturer. For standard denaturing in-gel IEF, rehydration solution consisted of 8 M urea, 2% CHAPS, 2% IPG buffer of the appropriate pH-range, 1% bromophenol blue, and 18 mM DTT. The IEF was conducted at maximum of 2 mA total current and 5 W total power, with an EPS3500 XL power supply in gradient mode. Voltage gradients were based on standard protocols recommended by the manufacturer. In-gel IEF was also performed under native conditions to allow thiaminase I activity staining of IPG strips. Protocols were essentially the same as those for denaturing conditions, with the following exceptions: (1) urea was eliminated and the CHAPS concentration was reduced to 0.5% in the rehydration solution; (2) rehydration was conducted at 14 °C; and (3) the water in the cooling tray was cooled to 4 °C.In-liquid IEF was conducted using a Rotofor (BioRad) according to the manufacturer’s instructions. Non-denaturing in-liquid IEF was also conducted using a focusing solution including no urea, 2% pH 3–10 biolyte, 0.5% CHAPS, 20% glycerol, and 5 mM DTT. The addition of glycerol helped retain activity but also increased focusing times. The Rotofor was run at a constant 15 W with a maximum current of 20 mA and voltage set for a maximum of 2000 V. Samples containing 8 M urea were cooled to 14 °C during focusing to avoid urea precipitation, whereas samples lacking urea were cooled to 4 °C during focusing. Protein extracts in salt solutions greater than 10 mM were desalted directly in focusing solution using a 10 kDA MWCO filter. Focusing runs were allowed to proceed until the voltage stabilized and fractions were harvested with the needle array and vacuum pump. Ampholytes were removed by addition of NaCl to 1 M and then samples were desalted into phosphate buffer using a 10kD MWCO filter.Thiaminase I activity measurementsFor quantitative measurements of thiaminase I activity, we conducted a radiometric assay at CERC as previously described49. Zebrafish homogenates were diluted 1:8, 1:16, or 1:32 in cold phosphate buffer, pH 6.5. Two replicates per dilution were assayed. Activity was calculated from the greatest dilution that gave activity within the linear range of the assay and was reported as pmol thiamine consumed per g tissue (wet weight) per minute (pmol/g/min).Thiaminase I activity stainingAfter electrophoresis, gels were stained for thiaminase I activity using a previously described diazo-coupling reaction19,50. Briefly, gels were washed 3 times in water, twice in 25 mM sodium phosphate buffer with 1 mM DTT, and once in 25 mM sodium phosphate buffer without DTT. Gels were then incubated in 0.89 mM thiamine-HCl and co-substrate (1.45 mM pyridoxine, 24 mM nicotinic acid, or 20 mM pyridine) in 25 mM sodium phosphate buffer for 10 min. Gels were briefly rinsed in water and placed in a lidded container and incubated at 37 °C for 30 min to allow thiamine degradation by any thiaminases in the gel. The diazo stain19,50 was then applied to detect remaining thiamine in the gel for five minutes with gentle agitation. Stained gels were rinsed with water and photographed, and further stained with Coomassie to visualize proteins. More

  • in

    Potential for mercury methylation by Asgard archaea in mangrove sediments

    Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ Sci Technol. 2013;47:2441–56.Article 
    CAS 

    Google Scholar 
    Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv. 2015;1:e1500675.Article 

    Google Scholar 
    Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.Article 
    CAS 

    Google Scholar 
    Lee C-S, Fisher NS. Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem. 2017;36:1287–93.Article 
    CAS 

    Google Scholar 
    Parks JM, Johs A, Podar M, Bridou R, Hurt RAJ, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.Article 
    CAS 

    Google Scholar 
    McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.Article 
    CAS 

    Google Scholar 
    Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, et al. Structure determination of the HgcAB complex using metagenome sequence data: Insights into microbial mercury methylation. Commun Biol. 2020;3:320.Article 
    CAS 

    Google Scholar 
    Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol. 2006;72:7919–21.Article 
    CAS 

    Google Scholar 
    Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.Article 
    CAS 

    Google Scholar 
    Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and Spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.Article 

    Google Scholar 
    Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, et al. Microbial mercury methylation in Antarctic sea ice. Nat Microbiol. 2016;1:16127.Article 
    CAS 

    Google Scholar 
    Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME J. 2019;13:1659–75.Article 
    CAS 

    Google Scholar 
    Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, et al. Determining the reliability of measuring mercury cycling gene abundance with correlations with mercury and methylmercury concentrations. Environ Sci Technol. 2019;53:8649–63.Article 
    CAS 

    Google Scholar 
    Villar E, Cabrol L, Heimburger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep. 2020;12:277–87.Article 
    CAS 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.Article 
    CAS 

    Google Scholar 
    King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA. A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol. 2001;35:2491–6.Article 
    CAS 

    Google Scholar 
    Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.Article 
    CAS 

    Google Scholar 
    Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2022;65:818–29.Article 
    CAS 

    Google Scholar 
    Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.Article 

    Google Scholar 
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017;541:353–8.Article 
    CAS 

    Google Scholar 
    Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021;593:553–7.Article 
    CAS 

    Google Scholar 
    Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, et al. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 2021;15:1826–43.Article 
    CAS 

    Google Scholar 
    Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.Article 
    CAS 

    Google Scholar 
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.Article 
    CAS 

    Google Scholar 
    Farag Ibrahim F, Zhao R, Biddle Jennifer F, Atomi H. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Micro. 2021;87:e02584–20.
    Google Scholar 
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.Article 

    Google Scholar 
    Cai M, Richter-Heitmann T, Yin X, Huang W-C, Yang Y, Zhang C, et al. Ecological features and global distribution of Asgard archaea. Sci Total Environ. 2021;758:143581.Article 
    CAS 

    Google Scholar 
    Zhang C-J, Chen Y-L, Sun Y-H, Pan J, Cai M-W, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar Life Sci Tech. 2020;3:252–62.Article 

    Google Scholar 
    Dai SS, Yang Z, Tong Y, Chen L, Liu SY, Pan R, et al. Global distribution and environmental drivers of methylmercury production in sediments. J Hazard Mater. 2021;407:124700.Article 
    CAS 

    Google Scholar 
    Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci Total Environ. 2020;714:136827.Article 
    CAS 

    Google Scholar 
    Tsui MTK, Finlay JC, Balogh SJ, Nollet YH. In situ production of methylmercury within a stream channel in northern California. Environ Sci Technol. 2010;44:6998–7004.Article 
    CAS 

    Google Scholar 
    Liu Y, Zhou Z, Pan J, Baker BJ, Gu JD, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 2018;12:1021–31.Article 
    CAS 

    Google Scholar 
    Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci Total Environ. 2019;680:140–50.Article 
    CAS 

    Google Scholar 
    Beckers F, Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Env Sci Tec. 2017;47:693–794.Article 
    CAS 

    Google Scholar 
    de Oliveira DC, Correia RR, Marinho CC, Guimaraes JR. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 2015;127:214–21.Article 

    Google Scholar 
    Li R, Xu H, Chai M, Qiu GY. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world’s most rapid urbanized city. Environ Moni Assess. 2016;188:87.Article 

    Google Scholar 
    O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int. 2019;126:747–61.Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018;47:116–40.Article 

    Google Scholar 
    Capo E, Peterson BD, Kim M, Jones DS, Acinas SG, Amyot M, et al. A consensus protocol for the recovery of mercury methylation genes from metagenomes. Mol Ecol Resour. 2022; https://doi.org/10.1111/1755-0998.13687.Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, et al. An improved hgcAB primer set and direct high-throughput sequencing expand Hg-methylator diversity in nature. Front Microbiol. 2020;11:541554.Article 

    Google Scholar 
    Yu R-Q, Barkay T. Chapter two – microbial mercury transformations: Molecules, functions and organisms. Adv Appl Microbiol. 2022;118:31–90.Article 

    Google Scholar 
    Chételat J, Richardson MC, MacMillan GA, Amyot M, Poulain AJ. Ratio of methylmercury to dissolved organic carbon in water explains methylmercury bioaccumulation across a latitudinal gradient from north-temperate to arctic lakes. Environ Sci Technol. 2018;52:79–88.Article 

    Google Scholar 
    Liu Y-R, Dong J-X, Han L-L, Zheng Y-M, He J-Z. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environ Pollut. 2016;209:53–9.Article 
    CAS 

    Google Scholar 
    Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, et al. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol. 2015;6:1389.Article 

    Google Scholar 
    Chen C-F, Ju Y-R, Chen C-W, Dong C-D. The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ. 2019;691:55–63.Article 
    CAS 

    Google Scholar 
    Bravo AG, Bouchet S, Guédron S, Amouroux D, Dominik J, Zopfi J. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Res. 2015;80:245–55.Article 
    CAS 

    Google Scholar 
    Wang H, Su J, Zheng T, Yang X. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soil Sediment. 2015;15:1212–23.Article 
    CAS 

    Google Scholar 
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 2020;577:519–25.Article 
    CAS 

    Google Scholar 
    Zhou J, Riccardi D, Beste A, Smith JC, Parks JM. Mercury methylation by HgcA: Theory supports carbanion transfer to Hg(II). Inorg Chem. 2014;53:772–7.Article 
    CAS 

    Google Scholar 
    Smith Steven D, Bridou R, Johs A, Parks Jerry M, Elias Dwayne A, Hurt Richard A, et al. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. Appl Environ Micro. 2015;81:3205–17.Article 
    CAS 

    Google Scholar 
    Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034.Article 
    CAS 

    Google Scholar 
    Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 2011;108:8714.Article 
    CAS 

    Google Scholar 
    Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58:929–36.Article 

    Google Scholar 
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62:1902–7.Article 
    CAS 

    Google Scholar 
    Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, et al. What are the toxicological effects of mercury in arctic biota? Sci Total Environ. 2013;443:775–90.Article 
    CAS 

    Google Scholar 
    Gilmour Cynthia C, Bullock Allyson L, McBurney A, Podar M, Elias Dwayne A, Lovley Derek R. Robust mercury methylation across diverse methanogenic archaea. mBio 2018;9:e02403–17.
    Google Scholar 
    Pan J, Chen Y, Wang Y, Zhou Z, Li M. Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Micro Ecol. 2019;77:417–28.Article 

    Google Scholar 
    Zhang C-J, Pan J, Duan C-H, Wang Y-M, Liu Y, Sun J, et al. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems 2019;4:e00442–19.Article 
    CAS 

    Google Scholar 
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.Article 
    CAS 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 

    Google Scholar 
    Zhang C-J, Pan J, Liu Y, Duan C-H, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome. 2020;8:94.Article 
    CAS 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.Article 
    CAS 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. Plos ONE. 2010;5:e9490.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.Article 
    CAS 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article 
    CAS 

    Google Scholar 
    Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.CAS 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 

    Google Scholar 
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma (Oxf, Engl). 2010;26:841–2.Article 
    CAS 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.Article 
    CAS 

    Google Scholar  More