More stories

  • in

    Temperature increase altered Daphnia community structure in artificially heated lakes: a potential scenario for a warmer future

    1.
    IPCC. Summary for policymakers 1–32 (Cambridge, United Kingdom and New York, NY, USA, 2014).
    2.
    Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).
    CAS  PubMed  Google Scholar 

    3.
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793 (2009).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. USA 109, 19310–19314 (2012).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
    PubMed  Google Scholar 

    6.
    De Senerpont Domis, L. N., Bartosiewicz, M., Davis, C. & Cerbin, S. The effect of small doses of toxic cyanobacterial food on the temperature response of Daphnia galeata: is bigger better? Freshw. Biol. 58, 560–572 (2013).

    7.
    Magnuson, J. J. et al. Historical trends in lake and river ice cover in the northen hemisphere. Science 289, 1743–1746 (2000).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Schoebel, C. N., Tellenbach, C., Spaak, P. & Wolinska, J. Temperature effects on parasite prevalence in a natural hybrid complex. Biol. Lett. 7, 108–111 (2011).
    PubMed  Google Scholar 

    9.
    Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).
    Google Scholar 

    10.
    Verschoor, A. M., Van Dijk, M. A., Huisman, J. & Van Donk, E. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw. Biol. 58, 597–611 (2013).
    CAS  Google Scholar 

    11.
    Zander, A., Bersier, L.-F. & Gray, S. M. Effects of temperature variability on community structure in a natural microbial food web. Glob. Change Biol. 23, 56–67 (2017).
    ADS  Google Scholar 

    12.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Google Scholar 

    15.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Google Scholar 

    16.
    Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13, 372–391 (2018).
    PubMed  PubMed Central  Google Scholar 

    17.
    Scranton, K. & Amarasekare, P. Predicting phenological shifts in a changing climate. Proc. Natl. Acad. Sci. USA 114, 13212–13217 (2017).
    CAS  PubMed  Google Scholar 

    18.
    Hulme, P. E. Climate change and biological invasions: evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).
    PubMed  Google Scholar 

    19.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 

    20.
    Van Doorslaer, W. et al. Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Glob. Change Biol. 15, 3046–3055 (2009).
    ADS  Google Scholar 

    21.
    Bellard, C. et al. Will climate change promote future invasions?. Glob. Change Biol. 19, 3740–3748 (2013).
    ADS  Google Scholar 

    22.
    Holzapfel, A. M. & Vinebrooke, R. D. Environmental warming increases invasion potential of alpine lake communities by imported species. Glob. Change Biol. 11, 2009–2015 (2005).
    Google Scholar 

    23.
    Burns, C. W. Predictors of invasion success by Daphnia species: influence of food, temperature and species identity. Biol. Invas. 15, 859–869 (2013).
    Google Scholar 

    24.
    Spaak, P., Fox, J. & Hairston, N. G. Jr. Modes and mechanisms of a Daphnia invasion. Proc. Biol. Sci. 279, 2936–2944 (2012).
    PubMed  PubMed Central  Google Scholar 

    25.
    Wejnerowski, Ł., Sikora-Koperska, A. & Dawidowicz, P. Temperature elevation reduces the sensitivity of invasive cladoceran Daphnia lumholtzi to filamentous cyanobacterium Raphidiopsis raciborskii. Freshw Biol 935–946, https://doi.org/10.1111/fwb.13480 (2020).

    26.
    Wittmann, M. J., Gabriel, W., Harz, E.-M., Laforsch, C. & Jeschke, J. Can Daphnia lumholtzi invade European lakes?. NeoBiota 16, 39–57 (2013).
    Google Scholar 

    27.
    Keller, B., Wolinska, J., Manca, M. & Spaak, P. Spatial, environmental and anthropogenic effects on the taxon composition of hybridizing Daphnia. Philos. Trans. R. Soc. Lond, B Biol. Sci. 363, 2943–2952 (2008).
    Google Scholar 

    28.
    Petrusek, A. et al. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool Scr. 37, 507–519 (2008).
    Google Scholar 

    29.
    Zeis, B., Horn, W., Gigengack, U., Koch, M. & Paul, R. J. A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir. Freshw. Biol. 55, 2296–2304 (2010).
    Google Scholar 

    30.
    Van Doorslaer, W., Stoks, R., Duvivier, C., Bednarska, A. & De Meester, L. Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63, 1867–1878 (2009).
    PubMed  Google Scholar 

    31.
    Woszczyk, M. et al. Stable C and N isotope record of short term changes in water level in lakes of different morphometry: Lake Anastazewo and Lake Skulskie, central Poland. Org. Geochem. 76, 278–287 (2014).
    CAS  Google Scholar 

    32.
    Bernatowicz, P., Radzikowski, J., Paterczyk, B., Bebas, P. & Slusarczyk, M. Internal structure of Daphnia ephippium as an adaptation to dispersion. Zool Anz. 277, 12–22 (2018).
    Google Scholar 

    33.
    Moss, B. et al. Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshw. Rev. 2, 103–130 (2009).
    Google Scholar 

    34.
    Ma, X., Hu, W., Smilauer, P., Yin, M. & Wolinska, J. Daphnia galeata and D. dentifera are geographically and ecologically separated whereas their hybrids occur in intermediate habitats: A survey of 44 Chinese lakes. Mol. Ecol. 28, 785–802 (2019).

    35.
    Dzialowski, A. R., Lennon, J. T. & Smith, V. H. Food web structure provides biotic resistance against plankton invasion attempts. Biol. Invas. 9, 257–267 (2007).
    Google Scholar 

    36.
    Birks, H. H., Whiteside, M. C., Stark, D. M. & Bright, R. C. Recent paleolimnology of three lakes in Northwestern Minnesota. Quat. Res. 6, 249–272 (1976).
    Google Scholar 

    37.
    Tsugeki, N. K., Ishida, S. & Urabe, J. Sedimentary records of reduction in resting egg production of Daphnia galeata in Lake Biwa during the 20th century: a possible effect of winter warming. J. Paleolimnol. 42, 155–165 (2009).
    ADS  Google Scholar 

    38.
    Keller, B., Wolinska, J., Tellenbach, C. & Spaak, P. Reproductive isolation keeps hybridizing Daphnia species distinct. Limnol. Oceanogr. 52, 984–991 (2007).
    ADS  Google Scholar 

    39.
    Spaak, P. & Boersma, M. Predator mediated coexistence of hybrid and parental Daphnia taxa. Arch. Für Hydrobiol. 167, 55–76 (2006).
    Google Scholar 

    40.
    Kozłowski, J., Czarnołęski, M. & Dańko, M. Can optimal resource allocation models explain why ectotherms grow larger in cold?. Integr. Comput. Biol. 44, 480–493 (2004).
    Google Scholar 

    41.
    Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comput. Biol. 44, 498–509 (2004).
    Google Scholar 

    42.
    Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).
    ADS  CAS  PubMed  Google Scholar 

    43.
    Gliwicz, Z. M. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272, 201–210 (1994).
    Google Scholar 

    44.
    Maszczyk, P. et al. Combined effects of elevated epilimnetic temperature and metalimnetic hypoxia on the predation rate of planktivorous fish. J. Plankton Res. 41, 709–722 (2019).
    PubMed  PubMed Central  Google Scholar 

    45.
    Świerzowski, A. & Godlewska, M. Effects of hydropower plant activities on fish population, abundance and distribution. Arch. Pol. Fish. 9, 157–172 (2001).
    Google Scholar 

    46.
    Thorslund, A. E. Potential uses of wastewaters and heated effluents. European Inland Fisheries Advisory Commission Occasional Paper No. 5. (Food and Agriculture Organization of the United Nations, 1971).

    47.
    Warren, G. J., Evans, M. S., Jude, D. J. & Ayers, J. C. Seasonal variations in copepod size: effects of temperature, food abundance, and vertebrate predation. J. Plankton Res. 8, 841–853 (1986).
    Google Scholar 

    48.
    Tunowski, J. Zooplankton structure in heated lakes with differing thermal regimes and water retention. Arch. Pol. Fish. 17, 291–303 (2009).
    Google Scholar 

    49.
    Tunowski, J. Changes in zooplankton abundance and community structure in the cooling channel system of the Konin and Pątnów power plants. Arch. Pol. Fish. 17, 279–289 (2009).
    Google Scholar 

    50.
    Stibor, H. & Lampert, W. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88, 129–138 (2000).
    Google Scholar 

    51.
    Tereshchenko, V. G., Kapusta, A., Wilkońska, H. & Strelnikova, A. P. Long-term changes in 0+ fish assemblages in the littoral zone of heated lakes. I. Diversity, evennes and dynamic phase portrait of species structure. Arch Pol Fish 15, 415–430 (2007).

    52.
    Brzezinski, T. Filamentous cyanobacteria alter the relative fitness in a Daphnia hybrid species complex. Freshw. Biol. 60, 101–110 (2015).
    Google Scholar 

    53.
    Dziuba, M. K., Cerbin, S. & Wejnerowski, L. Is bigger better? A possibility for adaptation of Daphnia to filamentous cyanobacteria in the face of global warming. Hydrobiologia 798, 105–118 (2017).
    Google Scholar 

    54.
    Socha, D. & Hutorowicz, A. Changes in the quantitative relations of the phytoplankton in heated lakes. Arch. Pol. Fish. 17, 239–251 (2009).
    Google Scholar 

    55.
    Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Change 5, 665–668 (2015).
    ADS  Google Scholar 

    56.
    Van Doorslaer, W. et al. Experimental thermal microevolution in community-embedded Daphnia populations. Clim. Res. 43, 81–89 (2010).
    Google Scholar 

    57.
    Wolinska, J., Löffler, A. & Spaak, P. Taxon-specific reaction norms to predator cues in a hybrid Daphnia complex. Freshw. Biol. 52, 1198–1209 (2007).
    Google Scholar 

    58.
    Wolinska, J., Bittner, K., Ebert, D. & Spaak, P. The coexistence of hybrid and parental Daphnia: the role of parasites. Proc Biol Sci 273, 1977–1983 (2006).
    PubMed  PubMed Central  Google Scholar 

    59.
    Lindberg, R. T. & Collins, S. Quality–quantity trade-offs drive functional trait evolution in a model microalgal ‘climate change winner’. Ecol. Lett. 23, 780–790 (2020).
    PubMed  Google Scholar 

    60.
    Lampert, W. Daphnia: model herbivore, predator and prey. Pol. J. Ecol. 54, 607–620 (2006).
    Google Scholar 

    61.
    Bartosiewicz, M. et al. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. 4, 132–144 (2019).
    CAS  Google Scholar 

    62.
    Stawecki, K., Zdanowski, B. & Pyka, J. P. Long-term changes in post-cooling water loads from power plants and thermal and oxygen conditions in stratified lakes. Arch. Pol. Fish. 21, 331–342 (2013).
    CAS  Google Scholar 

    63.
    Bledzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe. Cladocera & Copepoda (Calanoida, Cyclopoida) Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. (Springer International Publishing Switzerland, 2016).

    64.
    Appleby, P. G. Chronostratigraphic techniques in recent sediments. In Last, W.M. and Smol, J.P., editors, Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques. (Kluwer Academic, London, 2001).

    65.
    Bruel, R. & Sabatier, P. Serac: a R package for ShortlivED RAdionuclide Chronology of recent sediment cores. J. Environ. Activity https://doi.org/10.31223/osf.io/f4yma (2020).
    Article  Google Scholar 

    66.
    Szczuciński, W. et al. Modern sedimentation and sediment dispersal pattern on the continental shelf off the Mekong River delta, South China Sea. Glob. Planet. Change 110, 195–213 (2013).
    ADS  Google Scholar 

    67.
    Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z. & Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 56, 222–241 (2010).
    PubMed  Google Scholar 

    68.
    Brede, N. et al. Microsatellite markers for European Daphnia. Mol. Ecol. Notes 6, 536–539 (2006).
    CAS  Google Scholar 

    69.
    Toonen, R. J. & Hughes, S. Increased throughput for fragment analysis on ABI Prism 377 automated sequencer using a membrane comb and STR and software. Biotechniques 31, 1320–1324 (2001).
    CAS  PubMed  Google Scholar 

    70.
    Alberto, F. MsatAllele: Visualizes the scoring and binning of microsatellite fragment sizes. R Package Version 104 (2013).

    71.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  Google Scholar 

    72.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet Resour. 4, 359–361 (2012).
    Google Scholar 

    75.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Google Scholar 

    76.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Google Scholar 

    77.
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2006).
    PubMed  Google Scholar 

    78.
    Bohonak, A. J. IBD (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154 (2002).
    CAS  PubMed  Google Scholar  More

  • in

    N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont

    1.
    Lee, S. Y. et al. Reassessment of mangrove ecosystem services. Glob. Ecol. Biogeogr. 23, 726–743 (2014).
    Google Scholar 
    2.
    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).
    Google Scholar 

    3.
    Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20(1), GB1012. https://doi.org/10.1029/2005GB002570 (2006).
    ADS  CAS  Article  Google Scholar 

    4.
    Kristensen, E., Bouillon, S., Dittmard, T. & Marchande, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).
    CAS  Google Scholar 

    5.
    Reef, R., Feller, I. C. & Lovelock, C. E. Nutrition of mangroves. Tree Physiol. 30(9), 1148–1160 (2010).
    CAS  PubMed  Google Scholar 

    6.
    Woolfe, K. J., Dale, P. J. & Brunskill, G. J. Sedimentary C/S relationships in a large tropical estuary: evidence for refractory carbon inputs from mangroves. Geo-Mar. Lett. 15(3–4), 140–144 (1995).
    ADS  Google Scholar 

    7.
    Woitchik, A. F. et al. Nitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon (Kenya): relative importance of biological nitrogen fixation. Biogeochemistry 39(1), 15–35 (1997).
    CAS  Google Scholar 

    8.
    Zuberer, D. & Silver, W. S. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl. Environ. Microbiol. 35(3), 567–575 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).
    ADS  Google Scholar 

    10.
    Welsh, D. T. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem. Ecol. 19, 321–342 (2003).
    CAS  Google Scholar 

    11.
    Stief, P. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10(12), 7829–7846 (2013).
    ADS  Google Scholar 

    12.
    Gilbertson, W. W., Solan, M. & Prosser, J. I. Differential effects of microorganism–invertebrate interactions on benthic nitrogen cycling. FEMS Microbiol. Ecol. 82, 11–12 (2012).
    PubMed  Google Scholar 

    13.
    Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M. & Widdicombe, S. Bioturbation: impact on the marine nitrogen cycle. Biochem. Soc. Trans. 39, 315–320 (2011).
    CAS  PubMed  Google Scholar 

    14.
    Magri, M. et al. Benthic N pathways in illuminated and bioturbated sediments studied with network analysis. Limnol. Oceanogr. 63, S68–S84. https://doi.org/10.1002/lno.10724 (2018).
    CAS  Article  Google Scholar 

    15.
    Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43 (2008).
    ADS  Google Scholar 

    16.
    Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchioco, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749. https://doi.org/10.1038/s41598-019-40315-0 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Cuellar-Gempeler, C. & Leibold, M. A. Multiple colonist pools shape fiddler crab-associated bacterial communities. ISME J. 12(3), 825–837 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Reinsel, K. A. Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: season-dependent effects in one tidal cycle. J. Exp. Mar. Biol. Ecol. 313, 1–17 (2004).
    Google Scholar 

    19.
    Nordhaus, I., Diele, K. & Wolff, M. Activity patterns, feeding and burrowing behaviour of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. J. Exp. Mar. Biol. Ecol. 374, 104–112 (2009).
    Google Scholar 

    20.
    Nordhaus, I. & Wolff, M. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Mar. Biol. 151, 1665–1681 (2007).
    Google Scholar 

    21.
    Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A. & Iribarne, O. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci. 92, 629–638 (2011).
    ADS  CAS  Google Scholar 

    22.
    Quintana, C. O. et al. Carbon mineralization pathways and bioturbation in coastal Brazilian sediments. Sci. Rep. 5, 16122. https://doi.org/10.1038/srep16122 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Thongtham, N. & Kristensen, E. Physical and chemical characteristics of mangrove crab (Neoepisesarma versicolor) burrows in the Bangrong mangrove forest, Phuket, Thailand; with emphasis on behavioural response to changing environmental conditions. Vie et Milieu 53, 141–151 (2003).
    Google Scholar 

    24.
    De la Iglesia, H. O., Rodríguez, E. M. & Dezi, R. E. Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides. Physiol. Behav. 55(5), 913–919 (1994).
    PubMed  Google Scholar 

    25.
    Arfken, A., Song, B., Bowman, J. S. & Piehler, M. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 12(9), e0185071. https://doi.org/10.1371/journal.pone.0185071 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Caffrey, J. M., Hollibaugh, J. T. & Mortazavi, B. Living oysters and their shells as sites of nitrification and denitrification. Mar. Pollut. Bull. 112(1–2), 86–90 (2016).
    CAS  PubMed  Google Scholar 

    27.
    Glud, R. N. et al. Copepod carcasses as microbial hot spots for pelagic denitrification. Limnol. Oceanogr. 60, 2026–2036 (2015).
    ADS  CAS  Google Scholar 

    28.
    Heisterkamp, I. M. et al. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol. 15(7), 1943–1955 (2013).
    CAS  PubMed  Google Scholar 

    29.
    Ray, N. E., Henning, M. C. & Fulweiler, R. W. Nitrogen and phosphorus cycling in the digestive system and shell biofilm of the eastern oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 621, 95–105 (2019).
    ADS  CAS  Google Scholar 

    30.
    Stief, P. et al. Freshwater copepod carcasses as pelagic microsites of dissimilatory nitrate reduction to ammonium. FEMS Microbiol. Ecol. 94(10), fiy144. https://doi.org/10.1093/femsec/fiy144 (2018).
    CAS  Article  PubMed Central  Google Scholar 

    31.
    Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3, 292. https://doi.org/10.3389/fmicb.2012.00292 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Foshtomi, M. Y. et al. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE 10, e0130116. https://doi.org/10.1371/journal.pone.0130116 (2015).
    CAS  Article  Google Scholar 

    33.
    Pelegri, S. P., Nielsen, L. P. & Blackburn, T. H. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 105(3), 285–290 (1994).
    ADS  Google Scholar 

    34.
    Stief, P. & Beer, D. D. Probing the microenvironment of freshwater sediment macrofauna: Implications of deposit-feeding and bioirrigation for nitrogen cycling. Limnol. Oceanogr. 51, 2538–2548 (2006).
    ADS  Google Scholar 

    35.
    Pischedda, L., Cuny, P., Esteves, J. L., Pogiale, J. C. & Gilbert, F. Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. Hydrobiologia 680, 109–124 (2012).
    CAS  Google Scholar 

    36.
    Poulsen, M., Kofoed, M. V., Larsen, L. H., Schramm, A. & Stief, P. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment. Syst. Appl. Microbiol. 37, 51–59 (2014).
    CAS  PubMed  Google Scholar 

    37.
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16196. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).
    CAS  Article  Google Scholar 

    38.
    Samuiloviene, A. et al. The effect of chironomid larvae on nitrogen cycling and microbial communities in soft sediments. Water 11, 1931. https://doi.org/10.3390/w11091931 (2019).
    CAS  Article  Google Scholar 

    39.
    Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves nd consequences of increasing nitrogen availability for these systems. Plant Soil 410, 1–19 (2017).
    CAS  Google Scholar 

    40.
    Nagata, R. M., Moreira, M. Z., Pimentel, C. R. & Morandini, A. C. Food web characterization based on d15N and d13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Mar. Ecol. Progr. Ser. 519, 13–27 (2015).
    ADS  CAS  Google Scholar 

    41.
    Alfaro-Espinoza, G. & Ullrich, M. S. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph–mangrove interaction. Front. Microbiol. 6, 445. https://doi.org/10.3389/fmicb.2015.00445 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Jiménez, M.F.S.-S., Cerqueda-García, D., Montero-Muñoz, J. L., Aguirre-Macedo, M. L. & García-Maldonado, J. Q. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 6, e5583. https://doi.org/10.7717/peerj.5583 (2018).
    CAS  Article  Google Scholar 

    43.
    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78(23), 8264–8271 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Dias, A. C. F. et al. The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie Van Leeuwenhoek 98, 541–551 (2010).
    PubMed  Google Scholar 

    45.
    Grim, S. L. & Dick, G. J. Photosynthetic versatility in the genome of Geitlerinema sp. PCC (formerly Oscillatoria limnetica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front. Microbiol. 7, 1546. https://doi.org/10.3389/fmicb.2016.01546 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Zehr, J. P., Church, M. J. & Moisander, P. H. Diversity, distribution and biogeochemical significance of nitrogen-fixing microorganisms in anoxic and suboxic ocean environments. In Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences (ed. Neretin, L.) 64, 337–369 (Springer, Berlin, 2006).
    Google Scholar 

    47.
    Brauer, V. S. et al. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community. Front. Microbiol. 7, 795. https://doi.org/10.3389/fmicb.2014.00795 (2015).
    Article  Google Scholar 

    48.
    Beltrán, Y., Centeno, C. M., García-Oliva, F., Legendre, P. & Falcón, L. I. N2 fixation rates and associated diversity (nifH) of microbialite and mat-forming consortia from different aquatic environments in Mexico. Aquat. Microb. Ecol. 65, 15–24 (2012).
    Google Scholar 

    49.
    Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607. https://doi.org/10.1038/srep15607 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Rasigraf, O., Schmitt, J., Jetten, M. S. M. & Lüke, C. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment. Microbiol. Open 6(4), 1. https://doi.org/10.1002/mbo3.475 (2017).
    CAS  Article  Google Scholar 

    51.
    Zhang, S. et al. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Sci. Rep. 6, 36178. https://doi.org/10.1038/srep36178 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132(3), 203–208 (1995).
    CAS  PubMed  Google Scholar 

    53.
    Kraft, B. et al. Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Jiang, X., Dang, H. & Jiao, N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLoS ONE 10(2), e0117473. https://doi.org/10.1371/journal.pone.0117473 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Xu, T. et al. Genomic insight into Aquimarina longa SW024T: its ultra-oligotrophic adapting mechanisms and biogeochemical functions. BMC Genom. 16, 772. https://doi.org/10.1186/s12864-015-2005-3 (2015).
    CAS  Article  Google Scholar 

    56.
    Li, J. et al. Janibacter alkaliphilus sp. nov., isolated from coral Anthogorgia sp. Antonie Van Leeuwenhoek 102(1), 157–162 (2012).
    CAS  PubMed  Google Scholar 

    57.
    Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. R. 61(4), 533–616 (1997).
    CAS  Google Scholar 

    58.
    Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 85(2), 348–357 (2013).
    CAS  PubMed  Google Scholar 

    59.
    Glaeser, S. P. & Kämpfer, P. The family Sphingomonadaceae. In The Prokaryotes (eds Rosenberg, E. et al.) 641–707 (Springer, Berlin, 2014).
    Google Scholar 

    60.
    Katayama, Y., Hiraishi, A. & Kuraishi, H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141, 1469–1477 (1995).
    CAS  PubMed  Google Scholar 

    61.
    Kraft, B., Tegetmeyer, H. E., Meier, D., Geelhoed, J. S. & Strous, M. Rapid succession of uncultured marine bacterialand archaeal populations in a denitrifying continuous culture. Environ. Microbiol. 16(10), 3275–3286 (2014).
    CAS  PubMed  Google Scholar 

    62.
    Härtig, E. & Zumft, W. G. Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system. J. Bacteriol. Res. 181(1), 161–166 (1999).
    Google Scholar 

    63.
    Marchant, H. K. et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 11, 1799–1812 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Patureau, D., Zumstein, E., Delgenes, J. P. & Moletta, R. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb. Ecol. 39(2), 145–152 (2000).
    CAS  PubMed  Google Scholar 

    65.
    Ji, B. et al. Aerobic denitrification: a review of important advances of the last 30 years. Biotechnol. Bioproc. E 20(4), 643–651 (2015).
    CAS  Google Scholar 

    66.
    Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).
    ADS  CAS  PubMed  Google Scholar 

    67.
    Luvizotto, D. M. et al. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. An. Acad. Bras. Ciênc. 91, e20180373. https://doi.org/10.1590/0001-3765201820180373 (2018).
    CAS  Article  PubMed  Google Scholar 

    68.
    Weihrauch, D., Sandra Fehsenfeld, S. & Quijada-Rodriguez, A. Nitrogen excretion in aquatic crustaceans. In Acid–Base Balance and Nitrogen Excretion in Invertebrate (eds Weihrauch, D. & O’Donnell, M.) 1–25 (Springer, Berlin, 2017).
    Google Scholar 

    69.
    Jiang, D.-H., Lawrence, A. L., Neill, W. H. & Gong, H. Effects of temperature and salinity on nitrogenous excretion by Litopenaeus vannamei juveniles. J. Exp. Mar. Biol. Ecol. 253(2), 193–209 (2000).
    CAS  PubMed  Google Scholar 

    70.
    Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Citadin, M., Costa, T. M. & Netto, S. A. The response of meiofauna and microphytobenthos to engineering effects of fiddler crabs on a subtropical intertidal sandflat. Aust. Ecol. 41(5), 572–579 (2016).
    Google Scholar 

    72.
    Dyea, A. H. & Lasiak, T. A. Assimilation efficiencies of fiddler crabs and deposit-feeding gastropods from tropical mangrove sediments. Comp. Biochem. Phys. Part A 87(2), 341–344 (1987).
    Google Scholar 

    73.
    Hopkins, P. Growth and regeneration patterns in the fiddler crab, Uca pugilator. Biol. Bull. 163, 301–319 (1982).
    Google Scholar 

    74.
    Masunari, S. Distribuição e abundância dos caranguejos Uca Leach (Crustacea, Decapoda, Ocypodidae) na Baía de Guaratuba, Paraná, Brasil. Rev. Bras. Zool. 23(4), 901–914 (2006).
    Google Scholar 

    75.
    Fusi, M. et al. Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa. Hydrobiologia 803(1), 251–263 (2017).
    Google Scholar 

    76.
    Hemmi, J. M. & Zeil, J. Burrow surveillance in fiddler crabs I. Description of behaviour. J. Exp. Biol. 206, 3935–3950 (2003).
    PubMed  Google Scholar 

    77.
    Christy, J. H. Predation and the reproductive behavior of fiddler crabs (Genus Uca). In Evolutionary Ecology of Social and Sexual Systems—Crustaceans as Model Organisms (eds Duffy, E. J. & Thiel, M.) 211–231 (Oxford University Press, Oxford, 2007).
    Google Scholar 

    78.
    Teal, J. M. Respiration of crabs in Georgia salt marshes and its relation to their ecology. Physiol. Zool. 32, 1–14 (1959).
    Google Scholar 

    79.
    Michaels, R. E. & Zieman, J. C. Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations. J. Exp. Mar. Biol. Ecol. 444, 104–113 (2013).
    Google Scholar 

    80.
    Alongi, D. M. Impact of global change on nutrient dynamics in mangrove forests. Forests 9(10), 596. https://doi.org/10.3390/f9100596 (2018).
    Article  Google Scholar 

    81.
    Barrera-Alba, J. J., Gianesella, S. M. F., Moser, G. A. O. & Saldanha-Corrêa, F. M. P. Bacterial and phytoplankton dynamics in a sub-tropical Estuary. Hydrobiologia 598, 229–246 (2008).
    Google Scholar 

    82.
    Bérgamo, A. L. Característica da hidrografia, circulação e transporte de sal: Barra de Cananéia, sul do Mar de Cananéia e Baía do Trapandé (Master in Physical Oceanography) (Universidade de São Paulo, São Paulo, Instituto Oceanográfico, 2000).
    Google Scholar 

    83.
    Cunha-Lignon, M. Dinâmica do Manguezal no Sistema Cananéia-Iguape, Estado de São Paulo—Brasil. Dissertação (Master in Biological Oceanography). Instituto Oceanográfico, Universidade de São Paulo, São Paulo (2001).

    84.
    Milani, C. et al. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS ONE 8, e68739. https://doi.org/10.1371/journal.pone.0068739 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    85.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

    87.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    88.
    Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29(23), 3100–3101 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357. https://doi.org/10.1038/nmeth.1923 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    90.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    91.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2014).
    CAS  PubMed  Google Scholar 

    92.
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).
    CAS  Article  PubMed  Google Scholar 

    93.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. Res. 215, 403–410 (1990).
    CAS  Google Scholar 

    94.
    Huson, D. H. & Mitra, S. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol. Biol. 856, 415–429 (2012).
    CAS  PubMed  Google Scholar 

    95.
    Risgaard-Petersen, N. et al. Anaerobic ammonium oxidation in an estuarine. Aquat. Microb. Ecol. 36, 293–304 (2004).
    Google Scholar 

    96.
    Tréguer, P. & Le Corre, P. Manuel d’analysis des sels nutritifs dans l’eau de mer 2nd edn, 110 (Université de Bretagne Occidentale, Brest, 1975).
    Google Scholar 

    97.
    Kana, T. M. et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).
    CAS  Google Scholar 

    98.
    Colt, J. Dissolved gas concentration in water: computation as functions of temperature, salinity and pressure 2nd edn. (Elsevier, Amsterdam, 2012).
    Google Scholar 

    99.
    De Brabandere, L. et al. Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry 126(1–2), 131–152 (2015).
    Google Scholar 

    100.
    Warembourg, F. R. Nitrogen fixation in soil and plant systems. In Nitrogen Isotope Techniques (eds Knowles, R. & Blackburn, T. H.) 127–156 (Academic Press, Cambridge, 1993).
    Google Scholar 

    101.
    Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68(3), 1312–1318 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Bonaglia, S. et al. Denitrification and DNRA at the Baltic Sea oxic–anoxic interface: substrate spectrum and kinetics. Limnol. Oceanogr. 61(5), 1900–1915 (2016).
    ADS  CAS  Google Scholar  More

  • in

    Publisher Correction: The tuatara genome reveals ancient features of amniote evolution

    Department of Anatomy, University of Otago, Dunedin, New Zealand
    Neil J. Gemmell, Kim Rutherford, Tim A. Hore, Nicolas Dussex, Helen Taylor, Hideaki Abe & Donna M. Bond

    LOEWE-Center for Translational Biodiversity Genomics, Senckenberg Museum, Frankfurt, Germany
    Stefan Prost

    South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
    Stefan Prost

    School of Life Sciences, Arizona State University, Tempe, AZ, USA
    Marc Tollis, Melissa Wilson & Shawn M. Rupp

    School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
    Marc Tollis

    School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
    David Winter

    Peralta Genomics Institute, Oakland, CA, USA
    J. Robert Macey, Charles G. Barbieri & Dustin P. DeMeo

    School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
    David L. Adelson, Terry Bertozzi, Lu Zeng, R. Daniel Kortschak & Joy M. Raison

    Department of Ecology and Genetics – Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
    Alexander Suh, Valentina Peona, Claire R. Peart & Vera M. Warmuth

    Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
    Alexander Suh & Valentina Peona

    Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
    Terry Bertozzi

    Amedes Genetics, Amedes Medizinische Dienstleistungen, Berlin, Germany
    José H. Grau

    Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
    José H. Grau

    Department of Earth Sciences, Montana State University, Bozeman, MT, USA
    Chris Organ

    Department of Biochemistry, University of Otago, Dunedin, New Zealand
    Paul P. Gardner

    European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
    Matthieu Muffato, Mateus Patricio, Konstantinos Billis, Fergal J. Martin & Paul Flicek

    Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Bent Petersen

    Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
    Lin Kang & Pawel Michalak

    Center for One Health Research, Virginia–Maryland College of Veterinary Medicine, Blacksburg, VA, USA
    Pawel Michalak

    Institute of Evolution, University of Haifa, Haifa, Israel
    Pawel Michalak

    Manaaki Whenua – Landcare Research, Auckland, New Zealand
    Thomas R. Buckley & Victoria G. Twort

    School of Biological Sciences, The University of Auckland, Auckland, New Zealand
    Thomas R. Buckley & Victoria G. Twort

    School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
    Yuanyuan Cheng

    Biomatters, Auckland, New Zealand
    Hilary Miller

    Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
    Ryan K. Schott

    The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
    Melissa D. Jordan & Richard D. Newcomb

    Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
    José Ignacio Arroyo

    Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
    Nicole Valenzuela, Valeria Velásquez Zapata & Zhiqiang Wu

    Instituto de Investigaciones Biomédicas ‘Alberto Sols’ CSIC-UAM, Madrid, Spain
    Jaime Renart

    Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilian University of Munich, Planegg-Martinsried, Germany
    Claire R. Peart & Vera M. Warmuth

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
    Didac Santesmasses, Marco Mariotti & Roderic Guigó

    School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
    James M. Paterson

    Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
    Daniel G. Mulcahy & Vanessa L. Gonzalez

    Austrian Institute of Technology (AIT), Center for Health and Bioresources, Molecular Diagnostics, Vienna, Austria
    Stephan Pabinger

    AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
    Tracey Van Stijn & Shannon Clarke

    San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
    Oliver Ryder

    Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
    Scott V. Edwards

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
    Steven L. Salzberg

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Lindsay Anderson & Nicola Nelson

    Ngatiwai Trust Board, Whangarei, New Zealand
    Clive Stone, Clive Stone, Jim Smillie & Haydn Edmonds More

  • in

    Close to home

    Global change is predicted to have tremendous implications for the emergence of infectious diseases. Now, Gibb, Redding et al. report that changes in land use (such as urbanization and agriculturalization) cause major changes in the diversity and taxonomic composition of reservoir hosts for pathogens, with implications for the emergence of zoonotic diseases. The authors analysed 6,801 sites and 376 host species worldwide and determined whether there was evidence of pathogens in these hosts and the potential for zoonotic transmission. As anthropogenic land use increased, so did the frequency of zoonotic hosts, and the intensity of land use correlated with increases in zoonotic host species and the number of individuals. Notably, the frequency of rodents, bats and passerine birds was higher in human-dominated sites, suggesting the need for enhanced surveillance efforts in these sites. More

  • in

    Environmental gradients of selection for an alpine-obligate bird, the white-tailed ptarmigan (Lagopus leucura)

    Appella E, Weber IT, Blasi F (1988) Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett 231:1–4
    CAS  PubMed  Google Scholar 

    Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44:140–151
    PubMed  Google Scholar 

    Bi K, Linderoth T, Singhal S, Vanderpool D, Patton JL, Nielsen R et al. (2019) Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLoS Genet 15:e1008119
    CAS  PubMed  PubMed Central  Google Scholar 

    Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63:1–36
    Google Scholar 

    Brauer CJ, Hammer MP, Beheregaray LB (2016) Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol 25:5093–5113
    CAS  PubMed  Google Scholar 

    Braun CE, Hoffman RW, Rogers GE (1976) Wintering areas and winter ecology of white-tailed ptarmigan in Colorado, Colorado Division of Wildlife, Denver, CO, USA. Special Report 38

    Braun CE, Taylor WP, Ebbert SE, Kaler RSA, Sandercock BK (2011) Protocols for successful translocation of ptarmigan. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and ptarmigan in a changing world. The Peregrine Fund, Boise, ID, USA, p 339–348
    Google Scholar 

    Braun CE, Williams III SO (2015) History and status of the white-tailed ptarmigan in New Mexico. West Birds 46:233–243
    Google Scholar 

    Brown RD, Brasnett B (2010) Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data, version 1. Colorado USA NASA National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, CO, USA
    Google Scholar 

    Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097
    CAS  PubMed  PubMed Central  Google Scholar 

    Bryant JP, Kuropat PJ (1980) Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu Rev Ecol Syst 11:261–285
    CAS  Google Scholar 

    Capblancq T, Luu K, Blum MGB, Bazin E (2018a) How to make use of ordination methods to identify local adaptation: a comparison of genome scans based on PCA and RDA. bioRxiv: 258988v2

    Capblancq T, Luu K, Blum MGB, Bazin E (2018b) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18:1223–1233
    CAS  PubMed  Google Scholar 

    Carey C, Martin K (1997) Physiological ecology of incubation of ptarmigan eggs at high and low altitudes. Wildlife Biol 3:211–218
    Google Scholar 

    Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803
    CAS  PubMed  Google Scholar 

    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92
    CAS  PubMed  PubMed Central  Google Scholar 

    Clarke JA, Johnson RE (1992) The influence of spring snow depth on white-tailed ptarmigan breeding success in the Sierra Nevada. Condor 94:622–627
    Google Scholar 

    Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–23
    CAS  PubMed  PubMed Central  Google Scholar 

    Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg LA et al. (2010) Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8:e1000475
    PubMed  PubMed Central  Google Scholar 

    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158
    CAS  PubMed  PubMed Central  Google Scholar 

    Dragon S, Carey C, Martin K, Baumann R (1999) Effect of high altitude and in vivo adenosine/beta-adrenergic receptor blockade on ATP and 2,3BPG concentrations in red blood cells of avian embryos. J Exp Biol 202:2787–2795
    CAS  PubMed  Google Scholar 

    Dray S, Blanchet D, Borcard D, Clappe S, Guenard G, Jombart T et al. (2019) Adespatial: multivariate multiscale spatial analysis. R package version 0.3-4. http://cran.r-project.org/package=adespatial

    Erikstad KE, Andersen R (1983) The effect of weather on survival, growth rate, and feeding time in different sized willow grouse broods. Ornis Scand 14:249–252
    Google Scholar 

    Fabian DK, Kapun M, Nolte V, Kofler R, Schmidt PS, Schlötterer C et al. (2012) Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol Ecol 21:4748–4769
    PubMed  PubMed Central  Google Scholar 

    Fedy BC, Martin K (2011) The influence of fine-scale habitat features on regional variation in population performance of alpine white-tailed ptarmigan. Condor 113:306–315
    Google Scholar 

    Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol 17:1905–1917
    CAS  PubMed  Google Scholar 

    Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315
    Google Scholar 

    Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol 27:2215–2233
    CAS  PubMed  Google Scholar 

    Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogenous landscapes. Mol Ecol 24:104–120
    Google Scholar 

    Frederick GP, Gutiérrez RJ (1992) Habitat use and population characteristics of the white-tailed ptarmigan in the Sierra Nevada, California. Condor 94:889–902
    Google Scholar 

    Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL (2018) Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob Ecol Biogeogr 27:1268–1276
    Google Scholar 

    Friedl MA, Gray J, Sulla-Menashe D (2009) MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V005 [2000–2010]. NASA EOSDIS Land Processes DAAC. Sioux Falls, SD, USA

    García-González R, Aldezabal A, Laskurain NA, Margalida A, Novoa C (2016) Influence of snowmelt timing on the diet quality of pyrenean rock ptarmigan (Lagopus muta pyrenaica): implications for reproductive success. PLoS ONE 11:1–21
    Google Scholar 

    Giesen KM, Braun CE, May TA (1980) Reproduction and nest-site selection by white-tailed ptarmigan in Colorado. Wilson Bull 92:188–199
    Google Scholar 

    Hakkarainen H, Virtanen R, Honkanen JO, Roininen H (2007) Willow bud and shoot foraging by ptarmigan in relation to snow level in NW Finnish Lapland. Polar Biol 30:619–624
    Google Scholar 

    Hall D, Salomonson V, Riggs G (2006) MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 5. NASA Natl Snow Ice Data Cent Distrib Act Arch Center Boulder, CO, USA

    Hannon SJ, Eason PK, Martin K (1998) Willow ptarmigan (Lagopus lagopus), version 2.0. In: Poole AF, Gill FB (eds) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Henry P, Sim Z, Russello MA (2012) Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: The American Pika. PLoS ONE 7:1–10
    Google Scholar 

    Hoffman RW, Braun CE (1975) Migration of a wintering population of white-tailed ptarmigan in Colorado. J Wildl Manage 39:485–490
    Google Scholar 

    Hoffmann AA, Sgró CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485
    CAS  PubMed  Google Scholar 

    Holsinger LM, Parks SA, Parisien M-A, Miller C, Batllori E, Moritz MA (2019) Climate change likely to reshape vegetation in North America’s largest protected areas. Conserv Sci Pract 1:e50
    Google Scholar 

    Höst P (1942) Effect of light on the moults and sequences of plumage in the willow ptarmigan. Auk 59:388–403
    Google Scholar 

    Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:169–175
    Google Scholar 

    Imperio S, Bionda R, Viterbi R, Provenzale A (2013) Climate change and human disturbance can lead to local extinction of alpine rock ptarmigan: new insight from the Western Italian Alps. PLoS ONE 8:e81598
    PubMed  PubMed Central  Google Scholar 

    Jacobsen EE, White CM, Emison WB (2007) Molting adaptations of rock ptarmigan on Amchitka Island, Alaska. Condor 85:420
    Google Scholar 

    Kawecki T, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters 7:1225–1241
    Google Scholar 

    Ke J, Wang L, Xiao D (2017) Cardiovascular adaptation to high-altitude hypoxia. In: Zheng J, Zhou C (eds) Hypoxia and human diseases. IntechOpen Limited, London, UK, p 117–134
    Google Scholar 

    Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6
    Google Scholar 

    Kohl KD, Varner J, Wilkening JL, Dearing MD (2018) Gut microbial communities of American pikas (Ochotona princeps): evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 87:323–330
    PubMed  Google Scholar 

    Kozma R, Rödin-Mörch P, Höglund J (2019) Genomic regions of speciation and adaptation among three species of grouse. Sci Rep 9:1–8
    CAS  Google Scholar 

    Laiolo P, Obeso JR (2017) Life-history responses to the altitudinal gradient. In: Catalan J (ed) High mountain conservation in a changing world, Advances in Global Change Research, Vol 62, p. 3–36. Springer, Cham

    Langin KM, Aldridge CL, Fike JA, Cornman RS, Martin K, Wann GT et al. (2018) Characterizing range-wide divergence in an alpine-endemic bird: a comparison of genetic and genomic approaches. Conserv Genet 19:1471–1485
    CAS  Google Scholar 

    Latifovic R, Pouliot D, Olthof I (2017) Circa 2010 land cover of Canada: local optimization methodology and product development. Remote Sens 9:1098
    Google Scholar 

    Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier, Amsterdam, The Netherlands
    Google Scholar 

    Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108:285–291
    CAS  PubMed  Google Scholar 

    Martin K, Brown GA, Young JR (2004) The historic and current distribution of the Vancouver Island white-tailed ptarmigan (Lagopus leucurus saxatilis). J F Ornithol 75:239–256
    Google Scholar 

    Martin K, Robb LA, Wilson S, Braun CE (2015) White-tailed ptarmigan (Lagopus leucura), version 2.0. In: Rodewald PG (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Martin K, Wiebe KL (2004) Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr Comp Biol 44:177–185
    PubMed  Google Scholar 

    May TA, Braun CE (1972) Seasonal foods of adult white-tailed ptarmigan in Colorado. J Wildl Manage 36:1180–1186
    Google Scholar 

    McKinnon L, Picotin M, Bolduc E, Juillet C, Bêty J (2012) Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can J Zool 90:961–971
    Google Scholar 

    Mills LS, Bragina EV, Kumar AV, Zimova M, Lafferty DJR, Feltner J et al. (2018) Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science 359:1033–1036
    CAS  PubMed  Google Scholar 

    Montgomerie R, Holder K (2008) Rock ptarmigan (Lagopus muta), version 2.0. In: Poole AF (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–1764
    CAS  PubMed  PubMed Central  Google Scholar 

    Moss R (1973) The digestion and intake of winter foods by wild ptarmigan in Alaska. Condor 75:293–300
    Google Scholar 

    Moss R (1974) Winter diets, gut lengths, and interspecific competition in Alaskan ptarmigan. Auk 91:737–746
    Google Scholar 

    Moss R (1983) Gut size, body weight, and digestion of winter foods by grouse and ptarmigan. Condor 85:185–193
    Google Scholar 

    Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York, NY, USA
    Google Scholar 

    New Mexico Department of Game and Fish (2016) White-tailed ptarmigan (Lagopus leucura) recovery plan. New Mexico Department of Game and Fish, Wildlife Management Division, Santa Fe, NM, USA

    NOAA National Centers for Environmental Prediction (NCEP) (2018) NCEP-NCAR Reanalysis montly zonal and meridional winds at standard pressure levels on a 2.5 lat/lon grid. NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2017) vegan: community ecology package version 2.4-3. https://cran.r-project.org/package=vegan

    Oyler-McCance SJ, Langin KM, Cornman RS, Fike J, Aldridge CL, Martin KM et al. (2018) Sample collection information, single nucleotide polymorphism, and microsatellite data for white-tailed ptarmigan across the species range generated in the Molecular Ecology Lab during 2016: U.S. Geological Survey data release, https://doi.org/10.5066/F7GM86GZ

    Palo RT (1984) Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520
    CAS  PubMed  Google Scholar 

    Paradis E, Schlier K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528
    Google Scholar 

    Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change. Nature 421:37–42
    CAS  PubMed  Google Scholar 

    Pedersen S, Odden M, Pedersen HC (2017) Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. Ecosphere 8:e01722
    Google Scholar 

    Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N et al. (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430
    Google Scholar 

    Persons NW, Hosner PA, Meiklejohn KA, Braun EL, Kimball RT (2016) Sorting out relationships among the grouse and ptarmigan using intron, mitochondrial, and ultra-conserved element sequences. Mol Phylogenet Evol 98:123–132
    CAS  PubMed  Google Scholar 

    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135
    CAS  PubMed  PubMed Central  Google Scholar 

    Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol part A 132:739–761
    Google Scholar 

    Price N, Lopez L, Platts AE, Lasky JR (2020) In the presence of population structure: from genomics to candidate genes underlying local adaptation. Ecol Evol 10:1889–1904
    PubMed  PubMed Central  Google Scholar 

    Pyle P (2007) Revision of molt and plumage terminology in ptarmigan (Phasianidae: Lagopus spp.) based on evolutionary considerations. Auk 124:508
    Google Scholar 

    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370
    PubMed  Google Scholar 

    Resano-Mayor J, Korner-Nievergelt F, Vignali S, Horrenberger N, Barras AG, Braunisch V et al. (2019) Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: implications for species persistence in the face of climate change. Biodivers Conserv 28:2669
    Google Scholar 

    Rolando A, Laiolo P, Formica M (1997) A comparative analysis of the foraging behaviour of the chough Pyrrhocorax pyrrhocorax and the Alpine chough Pyrrhocorax graculus coexisting in the Alps. Ibis 139:461–467
    Google Scholar 

    Rundel PW, Millar CI (2016) Alpine Ecosystems. In: Zavaleta E, Mooney H (eds) Ecosystems of California. University of California, Berkeley, CA, USA, p 613–634
    Google Scholar 

    Salomonsen F (1936) On a new race of willow grouse. Bull Br Ornithol Club 56:99–100
    Google Scholar 

    Singh CP (2008) Alpine ecosystems in relation to climate change. ISG Newsl 14:54–55
    Google Scholar 

    Slatkin M (2008) Linkage disequilibrium: understanding the genetic past and mapping the medical future. Nat Rev Genet 9:477–485
    CAS  PubMed  PubMed Central  Google Scholar 

    Somero G (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers. J Exp Biol 213:912–920
    CAS  Google Scholar 

    Spear SL, Aldridge CL, Wann GT, Braun CE (2019) Fine-scale habitat selection by breeding white-tailed ptarmigan in Colorado. J Wildl Manage 84:172–184
    Google Scholar 

    Stokken K-A (1993) Energetics and adaptations to cold in ptarmigan in winter. Ornis Scand 23:366–370
    Google Scholar 

    Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 14:671–688
    CAS  PubMed  Google Scholar 

    Swanson DL, King MO, Harmon E (2014) Seasonal variation in pectoralis muscle and heart myostatin and tolloid-like proteinases in small birds: a regulatory role for seasonal phenotypic flexibility? J Comp Physiol B 184:249–258
    CAS  PubMed  Google Scholar 

    Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251
    Google Scholar 

    Thornton PE, Thornton MM, Mayer BW, Wei Y, Devarakonda R, Vose RS et al. (2018) Daymet: daily surface weather data on a 1-km grid for North America, version 3. Oak Ridge, Tennessee, USA

    Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027
    Google Scholar 

    United States Fish and Wildlife Service (2012) Endangered and threatened wildlife and plants; 90-day finding on a petition to list the southern white-tailed ptarmigan and the Mt. Rainier white-tailed ptarmigan as threatened with critical habitat. Fed Regist 77:33143–33155
    Google Scholar 

    United States Geological Survey EROS Center (2007) North American elevation 1-kilometer resolution, 3rd edn. National Atlas of the US, Reston, VA
    Google Scholar 

    Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA (2017) Evaluation of LD decay and various LD‑decay estimators in simulated and SNP‑array data of tetraploid potato. Theor Appl Genet 130:123–135
    PubMed  Google Scholar 

    Walker WP, Aradhya S, Hu C-L, Shen S, Zhang W, Azarani A et al. (2007) Genetic analysis of attractin homologs. Genesis 45:744–756
    CAS  PubMed  Google Scholar 

    Walker WP, Gunn TM (2010) Shades of meaning: the pigment-type switching system as a tool for discovery. Pigment Cell Melanoma Res 23:485–495
    CAS  PubMed  Google Scholar 

    Wang G, Hobbs NT, Galbraith H, Giesen KM (2002a) Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA. Int J Biometeorol 46:197–201
    PubMed  Google Scholar 

    Wang G, Hobbs NT, Giesen KM, Galbraith H, Ojima DS, Braun CE (2002b) Relationships between climate and population dynamics of white-tailed ptarmigan Lagopus leucurus in Rocky Mountain National Park, Colorado, USA. Clim Res 23:81–87
    Google Scholar 

    Wann GT, Aldridge CL, Braun CE (2014) Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years. Popul Ecol 56:555–567
    Google Scholar 

    Wann GT, Aldridge CL, Braun CE (2016) Effects of seasonal weather on breeding phenology and reproductive success of alpine ptarmigan in Colorado. PLoS ONE 11:e0158913
    PubMed  PubMed Central  Google Scholar 

    Wann GT, Aldridge CL, Seglund AE, Oyler‐McCance SJ, Kondratieff BC, Braun CE (2019) Mismatches between breeding phenology and resource abundance of resident alpine ptarmigan negatively affect chick survival. Ecol Evol 9:7200–7212
    PubMed  PubMed Central  Google Scholar 

    Weeden RB (1967) Seasonal and geographic variation in the foods of adult white-tailed ptarmigan. Condor 69:303–309
    Google Scholar 

    Werhahn G, Liu Y, Meng Y, Cheng C, Lu Z, Atzeni L et al. (2020) Himalayan wolf distribution and admixture based on multiple genetic markers J Biogeogr https://doi.org/10.1111/jbi.13824
    Article  Google Scholar 

    Wiebe KL, Martin K (1998) Costs and benefits of nest cover for ptarmigan: changes within and between years. Anim Behav 56:1137–1144
    CAS  PubMed  Google Scholar 

    Wilson S, Martin K (2008) Breeding habitat selection of sympatric white-tailed, rock and willow ptarmigan in the southern Yukon Territory, Canada. J Ornithol 149:629–637
    Google Scholar 

    Wilson S, Martin K (2011) Life-history and demographic variation in an alpine specialist at the latitudinal extremes of the range. Popul Ecol 53:459–471
    Google Scholar 

    Xin J-W, Chai Z-X, Zhang C-F, Zhang Q, Zhu Y, Cao H-W et al. (2019) Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments. Sci Rep 9:7558
    PubMed  PubMed Central  Google Scholar 

    Zimova M, Hackländer K, Good JM, Melo-Ferreira J, Alves PC, Mills LS (2018) Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biol Rev 93:1478–1498
    PubMed  Google Scholar  More

  • in

    A nutrient control on marine anoxia during the end-Permian mass extinction

    1.
    Burgess, S. D., Bowring, S. & Shen, S.-Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).
    Google Scholar 
    2.
    Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).
    Google Scholar 

    3.
    Cao, C. et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 281, 188–201 (2009).
    Google Scholar 

    4.
    Nabbefeld, B. et al. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet. Sci. Lett. 291, 84–96 (2010).
    Google Scholar 

    5.
    Brennecka, G. A., Herrmann, A. D., Anbar, A. D. & Algeo, T. J. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).
    Google Scholar 

    6.
    Dustira, A. M. et al. Gradual onset of anoxia across the Permian–Triassic boundary in Svalbard, Norway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 303–313 (2013).
    Google Scholar 

    7.
    Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).
    Google Scholar 

    8.
    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).
    Google Scholar 

    9.
    Kiehl, J. T. & Shields, C. A. Climate simulation of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005).
    Google Scholar 

    10.
    Hotinski, R. M., Bice, K. L., Kump, L. R., Najjar, R. G. & Arthur, M. A. Ocean stagnation and end-Permian anoxia. Geology 29, 7–10 (2001).
    Google Scholar 

    11.
    Meyer, K., Kump, L. & Ridgwell, A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–750 (2008).
    Google Scholar 

    12.
    Algeo, T. J. & Twitchett, R. J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–1026 (2010).
    Google Scholar 

    13.
    Shen, J. et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Sci. Rev. 149, 136–162 (2015).
    Google Scholar 

    14.
    Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).
    Google Scholar 

    15.
    Sephton, M. A. et al. Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33, 941–944 (2005).
    Google Scholar 

    16.
    Sun, H. et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. Proc. Natl Acad. Sci. USA 115, 3782–3787 (2018).
    Google Scholar 

    17.
    Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).
    Google Scholar 

    18.
    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
    Google Scholar 

    19.
    Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289, 1740–1743 (2000).
    Google Scholar 

    20.
    Algeo, T. et al. Evidence for a diachronous late Permian marine crisis from the Canadian Arctic region. Geol. Soc. Am. Bull. 124, 1424–1448 (2012).
    Google Scholar 

    21.
    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).
    Google Scholar 

    22.
    Krom, M. D. & Berner, R. A. The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta 45, 207–216 (1981).
    Google Scholar 

    23.
    Slomp, C. P., Van Der Gaast, S. J. & Van Raaphorst, W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 52, 55–73 (1996).
    Google Scholar 

    24.
    Schenau, S. J. & De Lange, G. J. A novel chemical method to quantify fish debris in marine sediments. Limnol. Oceanogr. 45, 963–971 (2000).
    Google Scholar 

    25.
    Ruttenberg, K. C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460–1482 (1992).
    Google Scholar 

    26.
    Egger, M., Jilbert, T., Behrends, T., Rivard, C. & Slomp, C. P. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochim. Cosmochim. Acta 169, 217–235 (2015).
    Google Scholar 

    27.
    Cappellen, P. V. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).
    Google Scholar 

    28.
    Algeo, T. J. & Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).
    Google Scholar 

    29.
    Harland, W. The Geology of Svalbard (Geological Society, 1997).

    30.
    Blomeier, D., Dustira, A. M., Forke, H. & Scheibner, C. Facies analysis and depositional environments of a storm-dominated, temperate to cold, mixed siliceous–carbonate ramp: the Permian Kapp Starostin Formation in NE Svalbard. Nor. J. Geol. 93, 75–93 (2013).
    Google Scholar 

    31.
    Zuchuat, V. et al. A new high-resolution stratigraphic and palaeoenvironmental record spanning the end-Permian mass extinction and its aftermath in central Spitsbergen, Svalbard. Palaeogeogr. Palaeoclimatol. Palaeoecol. 554, 109732 (2020).

    32.
    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).
    Google Scholar 

    33.
    Algeo, T. & Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem. Geol. 268, 211–225 (2009).
    Google Scholar 

    34.
    Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).
    Google Scholar 

    35.
    Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).
    Google Scholar 

    36.
    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).
    Google Scholar 

    37.
    Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006).
    Google Scholar 

    38.
    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).
    Google Scholar 

    39.
    Doyle, K. A., Poulton, S. W., Newton, R. J., Podkovyrov, V. N. & Bekker, A. Shallow water anoxia in the Mesoproterozoic ocean: evidence from the Bashkir Meganticlinorium, Southern Urals. Precambrian Res. 317, 196–210 (2018).
    Google Scholar 

    40.
    Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).
    Google Scholar 

    41.
    Chafetz, H. S. & Reid, A. Syndepositional shallow-water precipitation of glauconitic minerals. Sediment. Geol. 136, 29–42 (2000).
    Google Scholar 

    42.
    Peters, S. E. & Gaines, R. R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012).
    Google Scholar 

    43.
    Manwell, C. Oxygen equilibrium of brachiopod Lingula hemerythrin. Science 132, 550–551 (1960).
    Google Scholar 

    44.
    Peng, Y., Shi, G. R., Gao, Y., He, W. & Shen, S. How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 118–131 (2007).
    Google Scholar 

    45.
    Scott, C. & Lyons, T. W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem. Geol. 324-325, 19–27 (2012).
    Google Scholar 

    46.
    Lyons, T. W. Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim. Cosmochim. Acta 61, 3367–3382 (1997).
    Google Scholar 

    47.
    Shen, Y., Canfield, D. E. & Knoll, A. H. Middle proterozoic ocean chemistry: evidence from the McArthur Basin, Northern Australia. Am. J. Sci. 302, 81–109 (2002).
    Google Scholar 

    48.
    Borgnino, L., Avena, M. & De Pauli, C. Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids Surf. A 341, 46–52 (2009).
    Google Scholar 

    49.
    Foster, W. J., Danise, S. & Twitchett, R. J. A silicified Early Triassic marine assemblage from Svalbard. J. Syst. Palaeontol. 15, 851–877 (2017).
    Google Scholar 

    50.
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).
    Google Scholar 

    51.
    Wedepohl, K. H. in Metals and Their Compounds in the Environment (ed. Merian, E.) 3–17 (Verlag Chemie, 1991).

    52.
    Thompson, J. et al. Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments. Chem. Geol. 524, 383–393 (2019).
    Google Scholar 

    53.
    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).
    Google Scholar  More

  • in

    High-throughput microCT scanning of small specimens: preparation, packing, parameters and post-processing

    1.
    Sato, T., Ikeda, O., Yamakoshi, Y. & Tsubouchi, M. X-ray tomography for microstructural objects. Appl. Opt. 20, 3880–3883 (1981).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Elliott, J. C. & Dover, S. D. X-ray microtomography. J. Microsc. 126, 211–213 (1982).
    CAS  PubMed  Google Scholar 

    3.
    Elliott, J. C. & Dover, S. D. X-ray microscopy using computerized axial tomography. J. Microsc. 138, 329–331 (1985).
    CAS  PubMed  Google Scholar 

    4.
    Sutton, M., Rahman, I. & Garwood, R. Techniques for Virtual Palaeontology 208 (Wiley-Blackwell, London, 2014).
    Google Scholar 

    5.
    Davies, T. G. et al. Open data and digital morphology. Proc. R. Soc. B 284, 20170194 (2017).
    PubMed  Google Scholar 

    6.
    Gutiérrez, Y., Ott, D., Töpperwien, M., Salditt, T. & Scherber, C. X-ray computed tomography and its potential in ecological research: a review of studies and optimization of specimen preparation. Ecol. Evol. 8, 7717–7732 (2018).
    PubMed  PubMed Central  Google Scholar 

    7.
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Ketcham, R. A. Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1, 32–41 (2005).
    ADS  Google Scholar 

    9.
    Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).
    Google Scholar 

    10.
    Faulwetter, S., Vasileiadou, A., Kouratoras, M., Dailianis, T. & Arvanitidis, C. Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys 263, 1–45 (2013).
    Google Scholar 

    11.
    Akkari, N. et al. New avatars for Myriapods: complete 3D morphology of type specimens transcends conventional species description (Myriapoda, Chilopoda). PLoS ONE 13, 0200158. https://doi.org/10.1371/journal.pone.0200158 (2018).
    CAS  Article  Google Scholar 

    12.
    Fontaine, B., Perrard, A. & Bouchet, P. 21 years of shelf life between discovery and description of new species. Curr. Biol. 22, R943–R944 (2012).
    CAS  PubMed  Google Scholar 

    13.
    Hipsley, C. A. & Sherratt, E. Psychology, not technology, is our biggest challenge to open digital morphology data. Sci. Data. 6, 41 (2019).
    PubMed  PubMed Central  Google Scholar 

    14.
    Blagoderov, V., Kitching, I. J., Livermore, L., Simonsen, T. J. & Smith, V. S. No specimen left behind: industrial scale digitization of natural history collections. Zookeys 209, 133–146 (2012).
    Google Scholar 

    15.
    Rogers, N. Museum drawers go digital. Science 352, 762–765 (2016).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B 374, 20170386 (2018).
    Google Scholar 

    17.
    Schmitt, C. J., Cook, J. A., Zamudio, K. R. & Edwards, S. V. Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philos. Trans. R. Soc. B 374, 20170387 (2018).
    Google Scholar 

    18.
    Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).
    Google Scholar 

    19.
    Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl. Acad. Sci. 116, 14688–14697 (2019).
    CAS  PubMed  Google Scholar 

    20.
    Simon, M. N., Machado, F. A. & Marroig, G. High evolutionary constraints limited adaptive responses to past climate changes in toad skulls. Proc. R. Soc. B-Biol. Sci. 283, 20161783 (2016).
    Google Scholar 

    21.
    Sherratt, E., Serb, J. M. & Adams, D. C. Rates of morphological evolution, asymmetry and morphological integration of shell shape in scallops. BMC Evol. Biol. 17, 248 (2017).
    PubMed  PubMed Central  Google Scholar 

    22.
    Chira, A. M. et al. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol. Lett. 21, 1505–1514 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Percival, C. J. et al. The effect of automated landmark identification on morphometric analyses. J. Anat. 234, 917–935 (2019).
    PubMed  PubMed Central  Google Scholar 

    24.
    Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro –computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).
    Google Scholar 

    25.
    Broeckhoven, C. & du Plessis, A. X-ray microtomography in herpetological research: a review. Amphibia-Reptilia 39, 377–401 (2018).
    Google Scholar 

    26.
    Marcy, A. E., Fruciano, C., Phillips, M. J., Mardon, K. & Weisbecker, V. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses. PeerJ 6, 5032. https://doi.org/10.7717/peerj.5032 (2018).
    Article  Google Scholar 

    27.
    Gray, J. A., McDowell, M. C., Hutchinson, M. N. & Jones, M. E. Geometric morphometrics provides an alternative approach for interpreting the affinity of fossil lizard jaws. J. Herpetol. 51, 375–382 (2017).
    Google Scholar 

    28.
    Thorn, K. M., Hutchinson, M. N., Archer, M. & Lee, M. S. Y. A new scincid lizard from the Miocene of northern Australia, and the evolutionary history of social skinks (Scincidae: Egerniinae). J. Vertebr. Paleontol. 39, 1 (2019).
    Google Scholar 

    29.
    Chaplin, K., Sumner, J., Hipsley, C. A. & Melville, J. An integrative approach using phylogenomics and high-resolution X-ray computed tomography for species delimitation in cryptic taxa. Syst. Biol. 69, syz048. https://doi.org/10.1093/sysbio/syz048 (2019).
    Article  Google Scholar 

    30.
    Melville, J. et al. Integrating phylogeography and high-resolution X-ray CT reveals five new cryptic species and multiple hybrid zones among Australian earless dragons. R. Soc. Open Sci. 6, 191166. https://doi.org/10.1098/rsos.191166 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Caro, A., Gómez-Moliner, B. J. & Madeira, M. J. Integrating multilocus DNA data and 3D geometric morphometrics to elucidate species boundaries in the case of Pyrenaearia (Pulmonata: Hygromiidae). Mol. Phylogenet. Evol. 132, 194–206 (2019).
    CAS  PubMed  Google Scholar 

    32.
    Winkelmann, C. T. & Wise, L. D. High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J. Pharmacol. Tox. Met. 59, 156–165 (2009).
    CAS  Google Scholar 

    33.
    Sevilla, R. S. et al. Development and optimization of a high-throughput micro-computed tomography imaging method incorporating a novel analysis technique to evaluate bone mineral density of arthritic joints in a rodent model of collagen induced arthritis. Bone 73, 32–41 (2015).
    PubMed  Google Scholar 

    34.
    Wong, M. D., Maezawa, Y., Lerch, J. P. & Henkelman, R. M. Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT. Development 141, 2533–2541 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Wu, D. et al. Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. J. Exp. Bot. 70, 545–561 (2019).
    CAS  PubMed  Google Scholar 

    36.
    Ding, Y. et al. Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography. Elife 8, 44898. https://doi.org/10.7554/eLife.44898.001 (2019).
    Article  Google Scholar 

    37.
    Staedtler, Y. M., Masson, D. & Schönenberger, J. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PLoS ONE 8, 75295. https://doi.org/10.1371/journal.pone.0075295 (2013).
    ADS  CAS  Article  Google Scholar 

    38.
    Keklikoglou, K. et al. Micro-computed tomography for natural history specimens: a handbook of best practice protocols. Eur. J. Taxon. 522, 1–55 (2019).
    Google Scholar 

    39.
    Adams, D., Collyer, M. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph (2019).

    40.
    Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
    PubMed  Google Scholar 

    41.
    du Plessis, A., Broeckhoven, C., Guelpa, A. & le Roux, S. G. Laboratory X-ray micro-computed tomography: a user guideline for biological samples. Gigascience 6, 1–11 (2017).
    PubMed  PubMed Central  Google Scholar 

    42.
    Hocknull, S. A., Zhao, J. X., Feng, Y. X. & Webb, G. E. Responses of middle Pleistocene rainforest vertebrates to climate change in Australia. Earth Planet. Sci. Lett. 264, 317–331 (2007).
    ADS  CAS  Google Scholar 

    43.
    Hedrick, B. P. et al. Digitization and the future of natural history collections. Bioscience 70, 243–251 (2020).
    Google Scholar 

    44.
    Lawrence, R. A. & Hocknull, S. Engaging the public with small vertebrate fossils and utilizing citizen science to maximise scientific discovery at Capricorn Caves, Central Eastern Queensland, Australia. J. Vertebr. Paleontol. Program Abstr. 139 (2019).

    45.
    Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199–202 (2006).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Arbour, J. H., Curtis, A. A. & Santana, S. E. Signatures of echolocation and dietary ecology in the adaptive evolution of skull shape in bats. Nat. Commun. 10, 2036 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    47.
    Park, T., Fitzgerald, E. M. & Evans, A. R. Ultrasonic hearing and echolocation in the earliest toothed whales. Biol. Lett. 12, 20160060. https://doi.org/10.1098/rsbl.2016.0060 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    48.
    Müller, J. et al. Eocene lizard from Germany reveals amphisbaenian origins. Nature 473, 364–367 (2011).
    ADS  PubMed  Google Scholar 

    49.
    Miralles, A. et al. Distinct patterns of desynchronized limb regression in Malagasy scincine lizards (Squamata, Scincidae). PLoS ONE 10, 0126074. https://doi.org/10.1371/journal.pone.0126074 (2015).
    CAS  Article  Google Scholar 

    50.
    Weisbecker, V. Monotreme ossification sequences and the riddle of mammalian skeletal development. Evolution 65, 1323–1335 (2011).
    PubMed  Google Scholar 

    51.
    Newton, A. H. et al. Letting the ‘cat’ out of the bag: pouch young development of the extinct Tasmanian tiger revealed by X-ray computed tomography. R. Soc. Open Sci. 5, 171914. https://doi.org/10.1098/rsos.171914 (2018).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Beaudet, A. & Gilissen, E. Fossil primate endocasts: perspectives from advanced imaging techniques In Digital Endocasts: from Skulls to Brains (eds. Bruner, E., Ogihara, N. & Tanabe, H.) 47–58 (Springer, Berlin, 2018).

    54.
    Wulff, N. C., Lehmann, A. W., Hipsley, C. A. & Lehmann, G. U. C. Copulatory courtship by bushcricket genital titillators revealed by functional morphology, μCT scanning for 3D reconstruction and female sense structures. Arthropod Struct. Dev. 44, 388–397 (2015).
    PubMed  Google Scholar 

    55.
    Gee, C. T. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: a virtual advantage over thin-sectioning. Appl. Plant Sci. 1, 1300039. https://doi.org/10.3732/apps.1300039 (2013).
    Article  Google Scholar 

    56.
    Meyer, M. et al. Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res. 249, 79–87 (2014).
    ADS  CAS  Google Scholar 

    57.
    Gooday, A. J., Sykes, D., Goral, T., Zubkov, M. V. & Glover, A. G. Micro-CT 3D imaging reveals the internal structure of three abyssal xenophyophore species (Protista, Foraminifera) from the eastern equatorial Pacific Ocean. Sci. Rep. 8, 12103. https://doi.org/10.1038/s41598-018-30186-2 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Dunlop, J. A. et al. Microtomography of the Baltic amber tick Ixodes succineus reveals affinities with the modern Asian disease vector Ixodes ovatus. BMC Evol. Biol. 16, 203 (2016).
    PubMed  PubMed Central  Google Scholar  More