Temperature increase altered Daphnia community structure in artificially heated lakes: a potential scenario for a warmer future
1.
IPCC. Summary for policymakers 1–32 (Cambridge, United Kingdom and New York, NY, USA, 2014).
2.
Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).
CAS PubMed Google Scholar
3.
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793 (2009).
ADS CAS PubMed Google Scholar
4.
Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. USA 109, 19310–19314 (2012).
ADS CAS PubMed Google Scholar
5.
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
PubMed Google Scholar
6.
De Senerpont Domis, L. N., Bartosiewicz, M., Davis, C. & Cerbin, S. The effect of small doses of toxic cyanobacterial food on the temperature response of Daphnia galeata: is bigger better? Freshw. Biol. 58, 560–572 (2013).
7.
Magnuson, J. J. et al. Historical trends in lake and river ice cover in the northen hemisphere. Science 289, 1743–1746 (2000).
ADS CAS PubMed Google Scholar
8.
Schoebel, C. N., Tellenbach, C., Spaak, P. & Wolinska, J. Temperature effects on parasite prevalence in a natural hybrid complex. Biol. Lett. 7, 108–111 (2011).
PubMed Google Scholar
9.
Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).
Google Scholar
10.
Verschoor, A. M., Van Dijk, M. A., Huisman, J. & Van Donk, E. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw. Biol. 58, 597–611 (2013).
CAS Google Scholar
11.
Zander, A., Bersier, L.-F. & Gray, S. M. Effects of temperature variability on community structure in a natural microbial food web. Glob. Change Biol. 23, 56–67 (2017).
ADS Google Scholar
12.
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
ADS CAS PubMed PubMed Central Google Scholar
13.
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
ADS CAS PubMed Google Scholar
14.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
PubMed PubMed Central Google Scholar
15.
Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
PubMed Google Scholar
16.
Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13, 372–391 (2018).
PubMed PubMed Central Google Scholar
17.
Scranton, K. & Amarasekare, P. Predicting phenological shifts in a changing climate. Proc. Natl. Acad. Sci. USA 114, 13212–13217 (2017).
CAS PubMed Google Scholar
18.
Hulme, P. E. Climate change and biological invasions: evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).
PubMed Google Scholar
19.
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Google Scholar
20.
Van Doorslaer, W. et al. Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Glob. Change Biol. 15, 3046–3055 (2009).
ADS Google Scholar
21.
Bellard, C. et al. Will climate change promote future invasions?. Glob. Change Biol. 19, 3740–3748 (2013).
ADS Google Scholar
22.
Holzapfel, A. M. & Vinebrooke, R. D. Environmental warming increases invasion potential of alpine lake communities by imported species. Glob. Change Biol. 11, 2009–2015 (2005).
Google Scholar
23.
Burns, C. W. Predictors of invasion success by Daphnia species: influence of food, temperature and species identity. Biol. Invas. 15, 859–869 (2013).
Google Scholar
24.
Spaak, P., Fox, J. & Hairston, N. G. Jr. Modes and mechanisms of a Daphnia invasion. Proc. Biol. Sci. 279, 2936–2944 (2012).
PubMed PubMed Central Google Scholar
25.
Wejnerowski, Ł., Sikora-Koperska, A. & Dawidowicz, P. Temperature elevation reduces the sensitivity of invasive cladoceran Daphnia lumholtzi to filamentous cyanobacterium Raphidiopsis raciborskii. Freshw Biol 935–946, https://doi.org/10.1111/fwb.13480 (2020).
26.
Wittmann, M. J., Gabriel, W., Harz, E.-M., Laforsch, C. & Jeschke, J. Can Daphnia lumholtzi invade European lakes?. NeoBiota 16, 39–57 (2013).
Google Scholar
27.
Keller, B., Wolinska, J., Manca, M. & Spaak, P. Spatial, environmental and anthropogenic effects on the taxon composition of hybridizing Daphnia. Philos. Trans. R. Soc. Lond, B Biol. Sci. 363, 2943–2952 (2008).
Google Scholar
28.
Petrusek, A. et al. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool Scr. 37, 507–519 (2008).
Google Scholar
29.
Zeis, B., Horn, W., Gigengack, U., Koch, M. & Paul, R. J. A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir. Freshw. Biol. 55, 2296–2304 (2010).
Google Scholar
30.
Van Doorslaer, W., Stoks, R., Duvivier, C., Bednarska, A. & De Meester, L. Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63, 1867–1878 (2009).
PubMed Google Scholar
31.
Woszczyk, M. et al. Stable C and N isotope record of short term changes in water level in lakes of different morphometry: Lake Anastazewo and Lake Skulskie, central Poland. Org. Geochem. 76, 278–287 (2014).
CAS Google Scholar
32.
Bernatowicz, P., Radzikowski, J., Paterczyk, B., Bebas, P. & Slusarczyk, M. Internal structure of Daphnia ephippium as an adaptation to dispersion. Zool Anz. 277, 12–22 (2018).
Google Scholar
33.
Moss, B. et al. Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshw. Rev. 2, 103–130 (2009).
Google Scholar
34.
Ma, X., Hu, W., Smilauer, P., Yin, M. & Wolinska, J. Daphnia galeata and D. dentifera are geographically and ecologically separated whereas their hybrids occur in intermediate habitats: A survey of 44 Chinese lakes. Mol. Ecol. 28, 785–802 (2019).
35.
Dzialowski, A. R., Lennon, J. T. & Smith, V. H. Food web structure provides biotic resistance against plankton invasion attempts. Biol. Invas. 9, 257–267 (2007).
Google Scholar
36.
Birks, H. H., Whiteside, M. C., Stark, D. M. & Bright, R. C. Recent paleolimnology of three lakes in Northwestern Minnesota. Quat. Res. 6, 249–272 (1976).
Google Scholar
37.
Tsugeki, N. K., Ishida, S. & Urabe, J. Sedimentary records of reduction in resting egg production of Daphnia galeata in Lake Biwa during the 20th century: a possible effect of winter warming. J. Paleolimnol. 42, 155–165 (2009).
ADS Google Scholar
38.
Keller, B., Wolinska, J., Tellenbach, C. & Spaak, P. Reproductive isolation keeps hybridizing Daphnia species distinct. Limnol. Oceanogr. 52, 984–991 (2007).
ADS Google Scholar
39.
Spaak, P. & Boersma, M. Predator mediated coexistence of hybrid and parental Daphnia taxa. Arch. Für Hydrobiol. 167, 55–76 (2006).
Google Scholar
40.
Kozłowski, J., Czarnołęski, M. & Dańko, M. Can optimal resource allocation models explain why ectotherms grow larger in cold?. Integr. Comput. Biol. 44, 480–493 (2004).
Google Scholar
41.
Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comput. Biol. 44, 498–509 (2004).
Google Scholar
42.
Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).
ADS CAS PubMed Google Scholar
43.
Gliwicz, Z. M. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272, 201–210 (1994).
Google Scholar
44.
Maszczyk, P. et al. Combined effects of elevated epilimnetic temperature and metalimnetic hypoxia on the predation rate of planktivorous fish. J. Plankton Res. 41, 709–722 (2019).
PubMed PubMed Central Google Scholar
45.
Świerzowski, A. & Godlewska, M. Effects of hydropower plant activities on fish population, abundance and distribution. Arch. Pol. Fish. 9, 157–172 (2001).
Google Scholar
46.
Thorslund, A. E. Potential uses of wastewaters and heated effluents. European Inland Fisheries Advisory Commission Occasional Paper No. 5. (Food and Agriculture Organization of the United Nations, 1971).
47.
Warren, G. J., Evans, M. S., Jude, D. J. & Ayers, J. C. Seasonal variations in copepod size: effects of temperature, food abundance, and vertebrate predation. J. Plankton Res. 8, 841–853 (1986).
Google Scholar
48.
Tunowski, J. Zooplankton structure in heated lakes with differing thermal regimes and water retention. Arch. Pol. Fish. 17, 291–303 (2009).
Google Scholar
49.
Tunowski, J. Changes in zooplankton abundance and community structure in the cooling channel system of the Konin and Pątnów power plants. Arch. Pol. Fish. 17, 279–289 (2009).
Google Scholar
50.
Stibor, H. & Lampert, W. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88, 129–138 (2000).
Google Scholar
51.
Tereshchenko, V. G., Kapusta, A., Wilkońska, H. & Strelnikova, A. P. Long-term changes in 0+ fish assemblages in the littoral zone of heated lakes. I. Diversity, evennes and dynamic phase portrait of species structure. Arch Pol Fish 15, 415–430 (2007).
52.
Brzezinski, T. Filamentous cyanobacteria alter the relative fitness in a Daphnia hybrid species complex. Freshw. Biol. 60, 101–110 (2015).
Google Scholar
53.
Dziuba, M. K., Cerbin, S. & Wejnerowski, L. Is bigger better? A possibility for adaptation of Daphnia to filamentous cyanobacteria in the face of global warming. Hydrobiologia 798, 105–118 (2017).
Google Scholar
54.
Socha, D. & Hutorowicz, A. Changes in the quantitative relations of the phytoplankton in heated lakes. Arch. Pol. Fish. 17, 239–251 (2009).
Google Scholar
55.
Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Change 5, 665–668 (2015).
ADS Google Scholar
56.
Van Doorslaer, W. et al. Experimental thermal microevolution in community-embedded Daphnia populations. Clim. Res. 43, 81–89 (2010).
Google Scholar
57.
Wolinska, J., Löffler, A. & Spaak, P. Taxon-specific reaction norms to predator cues in a hybrid Daphnia complex. Freshw. Biol. 52, 1198–1209 (2007).
Google Scholar
58.
Wolinska, J., Bittner, K., Ebert, D. & Spaak, P. The coexistence of hybrid and parental Daphnia: the role of parasites. Proc Biol Sci 273, 1977–1983 (2006).
PubMed PubMed Central Google Scholar
59.
Lindberg, R. T. & Collins, S. Quality–quantity trade-offs drive functional trait evolution in a model microalgal ‘climate change winner’. Ecol. Lett. 23, 780–790 (2020).
PubMed Google Scholar
60.
Lampert, W. Daphnia: model herbivore, predator and prey. Pol. J. Ecol. 54, 607–620 (2006).
Google Scholar
61.
Bartosiewicz, M. et al. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. 4, 132–144 (2019).
CAS Google Scholar
62.
Stawecki, K., Zdanowski, B. & Pyka, J. P. Long-term changes in post-cooling water loads from power plants and thermal and oxygen conditions in stratified lakes. Arch. Pol. Fish. 21, 331–342 (2013).
CAS Google Scholar
63.
Bledzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe. Cladocera & Copepoda (Calanoida, Cyclopoida) Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. (Springer International Publishing Switzerland, 2016).
64.
Appleby, P. G. Chronostratigraphic techniques in recent sediments. In Last, W.M. and Smol, J.P., editors, Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques. (Kluwer Academic, London, 2001).
65.
Bruel, R. & Sabatier, P. Serac: a R package for ShortlivED RAdionuclide Chronology of recent sediment cores. J. Environ. Activity https://doi.org/10.31223/osf.io/f4yma (2020).
Article Google Scholar
66.
Szczuciński, W. et al. Modern sedimentation and sediment dispersal pattern on the continental shelf off the Mekong River delta, South China Sea. Glob. Planet. Change 110, 195–213 (2013).
ADS Google Scholar
67.
Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z. & Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 56, 222–241 (2010).
PubMed Google Scholar
68.
Brede, N. et al. Microsatellite markers for European Daphnia. Mol. Ecol. Notes 6, 536–539 (2006).
CAS Google Scholar
69.
Toonen, R. J. & Hughes, S. Increased throughput for fragment analysis on ABI Prism 377 automated sequencer using a membrane comb and STR and software. Biotechniques 31, 1320–1324 (2001).
CAS PubMed Google Scholar
70.
Alberto, F. MsatAllele: Visualizes the scoring and binning of microsatellite fragment sizes. R Package Version 104 (2013).
71.
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797 (2004).
CAS PubMed Google Scholar
72.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
CAS PubMed PubMed Central Google Scholar
73.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
74.
Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet Resour. 4, 359–361 (2012).
Google Scholar
75.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
CAS PubMed Google Scholar
76.
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
PubMed PubMed Central Google Scholar
77.
Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2006).
PubMed Google Scholar
78.
Bohonak, A. J. IBD (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154 (2002).
CAS PubMed Google Scholar More