1.
Breitbart M, Thompson L, Suttle C, Sullivan M. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.
Google Scholar
2.
Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.
CAS PubMed Google Scholar
3.
Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.
CAS PubMed Google Scholar
4.
Howard-Varona C, Lindback M, Bastien G, Solonenko N, Zayed A, Jang HB, et al. Phage-specific metabolic reprogramming of virocells. ISME J. 2020;14:881–95.
PubMed PubMed Central Google Scholar
5.
Sullivan M, Lindell D, Lee J, Thompson L, Bielawski J, Chisholm S. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:1344–57.
CAS Google Scholar
6.
Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.
CAS PubMed Google Scholar
7.
Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.
PubMed PubMed Central Google Scholar
8.
Ahlgren NA, Fuchsman C, Rocap G, Fuhrman JA. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 2019;13:618–31.
CAS PubMed Google Scholar
9.
Zeng Q, Chisholm SW. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr Biol. 2012;22:124–8.
CAS PubMed Google Scholar
10.
Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757–60.
CAS PubMed Google Scholar
11.
Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.
CAS PubMed Google Scholar
12.
Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;14:e144.
Google Scholar
13.
Dwivedi B, Xue B, Lundin D, Edwards R, Breitbart M. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol Biol. 2013;13:33.
CAS PubMed PubMed Central Google Scholar
14.
Hagay E, Mandel-Gutfreund Y, Béjà O. Comparative metagenomics analyses reveal viral-induced shifts of host metabolism towards nucleotide biosysnthesis. Microbiome. 2014;2:9.
Google Scholar
15.
Breitbart M. Marine viruses: truth or dare. Annu Rev Mar Sci. 2012;4:425–48.
Google Scholar
16.
Chen LX, Méheust R, Crits-Christoph A, McMahon KD, Nelson TC, Warren LA et al. Large freshwater phages with the potential to augment aerobic methane oxidation. BioRxiv 2020.02.13.942896; https://doi.org/10.1101/2020.02.13.942896.
17.
Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol. 2015;10:641–50.
Google Scholar
18.
Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.
CAS PubMed Google Scholar
19.
Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics. eLife. 2014;3:e03125.
PubMed PubMed Central Google Scholar
20.
Edgcomb VP, Orsi W, Bunge J, Jeon SO, Christen R, Leslin C, et al. Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. J Int Soc. Micro Ecol. 2011;5:1344–56.
CAS Google Scholar
21.
Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;16:723–729.22.
CAS PubMed Google Scholar
22.
Cassman N, Prieto-Davó A, Walsh K, Silva GG, Angly F, Akhter S, et al. Oxygen minimum zones harbour novel viral communities with low diversity. Environ Microbiol. 2012;4:3043–65.
Google Scholar
23.
Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9.
CAS PubMed Google Scholar
24.
Scranton MI, Sayles FL, Bacon MP, Brewer PG. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep-Sea Res. 1987;34:945–63.
CAS Google Scholar
25.
Taylor GT, Iabichella M, Ho TY, Scranton MI, Thunell MC, Muller-Karger F, et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr. 2001;46:148–63.
CAS Google Scholar
26.
Scranton MI, Astor Y, Bohrer R, Ho TY, Muller-Karger F. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep-Sea Res. 2001;48:1605–25.
CAS Google Scholar
27.
Scranton MI, Taylor GT, Thunell R, Benitez-Nelson C, Muller-Karger F, Fanning K, et al. Interannual and decadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography. 2014;27:148–59.
Google Scholar
28.
Peterson LC, Overpeck JT, Kipp NG, Imbrie J. A high-resolution late quaternary upwelling record from the anoxic Cariaco Basin, Venezuela. Paleoceanography. 1991;6:99–119.
Google Scholar
29.
Scranton MI, Novelli PC, Loud PA. The distribution and cycling of hydrogen gas in the waters of two marine environments. Limnol Oceanogr. 1984;29:993–1003.
CAS Google Scholar
30.
Madrid V, Taylor GT, Scranton MI, Chistoserdov AY. Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol. 2001;67:1663–74.
CAS PubMed PubMed Central Google Scholar
31.
Wakeham SG, Turich C, Schubotz F, Podlaska A, Li XN, Varela R, et al. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin. Deep-Sea Res. 2012;63:133–56.
CAS Google Scholar
32.
Suter EA, Pachiadaki M, Taylor GT, Astor Y, Edgcomb VP. Free-living chemoautotrophic and particle-attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ Microbiol. 2018;20:693–712.
CAS PubMed Google Scholar
33.
Taylor GT, Hein C, Iabichella M. Temporal variations in viral distributions in the anoxic Cariaco Basin. Aquat Micro Ecol. 2003;30:103–16.
Google Scholar
34.
Astor YM, Lorenzoni L, Scranton MI (eds). Handbook of methods for the analysis of oceanographic parameters at the Cariaco Time Series Station. Cariaco Time Series Study. Caracas, Venezuela: Fundación La Salle de Ciencias Naturales; 2013.
35.
John SG, Mendez CB, Deng L, Poulos B, Kauffamn AKM, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.
CAS PubMed PubMed Central Google Scholar
36.
Ohio Supercomputer Center 1987. Ohio Supercomputer Center. Columbus OH: Ohio Supercomputer Center. http://osc.edu/ark:/19495/f5s1ph73.
37.
Duhaime MB, Sullivan MB. Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology. 2012;434:181–6.
CAS PubMed Google Scholar
38.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina se-quence data. Bioinformatics. 2014;30:2114–20.
CAS PubMed PubMed Central Google Scholar
39.
Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Deng M, Jiang R, Sun F, Zhang X (eds). Research in computational molecular biology. Berlin, Germany: Springer Verlag; 2013 p. 158–70.
40.
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.
CAS PubMed PubMed Central Google Scholar
41.
Garneau J, Depardieu F, Fortier LC, Bikard D, Monot M. PhageTerm: a fast and user-friendly software to determine bacteriophage termini and packaging mode using randomly fragmented NGS data. Sci Rep. 2017;7:8292.
PubMed PubMed Central Google Scholar
42.
Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ. 2017;5:e3817.
PubMed PubMed Central Google Scholar
43.
Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.
PubMed PubMed Central Google Scholar
44.
Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome. 2017;5:69.
PubMed PubMed Central Google Scholar
45.
Cambuy DD, Coutinho FH, Dutilh BE. Contig annotation tool CAT robustly classifies assembled metagenomic contigs and long sequences. BioRxiv 2016;072868:1–8.
Google Scholar
46.
Arndt D, Grant J, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.
CAS PubMed PubMed Central Google Scholar
47.
Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from Pole to Pole. Cell. 2019;177:1109–23.
CAS PubMed PubMed Central Google Scholar
48.
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12.
PubMed PubMed Central Google Scholar
49.
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomics sequences. Bioinformatics. 2012;28:2223–30.
CAS PubMed Google Scholar
50.
Daly RA, Borton MA, Wilkins MJ, Hoyt DW, Kountz DJ, Wolfe RA, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat Microbiol. 2016;1:16146.
CAS PubMed Google Scholar
51.
Cock PA, Chang AT, Chapman BA, Cox CJ, Dalke A, Friedberg I, et al. Biophython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.
CAS PubMed PubMed Central Google Scholar
52.
Solovyev V, Salamov A 2011. Automatic annotation of microbial genomes and metagenomic sequences In: Li RW, editor. Metagenomics and its applications in agriculture biomedicine and environmental studies. NY, USA: Nova Science Publishers, Hauppauge; p. 61–78.
53.
Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One. 2017;12:e0171410.
PubMed PubMed Central Google Scholar
54.
Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2012;41:D344–7.
PubMed PubMed Central Google Scholar
55.
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modelling, prediction and analysis. Nat Protoc. 2015;10:845–58.
CAS PubMed PubMed Central Google Scholar
56.
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
Google Scholar
57.
Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.
CAS PubMed Google Scholar
58.
Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.
Google Scholar
59.
Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics. 2016;17:930.
PubMed PubMed Central Google Scholar
60.
Duhaime MB, Solonenko N, Roux S, Verberkmoes NC, Wichels A, Sullivan MB. Comparative omics and trait analyses of marine Pseudoalteromonas phages advance the phage OTU concept. Front Microbiol. 2017;8:1241.
PubMed PubMed Central Google Scholar
61.
Roux S, Adriaenssens EM, Dutlith BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUViG): a community consensus on standards and best practices for describing genome sequences from uncultivated viruses. Nat Biotechnol. 2019;37:29–37.
CAS PubMed Google Scholar
62.
Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.
PubMed Google Scholar
63.
Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7:1092–101.
PubMed PubMed Central Google Scholar
64.
Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.
CAS PubMed PubMed Central Google Scholar
65.
Jones-Mortimer MC. Mapping of structural genes for the enzymes of cysteine biosynthesis in Escherichia coli K12 and Salmonella typhimurium LT2. Heredity. 1973;31:213–LT221.
CAS PubMed Google Scholar
66.
Grote J, Schott T, Bruckner CG, Glöckner FO, Jost G, Teeling H, et al. Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. PNAS. 2012;109:506–10.
CAS PubMed Google Scholar
67.
Shapiro JA. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. PNAS. 1979;76:1933–7.
CAS PubMed Google Scholar
68.
Pato ML Bactioriophage Mu. In: Howe M, Berg D (eds). Mobile DNA. Washington DC, USA: ASM Press; 1989 p. 23–52.
69.
Mhammedi-Alaoui A, Pato M, Gama MJ, Toussaint A. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol Microbiol. 1994;11:1109–16.
CAS PubMed Google Scholar
70.
Howe MM. Prophage deletion mapping of bacteriophage Mu-1. Virology. 1973;54:93–101.
CAS PubMed Google Scholar
71.
Fogg PC, Hynes AP, Digby E, Lang AS, Beatty JT. Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology. 2011;421:211–21.
CAS PubMed Google Scholar
72.
Lang AS, Zhaxybayeva O, Beatty JT. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol. 2012;10:472–82.
CAS PubMed PubMed Central Google Scholar
73.
Mosig G. Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu Rev Genet. 1998;32:379–413.
CAS PubMed Google Scholar
74.
Mosig G, Gewin J, Luder A, Colowick N, Vo D. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. PNAS. 2001;98:8306–831.
CAS PubMed Google Scholar
75.
Bragg JG, Chisholm SW. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS One. 2008;14:e3550.
Google Scholar
76.
Shapiro JA. A role for the Clp protease in activating Mu-mediated DNA rearrangements. J Bacteriol. 1993;175:2625–31.
CAS PubMed PubMed Central Google Scholar
77.
Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.
CAS PubMed Google Scholar
78.
Derelle E, Ferraz C, Escande ML, Eychenie S, Cooke R, Piganeau G, et al. Life-cycle and genome of OtV5, a large DNA virus of the pelagic marine unicellular green alga Ostreococcus tauri. PLoS One. 2008;3:e2250.
PubMed PubMed Central Google Scholar
79.
Madsen JS, Hylling O, Jacquiod S, Pécastaings S, Hansen LH, Riber L, et al. An intriguing relationship between the cyclic diguanylate signaling system and horizontal gene transfer. ISME J. 2018;12:2330–4.
CAS PubMed PubMed Central Google Scholar
80.
Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009;7:263–73.
CAS PubMed Google Scholar
81.
Taylor GT, Thunell RC, Varela R, Benitez-Nelson C, Scranton MI. Hydrolytic ectoenzyme activity associated with suspended and sinking organic particles above and within the anoxic Cariaco Basin. Deep-Sea Res. 2009;56:1266–83.
CAS Google Scholar
82.
Nothaft H, Szymanski CM. Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol. 2010;8:765–78.
CAS PubMed Google Scholar
83.
Chen CR, Makhatadze GI. Molecular determinant of the effects of hydrostatic pressure on protein folding stability. Nat Commun. 2017;8:14561.
CAS PubMed PubMed Central Google Scholar
84.
Lee HS, Qi Y, Im W. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep. 2015;5:8926.
PubMed PubMed Central Google Scholar
85.
Mills DC, Jervis AJ, Abouelhadid S, Yates LE, Cuccui J, Linton D, et al. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria. Glycobiology. 2016;26:398–409.
CAS PubMed Google Scholar
86.
Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol. 2015;16:742–52.
CAS PubMed Google Scholar
87.
Kandiba L, Eichler J. Archaeal S-layer glycoproteins: post-translational modification in the face of extremes. Front Microbiol. 2014;5:661.
PubMed PubMed Central Google Scholar
88.
Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69:12–50.
CAS PubMed PubMed Central Google Scholar
89.
Schilling B, Christensen D, Davis R, Sahu AK, Hul LI, Walker‐Peddakotla A. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol Micro. 2015;98:847–63.
CAS Google Scholar
90.
Marine R, Nasko D, Wray J, Polson SW, Wommack E. Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology. ISME J. 2017;11:2479–91.
PubMed PubMed Central Google Scholar
91.
Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine Group II Euryarchaeota. Curr Biol. 2017;2:1362–8.
Google Scholar
92.
Nishimura Y, Watai H, Honda T, Mihara T, Omae K, Roux S, et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere. 2017;2:e00359–16.
CAS PubMed PubMed Central Google Scholar
93.
Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.
PubMed PubMed Central Google Scholar
94.
Ho TY, Scranton MI, Taylor GT, Varela R, Thunell RC, Muller‐Karger F. Acetate cycling in the water column of the Cariaco Basin: seasonal and vertical variability and implication for carbon cycling. Limnol Oceanogr. 2002;47:1119–28.
CAS Google Scholar
95.
Sharon I, Battchikova N, Aro EM, Giglione C, Meinnel T, Glaser F, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011;5:1178–1190.
CAS PubMed PubMed Central Google Scholar
96.
Johnson DC, Dean DR, Smith AD, Johnson MK. Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem. 2005;74:247–81.
CAS PubMed Google Scholar
97.
Zhao D, Curatti L, Rubio LM. Evidence for nifU and nifS participation in the biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Biol Chem. 2007;282:37016–25.
CAS PubMed Google Scholar
98.
Iyer LM, Babu MM, Aravind L. The HIRAN domain and recruitment of chromatin remodeling and repair activities to damaged DNA. Cell Cycle. 2006;5:775–82.
CAS PubMed Google Scholar
99.
Peters DL, McCutcheon JG, Stothard P, Dennis JJ. Novel Stenotrophomonas maltophilia temperate phage DLP4 is capable of lysogenic conversion. BMC Genomics. 2019;20:300.
PubMed PubMed Central Google Scholar
100.
Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–51.
CAS PubMed PubMed Central Google Scholar More