More stories

  • in

    Environmental variability supports chimpanzee behavioural diversity

    1.
    Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. Brain Behav. Evol. 63, 233–246 (2004).
    PubMed  Google Scholar 
    2.
    Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 13971 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Schuck-Paim, C., Alonso, W. J. & Ottoni, E. B. Cognition in an ever-changing world: climatic variability is associated with brain size in neotropical parrots. Brain Behav. Evol. 71, 200–215 (2008).
    PubMed  Google Scholar 

    4.
    Reader, S. M. & MacDonald, K. in Animal Innovation (eds Reader, S. M. & Laland, K. N.) 83–116 (Oxford Univ. Press, 2003).

    5.
    Navarrete, A. F., Reader, S. M., Street, S. E., Whalen, A. & Laland, K. N. The coevolution of innovation and technical intelligence in primates. Philos. Trans. R. Soc. B 371, 20150186 (2016).
    Google Scholar 

    6.
    Street, S. E., Navarrete, A. F., Reader, S. M. & Laland, K. N. Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proc. Natl Acad. Sci. USA 114, 7908–7914 (2017).
    CAS  PubMed  Google Scholar 

    7.
    Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl Acad. Sci. USA 102, 5460–5465 (2005).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2002).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Sol, D., Timmermans, S. & Lefebvre, L. Behavioural flexibility and invasion success in birds. Anim. Behav. 63, 495–502 (2002).
    Google Scholar 

    10.
    Melin, A. D., Young, H. C., Mosdossy, K. N. & Fedigan, L. M. Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence. J. Hum. Evol. 71, 77–86 (2014).
    PubMed  Google Scholar 

    11.
    Kummer, H. & Goodall, J. Conditions of innovative behaviour in primates. Philos. Trans. R. Soc. B 308, 203–214 (1985).
    ADS  Google Scholar 

    12.
    MacDonald, K. in Archaeological Informatics (ed. Burenhult, G.) 105–112 (ArcheoPress, 2002).

    13.
    Richerson, P. J. & Boyd, R. in The Evolution of Cognition (eds Heyes, C. & Huber, L.) 329–345 (MIT Press, 2000).

    14.
    Reed, K. E. Early hominid evolution and ecological change through the African Plio-Pleistocene. J. Hum. Evol. 32, 289–322 (1997).
    CAS  PubMed  Google Scholar 

    15.
    deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci Lett. 220, 3–24 (2004).
    ADS  CAS  Google Scholar 

    16.
    Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).
    PubMed  Google Scholar 

    17.
    Vrba, E. S. Turnover-pulses, the Red Queen, and related topics. Am. J. Sci. 293, 418–452 (1993).
    ADS  Google Scholar 

    18.
    Foley, R. The adaptive legacy of human evolution: a search for the environment of evolutionary adaptedness. Evol. Anthropol. 4, 194–203 (1995).
    Google Scholar 

    19.
    Domínguez-Rodrigo, M. Is the “Savanna hypothesis” a dead concept for explaining the emergence of the earliest hominins? Curr. Anthropol. 55, 59–81 (2014).
    Google Scholar 

    20.
    Potts, R. Environmental hypotheses of hominin evolution. Am. J. Phys. Anthropol. 107, 93–136 (1998).
    Google Scholar 

    21.
    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Potts, R. Evolution and climate variability. Science 273, 922–923 (1996).
    ADS  CAS  Google Scholar 

    23.
    Antón, S. C., Potts, R. & Aiello, L. C. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (2014).
    PubMed  Google Scholar 

    24.
    McGrew, W. C. In search of the last common ancestor: new findings on wild chimpanzees. Philos. Trans. R. Soc. B 365, 3267–3276 (2010).
    CAS  Google Scholar 

    25.
    Pruetz, J. & Bertolani, P. Chimpanzee (Pan troglodytes verus) behavioral responses to stresses associated with living in a savanna-mosaic environment: implications for hominin adaptations to open habitats. PaleoAnthropology https://doi.org/10.4207/PA.2009.ART33 (2009).

    26.
    Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471–475 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Whiten, A. Culture extends the scope of evolutionary biology in the great apes. Proc. Natl Acad. Sci. USA 114, 7790–7797 (2017).
    CAS  PubMed  Google Scholar 

    29.
    Boesch, C. Wild Cultures: A Comparison between Chimpanzee and Human Cultures (Cambridge Univ. Press, 2012).

    30.
    Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).
    ADS  CAS  PubMed  Google Scholar 

    31.
    Lycett, S. J., Collard, M. & McGrew, W. C. Cladistic analyses of behavioural variation in wild Pan troglodytes: exploring the chimpanzee culture hypothesis. J. Hum. Evol. 57, 337–349 (2009).
    PubMed  Google Scholar 

    32.
    Lee, P. C. in Primate Responses to Environmental Change (ed. Box, H. O.) 39–56 (Chapman and Hall, 1991).

    33.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    34.
    Reed, K. E. & Fleagle, J. G. Geographic and climatic control of primate diversity. Proc. Natl Acad. Sci. USA 92, 7874–7876 (1995).
    ADS  CAS  PubMed  Google Scholar 

    35.
    Kay, R. F., Madden, R. H., Schaik, C. V. & Higdon, D. Primate species richness is determined by plant productivity: implications for conservation. Proc. Natl Acad. Sci. USA 94, 13023–13027 (1997).
    ADS  CAS  PubMed  Google Scholar 

    36.
    Macho, G. A. From rainforests to savannas and back: the impact of abiotic factors on non-human primate and hominin life histories. Quatern. Int. 448, 5–13 (2017).
    Google Scholar 

    37.
    Wessling, E. G. et al. Seasonal variation in physiology challenges the notion of chimpanzees (Pan troglodytes verus) as a forest-adapted species. Front. Ecol. Evol. 6, 60 (2018).
    Google Scholar 

    38.
    van Leeuwen, K. L., Hill, R. A. & Korstjens, A. H. Classifying chimpanzee (Pan troglodytes) landscapes across large-scale environmental gradients in Africa. Int. J. Primatol. https://doi.org/10.1007/s10764-020-00164-5 (2020).

    39.
    Maley, J. The African rain forest—main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proc. R. Soc. Edin. B 104, 31–73 (1996).
    Google Scholar 

    40.
    Mayr, E. & O’Hara, R. J. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40, 55–67 (1986).
    PubMed  Google Scholar 

    41.
    Plana, V. Mechanisms and tempo of evolution in the African Guineo–Congolian rainforest. Philos. Trans. R. Soc. B 359, 1585–1594 (2004).
    Google Scholar 

    42.
    Hewitt, G. M. The structure of biodiversity – insights from molecular phylogeography. Front. Zool. 1, 4 (2004).
    PubMed  PubMed Central  Google Scholar 

    43.
    Moritz, C., Patton, J. L., Schneider, C. J. & Smith, T. B. Diversification of rainforest faunas: ān integrated molecular approach. Annu. Rev. Ecol. Syst. 31, 533–563 (2000).
    Google Scholar 

    44.
    Gonder, M. K. et al. Evidence from Cameroon reveals differences in the genetic structure and histories of chimpanzee populations. Proc. Natl Acad. Sci. USA 108, 4766–4771 (2011).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Chown, S. L. & Gaston, K. J. Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol. Evol. 15, 311–315 (2000).
    CAS  PubMed  Google Scholar 

    46.
    Stenseth, N. C. The tropics: cradle or museum? Oikos 43, 417–420 (1984).
    Google Scholar 

    47.
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).
    PubMed  Google Scholar 

    48.
    Huntley, J. W., Keith, K. D., Castellanos, A. A., Musher, L. J. & Voelker, G. Underestimated and cryptic diversification patterns across Afro-tropical lowland forests. J. Biogeogr. 46, 381–391 (2019).
    Google Scholar 

    49.
    Boesch, C. et al. Chimpanzees routinely fish for algae with tools during the dry season in Bakoun, Guinea. Am. J. Primatol. 79, e22613 (2017).
    Google Scholar 

    50.
    Koops, K., Schöning, C., Isaji, M. & Hashimoto, C. Cultural differences in ant-dipping tool length between neighbouring chimpanzee communities at Kalinzu, Uganda. Sci. Rep. 5, 12456 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Möbius, Y., Boesch, C., Koops, K., Matsuzawa, T. & Humle, T. Cultural differences in army ant predation by West African chimpanzees? A comparative study of microecological variables. Anim. Behav. 76, 37–45 (2008).
    Google Scholar 

    52.
    Yamakoshi, G. & Sugiyama, Y. Pestle-pounding behavior of wild chimpanzees at Bossou, Guinea: a newly observed tool-using behavior. Primates 36, 489–500 (1995).

    53.
    Boesch, C. & Boesch-Achermann, H. The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution (Oxford Univ. Press, 2000).

    54.
    Luncz, L. V., Mundry, R. & Boesch, C. Evidence for cultural differences between neighboring chimpanzee communities. Curr. Biol. 22, 922–926 (2012).
    CAS  PubMed  Google Scholar 

    55.
    Pruetz, J. D. et al. New evidence on the tool-assisted hunting exhibited by chimpanzees (Pan troglodytes verus) in a savannah habitat at Fongoli, Sénégal. R. Soc. Open Sci. 2, 140507 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Günther, M. M. & Boesch, C. in Hands of Primates (eds Preuschoft, H. & Chivers, D. J.) 109–129 (Springer, 1993).

    57.
    Sanderson, E. W. et al. The Human Footprint and the Last of the WildThe human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891–904 (2002).
    Google Scholar 

    58.
    Laland, K. N., Odling‐Smee, J. & Feldman, M. W. Cultural niche construction and human evolution. J. Evol. Biol. 14, 22–33 (2001).
    CAS  PubMed  Google Scholar 

    59.
    Lorenzen, E. D., Masembe, C., Arctander, P. & Siegismund, H. R. A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: insights from mtDNA and the common eland antelope. J. Biogeogr. 37, 571–581 (2010).
    Google Scholar 

    60.
    Mitchell, M. W., Locatelli, S., Sesink Clee, P. R., Thomassen, H. A. & Gonder, M. K. Environmental variation and rivers govern the structure of chimpanzee genetic diversity in a biodiversity hotspot. BMC Evol. Biol. 15, 1 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Fünfstück, T. et al. The sampling scheme matters: Pan troglodytes troglodytes and P. t. schweinfurthii are characterized by clinal genetic variation rather than a strong subspecies break. Am. J. Phys. Anthropol. 156, 181–191 (2015).
    PubMed  Google Scholar 

    62.
    Hockings, K. J. et al. Apes in the Anthropocene: flexibility and survival. Trends Ecol. Evol. 30, 215–222 (2015).
    PubMed  Google Scholar 

    63.
    Thuiller, W. et al. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Change Biol. 12, 424–440 (2006).
    ADS  Google Scholar 

    64.
    Karl, T. R. & Trenberth, K. E. Modern global climate change. Science 302, 1719–1723 (2003).
    ADS  CAS  PubMed  Google Scholar 

    65.
    Keith, S. A. & Bull, J. W. Animal culture impacts species’ capacity to realise climate-driven range shifts. Ecography 40, 296–304 (2017).
    Google Scholar 

    66.
    Brakes, P. et al. Animal cultures matter for conservation. Science 363, 1032–1034 (2019).
    ADS  CAS  PubMed  Google Scholar 

    67.
    Kühl, H. S. et al. The Critically Endangered western chimpanzee declines by 80%. Am. J. Primatol. 79, e22681 (2017).
    Google Scholar 

    68.
    Sesink Clee, P. R. et al. Chimpanzee population structure in Cameroon and Nigeria is associated with habitat variation that may be lost under climate change. BMC Evol. Biol. 15, 2 (2015).
    PubMed  PubMed Central  Google Scholar 

    69.
    Zinner, D., Wertheimer, J., Liedigk, R., Groeneveld, L. F. & Roos, C. Baboon phylogeny as inferred from complete mitochondrial genomes. Am. J. Phys. Anthropol. 150, 133–140 (2013).
    PubMed  PubMed Central  Google Scholar 

    70.
    Jolly, C. J. A proper study for mankind: analogies from the Papionin monkeys and their implications for human evolution. Am. J. Phys. Anthropol. 116, 177–204 (2001).
    Google Scholar 

    71.
    Wildlife Conservation Society, Center for International Earth Science Information Network & Columbia University. Last of the Wild Project, version 2: global human footprint dataset (geographic). SEDAC https://doi.org/10.7927/H4M61H5F (2005).

    72.
    Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
    Google Scholar 

    73.
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
    Google Scholar 

    74.
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC, 2016).

    75.
    Bürkner, P.-C. brms: an R package for bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 

    76.
    Gelman, A. et al. Bayesian Data Analysis 3rd edn (CRC, 2014).

    77.
    Humle, T., Maisels, F., Oates, J. F., Plumptre, A. & Williamson, E. A. Pan troglodytes. The IUCN red list of threatened species. IUCN https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T15933A17964454.en (2018). More

  • in

    Deforestation and reforestation impacts on soils in the tropics

    1.
    Koch, A. et al. Soil security: solving the global soil crisis. Glob. Policy 4, 434–441 (2013).
    Google Scholar 
    2.
    Vogel, H.-J. et al. A systemic approach for modeling soil functions. SOIL 4, 83–92 (2018).
    Google Scholar 

    3.
    Corre, M. D., Veldkamp, E., Arnold, J. & Wright, S. J. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91, 1715–1729 (2010).
    Google Scholar 

    4.
    Cusack, D. F., Markesteijn, L., Condit, R., Lewis, O. T. & Turner, B. L. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots. Biogeochemistry 137, 253–266 (2018).
    Google Scholar 

    5.
    Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).
    Google Scholar 

    6.
    Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).
    Google Scholar 

    7.
    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).
    Google Scholar 

    8.
    Chaves, J. et al. Land management impacts on runoff sources in small Amazon watersheds. Hydrol. Process. 22, 1766–1775 (2008).
    Google Scholar 

    9.
    Nepstad, D. C. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994).
    Google Scholar 

    10.
    Elsenbeer, H. Hydrologic flowpaths in tropical rainforest soilscapes-a review. Hydrol. Process. 15, 1751–1759 (2001).
    Google Scholar 

    11.
    Markewitz, D., Davidson, E., Moutinho, P. & Nepstad, D. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol. Appl. 14, 177–199 (2004).
    Google Scholar 

    12.
    Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).
    Google Scholar 

    13.
    Clark, D. B., Palmer, M. W. & Clark, D. A. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80, 2662–2675 (1999).
    Google Scholar 

    14.
    Jones, M. M. et al. Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155, 593–604 (2008).
    Google Scholar 

    15.
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).
    Google Scholar 

    16.
    Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).
    Google Scholar 

    17.
    Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).
    Google Scholar 

    18.
    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).
    Google Scholar 

    19.
    Jobbágy, E. G. & Jackson, R. B. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53, 51–77 (2001).
    Google Scholar 

    20.
    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).
    Google Scholar 

    21.
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
    Google Scholar 

    22.
    Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. & Boivin, N. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3, 17093 (2017).
    Google Scholar 

    23.
    Ribeiro Filho, A. A., Adams, C., Manfredini, S., Aguilar, R. & Neves, W. A. Dynamics of soil chemical properties in shifting cultivation systems in the tropics: a meta-analysis. Soil Use Manag. 31, 474–482 (2015).
    Google Scholar 

    24.
    Jarosz, L. Defining and explaining tropical deforestation: shifting cultivation and population growth in colonial Madagascar (1896–1940). Econ. Geogr. 69, 366–379 (1993).
    Google Scholar 

    25.
    Lambin, E. F. et al. The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Change 11, 261–269 (2001).
    Google Scholar 

    26.
    Rudel, T. K., Defries, R., Asner, G. P. & Laurance, W. F. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 23, 1396–1405 (2009).
    Google Scholar 

    27.
    Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).
    Google Scholar 

    28.
    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).
    Google Scholar 

    29.
    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).
    Google Scholar 

    30.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).
    Google Scholar 

    31.
    Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. & Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience 50, 667–680 (2000).
    Google Scholar 

    32.
    Kurniawan, S. et al. Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences 15, 5131–5154 (2018).
    Google Scholar 

    33.
    Detwiler, R. P. Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2, 67–93 (1986).
    Google Scholar 

    34.
    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).
    Google Scholar 

    35.
    Davidson, E. A. & Ackerman, I. L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193 (1993).
    Google Scholar 

    36.
    Veldkamp, E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci. Soc. Am. J. 58, 175–180 (1994).
    Google Scholar 

    37.
    Nye, P. H. & Greenland, D. J. Changes in the soil after clearing tropical forest. Plant Soil 21, 101–112 (1964).
    Google Scholar 

    38.
    van Straaten, O. et al. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl Acad. Sci. USA 112, 9956–9960 (2015).
    Google Scholar 

    39.
    Tugel, A. J. et al. Soil change, soil survey, and natural resources decision making. Soil Sci. Soc. Am. J. 69, 738–747 (2005).
    Google Scholar 

    40.
    Sanchez, P. A. Properties and Management of Soils in the Tropics 2nd edn (Cambridge Univ. Press, 2019).

    41.
    van Breemen, N., Mulder, J. & Driscoll, C. T. Acidification and alkalinization of soils. Plant Soil 75, 283–308 (1983).
    Google Scholar 

    42.
    Andriesse, J. P. & Schelhaas, R. M. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. III. The effects of land clearing through burning on fertility level. Agric. Ecosyst. Environ. 19, 311–332 (1987).
    Google Scholar 

    43.
    Dechert, G., Veldkamp, E. & Brumme, R. Are partial nutrient balances suitable to evaluate nutrient sustainability of land use systems? Results from a case study in Central Sulawesi, Indonesia. Nutr. Cycling Agroecosyst. 72, 201–212 (2005).
    Google Scholar 

    44.
    Neill, C. et al. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol. Appl. 7, 1216–1225 (1997).
    Google Scholar 

    45.
    Allen, K., Corre, M. D., Kurniawan, S., Utami, S. R. & Veldkamp, E. Spatial variability surpasses land-use change effects on soil biochemical properties of converted lowland landscapes in Sumatra, Indonesia. Geoderma 284, 42–50 (2016).
    Google Scholar 

    46.
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).
    Google Scholar 

    47.
    Sanchez P. A. & Logan T. J. Myths and Science About the Chemistry and Fertility of Soils in the Tropics (Soil Science Society of America and American Society of Agronomy, 1992).

    48.
    Stahl, C. et al. Continuous soil carbon storage of old permanent pastures in Amazonia. Glob. Change Biol. 23, 3382–3392 (2017).
    Google Scholar 

    49.
    Bautista-Cruz, A. & del Castillo, R. F. Soil changes during secondary succession in a tropical montane cloud forest area. Soil Sci. Soc. Am. J. 69, 906–914 (2005).
    Google Scholar 

    50.
    Marin-Spiotta, E., Silver, W. L., Swanston, C. W. & Ostertag, R. Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob. Change Biol. 15, 1584–1597 (2009).
    Google Scholar 

    51.
    Silver, W. L. et al. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3, 193–209 (2000).
    Google Scholar 

    52.
    Oades, J. & Waters, A. Aggregate hierarchy in soils. Soil Res. 29, 815–828 (1991).
    Google Scholar 

    53.
    Chauvel, A., Grimaldi, M. & Tessier, D. Changes in soil pore-space distribution following deforestation and revegetation: an example from the Central Amazon Basin, Brazil. For. Ecol. Manag. 38, 259–271 (1991).
    Google Scholar 

    54.
    Kayombo, B. & Lal, R. Effects of soil compaction by rolling on soil structure and development of maize in no-till and disc ploughing systems on a tropical alfisol. Soil. Tillage Res. 7, 117–134 (1986).
    Google Scholar 

    55.
    Lal, R. Effects of macrofauna on soil properties in tropical ecosystems. Agric. Ecosyst. Environ. 24, 101–116 (1988).
    Google Scholar 

    56.
    Ghuman, B. S., Lal, R. & Shearer, W. Land clearing and use in the humid Nigerian tropics: I. Soil physical properties. Soil Sci. Soc. Am. J. 55, 178–183 (1991).
    Google Scholar 

    57.
    Minasny, B. & Hartemink, A. E. Predicting soil properties in the tropics. Earth Sci. Rev. 106, 52–62 (2011).
    Google Scholar 

    58.
    Hombegowda, H. C., van Straaten, O., Köhler, M. & Hölscher, D. On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India. SOIL 2, 13–23 (2016).
    Google Scholar 

    59.
    Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).
    Google Scholar 

    60.
    López-Ulloa, M., Veldkamp, E. & de Koning, G. H. J. Soil carbon stabilization in converted tropical pastures and forests depends on soil type. Soil Sci. Soc. Am. J. 69, 1110–1117 (2005).
    Google Scholar 

    61.
    Paul, S., Flessa, H., Veldkamp, E. & López-Ulloa, M. Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry 87, 247–263 (2008).
    Google Scholar 

    62.
    Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29, 535–562 (2001).
    Google Scholar 

    63.
    Douglas, P. M. J. et al. A long-term decrease in the persistence of soil carbon caused by ancient Maya land use. Nat. Geosci. 11, 645–649 (2018).
    Google Scholar 

    64.
    Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013).
    Google Scholar 

    65.
    Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P., Nepstad, D. C. & Martinelli, L. A. Belowground cycling of carbon in forests and pastures of eastern Amazonia. Glob. Biogeochem. Cycles 9, 515–528 (1995).
    Google Scholar 

    66.
    Veldkamp, E., Becker, A., Schwendenmann, L., Clark, D. A. & Schulte-Bisping, H. Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Glob. Change Biol. 9, 1171–1184 (2003).
    Google Scholar 

    67.
    Intergovernmental Panel on Climate Change (IPCC) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).

    68.
    Reiners, W. A., Bouwman, A. F., Parsons, W. F. J. & Keller, M. Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol. Appl. 4, 363–377 (1994).
    Google Scholar 

    69.
    Hamer, U., Potthast, K., Burneo, J. I. & Makeschin, F. Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after conversion of forest to pasture. Biogeochemistry 112, 495–510 (2013).
    Google Scholar 

    70.
    Veldkamp, E., Davidson, E., Erickson, H., Keller, M. & Weitz, A. Soil nitrogen cycling and nitrogen oxide emissions along a pasture chronosequence in the humid tropics of Costa Rica. Soil Biol. Biochem. 31, 387–394 (1999).
    Google Scholar 

    71.
    Wick, B., Veldkamp, E., de Mello, W. Z., Keller, M. & Crill, P. Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil. Biogeosciences 2, 175–187 (2005).
    Google Scholar 

    72.
    van Dam, D., van Breemen, N. & Veldkamp, E. Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry 39, 343–375 (1997).
    Google Scholar 

    73.
    Fisher, M. J. et al. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371, 236–238 (1994).
    Google Scholar 

    74.
    Navarrete, D., Sitch, S., Aragão, L. E. O. C. & Pedroni, L. Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices. Glob. Change Biol. 22, 3503–3517 (2016).
    Google Scholar 

    75.
    Chiti, T., Grieco, E., Perugini, L., Rey, A. & Valentini, R. Effect of the replacement of tropical forests with tree plantations on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil 375, 47–59 (2014).
    Google Scholar 

    76.
    Kirsten, M., Kimaro, D. N., Feger, K.-H. & Kalbitz, K. Impact of land use on soil organic carbon stocks in the humid tropics of NE Tanzania. J. Plant. Nutr. Soil Sci. 182, 625–636 (2019).
    Google Scholar 

    77.
    Kassa, H., Dondeyne, S., Poesen, J., Frankl, A. & Nyssen, J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: the case of the Gacheb catchment in the White Nile Basin, Ethiopia. Agric. Ecosyst. Environ. 247, 273–282 (2017).
    Google Scholar 

    78.
    Dechert, G., Veldkamp, E. & Anas, I. Is soil degradation unrelated to deforestation? Examining soil parameters of land use systems in upland Central Sulawesi, Indonesia. Plant Soil 265, 197–209 (2004).
    Google Scholar 

    79.
    Hiremath, A. J. & Ewel, J. J. Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems 4, 669–682 (2001).
    Google Scholar 

    80.
    Pineiro, G., Oesterheld, M., Batista, W. B. & Paruelo, J. M. Opposite changes of whole-soil vs. pools C:N ratios: a case of Simpson’s paradox with implications on nitrogen cycling. Glob. Change Biol. 12, 804–809 (2006).
    Google Scholar 

    81.
    de Koning, G. H. J., Veldkamp, E. & López-Ulloa, M. Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Glob. Biogeochem. Cycles 17, 1098 (2003).
    Google Scholar 

    82.
    Silver, W. L., Ostertag, R. & Lugo, A. E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor. Ecol. 8, 394–407 (2000).
    Google Scholar 

    83.
    Krashevska, V. et al. Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter type. Oecologia 187, 255–266 (2018).
    Google Scholar 

    84.
    Allen, K., Corre, M. D., Tjoa, A. & Veldkamp, E. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE 10, e0133325 (2015).
    Google Scholar 

    85.
    Brinkmann, N. et al. Intensive tropical land use massively shifts soil fungal communities. Sci. Rep. 9, 3403 (2019).
    Google Scholar 

    86.
    Berkelmann, D. et al. How rainforest conversion to agricultural systems in Sumatra (Indonesia) affects active soil bacterial communities. Front. Microbiol. 9, 2381 (2018).
    Google Scholar 

    87.
    Schneider, D. et al. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Front. Microbiol. 6, 1339 (2015).
    Google Scholar 

    88.
    Janos, D. P. Mycorrhizae influence tropical succession. Biotropica 12, 56–64 (1980).
    Google Scholar 

    89.
    Bachelot, B. et al. Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status. Ecology 99, 607–620 (2018).
    Google Scholar 

    90.
    Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).
    Google Scholar 

    91.
    Ostertag, R., Marín-Spiotta, E., Silver, W. L. & Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11, 701–714 (2008).
    Google Scholar 

    92.
    Cole, R. J., Selmants, P., Khan, S. & Chazdon, R. Litter dynamics recover faster than arthropod biodiversity during tropical forest succession. Biotropica 52, 22–33 (2020).
    Google Scholar 

    93.
    Zou, X. & Gonzalez, G. Changes in earthworm density and community structure during secondary succession in abandoned tropical pastures. Soil Biol. Biochem. 29, 627–629 (1997).
    Google Scholar 

    94.
    Stone, M. J., Shoo, L., Stork, N. E., Sheldon, F. & Catterall, C. P. Recovery of decomposition rates and decomposer invertebrates during rain forest restoration on disused pasture. Biotropica 52, 230–241 (2020).
    Google Scholar 

    95.
    Meloni, F. & Varanda, E. M. Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forests: Arthropod colonization in Atlantic forest soils. Restor. Ecol. 23, 690–697 (2015).
    Google Scholar 

    96.
    Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis: Nutrients, climate and tropical NPP. Ecol. Lett. 14, 939–947 (2011).
    Google Scholar 

    97.
    Matson, A. L., Corre, M. D., Burneo, J. I. & Veldkamp, E. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 122, 281–294 (2015).
    Google Scholar 

    98.
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).
    Google Scholar 

    99.
    Cusack, D. F., Silver, W. & McDowell, W. H. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems 12, 1299–1315 (2009).
    Google Scholar 

    100.
    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).
    Google Scholar 

    101.
    Kennedy, M. J., Chadwick, O. A., Vitousek, P. M., Derry, L. A. & Hendricks, D. M. Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology 26, 1015–1018 (1998).
    Google Scholar 

    102.
    Bristow, C. S., Hudson-Edwards, K. A. & Chappell, A. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37, L14807 (2010).
    Google Scholar 

    103.
    Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T. & Caner, L. Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Appl. Clay Sci. 104, 196–204 (2015).
    Google Scholar 

    104.
    Hedin, L. O., Vitousek, P. M. & Matson, P. A. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).
    Google Scholar 

    105.
    Mackensen, J., Hölscher, D., Klinge, R. & Fölster, H. Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. For. Ecol. Manag. 86, 121–128 (1996).
    Google Scholar 

    106.
    Klinge, R., Araujo Martins, A. R., Mackensen, J. & Fölster, H. Element loss on rain forest conversion in East Amazonia: comparison of balances of stores and fluxes. Biogeochemistry 69, 63–82 (2004).
    Google Scholar 

    107.
    Weitz, A. M., Veldkamp, E., Keller, M., Neff, J. & Crill, P. M. Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest. J. Geophys. Res. Atmos. 103, 28047–28058 (1998).
    Google Scholar 

    108.
    Moebius-Clune, B. N. et al. Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agric. Ecosyst. Environ. 141, 86–99 (2011).
    Google Scholar 

    109.
    Ngoze, S. et al. Nutrient constraints to tropical agroecosystem productivity in long-term degrading soils. Glob. Change Biol. 14, 2810–2822 (2008).
    Google Scholar 

    110.
    Haileslassie, A., Priess, J. A., Veldkamp, E. & Lesschen, J. P. Nutrient flows and balances at the field and farm scale: Exploring effects of land-use strategies and access to resources. Agric. Syst. 94, 459–470 (2007).
    Google Scholar 

    111.
    Kassa, H., Dondeyne, S., Poesen, J., Frankl, A. & Nyssen, J. Agro-ecological implications of forest and agroforestry systems conversion to cereal-based farming systems in the White Nile Basin, Ethiopia. Agroecol. Sustain. Food Syst. 42, 149–168 (2018).
    Google Scholar 

    112.
    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Google Scholar 

    113.
    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).
    Google Scholar 

    114.
    Drake, T. W. et al. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat. Geosci. 12, 541–546 (2019).
    Google Scholar 

    115.
    Meijide, A. et al. Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat. Commun. 11, 1089 (2020).
    Google Scholar 

    116.
    Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 1–63 (2007).
    Google Scholar 

    117.
    Dutaur, L. & Verchot, L. V. A global inventory of the soil CH4 sink. Glob. Biogeochem. Cycles 21, GB4013 (2007).
    Google Scholar 

    118.
    Veldkamp, E., Koehler, B. & Corre, M. D. Indications of nitrogen-limited methane uptake in tropical forest soils. Biogeosciences 10, 5367–5379 (2013).
    Google Scholar 

    119.
    Matson, A. L., Corre, M. D., Langs, K. & Veldkamp, E. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama. Biogeosciences 14, 3509–3524 (2017).
    Google Scholar 

    120.
    Koehler, B. et al. An in-depth look into a tropical lowland forest soil: nitrogen-addition effects on the contents of N2O, CO2 and CH4 and N2O isotopic signatures down to 2-m depth. Biogeochemistry 111, 695–713 (2012).
    Google Scholar 

    121.
    Hassler, E. et al. Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences 12, 5831–5852 (2015).
    Google Scholar 

    122.
    Keller, M. & Reiners, W. A. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob. Biogeochem. Cycles 8, 399–409 (1994).
    Google Scholar 

    123.
    Veldkamp, E., Weitz, A. M. & Keller, M. Management effects on methane fluxes in humid tropical pasture soils. Soil Biol. Biochem. 33, 1493–1499 (2001).
    Google Scholar 

    124.
    Tian, H. et al. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst. Health Sustain. 1, 1–20 (2015).
    Google Scholar 

    125.
    Veldkamp, E., Purbopuspito, J., Corre, M. D., Brumme, R. & Murdiyarso, D. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia. J. Geophys. Res. Biogeosci. 113, G02003 (2008).
    Google Scholar 

    126.
    Weitz, A. M., Linder, E., Frolking, S., Crill, P. M. & Keller, M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil. Biol. Biochem. 33, 1077–1093 (2001).
    Google Scholar 

    127.
    Keesstra, S. et al. Soil as a filter for groundwater quality. Curr. Opin. Environ. Sustain. 4, 507–516 (2012).
    Google Scholar 

    128.
    Schwendenmann, L. & Veldkamp, E. The role of dissolved organic carbon, dissolved organic nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems 8, 339–351 (2005).
    Google Scholar 

    129.
    Lehmann, J. et al. Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. Soil Use Manag. 20, 163–172 (2004).
    Google Scholar 

    130.
    Neill, C. et al. Watershed responses to Amazon soya bean cropland expansion and intensification. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120425 (2013).
    Google Scholar 

    131.
    Rasiah, V. & Armour, J. D. Nitrate accumulation under cropping in the Ferrosols of Far North Queensland wet tropics. Aust. J. Soil Res. 39, 329–341 (2001).
    Google Scholar 

    132.
    Goller, R., Wilcke, W., Fleischbein, K., Valarezo, C. & Zech, W. Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a montane forest in Ecuador. Biogeochemistry 77, 57–89 (2006).
    Google Scholar 

    133.
    Aragão, L. E. O. C. The rainforest’s water pump. Nature 489, 217–218 (2012).
    Google Scholar 

    134.
    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).
    Google Scholar 

    135.
    Giertz, S., Junge, B. & Diekkrüger, B. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys. Chem. Earth Parts A/B/C 30, 485–496 (2005).
    Google Scholar 

    136.
    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).
    Google Scholar 

    137.
    Kassa, H., Frankl, A., Dondeyne, S., Poesen, J. & Nyssen, J. Sediment yield at southwest Ethiopia’s forest frontier. Land Degrad. Dev. 30, 695–705 (2019).
    Google Scholar 

    138.
    Molina, A., Vanacker, V., Balthazar, V., Mora, D. & Govers, G. Complex land cover change, water and sediment yield in a degraded Andean environment. J. Hydrol. 472–473, 25–35 (2012).
    Google Scholar 

    139.
    Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V. & Bernoux, M. Soil erosion in the humid tropics: A systematic quantitative review. Agric. Ecosyst. Environ. 203, 127–139 (2015).
    Google Scholar 

    140.
    Islam, K. R. & Weil, R. R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosyst. Environ. 79, 9–16 (2000).
    Google Scholar 

    141.
    Le Bissonnais, Y. et al. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics. Plant Soil 424, 303–317 (2018).
    Google Scholar 

    142.
    Garcı́a-Oliva, F., Sanford, R. L. & Kelly, E. Effects of slash-and-burn management on soil aggregate organic C and N in a tropical deciduous forest. Geoderma 88, 1–12 (1999).
    Google Scholar 

    143.
    Sidle, R. C. et al. Erosion processes in steep terrain — Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 224, 199–225 (2006).
    Google Scholar 

    144.
    Nagy, R. C. et al. Soil carbon dynamics in soybean cropland and forests in Mato Grosso, Brazil. J. Geophys. Res. Biogeosci. 123, 18–31 (2018).
    Google Scholar 

    145.
    Driessen, P. M. Lecture Notes on the Major Soils of the World (Food and Agriculture Organization of the United Nations, 2001).

    146.
    Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. J. Soil. Sci. 33, 141–163 (1982).
    Google Scholar 

    147.
    Haileslassie, A., Priess, J., Veldkamp, E., Teketay, D. & Lesschen, J. P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 108, 1–16 (2005).
    Google Scholar 

    148.
    Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).
    Google Scholar 

    149.
    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).
    Google Scholar 

    150.
    Powers, J. S. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).
    Google Scholar 

    151.
    Russell, A. E. & Raich, J. W. Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species. Proc. Natl. Acad. Sci. USA 109, 10398–10402 (2012).
    Google Scholar 

    152.
    Saynes, V., Hidalgo, C., Etchevers, J. D. & Campo, J. E. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Appl. Soil. Ecol. 29, 282–289 (2005).
    Google Scholar 

    153.
    Barron, A. R. et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat. Geosci. 2, 42–45 (2009).
    Google Scholar 

    154.
    Szott, L. T., Palm, C. A. & Buresh, R. J. Ecosystem fertility and fallow function in the humid and subhumid tropics. Agrofor. Syst. 47, 163–196 (1999).
    Google Scholar 

    155.
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).
    Google Scholar 

    156.
    Lawrence, D. & Schlesinger, W. H. Changes in soil phosphorus during 200 years of shifting cultivation in Indonesia. Ecology 82, 2769–2780 (2001).
    Google Scholar 

    157.
    Markewitz, D., Figueiredo, R., de, O. & Davidson, E. A. CO2-driven cation leaching after tropical forest clearing. J. Geochem. Explor. 88, 214–219 (2006).
    Google Scholar 

    158.
    Markewitz, D. et al. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410, 802–805 (2001).
    Google Scholar 

    159.
    Orihuela-Belmonte, D. E. et al. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 171, 72–84 (2013).
    Google Scholar 

    160.
    Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).
    Google Scholar 

    161.
    Lu, D., Moran, E. & Mausel, P. Linking Amazonian secondary succession forest growth to soil properties. Land Degrad. Dev. 13, 331–343 (2002).
    Google Scholar 

    162.
    Mekuria, W., Veldkamp, E., Corre, M. D. & Haile, M. Restoration of ecosystem carbon stocks following exclosure establishment in communal grazing lands in Tigray, Ethiopia. Soil Sci. Soc. Am. J. 75, 246–256 (2011).
    Google Scholar 

    163.
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
    Google Scholar 

    164.
    Palm, C. A. et al. Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Glob. Biogeochem. Cycles 16, 1073 (2002).
    Google Scholar 

    165.
    Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310, 28–61 (2005).
    Google Scholar 

    166.
    Ogden, F. L., Crouch, T. D., Stallard, R. F. & Hall, J. S. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resour. Res. 49, 8443–8462 (2013).
    Google Scholar 

    167.
    Lacombe, G. et al. Contradictory hydrological impacts of afforestation in the humid tropics evidenced by long-term field monitoring and simulation modelling. Hydrol. Earth Syst. Sci. 20, 2691–2704 (2016).
    Google Scholar 

    168.
    de Blécourt, M., Gröngröft, A., Baumann, S. & Eschenbach, A. Losses in soil organic carbon stocks and soil fertility due to deforestation for low-input agriculture in semi-arid southern Africa. J. Arid. Environ. 165, 88–96 (2019).
    Google Scholar 

    169.
    Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl Acad. Sci. USA 115, 3261–3266 (2018).
    Google Scholar 

    170.
    Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).
    Google Scholar 

    171.
    Beach, T., Dunning, N., Luzzadder-Beach, S., Cook, D. E. & Lohse, J. Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. Catena 65, 166–178 (2006).
    Google Scholar 

    172.
    Lombardo, U. & Prümers, H. Pre-Columbian human occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. J. Archaeol. Sci. 37, 1875–1885 (2010).
    Google Scholar 

    173.
    Arroyo-Kalin, M. The Amazonian formative: crop domestication and anthropogenic soils. Diversity 2, 473–504 (2010).
    Google Scholar 

    174.
    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).
    Google Scholar 

    175.
    Richter, D. D. & Markewitz, D. How deep is soil? BioScience 45, 600–609 (1995).
    Google Scholar 

    176.
    Borneman, J. & Triplett, E. W. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63, 2647–2653 (1997).
    Google Scholar 

    177.
    Powers, J. S. & Veldkamp, E. Regional variation in soil carbon and δ13C in forests and pastures of northeastern Costa Rica. Biogeochemistry 72, 315–336 (2005).
    Google Scholar 

    178.
    Lucas, Y. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu. Rev. Earth Planet. Sci. 29, 135–163 (2001).
    Google Scholar 

    179.
    Kleber, M., Schwendenmann, L., Veldkamp, E., Rößner, J. & Jahn, R. Halloysite versus gibbsite: Silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138, 1–11 (2007).
    Google Scholar 

    180.
    Lucas, Y., Luizao, F. J., Chauvel, A., Rouiller, J. & Nahon, D. The relation between biological activity of the rain forest and mineral composition of soils. Science 260, 521–523 (1993).
    Google Scholar 

    181.
    Bouma, J. et al. Hydropedological insights when considering catchment classification. Hydrol. Earth Syst. Sci. 15, 1909–1919 (2011).
    Google Scholar 

    182.
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).
    Google Scholar 

    183.
    Jenny, H. Factors of Soil Formation. A System of Quantitative Pedology (McGraw-Hill, 1941).

    184.
    de Blécourt, M., Brumme, R., Xu, J., Corre, M. D. & Veldkamp, E. Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS ONE 8, e69357 (2013).
    Google Scholar 

    185.
    Darras, K. F. A. et al. Reducing fertilizer and avoiding herbicides in oil palm plantations — Ecological and economic valuations. Front. For. Glob. Change 2, 65 (2019).
    Google Scholar 

    186.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    Google Scholar 

    187.
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    Google Scholar 

    188.
    IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, 2015).

    189.
    FAO. Global Forest Resources Assessment 2015: How are the World’s Forests Changing? (FAO, 2016).

    190.
    Saikh, H., Varadachari, C. & Ghosh, K. Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: a case study in Simlipal National Park, India. Plant Soil 198, 137–145 (1998).
    Google Scholar 

    191.
    Paul, S., Veldkamp, E. & Flessa, H. Differential response of mineral-associated organic matter in tropical soils formed in volcanic ashes and marine Tertiary sediment to treatment with HCl, NaOCl, and Na4P2O7. Soil Biol. Biochem. 40, 1846–1855 (2008).
    Google Scholar 

    192.
    Soil Survey Staff. Keys to Soil Taxonomy (US Department of Agriculture, Natural Resources Conservation Service, 2014).

    193.
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
    Google Scholar 

    194.
    Alston, L. J., Libecap, G. D. & Mueller, B. Land reform policies, the sources of violent conflict, and implications for deforestation in the Brazilian Amazon. J. Environ. Econ. Manag. 39, 162–188 (2000).
    Google Scholar 

    195.
    Gatto, M., Wollni, M. & Qaim, M. Oil palm boom and land-use dynamics in Indonesia: The role of policies and socioeconomic factors. Land Use Policy 46, 292–303 (2015).
    Google Scholar 

    196.
    Jantalia, C. P. et al. Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil Tillage Res. 95, 97–109 (2007).
    Google Scholar 

    197.
    Six, J. et al. Soil organic matter, biota and aggregation in temperate and tropical soils – Effects of no-tillage. Agronomie 22, 755–775 (2002).
    Google Scholar 

    198.
    Comte, I. et al. Physicochemical properties of soils in the Brazilian Amazon following fire-free land preparation and slash-and-burn practices. Agric. Ecosyst. Environ. 156, 108–115 (2012).
    Google Scholar 

    199.
    Abu Bakar, R., Darus, S. Z., Kulaseharan, S. & Jamaluddin, N. Effects of ten year application of empty fruit bunches in an oil palm plantation on soil chemical properties. Nutr. Cycling Agroecosyst. 89, 341–349 (2011).
    Google Scholar 

    200.
    Clay, D., Reardon, T. & Kangasniemi, J. Sustainable intensification in the highland tropics: Rwandan farmers’ investments in land conservation and soil fertility. Econ. Dev. Cult. Change 46, 351–377 (1998).
    Google Scholar  More

  • in

    Planktonic foraminifera genomic variations reflect paleoceanographic changes in the Arctic: evidence from sedimentary ancient DNA

    1.
    Berger, W. H. & Parker, F. L. Diversity of planktonic foraminifera in deep-sea sediments. Science 186, 1345–1347 (1970).
    ADS  Google Scholar 
    2.
    Sadatzki, H. et al. Sea-ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Sci. Adv. 5, eaau6174 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Rasmussen, T. L., Thomsen, E. & Moros, M. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate. Sci. Rep. 6, 20535 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic Water. Science 331, 450–453 (2011).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Schiebel, R. & Hemleben, C. Planktic foraminifers in the modern ocean (Springer, Berlin, 2017).
    Google Scholar 

    6.
    Darling, K. F. et al. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405, 43–47 (2000).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Darling, K. F. & Wade, C. M. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar. Micropaleontol. 67, 216–238 (2008).
    ADS  Google Scholar 

    8.
    Darling, K. F., Kucera, M., Pudsey, C. J. & Wade, C. M. Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. PNAS 101, 7657–7662 (2004).
    ADS  CAS  PubMed  Google Scholar 

    9.
    De Vargas, C., Bonzon, M., Rees, N. W., Pawlowski, J. & Zaninetti, L. A molecular approach to biodiversity and biogeography in the planktonic foraminifer Globigerinella siphonifera (d’Orbigny). Mar. Micropaleontol. 45, 101–116 (2002).
    ADS  Google Scholar 

    10.
    Morard, R. et al. Morpological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Mar. Micropaleontol. 71, 148–165 (2009).
    ADS  Google Scholar 

    11.
    Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Res. 15, 1472–1485 (2015).
    CAS  Google Scholar 

    12.
    Weber, A.-T. & Pawlowski, J. Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS ONE 8, e56739 (2014).
    ADS  Google Scholar 

    13.
    Morard, R. et al. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci. Rep. 8, 2539 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    14.
    Morard, R., Vollmar, N. M., Greco, M. & Kucera, M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS ONE 14, e0213936 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Morard, R. et al. Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology. Biogeosciences 14, 2741 (2017).
    ADS  CAS  Google Scholar 

    16.
    Boere, A. C., Rijpstra, W. I. C., De Lange, G. J., Sinnighe Damsté, J. S. & Coolen, M. J. L. Preservation potential of ancient plankton DNA in Pleistocene marine sediments. Geobiol 9, 377–393 (2011).
    CAS  Google Scholar 

    17.
    Coolen, M. J. L. 7000 years of Emiliania Huxleyi Viruses in the Black Sea. Science 333, 451–452 (2011).
    ADS  CAS  PubMed  Google Scholar 

    18.
    Lejzerowicz, F. et al. Ancient DNA complements microfossil recorde in deep-sea subsurface sediments. Biol. Lett. 9, 20130283 (2013).
    PubMed  PubMed Central  Google Scholar 

    19.
    Kirkpatrick, J. B., Walsh, E. A. & D’Hondt, S. Fossil DNA persisntence and decay in marine sediment over hundred-thousand-year to million-year time scales. Geology 44, 615–618 (2016).
    ADS  CAS  Google Scholar 

    20.
    Orsi, W. D. et al. Climate oscillations reflected within the microbiome of Arabian Sea sediments. Sci. Rep. 7, 6040 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    21.
    More, K. D., Giosan, L., Grice, K. & Coolen, M. J. Holocene paleodepositional changes reflected in the sedimentary microbiome of the Black Sea. Geobiology 7, 436–448. https://doi.org/10.1111/gbi.12338 (2019).
    Article  Google Scholar 

    22.
    Coolen, M. J. L. et al. Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. PNAS 110, 8609–8614 (2013).
    ADS  CAS  PubMed  Google Scholar 

    23.
    De Schepper, S. et al. The potential of sedimentary ancient DNA for reconstructing past sea-ice evolution. ISME J. 13, 2566–2577 (2019).
    PubMed  PubMed Central  Google Scholar 

    24.
    Pawłowska, J. et al. Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last millennium. Geobiology 12, 277–288 (2014).
    PubMed  Google Scholar 

    25.
    Pawłowska, J. et al. Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA. Clim. Past 12, 1459–1472 (2016).
    Google Scholar 

    26.
    Kucera, M., Rosell-Mele, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 24, 951–998 (2005).
    ADS  Google Scholar 

    27.
    Pflaumann, U., Duprat, J., Pujol, C. & Labeyrie, L. D. SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11, 15–35 (1996).
    ADS  Google Scholar 

    28.
    Bauch, H. A. & Kandiano, E. S. Evidence for early warming and cooling in North Atlantic surface waters during the last interglacial. Paleoceanogr. Paleocl. 22, PA1201 (2007).
    ADS  Google Scholar 

    29.
    Metcalfe, B., Feldmeijer, W. & Ganssen, G. M. Oxygen isotope variability of planktonic foraminifera provide clues to past upper ocean seasonal variability. Paleoceanogr. Paleocl. 34, 374–393 (2019).
    Google Scholar 

    30.
    Sarnthein, M., Pflaumann, U. & Weinelt, M. Past extent of sea-ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography 18, 1047. https://doi.org/10.1029/2002PA000771 (2003).
    ADS  Article  Google Scholar 

    31.
    El Bani Altuna, N., Pieńkowski, A. J., Eynaud, F. & Thiessen, R. The morphotypes of Neogloboquadrina pachyderma: Isotopic signature and distribution patterns in the Canadian Arctic Archipelago and adjacent regions. Mar. Micropaleontol. 142, 13–24 (2018).
    ADS  Google Scholar 

    32.
    Darling, K. F., Kucera, M. & Wade, C. M. Global molecular phylogeography reveals persistent Arctic circumpolar isolation in a marine planktonic protist. PNAS 104, 5002–5007 (2007).
    ADS  CAS  PubMed  Google Scholar 

    33.
    Greco, M., Jonkers, L., Kretschmer, K., Bijma, J. & Kucera, M. Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations. Biogeosciences 16, 3425–3437 (2019).
    ADS  CAS  Google Scholar 

    34.
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Callahan, B., McMurdie, P. & Holmes, S. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
    PubMed  PubMed Central  Google Scholar 

    36.
    Apotheloz-Perret-Gentil, L. Diversity of Foraminifera and applications of protist metabarcoding in bioindication: focus on freshwater environment. PhD Thesis, University of Geneva, no. Sc. 5087 (2017).

    37.
    Decelle, J., Romac, S., Sasaki, E., Not, F. & Mahé, F. Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (radiolarians) assessed by high-throughput sequencing. PLoS ONE 9, e104297 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    38.
    Gong, J., Dong, J., Liu, X. & Massana, R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164, 369–379 (2013).
    CAS  PubMed  Google Scholar 

    39.
    Andreasen, K. & Baldwin, B. G. Nuclear ribosomal DNA sequence polymorphism and hybridization in checker mallows (Sidalcea, Malvaceae). Mol. Phylogenet. Evol. 29, 563–581 (2003).
    CAS  PubMed  Google Scholar 

    40.
    Pillet, L., Fontaine, D. & Pawlowski, J. Intra-genomic ribosomal polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in foraminifera. PLoS ONE 7, e32373 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Gasson, E. G. W. et al. Numerical simulations of a kilometer-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun. 9, 1510 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    42.
    Rohling, E. J. et al. Differences between the lst two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28 (2017).
    ADS  Google Scholar 

    43.
    Chauhan, T., Rasmussen, T. L., Noormets, R., Jakobsson, M. & Hogan, K. A. Glacial history and paleoceanography of the southern Yermak Plateau since 132 ka BP. Quat. Sci. Rev. 92, 155–169 (2014).
    Google Scholar 

    44.
    Wollenburg, J. E., Knies, J. & Mackensen, A. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Paleogeogr. Paleoclimatol. Palaeoecol. 204, 209–238 (2004).
    ADS  Google Scholar 

    45.
    Kremer, A. et al. Changes in sea-ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka – Reconstruction from biomarker records. Quat. Sci. Rev. 182, 93–108 (2018).
    ADS  Google Scholar 

    46.
    Wollenburg, J. E., Kuhnt, W. & Mackensen, A. Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: the benthic foraminiferal record. Paleoceanography 16, 65–77 (2001).
    ADS  Google Scholar 

    47.
    Bauch, H. A. Interglacial climates and Atlantic meridional overturning circulation: is there an Arctic controversy?. Quat. Sci. Rev. 63, 1–22 (2013).
    ADS  Google Scholar 

    48.
    Stein, R., Fahl, K., Gierz, P., Niessen, F. & Lohmann, G. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat. Commun. 8, 373 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    49.
    Belt, S. T. What do IP25 and related biomarkers really reveal about sea ice change?. Quat. Sci. Rev. 204, 216–219 (2019).
    ADS  Google Scholar 

    50.
    Rontani, J. F., Smik, L. & Belt, S. Autoxidation of the sea ice biomarker proxy IPSO25 in the near-surface oxic layers of Arctic and Antarctic sediments. Org. Geochem. 129, 63–79 (2019).
    CAS  Google Scholar 

    51.
    Müller, J., Masse, G., Stein, R. & Belt, S. T. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat. Geosci. 2, 772–776 (2009).
    ADS  Google Scholar 

    52.
    Rasmussen, T. L. et al. The Faroe-Shetland gateway: late Quaternary water mass exchange between the Nordic Seas and the eastern Atlantic. Mar. Geol. 188, 165–192 (2002).
    ADS  CAS  Google Scholar 

    53.
    Parks, M. M. et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci. Adv. 4, eaao0665 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    54.
    Rudels, B. & Quadfasel, D. Convection and deep water formation in the Arctic Ocean-Greenland Sea System. J. Mar. Syst. 2, 435–450 (1991).
    Google Scholar 

    55.
    Rudels, B., Fahrbach, E., Meincke, J., Budéus, G. & Eriksson, P. The East greenland currents and its contribution to the Denmark Strait overflow. ICES J. Mar. Sci. 59, 1133–1154 (2002).
    Google Scholar 

    56.
    Aagard, K. Inflow from the Atlantic Ocean to the polar basin. In: Rey, L. (Ed.) The Arctic Ocean (Comité Arctique International, Monaco, 69–82, 1982).

    57.
    Rudels, B. et al. Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997. Ann. Geophys. 18, 687–705 (2000).
    ADS  CAS  Google Scholar 

    58.
    West, G. et al. Amino acid racemization in Quaternary foraminifera from the Yermak Plateau. Geochronology 1, 1–14 (2019).
    Google Scholar 

    59.
    Wiers, S., Snowball, I., O’Reagan, M. & Almqvist, B. Late Pleistocene chronology of sediments from the Yermak Plateau and uncertainty in dating based on geomagnetic excursions. Geochem. Geophys. Geosys. 20, 3289–3310. https://doi.org/10.1029/2018GC007920 (2019).
    ADS  Article  Google Scholar 

    60.
    Spielhagen, R. F. et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat. Sci. Rev. 23, 1455–1483 (2004).
    ADS  Google Scholar 

    61.
    Haake, F. W. & Pfalumann, U. Late Pleistocene foraminiferal stratigraphy on the Vøring plateau, Norwegian Sea. Boreas 18, 343–356 (1989).
    Google Scholar 

    62.
    Pawlowski, J. & Lecroq, B. Short rDNA barcodes for species identification in Foraminifera. J. Eukaryot. Microbiol. 57, 197–205 (2010).
    CAS  PubMed  Google Scholar 

    63.
    Dufresne, Y., Lejzerowicz, F., Apotheloz Perret-Gentil, L., Pawlowski, J. & Cordier, T. SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data. BMC Bioinform. 20, 88 (2019).
    Google Scholar 

    64.
    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
    CAS  PubMed  Google Scholar 

    65.
    Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 1–10 (2003).
    Google Scholar 

    66.
    Lisiecki, L.E. & Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanogr 20, PA1003 (2005).

    67.
    Lü, X. X. et al. Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as paleotemperature proxy for mid-to-low latitude marginal seas. Org. Geochem. 89–90, 31–43 (2015).
    Google Scholar  More

  • in

    Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber

    1.
    Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun. 2018;9:870.
    PubMed  PubMed Central  Google Scholar 
    2.
    Pulina G, Francesconi AHD, Stefanon B, Sevi A, Calamari L, Lacetera N, et al. Sustainable ruminant production to help feed the planet. Ital J Anim Sci. 2017;16:140–71.
    Google Scholar 

    3.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.
    CAS  PubMed  Google Scholar 

    4.
    Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol. 2017;2:1–8.
    Google Scholar 

    5.
    Solden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD et al. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat Microbiol. 2018;3. https://doi.org/10.1038/s41564-018-0225-4.

    6.
    Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat Biotechnol. 2018;36. https://doi.org/10.1038/nbt.4110.

    7.
    Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016;351:1192–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Hanafy RA, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Dagar SS, Griffith GW et al. Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia 2020:1–28. https://doi.org/10.1080/00275514.2019.1696619.

    9.
    Wilken SE, Swift CL, Podolsky IA, Lankiewicz TS, Seppälä S, O’Malley MA. Linking ‘omics’ to function unlocks the biotech potential of non-model fungi. Curr Opin Syst Biol. 2019;14:9–17.
    Google Scholar 

    10.
    Seppälä S, Wilken SE, Knop D, Solomon KV, O’Malley MA. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metab Eng. 2017;44:45–59.
    PubMed  Google Scholar 

    11.
    Podolsky IA, Seppälä S, Lankiewicz TS, Brown JL, Swift CL, O’Malley MA. Harnessing nature’s anaerobes for biotechnology and bioprocessing. Annu Rev Chem Biomol Eng. 2019;10:105–28.
    CAS  PubMed  Google Scholar 

    12.
    Kumar S, Indugu N, Vecchiarelli B, Pitta DW. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol. 2015;6:781.
    PubMed  PubMed Central  Google Scholar 

    13.
    Nagaraja TG. Microbiology of the Rumen. In: Rumenology. Cham: Springer International Publishing; 2016. p. 39–61.

    14.
    Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, et al. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front Microbiol. 2017;8:1657.
    PubMed  PubMed Central  Google Scholar 

    15.
    Paul SS, Bu D, Xu J, Hyde KD, Yu Z. A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework. Fungal Divers. 2018;89:253–66.
    Google Scholar 

    16.
    Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia. 2017;109:231–43.
    PubMed  Google Scholar 

    17.
    Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol. 2013;79:4620–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    John Wallace R, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci Adv 2019;5. https://doi.org/10.1126/sciadv.aav8391.

    19.
    Gordon GLR, Phillips MW. Removal of anaerobic fungi from the rumen of sheep by chemical treatment and the effect on feed consumption and in vivo fibre digestion. Lett Appl Microbiol. 1993;17:220–3.
    Google Scholar 

    20.
    Söllinger A, Tveit T, Poulsen M, Noel J, Bengtsson M, Bernhardt J, et al. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems. 2018;3:1–19.
    Google Scholar 

    21.
    Dai X, Tian Y, Li J, Luo Y, Liu D, Zheng H, et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol. 2015;81:1375–86.
    PubMed  PubMed Central  Google Scholar 

    22.
    Comtet-Marre S, Parisot N, Lepercq P, Chaucheyras-Durand F, Mosoni P, Peyretaillade E et al. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00067.

    23.
    Gruninger RJ, Nguyen TTM, Reid ID, Yanke JL, Wang P, Abbott DW, et al. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front Microbiol. 2018;9:1581.
    PubMed  PubMed Central  Google Scholar 

    24.
    Henske JK, Wilken SE, Solomon KV, Smallwood CR, Shutthanandan V, Evans JE, et al. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose. Biotechnol Bioeng. 2018;115:874–84.
    CAS  PubMed  Google Scholar 

    25.
    Morrison JM, Elshahed MS, Youssef NH. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. Strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci Rep. 2016;6:1–12.
    Google Scholar 

    26.
    O’Malley MA, Theodorou MK, Kaiser CA. Evaluating expression and catalytic activity of anaerobic fungal fibrolytic enzymes native topiromyces sp E2 inSaccharomyces cerevisiae. Environ Prog Sustain Energy. 2012;31:37–46.
    Google Scholar 

    27.
    Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;463:463–7.
    Google Scholar 

    28.
    Piao H, Lachman M, Malfatti S, Sczyrba A, Knierim B, Auer M, et al. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Front Microbiol. 2014;5:307.
    PubMed  PubMed Central  Google Scholar 

    29.
    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.
    CAS  PubMed  Google Scholar 

    30.
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.
    CAS  PubMed  Google Scholar 

    31.
    Kunath BJ, Minniti G, Skaugen M, Hagen LH, Vaaje-Kolstad G, Eijsink VGH et al. Metaproteomics: sample preparation and methodological considerations. In: Capelo-Martínez JL. et al. editors. Emerging Sample Treatments in Proteomics. Advances in Experimental Medicine and Biology. Vol. 1073. Springer, Cham; 2019. p. 187–215.

    32.
    Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017; 2. https://doi.org/10.1038/s41564-017-0012-7.

    33.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010;38:e132–e132.
    PubMed  PubMed Central  Google Scholar 

    35.
    Deusch S, Camarinha-Silva A, Conrad J, Beifuss U, Rodehutscord M, Seifert J. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front Microbiol. 2017;8:1605.
    PubMed  PubMed Central  Google Scholar 

    36.
    Li F, Hitch TCA, Chen Y, Creevey CJ, Guan LL. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 Microbiology. Microbiome. 2019;7:6.
    PubMed  PubMed Central  Google Scholar 

    37.
    Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, et al. The complete genome sequence of fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One. 2011;6:e18814.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, et al. The genome sequence of the rumen methanogen methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE. 2010;5:e8926.
    PubMed  PubMed Central  Google Scholar 

    39.
    Mondo SJ, Dannebaum RO, Kuo RC, Louie KB, Bewick AJ, LaButti K, et al. Widespread adenine N6-methylation of active genes in fungi. Nat Genet. 2017;49:964–8.
    CAS  PubMed  Google Scholar 

    40.
    Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704.
    CAS  PubMed  Google Scholar 

    41.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.
    CAS  PubMed  Google Scholar 

    43.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–W245.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, Termed MaxLFQ. Mol Cell Proteom. 2014;13:2513–26.
    CAS  Google Scholar 

    47.
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.
    CAS  PubMed  Google Scholar 

    48.
    Piao H, Meng Markillie L, Culley DE, Mackie RI, Hess M. Improved method for isolation of microbial RNA from biofuel feedstock for metatranscriptomics. Adv Microbiol. 2013;3:101–7.
    CAS  Google Scholar 

    49.
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
    CAS  PubMed  Google Scholar 

    50.
    Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–95.
    PubMed  PubMed Central  Google Scholar 

    51.
    Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.
    CAS  PubMed  Google Scholar 

    53.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available online at https://www.R-project.org/.

    54.
    Hagen LH, Frank JA, Zamanzadeh M, Eijsink VGH, Pope PB, Horn SJ et al. Quantitative metaproteomics highlight the metabolic contributions of uncultured phylotypes in a thermophilic anaerobic digester. Appl Environ Microbiol. 2017; 83. https://doi.org/10.1128/AEM.01955-16.

    55.
    Murphy CL, Youssef NH, Hanafy RA, Couger MB, Stajich JE, Wang Y et al. Horizontal gene transfer as an indispensable driver for evolution of neocallimastigomycota into a distinct gut-dwelling fungal lineage. Appl Environ Microbiol. 2019; 85. https://doi.org/10.1128/AEM.00988-19.

    56.
    Wang Y, Youssef NH, Couger MB, Hanafy RA, Elshahed MS, Stajich JE. Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 2019; 4. https://doi.org/10.1128/msystems.00247-19.

    57.
    Shinkai T, Mitsumori M, Sofyan A, Kanamori H, Sasaki H, Katayose Y, et al. Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen. Anim Sci J. 2016;87:1363–70.
    CAS  PubMed  Google Scholar 

    58.
    Naas AE, Solden LM, Norbeck AD, Brewer H, Hagen LH, Heggenes IM, et al. ‘Candidatus Paraporphyromonas polyenzymogenes’ encodes multi-modular cellulases linked to the type IX secretion system. Microbiome. 2018;6:1–13.
    Google Scholar 

    59.
    Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R. Structures of mutants of cellulase Cel48F of clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J Mol Biol. 2008;375:499–510.
    CAS  PubMed  Google Scholar 

    60.
    Steenbakkers PJM, Freelove A, Van Cranenbroek B, Sweegers BMC, Harhangi HR, Vogels GD, et al. The major component of the cellulosomes of anaerobic fungi from the genus Piromyces is a family 48 glycoside hydrolase. Mitochondrial DNA. 2002;13:313–20.
    CAS  Google Scholar 

    61.
    Guimarães BG, Souchon H, Lytle BL, David Wu JH, Alzari PM. The crystal structure and catalytic mechanism of cellobiohydrolase celS, the major enzymatic component of the Clostridium thermocellum cellulosome. J Mol Biol. 2002;320:587–96.
    PubMed  Google Scholar 

    62.
    Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, et al. Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci. 2010;107:14793–8.
    CAS  PubMed  Google Scholar 

    63.
    Qi M, Wang P, O’Toole N, Barboza PS, Ungerfeld E, Leigh MB, et al. Snapshot of the eukaryotic gene expression in muskoxen rumen—a metatranscriptomic approach. PLoS ONE. 2011;6:e20521.
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Benoit I, Coutinho PM, Schols HA, Gerlach JP, Henrissat B, de Vries RP. Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genom. 2012;13:321.
    CAS  Google Scholar 

    65.
    Shi H, Ding H, Huang Y, Wang L, Zhang Y, Li X, et al. Expression and characterization of a GH43 endo-arabinanase from Thermotoga thermarum. BMC Biotechnol. 2014;14:35.
    PubMed  PubMed Central  Google Scholar 

    66.
    Israeli-Ruimy V, Bule P, Jindou S, Dassa B, Moraïs S, Borovok I, et al. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Sci Rep. 2017;7:42355.
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6:121–31.
    CAS  PubMed  Google Scholar 

    68.
    Arntzen M, Várnai A, Mackie RI, Eijsink VGH, Pope PB. Outer membrane vesicles from S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol. 2017;19:2701–14.
    CAS  PubMed  Google Scholar 

    69.
    Devillard E, Goodheart DB, Karnati SKR, Bayer EA, Lamed R, Miron J, et al. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol. 2004;186:136–45.
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Vodovnik M, Duncan SH, Reid MD, Cantlay L, Turner K, Parkhill J, et al. Expression of Cellulosome Components and Type IV Pili within the Extracellular Proteome of Ruminococcus flavefaciens 007. PLoS ONE. 2013;8:e65333.
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Henske JK, Gilmore SP, Haitjema CH, Solomon KV, O’Malley MA. Biomass-degrading enzymes are catabolite repressed in anaerobic gut fungi. AIChE J. 2018;64:4263–70.
    CAS  Google Scholar 

    72.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
    CAS  Google Scholar 

    73.
    Garcia-Vallvé S, Romeu A, Palau J. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol. 2000;17:352–61.
    PubMed  Google Scholar 

    74.
    Murphy CL, Youssef NH, Hanafy RA, Couger MB, Stajich JE, Wang Y et al. Horizontal gene transfer as an indispensable driver for evolution of Neocallimastigomycota into a distinct gutdwelling fungal lineage. Appl Environ Microbiol. 2019;85. https://doi.org/10.1128/AEM.00988-19.

    75.
    Hart EH, Creevey CJ, Hitch T, Kingston-Smith AH. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-28827-7.

    76.
    Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50.
    CAS  PubMed  Google Scholar  More

  • in

    Seeds attached to refrigerated shipping containers represent a substantial risk of nonnative plant species introduction and establishment

    Changes in propagule pressure from single or multiple regions directly contribute to the success or failure of nonnative species establishment6,8,23,24. In this study, we collected and measured the quantity and diversity of seeds, over time obtained from the air-intake grilles of refrigerated containers, with two seasons for comparison. Targeting the trans-oceanic transport of a single commodity in this industrial trade system that serves as a transport vector for hitchhiking seeds provided reduced variation in which to quantify propagule pressure, including propagule size (Fig. 1) and propagule number (Supplementary Fig. 2) of plant species considered to be of high-risk to agriculture in the USA19. Our key finding is that influx is sufficient and reproduction of these species is high enough to represent a risk of population(s) establishment in and around the shipping port, even with the bottlenecks of escape from the shipping container, subsequent germination, and seedling survival (Figs. 2, 3).
    Over 20,000 shipping containers are moved as import or export daily on the GCT 14, providing ample volumes for passive hitchhikers to establish at the GCT and surrounding areas. In fact, we found steady arrival of shipping containers over the approximately 32-week shipping season (Supplementary Fig. 2). Conversely, we found strong seasonal variation in propagule number (i.e., number of seeds per refrigerated shipping container; Fig. 1). We estimated for the FNW, S. spontaneum, that over 40,000 seeds entered GCT during the two shipping seasons (Table 1). This level of propagule pressure is clearly sufficient to represent introduction and establishment risk of a clonal, perennial, fecund species that likely does not require a large initial propagule size, even if the escape rate from the shipping containers is exceedingly small (Table 1; Fig. 2). In this study, the four focal monocotyledonous taxa all had similar seed sizes, and no other larger-sized propagative material of these species (e.g., rhizomatous material or cuttings) were encountered during our study at the GCT.
    The theoretical literature postulates that increased numbers of propagules (i.e., propagule size6,8,9,10,11) and pressure (which includes propagule size and frequency as a rate) increases the likelihood of nascent population establishment and population size and diversity6,10; however, among our four focal taxa, a nascent population may establish from a single seed during arrival at a suitable terrestrial substrate, such as the GCT’s greenspaces19. Persistence of an extremely small population can, and is likely to, be facilitated by asexual propagation and spatial spread of these particular plant taxa. Theoretical population biology intrinsically includes propagule pressure within the invasion process6,10, and empirical studies measuring propagule pressure have demonstrated its importance as the most important and generalizable predictor of nonnative invasion success24. Propagule pressure in itself is also the factor most influenced by human activity8,9. Therefore, our study adds additional support to the importance of propagule pressure (see Figs. 2 and 3), and in this system, there is sufficient propagule pressure (i.e., influx from Fig. 3) for invasion success, even if escape rates from shipping containers, germination, and survival are low.
    Though S. spontaneum is the only FNW we encountered, we were also able to identify Arundo donax L., a species that is listed as noxious by 46 of the USA’s 50 states25. We were not able to identify seeds to a taxonomic level sufficient to determine origin status for the other 28 taxa encountered (Table S4), but for our three additional focal species, we suggest that two species are native and one is likely introduced. We found Typha domingensis (Pers.) Steud. (native), Andropogon glomeratus (Walter) Britton, Sterns & Poggenb. and A. virginicus L. (both native), and Phragmites australis (Cav.) Steud. (nonnative), already established on-port at the GCT in a previous study that demonstrated that the Port of Savannah is a hub of nonnative species richness19.
    For any of the species collected on the shipping containers, the propagules have the potential of being picked up en route to the GCT or, with the exception of S. spontaneum since it is not established there, at the GCT. Most of the taxa already have cosmopolitan distributions, and actual escape rates from the shipping containers are not yet known, meaning that the seeds could make multiple journeys on cargo ships across oceans before being released from a container. Also, the seasonality of seed dispersal coincides with dispersal time in the northern hemisphere, which may apply to seed sources in Panama, the Caribbean, or the USA. Andropogon glomeratus and A. virginicus occur throughout North and Central America (including Panama and the Caribbean)26. As native species to the southeastern USA, propagules escaping refrigerated shipping containers are not of significant concern, although they could be homogenizing genetic composition if genotypes from other portions of the parental established ranges are introduced here. Additionally, Andropogon propagules may result in introductions of nonnative species to South America if the seeds remain on the containers and are viable for return trips. Typha domingensis has nearly a global distribution, and though it is native to the southeastern USA, its presence at the Port of Savannah could also indicate the presence of admixed genotypes. Moreover, our morphological identification of the seeds could not distinguish to the species level, and T. angustifolia L., a nonnative species, could have been represented in our samples, though this species is well established and widely distributed already in the USA26. Phragmites australis, a noxious weed in 6 USA states25, is already found worldwide26. The genus Phragmites contains 4 species, of which only Phragmites australis is native to portions of North America; however, intra- and inter-specific hybridization among genotypes has resulted in the influx of nonnative lineages from Europe and Asia, which have spread to areas of the continent where it is not native27,28.
    The most interesting case is S. spontaneum, the FNW. This species is established only in Florida on the USA mainland, where it was introduced for historical and extant breeding programs with sugarcane29. This recent report29 showed that it was naturalized in only three counties, but we have documented it growing in six counties and in cultivation in one additional county (Supplementary Fig. 4). We did not find it growing at the GCT at the Port of Savannah. Yet, it is known that S. spontaneum, which is native to the Indian subcontinent, is well established in the Panama Canal region29,30 along the shipping route of interest. The number of propagules we intercepted and estimated, along with nontrivial germination rates and high survivorship of seedlings, indicate that this species represents a real threat of establishment outside of Florida. Combined with other modeled estimates that S. spontaneum can establish throughout the majority of the USA29, we suggest that this species represents a significant risk of negative invasive species impact, earning its FNW listing in the 1980s18,29.
    All four of our focal taxa share common life history features that have been suggested to be characteristic of invasive plant species: asexual reproduction through rhizomes, persistence in a wide range of environmental conditions, prolific seed production (Table 1 and citations within), wind pollination, and wind dispersal31,32,33. These traits have the potential to enhance geographic spread into new ranges and rapidly lead to single-species domination of local plant communities. All of these taxa have a life history and ecology similar to the very successful southeastern USA invasive species cogongrass (Imperata cylindrica (L.) P. Beauv.) that has been demonstrated to benefit from intraspecific heterosis and multiple introductions34,35,36.
    A previous study used molecular barcoding of seedlings germinated from seed collected from Season 1 in this study, and they identified some seedlings as: S. spontaneum, Typha sp(p)., Phragmites sp(p)., and Andropogon sp(p).37, as identified here. Seeds that were grouped as S. spontaneum in this study resulted in seedlings that returned haplotypes for the genus Phragmites (rbcL haplotype 1 and matK haplotypes 3 and 437) and Saccharum along with other genera37. There are two interesting and opposing forces at play here. First, in sorting seeds morphologically, there is the potential to group similar looking seeds of different species. The molecular barcode result that shows Phragmites haplotypes in seeds morphologically identified as S. spontaneum is evidence of misidentification and inaccurate sorting of seed. Second, some haplotypes showed equally correct molecular identification across multiple genera of grasses, indicating that these standard molecular barcode sequences for plants may not have the species-level resolution necessary for molecular identification of some of the highest threat invasive grass species.
    There are two key approaches to mitigating the risk that propagules of nonnative taxa will become established: 1) prevent propagules from hitchhiking on transoceanic cargo ships, in this case, becoming attached to shipping containers at their point-of-origin or stops along the way (that result from “trans-shipping”), and 2) prevent viable propagules from entering and establishing in the USA, via inspection and interception by the “gatekeepers” of biosecurity at international points-of-entry. These agricultural inspectors are tasked with the interception of propagules of insects, fungi, and all other nonnative or “actionable” taxa, in addition to the seeds of plants. One potential solution to reduce invasion risk by vascular plant seed is to employ a scaled-up version of the research approach we implemented here of backpack vacuuming air-intake grilles of refrigerated shipping containers. Another possibility in lieu of labour-intensive vacuuming of intake grilles is to conduct research on efficacy of liquid pre-emergent herbicide application to the air-intake grilles. For either approach, our data support that these interventions may not be needed year-round for important species like S. spontaneum, which have a clear import seasonality on this particular commodity. For example, based on our data, seed removal measures may only be needed in October, November, and early-mid December.
    In the face of poorly resourced capacity for inspection and the potential of diminishing fiscal resources and human capital, consequences include acceleration of biodiversity loss, economic and environmental impacts, and on-going biotic homogenization. The interception efforts to prevent the entry of nonnative propagules of all nonnative taxa worldwide will ultimately conserve local endemism, biodiversity, economic output, and ecosystem services that are interrupted or extirpated by biological invasions1,3. This research aimed to identify key risks and highlights the need for improved strategies for efficacious prevention and interception of nonnative, particularly plant, propagules prior to establishment, though such prevention approaches can be designed and applied for many taxa. Enhancing the capacity, speed, and frequency of successful prevention programs will be required to minimize or eliminate the real risks posed by viable hitchhiking propagules associated with economic trade and sea/air transportation of commodities and people. More

  • in

    Field-based sciences must transform in response to COVID-19

    When only local participation in fieldwork is possible, how effectively can remote collaborations be executed in the field sciences, when so much diverse expertise is required?
    Foremost is a comprehensive investment in the creation of digital archives at different scales. Various government agencies and developer-led fieldwork as well as excavations in extreme locations have been using such methods and techniques for years14. However, practice is neither standardized nor mainstreamed across comparable research projects, and in the context of COVID-19 there are many reasons to push for such goals.
    First, the creation of high-resolution photographic databases for photogrammetry is relatively easy to teach remotely, and is inexpensive, although post-processing time is substantial and requires investment in technicians. These techniques can record and visualize spatial relationships, stratigraphic sequences and, depending on the use of different light, may permit assessments that can even be superior to traditional by-eye illustrations14. Specialists can clearly mark sampling locations on the models for those on site, enabling group assessments. Second, the creation of three-dimensional (3D) geological and sedimentary archives also enables re-assessment of sequences in future. Third, the creation and sharing of both the archives and their interpretations will precipitate the much-needed standardization of sampling and analytical procedures. Within an open data framework, this working model will ensure that novice researchers and non-specialists learn from experts through collaborative, team-based inferences, rather than stitching together the results of individual specialists in a top-down approach.
    Our existing international field season schedules also require change — a long-overdue adjustment in the face of increasing anthropogenically induced climate change. Fieldwork will be based locally and projects will require many short and closely spaced field seasons. Those who can access our field sites within a few hours can conduct short-distance trips, focused on discrete steps in the process of assessment, excavation, sampling and inference. For example, a short initial season would focus on building a high-resolution digital model of the field site that can be shared with remote collaborators to develop excavation strategies. A later season could focus solely on sampling, following remote collaborative assessment of digital archives. Such approaches also in part mitigate the problems faced by less-accessible field sites, where frequent online meetings and the exchange of information are impossible. Effective remote collaboration will require very clear scheduling among remote experts at each phase of the process to minimize the burden on local researchers.
    At a landscape scale, the situation becomes more challenging. 3D models from unmanned aerial vehicles (UAVs), remote-sensing data15 and LiDAR16 are already widely used in prospection and analysis, and may facilitate effective collaboration between remote specialists and local participants. Remotely generated landscape-scale hypotheses and geomorphological maps can be tested at a later stage by specialists on the ground, whenever longer-distance travel becomes an appropriate option. The creation of 3D data using UAVs does not represent a considerable remote training challenge. A major new research focus should address the extent to which these methods and predictive models in geomorphology are able to replicate, complement and validate assessments of landscape-scale processes made in the field. More

  • in

    Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird

    1.
    Dean, B. et al. Behavioural mapping of a pelagic seabird: combining multiple sensors and a hidden Markov model reveals the distribution of at-sea behaviour. J. R. Soc. 10, 20120570–20120570 (2013).
    Article  Google Scholar 
    2.
    Daniel Kissling, W., Pattemore, D. E. & Hagen, M. Challenges and prospects in the telemetry of insects. Biol. Rev. https://doi.org/10.1111/brv.12065 (2014).
    PubMed  Article  Google Scholar 

    3.
    Williams, H. J. et al. Optimizing the use of biologgers for movement ecology research. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13094 (2019).
    PubMed  Article  Google Scholar 

    4.
    Bowlin, M. S., Cochran, W. W. & Wikelski, M. C. Biotelemetry of New World thrushes during migration: Physiology, energetics and orientation in the wild. Integr. Comp. Biol. 45, 295–304 (2005).
    PubMed  Article  Google Scholar 

    5.
    Shoji, A. et al. Foraging behaviour of sympatric razorbills and puffins. Mar. Ecol. Prog. Ser. 520, 257–267 (2015).
    ADS  Article  Google Scholar 

    6.
    Guilford, T. et al. Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: Insights from machine learning. Proc. Biol. Sci. 276, 1215–1223 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Handcock, R. N. et al. Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9, 3586–3603 (2009).
    PubMed  Article  Google Scholar 

    8.
    Padget, O. et al. In situ clock shift reveals that the sun compass contributes to orientation in a pelagic seabird. Curr. Biol. 28, 275-279.e2 (2018).
    CAS  PubMed  Article  Google Scholar 

    9.
    Votier, S. C., Bicknell, A., Cox, S. L., Scales, K. L. & Patrick, S. C. A bird’s eye view of discard reforms: Bird-borne cameras reveal seabird/fishery interactions. PLoS ONE 8, e57376 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Barron, D. G., Brawn, J. D. & Weatherhead, P. J. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 1, 180–187 (2010).
    Article  Google Scholar 

    11.
    Bodey, T. W. et al. A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods Ecol. Evol. 9, 946–955 (2018).
    Article  Google Scholar 

    12.
    Aldridge, H. D. J. N. & Brigham, R. M. Load carrying and maneuverability in an insectivorous bat: A test of the 5% ‘rule’ of radio-telemetry. J. Mammal. https://doi.org/10.2307/1381393 (1988).
    Article  Google Scholar 

    13.
    Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).
    Article  Google Scholar 

    14.
    Irvine, A. B., Wells, R. S. & Scott, M. D. An evaluation of techniques for tagging small odontocete cetaceans. Fish. Bull. (1982).

    15.
    van der Hoop, J. M. et al. Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. J. Exp. Biol. 217, 4229–4236 (2014).
    PubMed  Article  Google Scholar 

    16.
    Putaala, A., Oksa, J., Rintamaki, H. & Hissa, R. Effects of hand-rearing and radiotransmitters on flight of gray partridge. J. Wildl. Manage. https://doi.org/10.2307/3802136 (1997).
    Article  Google Scholar 

    17.
    Jepsen, N., Thorstad, E. B., Havn, T. & Lucas, M. C. The use of external electronic tags on fish: An evaluation of tag retention and tagging effects. Anim. Biotelemetry https://doi.org/10.1186/s40317-015-0086-z (2015).
    Article  Google Scholar 

    18.
    Vandenabeele, S. P. et al. Are bio-telemetric devices a drag? Effects of external tags on the diving behaviour of great cormorants. Mar. Ecol. Prog. Ser. 519, 239–249 (2015).
    ADS  Article  Google Scholar 

    19.
    Puehringer-Sturmayr, V. et al. Effects of bio-loggers on behaviour and corticosterone metabolites of Northern Bald Ibises (Geronticus eremita) in the field and in captivity. Anim. Biotelemetry https://doi.org/10.1186/s40317-019-0191-5 (2020).
    Article  Google Scholar 

    20.
    Booms, T. L., Schempf, P. F. & Fuller, M. R. Preening behavior of adult gyrfalcons tagged with backpack transmitters. J. Raptor Res. https://doi.org/10.3356/jrr-10-115.1 (2011).
    Article  Google Scholar 

    21.
    Wilson, R. P. & Wilson, M. T. A peck activity record for birds fitted with devices. J. F. Ornithol. (1989).

    22.
    Robert, M., Drolet, B. & Savard, J.-P.L. Effects of backpack radio-transmitters on female Barrow’s goldeneyes. Waterbirds https://doi.org/10.1675/1524-4695(2006)29[115:eobrof]2.0.co;2 (2006).
    Article  Google Scholar 

    23.
    Pouliquen, O., Leishman, M. & Redhead, T. D. Effects of radio collars on wild mice, Mus domesticus. Can. J. Zool. https://doi.org/10.1139/z90-239 (1990).
    Article  Google Scholar 

    24.
    Wilson, C. D., Arnott, G., Reid, N. & Roberts, D. The pitfall with PIT tags: Marking freshwater bivalves for translocation induces short-term behavioural costs. Anim. Behav. https://doi.org/10.1016/j.anbehav.2010.10.003 (2011).
    Article  Google Scholar 

    25.
    Kooyman, G. L. et al. Heart rates and swim speeds of emperor penguins diving under sea ice. J. Exp. Biol. 165, 161–180 (1992).
    CAS  PubMed  Google Scholar 

    26.
    Harris, M. P., Bogdanova, M. I., Daunt, F. & Wanless, S. Using GPS technology to assess feeding areas of Atlantic Puffins Fratercula arctica. Ringing Migr. https://doi.org/10.1080/03078698.2012.691247 (2012).
    Article  Google Scholar 

    27.
    Wanless, S., Harris, M. P. & Morris, J. A. Behavior of alcids with tail-mounted radio transmitters. Colon. Waterbirds 158–163, https://doi.org/10.2307/1521336 (1989).

    28.
    Arlt, D., Low, M. & Pärt, T. Effect of geolocators on migration and subsequent breeding performance of a long-distance passerine migrant. PLoS ONE https://doi.org/10.1371/journal.pone.0082316 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Rodríguez, A., Negro, J. J., Fox, J. W. & Afanasyev, V. Effects of geolocator attachments on breeding parameters of Lesser Kestrels. J. F. Ornithol. https://doi.org/10.1111/j.1557-9263.2009.00247.x (2009).
    Article  Google Scholar 

    30.
    Scandolara, C. et al. Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits. J. Avian Biol. https://doi.org/10.1111/jav.00412 (2014).
    Article  Google Scholar 

    31.
    Whidden, S. E., Williams, C. T., Breton, A. R. & Buck, C. L. Effects of transmitters on the reproductive success of Tufted Puffins. J. F. Ornithol. 78, 206–212 (2007).
    Article  Google Scholar 

    32.
    Griffioen, M., Iserbyt, A. & Muller, W. Handicapping males does not affect their rate of parental provisioning, but impinges on their partners’ turn taking behavior. Front. Ecol. Evol. 7, 1–7 (2019).
    Article  Google Scholar 

    33.
    Ratz, T., Nichol, T. W. & Smiseth, P. T. Parental responses to increasing levels of handicapping in a burying beetle. Behav. Ecol. https://doi.org/10.1093/beheco/arz157 (2019).
    Article  Google Scholar 

    34.
    Wiebe, K. L. Negotiation of parental care when the stakes are high: Experimental handicapping of one partner during incubation leads to short-term generosity. J. Anim. Ecol. 79, 63–70 (2010).
    PubMed  Article  Google Scholar 

    35.
    Cantarero, A., López-Arrabé, J., Palma, A., Redondo, A. J. & Moreno, J. Males respond to female begging signals of need: A handicapping experiment in the pied flycatcher, Ficedula hypoleuca. Anim. Behav. https://doi.org/10.1016/j.anbehav.2014.05.002 (2014).
    Article  Google Scholar 

    36.
    Saraux, C. et al. Reliability of flipper-banded penguins as indicators of climate change. Nature 469, 203–208 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Beaulieu, M. et al. Can a handicapped parent rely on its partner? An experimental study within Adélie penguin pairs. Anim. Behav. 78, 313–320 (2009).
    Article  Google Scholar 

    38.
    Paredes, R., Jones, I. L. & Boness, D. J. Reduced parental care, compensatory behaviour and reproductive costs of thick-billed murres equipped with data loggers. Anim. Behav. 69, 197–208 (2005).
    Article  Google Scholar 

    39.
    Dean, B. et al. Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Mar. Ecol. Prog. Ser. 538, 239–248 (2015).
    ADS  CAS  Article  Google Scholar 

    40.
    Guilford, T. C. et al. GPS tracking of the foraging movements of Manx Shearwaters Puffinus puffinus breeding on Skomer Island, Wales. Ibis (Lond. 1859). 150, 462–473 (2008).

    41.
    Shoji, A. et al. Dual foraging and pair-coordination during chick provisioning by Manx shearwaters: empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Adams, J. et al. Effects of geolocation archival tags on reproduction and adult body mass of sooty shearwaters (Puffinus griseus). N. Z. J. Zool. 36, 355–366 (2009).
    Article  Google Scholar 

    43.
    Phillips, R. A., Xavier, J. C., Croxall, J. P., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).
    Article  Google Scholar 

    44.
    Pennycuick, C. J., Fast, P. L. F., Ballerstädt, N. & Rattenborg, N. The effect of an external transmitter on the drag coefficient of a bird’s body, and hence on migration range, and energy reserves after migration. J. Ornithol. 153, 633–644 (2012).
    Article  Google Scholar 

    45.
    Hazekamp, A. A. H., Mayer, R. & Osinga, N. Flow simulation along a seal: The impact of an external device. Eur. J. Wildl. Res. 56, 131–140 (2010).
    Article  Google Scholar 

    46.
    Wilson, R. P. Antennae on transmitters on penguins: balancing energy budgets on the high wire. J. Exp. Biol. 207, 2649–2662 (2004).
    PubMed  Article  Google Scholar 

    47.
    Watson, K. P. & Granger, R. A. Hydrodynamic effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas). J. Exp. Biol. 201, 2497–2505 (1998).
    PubMed  Google Scholar 

    48.
    Hull, C. L. The effect of carrying devices on breeding royal penguins. Condor 99, 530–534 (1997).
    Article  Google Scholar 

    49.
    Elliott, K. H. et al. Age-related variation in energy expenditure in a long-lived bird within the envelope of an energy ceiling. J. Anim. Ecol. 83, 136–146 (2014).
    PubMed  Article  Google Scholar 

    50.
    Kelly, K. G., Diamond, A. W., Holberton, R. L. & Bowser, A. K. Researcher handling of incubating Atlantic puffins Fratercula arctica has no effect on reproductive success. Mar. Ornithol. (2015).

    51.
    Müller, M. S., Vyssotski, A. L., Yamamoto, M. & Yoda, K. Individual differences in heart rate reveal a broad range of autonomic phenotypes in a free-living seabird population. J. Exp. Biol. https://doi.org/10.1242/jeb.182758 (2018).
    PubMed  Article  Google Scholar 

    52.
    Weimerskirch, H. et al. Heart rate and energy expenditure of incubating wandering albatrosses: Basal levels, natural variation, and the effects of human disturbance. J. Exp. Biol. (2002).

    53.
    Fayet, A. L. et al. Lower foraging efficiency in immatures drives spatial segregation with breeding adults in a long-lived pelagic seabird. Anim. Behav. 110, 79–89 (2015).
    Article  Google Scholar 

    54.
    Kosztolányi, A., Cuthill, I. C. & Székely, T. Negotiation between parents over care: Reversible compensation during incubation. Behav. Ecol. 20, 446–452 (2009).
    Article  Google Scholar 

    55.
    Suzuki, S. & Nagano, M. To compensate or not? Caring parents respond differentially to mate removal and mate handicapping in the burying beetle, Nicrophorus quadripunctatus. Ethology https://doi.org/10.1111/j.1439-0310.2008.01598.x (2009).
    Article  Google Scholar 

    56.
    Wright, J. & Cuthill, I. Biparental care: Short-term manipulation of partner contribution and brood size in the starling, Sturnus vulgaris. Behav. Ecol. 1, 116–124 (1990).
    Article  Google Scholar 

    57.
    Bijleveld, A. I. & Mullers, R. H. E. E. Reproductive effort in biparental care: An experimental study in long-lived Cape gannets. Behav. Ecol. 20, 736–744 (2009).
    Article  Google Scholar 

    58.
    Dearborn, D. C. Body condition and retaliation in the parental effort decisions of incubating great frigatebirds (Fregata minor). Behav. Ecol. 12, 200–206 (2001).
    Article  Google Scholar 

    59.
    Navarro, J. & González-Solís, J. Experimental increase of flying costs in a pelagic seabird: Effects on foraging strategies, nutritional state and chick condition. Oecologia 151, 150–160 (2007).
    ADS  PubMed  Article  Google Scholar 

    60.
    Brooke, M. The Manx Shearwater. (A & C Black Publishers Ltd, 1990).

    61.
    Heggøy, O., Christensen-Dalsgaard, S., Ranke, P. S., Chastel, O. & Bech, C. GPS-loggers influence behaviour and physiology in the black-legged kittiwake Rissa tridactyla. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11140 (2015).
    Article  Google Scholar 

    62.
    Fayet, A. L. et al. Carry-over effects on the annual cycle of a migratory seabird: An experimental study. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12580 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Shoji, A. et al. Breeding phenology and winter activity predict subsequent breeding success in a trans-global migratory seabird. Biol. Lett. 11, 20150671 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Boersma, P. & Davies, E. Sexing monomorphic birds by vent measurements. Auk 104, 779–783 (1987).
    Article  Google Scholar 

    65.
    Guilford, T. et al. Geolocators reveal migration and pre-breeding behaviour of the critically endangered balearic shearwater Puffinus mauretanicus. PLoS ONE 7, e33753 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. Mixtools: An R package for analyzing finite mixture models. J. Stat. Softw. https://doi.org/10.18637/jss.v032.i06 (2009).
    Article  Google Scholar 

    67.
    Fayet, A. L. et al. Drivers and fitness consequences of dispersive migration in a pelagic seabird. Behav. Ecol. https://doi.org/10.1093/beheco/arw013 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Core Team, R. R: A Language and Environment for Statistical Computing. (R Found. Stat. Comput., Vienna, 2018).

    69.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    70.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package ‘emmeans’. Mran.Microsoft.Com https://doi.org/10.1080/00031305.1980.10483031%3e.License (2018).
    Article  Google Scholar  More

  • in

    Koala immunogenetics and chlamydial strain type are more directly involved in chlamydial disease progression in koalas from two south east Queensland koala populations than koala retrovirus subtypes

    In this study, koalas from two geographically separated populations in SE Qld, at the Moreton Bay site (MB)9 and the Old Hidden Vale site (HV), underwent regular field monitoring and clinical examinations approximately every 6 months (or more frequently if required for health or welfare concerns). Blood samples, ocular conjunctival swabs and a urogenital tract swab were collected during each clinical examination. From these samples, C. pecorum load and genotype, koala MHC immunogenetics and KoRV proviral subtypes were determined. These results were evaluated in the context of clinical records compiled at the time of sample collection, which included chlamydial disease status.
    Chlamydial epidemiology at each study site
    The overall prevalence of chlamydial infection and disease differed between the study sites
    Longitudinal monitoring of 24 HV koalas (over 113 individual sampling points) identified 24 chlamydial infections for strain typing analysis and eight new chlamydial infections for disease progression analysis. This complemented longitudinal monitoring of 148 MB koalas (over 479 individual sampling points)9 that identified 76 chlamydial infections for strain typing analysis and 38 new chlamydial infections for disease progression analysis. Overall, there was a significantly higher prevalence of infection at HV (58%, 14/24) compared to MB (35%, 89/254)26 (Fisher’s exact test p = 0.028) (Table 1), as well as a significantly higher prevalence of disease at HV (58%, 14/24) compared to MB (27%, 75/279) 26 (Fisher’s exact test p = 0.002).
    Table 1 A comparison of chlamydial epidemiology between the Moreton Bay site (MB) and the Old Hidden Vale site (HV).
    Full size table

    Chlamydial disease progression was common at both study sites
    A total of eight HV koalas met our study inclusion criteria for disease progression analysis by having a new chlamydial infection detected at the ocular (n = 1) or urogenital tract site (n = 7) by quantitative polymerase chain reaction (qPCR) over a period of 18 months. These koalas had no evidence of chlamydial infection (infection loads below detection limit) or disease (clinical examination within normal limits) at that anatomical site at their previous clinical examination. If disease was detected at their first clinical examination, they were excluded from disease progression analyses only (unless it was their first sampling as an independent offspring, n = 1).
    Interestingly, all of the new chlamydial infections at HV (100%, 8/8) progressed to disease, which was not significantly different to the number of new chlamydial infections at MB that progressed to disease (66%, 25/38)9 (Fisher’s exact test p = 0.084) (Supplementary Fig. S1). For six of these new chlamydial infections at HV (one ocular and five urogenital tract), the infection was detected at the same clinical examination as disease. For the other two new chlamydial infections at HV (both urogenital tract), the infection was present at a clinical examination 2.5 months and 4 months before disease was detected.
    The urogenital tract infection load dynamics were similar at both study sites
    The urogenital tract infection load (C. pecorum genome copies/µL) in both HV and MB9 koalas was significantly higher when infections were detected at the same clinical examination as disease (1,028,000 copies/µL, range 11,400–4,760,000 copies/µL), in comparison to infections that were present for one or more consecutive clinical examinations before disease was detected or infections that did not progress to disease (600 copies/µL, range 49–522,800 copies/µL) (Mann–Whitney U = 3, p = 0.030). Similarly, the urogenital tract infection load in both HV and MB9 koalas was significantly higher when koalas acquired a new chlamydial infection (within the last three months) (1,834,000 copies/µL, range 52,400–4,760,000 copies/µL), compared to koalas who had long-term infections (present for more than three months) (724 copies/µL, range 35–7,142 copies/µL) (Mann–Whitney U = 0, p = 0.010). Interestingly, the urogenital tract infection load was significantly higher at HV (1,028,000 copies/µL, range 11,400–4,760,000 copies/µL) compared to MB (3,824 copies/µL, range 138–1,340,000 copies/µL) when infections were detected at the same clinical examination as disease (Mann–Whitney U = 11, p = 0.003). In contrast, the urogenital tract infection load was not significantly different between the study sites (HV 600 copies/µL, range 49–522,800 copies/µL vs MB 794 copies/µL, range 16–13,900 copies/µL) when infections were present for one or more consecutive clinical examinations before disease was detected or infections did not progress to disease (Mann–Whitney U = 28, p = 0.703).
    The prevalence of chlamydial strains, as determined by Multi-Locus Sequence Typing, differed between the study sites
    Overall, 69 C. pecorum-positive samples, comprised of 45 samples from MB (4 ocular and 41 urogenital tract samples from 25 koalas) and 24 samples from HV (2 ocular and 22 urogenital tract samples from 14 koalas), were analysed using a C. pecorum-specific MLST scheme27. Three sequence types (STs) were detected in this study: ST 69, ST 202 and a novel ST (ST 281). ST 69 and ST 202 were detected at both study sites, however their prevalence at each study site was significantly different (Fig. 1). ST 69 was the most prevalent ST at HV, detected in 63% of total samples (15/24) and in 59% of urogenital tract site samples (13/22). ST 69 was significantly less prevalent at MB, detected in 11% of total samples (5/45) and in 12% of urogenital tract site samples (5/41) (overall and urogenital tract site Fisher’s exact test p  More