1.
Lee, S. Y. et al. Reassessment of mangrove ecosystem services. Glob. Ecol. Biogeogr. 23, 726–743 (2014).
Google Scholar
2.
Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).
Google Scholar
3.
Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20(1), GB1012. https://doi.org/10.1029/2005GB002570 (2006).
ADS CAS Article Google Scholar
4.
Kristensen, E., Bouillon, S., Dittmard, T. & Marchande, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).
CAS Google Scholar
5.
Reef, R., Feller, I. C. & Lovelock, C. E. Nutrition of mangroves. Tree Physiol. 30(9), 1148–1160 (2010).
CAS PubMed Google Scholar
6.
Woolfe, K. J., Dale, P. J. & Brunskill, G. J. Sedimentary C/S relationships in a large tropical estuary: evidence for refractory carbon inputs from mangroves. Geo-Mar. Lett. 15(3–4), 140–144 (1995).
ADS Google Scholar
7.
Woitchik, A. F. et al. Nitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon (Kenya): relative importance of biological nitrogen fixation. Biogeochemistry 39(1), 15–35 (1997).
CAS Google Scholar
8.
Zuberer, D. & Silver, W. S. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl. Environ. Microbiol. 35(3), 567–575 (1978).
CAS PubMed PubMed Central Google Scholar
9.
Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).
ADS Google Scholar
10.
Welsh, D. T. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem. Ecol. 19, 321–342 (2003).
CAS Google Scholar
11.
Stief, P. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10(12), 7829–7846 (2013).
ADS Google Scholar
12.
Gilbertson, W. W., Solan, M. & Prosser, J. I. Differential effects of microorganism–invertebrate interactions on benthic nitrogen cycling. FEMS Microbiol. Ecol. 82, 11–12 (2012).
PubMed Google Scholar
13.
Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M. & Widdicombe, S. Bioturbation: impact on the marine nitrogen cycle. Biochem. Soc. Trans. 39, 315–320 (2011).
CAS PubMed Google Scholar
14.
Magri, M. et al. Benthic N pathways in illuminated and bioturbated sediments studied with network analysis. Limnol. Oceanogr. 63, S68–S84. https://doi.org/10.1002/lno.10724 (2018).
CAS Article Google Scholar
15.
Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43 (2008).
ADS Google Scholar
16.
Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchioco, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749. https://doi.org/10.1038/s41598-019-40315-0 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
17.
Cuellar-Gempeler, C. & Leibold, M. A. Multiple colonist pools shape fiddler crab-associated bacterial communities. ISME J. 12(3), 825–837 (2018).
CAS PubMed PubMed Central Google Scholar
18.
Reinsel, K. A. Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: season-dependent effects in one tidal cycle. J. Exp. Mar. Biol. Ecol. 313, 1–17 (2004).
Google Scholar
19.
Nordhaus, I., Diele, K. & Wolff, M. Activity patterns, feeding and burrowing behaviour of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. J. Exp. Mar. Biol. Ecol. 374, 104–112 (2009).
Google Scholar
20.
Nordhaus, I. & Wolff, M. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Mar. Biol. 151, 1665–1681 (2007).
Google Scholar
21.
Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A. & Iribarne, O. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci. 92, 629–638 (2011).
ADS CAS Google Scholar
22.
Quintana, C. O. et al. Carbon mineralization pathways and bioturbation in coastal Brazilian sediments. Sci. Rep. 5, 16122. https://doi.org/10.1038/srep16122 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
23.
Thongtham, N. & Kristensen, E. Physical and chemical characteristics of mangrove crab (Neoepisesarma versicolor) burrows in the Bangrong mangrove forest, Phuket, Thailand; with emphasis on behavioural response to changing environmental conditions. Vie et Milieu 53, 141–151 (2003).
Google Scholar
24.
De la Iglesia, H. O., Rodríguez, E. M. & Dezi, R. E. Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides. Physiol. Behav. 55(5), 913–919 (1994).
PubMed Google Scholar
25.
Arfken, A., Song, B., Bowman, J. S. & Piehler, M. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 12(9), e0185071. https://doi.org/10.1371/journal.pone.0185071 (2017).
CAS Article PubMed PubMed Central Google Scholar
26.
Caffrey, J. M., Hollibaugh, J. T. & Mortazavi, B. Living oysters and their shells as sites of nitrification and denitrification. Mar. Pollut. Bull. 112(1–2), 86–90 (2016).
CAS PubMed Google Scholar
27.
Glud, R. N. et al. Copepod carcasses as microbial hot spots for pelagic denitrification. Limnol. Oceanogr. 60, 2026–2036 (2015).
ADS CAS Google Scholar
28.
Heisterkamp, I. M. et al. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol. 15(7), 1943–1955 (2013).
CAS PubMed Google Scholar
29.
Ray, N. E., Henning, M. C. & Fulweiler, R. W. Nitrogen and phosphorus cycling in the digestive system and shell biofilm of the eastern oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 621, 95–105 (2019).
ADS CAS Google Scholar
30.
Stief, P. et al. Freshwater copepod carcasses as pelagic microsites of dissimilatory nitrate reduction to ammonium. FEMS Microbiol. Ecol. 94(10), fiy144. https://doi.org/10.1093/femsec/fiy144 (2018).
CAS Article PubMed Central Google Scholar
31.
Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3, 292. https://doi.org/10.3389/fmicb.2012.00292 (2012).
CAS Article PubMed PubMed Central Google Scholar
32.
Foshtomi, M. Y. et al. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE 10, e0130116. https://doi.org/10.1371/journal.pone.0130116 (2015).
CAS Article Google Scholar
33.
Pelegri, S. P., Nielsen, L. P. & Blackburn, T. H. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 105(3), 285–290 (1994).
ADS Google Scholar
34.
Stief, P. & Beer, D. D. Probing the microenvironment of freshwater sediment macrofauna: Implications of deposit-feeding and bioirrigation for nitrogen cycling. Limnol. Oceanogr. 51, 2538–2548 (2006).
ADS Google Scholar
35.
Pischedda, L., Cuny, P., Esteves, J. L., Pogiale, J. C. & Gilbert, F. Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. Hydrobiologia 680, 109–124 (2012).
CAS Google Scholar
36.
Poulsen, M., Kofoed, M. V., Larsen, L. H., Schramm, A. & Stief, P. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment. Syst. Appl. Microbiol. 37, 51–59 (2014).
CAS PubMed Google Scholar
37.
Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16196. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).
CAS Article Google Scholar
38.
Samuiloviene, A. et al. The effect of chironomid larvae on nitrogen cycling and microbial communities in soft sediments. Water 11, 1931. https://doi.org/10.3390/w11091931 (2019).
CAS Article Google Scholar
39.
Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves nd consequences of increasing nitrogen availability for these systems. Plant Soil 410, 1–19 (2017).
CAS Google Scholar
40.
Nagata, R. M., Moreira, M. Z., Pimentel, C. R. & Morandini, A. C. Food web characterization based on d15N and d13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Mar. Ecol. Progr. Ser. 519, 13–27 (2015).
ADS CAS Google Scholar
41.
Alfaro-Espinoza, G. & Ullrich, M. S. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph–mangrove interaction. Front. Microbiol. 6, 445. https://doi.org/10.3389/fmicb.2015.00445 (2015).
Article PubMed PubMed Central Google Scholar
42.
Jiménez, M.F.S.-S., Cerqueda-García, D., Montero-Muñoz, J. L., Aguirre-Macedo, M. L. & García-Maldonado, J. Q. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 6, e5583. https://doi.org/10.7717/peerj.5583 (2018).
CAS Article Google Scholar
43.
Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78(23), 8264–8271 (2012).
CAS PubMed PubMed Central Google Scholar
44.
Dias, A. C. F. et al. The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie Van Leeuwenhoek 98, 541–551 (2010).
PubMed Google Scholar
45.
Grim, S. L. & Dick, G. J. Photosynthetic versatility in the genome of Geitlerinema sp. PCC (formerly Oscillatoria limnetica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front. Microbiol. 7, 1546. https://doi.org/10.3389/fmicb.2016.01546 (2016).
Article PubMed PubMed Central Google Scholar
46.
Zehr, J. P., Church, M. J. & Moisander, P. H. Diversity, distribution and biogeochemical significance of nitrogen-fixing microorganisms in anoxic and suboxic ocean environments. In Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences (ed. Neretin, L.) 64, 337–369 (Springer, Berlin, 2006).
Google Scholar
47.
Brauer, V. S. et al. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community. Front. Microbiol. 7, 795. https://doi.org/10.3389/fmicb.2014.00795 (2015).
Article Google Scholar
48.
Beltrán, Y., Centeno, C. M., García-Oliva, F., Legendre, P. & Falcón, L. I. N2 fixation rates and associated diversity (nifH) of microbialite and mat-forming consortia from different aquatic environments in Mexico. Aquat. Microb. Ecol. 65, 15–24 (2012).
Google Scholar
49.
Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607. https://doi.org/10.1038/srep15607 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
50.
Rasigraf, O., Schmitt, J., Jetten, M. S. M. & Lüke, C. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment. Microbiol. Open 6(4), 1. https://doi.org/10.1002/mbo3.475 (2017).
CAS Article Google Scholar
51.
Zhang, S. et al. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Sci. Rep. 6, 36178. https://doi.org/10.1038/srep36178 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
52.
Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132(3), 203–208 (1995).
CAS PubMed Google Scholar
53.
Kraft, B. et al. Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).
ADS CAS PubMed Google Scholar
54.
Jiang, X., Dang, H. & Jiao, N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLoS ONE 10(2), e0117473. https://doi.org/10.1371/journal.pone.0117473 (2015).
CAS Article PubMed PubMed Central Google Scholar
55.
Xu, T. et al. Genomic insight into Aquimarina longa SW024T: its ultra-oligotrophic adapting mechanisms and biogeochemical functions. BMC Genom. 16, 772. https://doi.org/10.1186/s12864-015-2005-3 (2015).
CAS Article Google Scholar
56.
Li, J. et al. Janibacter alkaliphilus sp. nov., isolated from coral Anthogorgia sp. Antonie Van Leeuwenhoek 102(1), 157–162 (2012).
CAS PubMed Google Scholar
57.
Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. R. 61(4), 533–616 (1997).
CAS Google Scholar
58.
Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 85(2), 348–357 (2013).
CAS PubMed Google Scholar
59.
Glaeser, S. P. & Kämpfer, P. The family Sphingomonadaceae. In The Prokaryotes (eds Rosenberg, E. et al.) 641–707 (Springer, Berlin, 2014).
Google Scholar
60.
Katayama, Y., Hiraishi, A. & Kuraishi, H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141, 1469–1477 (1995).
CAS PubMed Google Scholar
61.
Kraft, B., Tegetmeyer, H. E., Meier, D., Geelhoed, J. S. & Strous, M. Rapid succession of uncultured marine bacterialand archaeal populations in a denitrifying continuous culture. Environ. Microbiol. 16(10), 3275–3286 (2014).
CAS PubMed Google Scholar
62.
Härtig, E. & Zumft, W. G. Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system. J. Bacteriol. Res. 181(1), 161–166 (1999).
Google Scholar
63.
Marchant, H. K. et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 11, 1799–1812 (2017).
CAS PubMed PubMed Central Google Scholar
64.
Patureau, D., Zumstein, E., Delgenes, J. P. & Moletta, R. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb. Ecol. 39(2), 145–152 (2000).
CAS PubMed Google Scholar
65.
Ji, B. et al. Aerobic denitrification: a review of important advances of the last 30 years. Biotechnol. Bioproc. E 20(4), 643–651 (2015).
CAS Google Scholar
66.
Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).
ADS CAS PubMed Google Scholar
67.
Luvizotto, D. M. et al. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. An. Acad. Bras. Ciênc. 91, e20180373. https://doi.org/10.1590/0001-3765201820180373 (2018).
CAS Article PubMed Google Scholar
68.
Weihrauch, D., Sandra Fehsenfeld, S. & Quijada-Rodriguez, A. Nitrogen excretion in aquatic crustaceans. In Acid–Base Balance and Nitrogen Excretion in Invertebrate (eds Weihrauch, D. & O’Donnell, M.) 1–25 (Springer, Berlin, 2017).
Google Scholar
69.
Jiang, D.-H., Lawrence, A. L., Neill, W. H. & Gong, H. Effects of temperature and salinity on nitrogenous excretion by Litopenaeus vannamei juveniles. J. Exp. Mar. Biol. Ecol. 253(2), 193–209 (2000).
CAS PubMed Google Scholar
70.
Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134 (2019).
CAS PubMed PubMed Central Google Scholar
71.
Citadin, M., Costa, T. M. & Netto, S. A. The response of meiofauna and microphytobenthos to engineering effects of fiddler crabs on a subtropical intertidal sandflat. Aust. Ecol. 41(5), 572–579 (2016).
Google Scholar
72.
Dyea, A. H. & Lasiak, T. A. Assimilation efficiencies of fiddler crabs and deposit-feeding gastropods from tropical mangrove sediments. Comp. Biochem. Phys. Part A 87(2), 341–344 (1987).
Google Scholar
73.
Hopkins, P. Growth and regeneration patterns in the fiddler crab, Uca pugilator. Biol. Bull. 163, 301–319 (1982).
Google Scholar
74.
Masunari, S. Distribuição e abundância dos caranguejos Uca Leach (Crustacea, Decapoda, Ocypodidae) na Baía de Guaratuba, Paraná, Brasil. Rev. Bras. Zool. 23(4), 901–914 (2006).
Google Scholar
75.
Fusi, M. et al. Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa. Hydrobiologia 803(1), 251–263 (2017).
Google Scholar
76.
Hemmi, J. M. & Zeil, J. Burrow surveillance in fiddler crabs I. Description of behaviour. J. Exp. Biol. 206, 3935–3950 (2003).
PubMed Google Scholar
77.
Christy, J. H. Predation and the reproductive behavior of fiddler crabs (Genus Uca). In Evolutionary Ecology of Social and Sexual Systems—Crustaceans as Model Organisms (eds Duffy, E. J. & Thiel, M.) 211–231 (Oxford University Press, Oxford, 2007).
Google Scholar
78.
Teal, J. M. Respiration of crabs in Georgia salt marshes and its relation to their ecology. Physiol. Zool. 32, 1–14 (1959).
Google Scholar
79.
Michaels, R. E. & Zieman, J. C. Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations. J. Exp. Mar. Biol. Ecol. 444, 104–113 (2013).
Google Scholar
80.
Alongi, D. M. Impact of global change on nutrient dynamics in mangrove forests. Forests 9(10), 596. https://doi.org/10.3390/f9100596 (2018).
Article Google Scholar
81.
Barrera-Alba, J. J., Gianesella, S. M. F., Moser, G. A. O. & Saldanha-Corrêa, F. M. P. Bacterial and phytoplankton dynamics in a sub-tropical Estuary. Hydrobiologia 598, 229–246 (2008).
Google Scholar
82.
Bérgamo, A. L. Característica da hidrografia, circulação e transporte de sal: Barra de Cananéia, sul do Mar de Cananéia e Baía do Trapandé (Master in Physical Oceanography) (Universidade de São Paulo, São Paulo, Instituto Oceanográfico, 2000).
Google Scholar
83.
Cunha-Lignon, M. Dinâmica do Manguezal no Sistema Cananéia-Iguape, Estado de São Paulo—Brasil. Dissertação (Master in Biological Oceanography). Instituto Oceanográfico, Universidade de São Paulo, São Paulo (2001).
84.
Milani, C. et al. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS ONE 8, e68739. https://doi.org/10.1371/journal.pone.0068739 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
85.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
CAS PubMed PubMed Central Google Scholar
86.
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
87.
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).
CAS Article PubMed PubMed Central Google Scholar
88.
Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29(23), 3100–3101 (2013).
CAS PubMed PubMed Central Google Scholar
89.
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357. https://doi.org/10.1038/nmeth.1923 (2012).
CAS Article PubMed PubMed Central Google Scholar
90.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Google Scholar
91.
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2014).
CAS PubMed Google Scholar
92.
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).
CAS Article PubMed Google Scholar
93.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. Res. 215, 403–410 (1990).
CAS Google Scholar
94.
Huson, D. H. & Mitra, S. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol. Biol. 856, 415–429 (2012).
CAS PubMed Google Scholar
95.
Risgaard-Petersen, N. et al. Anaerobic ammonium oxidation in an estuarine. Aquat. Microb. Ecol. 36, 293–304 (2004).
Google Scholar
96.
Tréguer, P. & Le Corre, P. Manuel d’analysis des sels nutritifs dans l’eau de mer 2nd edn, 110 (Université de Bretagne Occidentale, Brest, 1975).
Google Scholar
97.
Kana, T. M. et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).
CAS Google Scholar
98.
Colt, J. Dissolved gas concentration in water: computation as functions of temperature, salinity and pressure 2nd edn. (Elsevier, Amsterdam, 2012).
Google Scholar
99.
De Brabandere, L. et al. Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry 126(1–2), 131–152 (2015).
Google Scholar
100.
Warembourg, F. R. Nitrogen fixation in soil and plant systems. In Nitrogen Isotope Techniques (eds Knowles, R. & Blackburn, T. H.) 127–156 (Academic Press, Cambridge, 1993).
Google Scholar
101.
Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68(3), 1312–1318 (2002).
CAS PubMed PubMed Central Google Scholar
102.
Bonaglia, S. et al. Denitrification and DNRA at the Baltic Sea oxic–anoxic interface: substrate spectrum and kinetics. Limnol. Oceanogr. 61(5), 1900–1915 (2016).
ADS CAS Google Scholar More