More stories

  • in

    Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline

    1.
    Breitbart M, Thompson L, Suttle C, Sullivan M. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.
    Google Scholar 
    2.
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.
    CAS  PubMed  Google Scholar 

    3.
    Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.
    CAS  PubMed  Google Scholar 

    4.
    Howard-Varona C, Lindback M, Bastien G, Solonenko N, Zayed A, Jang HB, et al. Phage-specific metabolic reprogramming of virocells. ISME J. 2020;14:881–95.
    PubMed  PubMed Central  Google Scholar 

    5.
    Sullivan M, Lindell D, Lee J, Thompson L, Bielawski J, Chisholm S. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:1344–57.
    CAS  Google Scholar 

    6.
    Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.
    CAS  PubMed  Google Scholar 

    7.
    Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.
    PubMed  PubMed Central  Google Scholar 

    8.
    Ahlgren NA, Fuchsman C, Rocap G, Fuhrman JA. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 2019;13:618–31.
    CAS  PubMed  Google Scholar 

    9.
    Zeng Q, Chisholm SW. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr Biol. 2012;22:124–8.
    CAS  PubMed  Google Scholar 

    10.
    Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757–60.
    CAS  PubMed  Google Scholar 

    11.
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.
    CAS  PubMed  Google Scholar 

    12.
    Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;14:e144.
    Google Scholar 

    13.
    Dwivedi B, Xue B, Lundin D, Edwards R, Breitbart M. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol Biol. 2013;13:33.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Hagay E, Mandel-Gutfreund Y, Béjà O. Comparative metagenomics analyses reveal viral-induced shifts of host metabolism towards nucleotide biosysnthesis. Microbiome. 2014;2:9.
    Google Scholar 

    15.
    Breitbart M. Marine viruses: truth or dare. Annu Rev Mar Sci. 2012;4:425–48.
    Google Scholar 

    16.
    Chen LX, Méheust R, Crits-Christoph A, McMahon KD, Nelson TC, Warren LA et al. Large freshwater phages with the potential to augment aerobic methane oxidation. BioRxiv 2020.02.13.942896; https://doi.org/10.1101/2020.02.13.942896.

    17.
    Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol. 2015;10:641–50.
    Google Scholar 

    18.
    Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.
    CAS  PubMed  Google Scholar 

    19.
    Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics. eLife. 2014;3:e03125.
    PubMed  PubMed Central  Google Scholar 

    20.
    Edgcomb VP, Orsi W, Bunge J, Jeon SO, Christen R, Leslin C, et al. Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. J Int Soc. Micro Ecol. 2011;5:1344–56.
    CAS  Google Scholar 

    21.
    Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;16:723–729.22.
    CAS  PubMed  Google Scholar 

    22.
    Cassman N, Prieto-Davó A, Walsh K, Silva GG, Angly F, Akhter S, et al. Oxygen minimum zones harbour novel viral communities with low diversity. Environ Microbiol. 2012;4:3043–65.
    Google Scholar 

    23.
    Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9.
    CAS  PubMed  Google Scholar 

    24.
    Scranton MI, Sayles FL, Bacon MP, Brewer PG. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep-Sea Res. 1987;34:945–63.
    CAS  Google Scholar 

    25.
    Taylor GT, Iabichella M, Ho TY, Scranton MI, Thunell MC, Muller-Karger F, et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr. 2001;46:148–63.
    CAS  Google Scholar 

    26.
    Scranton MI, Astor Y, Bohrer R, Ho TY, Muller-Karger F. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep-Sea Res. 2001;48:1605–25.
    CAS  Google Scholar 

    27.
    Scranton MI, Taylor GT, Thunell R, Benitez-Nelson C, Muller-Karger F, Fanning K, et al. Interannual and decadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography. 2014;27:148–59.
    Google Scholar 

    28.
    Peterson LC, Overpeck JT, Kipp NG, Imbrie J. A high-resolution late quaternary upwelling record from the anoxic Cariaco Basin, Venezuela. Paleoceanography. 1991;6:99–119.
    Google Scholar 

    29.
    Scranton MI, Novelli PC, Loud PA. The distribution and cycling of hydrogen gas in the waters of two marine environments. Limnol Oceanogr. 1984;29:993–1003.
    CAS  Google Scholar 

    30.
    Madrid V, Taylor GT, Scranton MI, Chistoserdov AY. Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol. 2001;67:1663–74.
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Wakeham SG, Turich C, Schubotz F, Podlaska A, Li XN, Varela R, et al. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin. Deep-Sea Res. 2012;63:133–56.
    CAS  Google Scholar 

    32.
    Suter EA, Pachiadaki M, Taylor GT, Astor Y, Edgcomb VP. Free-living chemoautotrophic and particle-attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ Microbiol. 2018;20:693–712.
    CAS  PubMed  Google Scholar 

    33.
    Taylor GT, Hein C, Iabichella M. Temporal variations in viral distributions in the anoxic Cariaco Basin. Aquat Micro Ecol. 2003;30:103–16.
    Google Scholar 

    34.
    Astor YM, Lorenzoni L, Scranton MI (eds). Handbook of methods for the analysis of oceanographic parameters at the Cariaco Time Series Station. Cariaco Time Series Study. Caracas, Venezuela: Fundación La Salle de Ciencias Naturales; 2013.

    35.
    John SG, Mendez CB, Deng L, Poulos B, Kauffamn AKM, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Ohio Supercomputer Center 1987. Ohio Supercomputer Center. Columbus OH: Ohio Supercomputer Center. http://osc.edu/ark:/19495/f5s1ph73.

    37.
    Duhaime MB, Sullivan MB. Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology. 2012;434:181–6.
    CAS  PubMed  Google Scholar 

    38.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina se-quence data. Bioinformatics. 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Deng M, Jiang R, Sun F, Zhang X (eds). Research in computational molecular biology. Berlin, Germany: Springer Verlag; 2013 p. 158–70.

    40.
    Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Garneau J, Depardieu F, Fortier LC, Bikard D, Monot M. PhageTerm: a fast and user-friendly software to determine bacteriophage termini and packaging mode using randomly fragmented NGS data. Sci Rep. 2017;7:8292.
    PubMed  PubMed Central  Google Scholar 

    42.
    Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ. 2017;5:e3817.
    PubMed  PubMed Central  Google Scholar 

    43.
    Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.
    PubMed  PubMed Central  Google Scholar 

    44.
    Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome. 2017;5:69.
    PubMed  PubMed Central  Google Scholar 

    45.
    Cambuy DD, Coutinho FH, Dutilh BE. Contig annotation tool CAT robustly classifies assembled metagenomic contigs and long sequences. BioRxiv 2016;072868:1–8.
    Google Scholar 

    46.
    Arndt D, Grant J, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from Pole to Pole. Cell. 2019;177:1109–23.
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12.
    PubMed  PubMed Central  Google Scholar 

    49.
    Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomics sequences. Bioinformatics. 2012;28:2223–30.
    CAS  PubMed  Google Scholar 

    50.
    Daly RA, Borton MA, Wilkins MJ, Hoyt DW, Kountz DJ, Wolfe RA, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat Microbiol. 2016;1:16146.
    CAS  PubMed  Google Scholar 

    51.
    Cock PA, Chang AT, Chapman BA, Cox CJ, Dalke A, Friedberg I, et al. Biophython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Solovyev V, Salamov A 2011. Automatic annotation of microbial genomes and metagenomic sequences In: Li RW, editor. Metagenomics and its applications in agriculture biomedicine and environmental studies. NY, USA: Nova Science Publishers, Hauppauge; p. 61–78.

    53.
    Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One. 2017;12:e0171410.
    PubMed  PubMed Central  Google Scholar 

    54.
    Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2012;41:D344–7.
    PubMed  PubMed Central  Google Scholar 

    55.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modelling, prediction and analysis. Nat Protoc. 2015;10:845–58.
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
    Google Scholar 

    57.
    Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.
    CAS  PubMed  Google Scholar 

    58.
    Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.
    Google Scholar 

    59.
    Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics. 2016;17:930.
    PubMed  PubMed Central  Google Scholar 

    60.
    Duhaime MB, Solonenko N, Roux S, Verberkmoes NC, Wichels A, Sullivan MB. Comparative omics and trait analyses of marine Pseudoalteromonas phages advance the phage OTU concept. Front Microbiol. 2017;8:1241.
    PubMed  PubMed Central  Google Scholar 

    61.
    Roux S, Adriaenssens EM, Dutlith BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUViG): a community consensus on standards and best practices for describing genome sequences from uncultivated viruses. Nat Biotechnol. 2019;37:29–37.
    CAS  PubMed  Google Scholar 

    62.
    Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.
    PubMed  Google Scholar 

    63.
    Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7:1092–101.
    PubMed  PubMed Central  Google Scholar 

    64.
    Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Jones-Mortimer MC. Mapping of structural genes for the enzymes of cysteine biosynthesis in Escherichia coli K12 and Salmonella typhimurium LT2. Heredity. 1973;31:213–LT221.
    CAS  PubMed  Google Scholar 

    66.
    Grote J, Schott T, Bruckner CG, Glöckner FO, Jost G, Teeling H, et al. Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. PNAS. 2012;109:506–10.
    CAS  PubMed  Google Scholar 

    67.
    Shapiro JA. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. PNAS. 1979;76:1933–7.
    CAS  PubMed  Google Scholar 

    68.
    Pato ML Bactioriophage Mu. In: Howe M, Berg D (eds). Mobile DNA. Washington DC, USA: ASM Press; 1989 p. 23–52.

    69.
    Mhammedi-Alaoui A, Pato M, Gama MJ, Toussaint A. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol Microbiol. 1994;11:1109–16.
    CAS  PubMed  Google Scholar 

    70.
    Howe MM. Prophage deletion mapping of bacteriophage Mu-1. Virology. 1973;54:93–101.
    CAS  PubMed  Google Scholar 

    71.
    Fogg PC, Hynes AP, Digby E, Lang AS, Beatty JT. Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology. 2011;421:211–21.
    CAS  PubMed  Google Scholar 

    72.
    Lang AS, Zhaxybayeva O, Beatty JT. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol. 2012;10:472–82.
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Mosig G. Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu Rev Genet. 1998;32:379–413.
    CAS  PubMed  Google Scholar 

    74.
    Mosig G, Gewin J, Luder A, Colowick N, Vo D. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. PNAS. 2001;98:8306–831.
    CAS  PubMed  Google Scholar 

    75.
    Bragg JG, Chisholm SW. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS One. 2008;14:e3550.
    Google Scholar 

    76.
    Shapiro JA. A role for the Clp protease in activating Mu-mediated DNA rearrangements. J Bacteriol. 1993;175:2625–31.
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.
    CAS  PubMed  Google Scholar 

    78.
    Derelle E, Ferraz C, Escande ML, Eychenie S, Cooke R, Piganeau G, et al. Life-cycle and genome of OtV5, a large DNA virus of the pelagic marine unicellular green alga Ostreococcus tauri. PLoS One. 2008;3:e2250.
    PubMed  PubMed Central  Google Scholar 

    79.
    Madsen JS, Hylling O, Jacquiod S, Pécastaings S, Hansen LH, Riber L, et al. An intriguing relationship between the cyclic diguanylate signaling system and horizontal gene transfer. ISME J. 2018;12:2330–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009;7:263–73.
    CAS  PubMed  Google Scholar 

    81.
    Taylor GT, Thunell RC, Varela R, Benitez-Nelson C, Scranton MI. Hydrolytic ectoenzyme activity associated with suspended and sinking organic particles above and within the anoxic Cariaco Basin. Deep-Sea Res. 2009;56:1266–83.
    CAS  Google Scholar 

    82.
    Nothaft H, Szymanski CM. Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol. 2010;8:765–78.
    CAS  PubMed  Google Scholar 

    83.
    Chen CR, Makhatadze GI. Molecular determinant of the effects of hydrostatic pressure on protein folding stability. Nat Commun. 2017;8:14561.
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Lee HS, Qi Y, Im W. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep. 2015;5:8926.
    PubMed  PubMed Central  Google Scholar 

    85.
    Mills DC, Jervis AJ, Abouelhadid S, Yates LE, Cuccui J, Linton D, et al. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria. Glycobiology. 2016;26:398–409.
    CAS  PubMed  Google Scholar 

    86.
    Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol. 2015;16:742–52.
    CAS  PubMed  Google Scholar 

    87.
    Kandiba L, Eichler J. Archaeal S-layer glycoproteins: post-translational modification in the face of extremes. Front Microbiol. 2014;5:661.
    PubMed  PubMed Central  Google Scholar 

    88.
    Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69:12–50.
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Schilling B, Christensen D, Davis R, Sahu AK, Hul LI, Walker‐Peddakotla A. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol Micro. 2015;98:847–63.
    CAS  Google Scholar 

    90.
    Marine R, Nasko D, Wray J, Polson SW, Wommack E. Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology. ISME J. 2017;11:2479–91.
    PubMed  PubMed Central  Google Scholar 

    91.
    Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine Group II Euryarchaeota. Curr Biol. 2017;2:1362–8.
    Google Scholar 

    92.
    Nishimura Y, Watai H, Honda T, Mihara T, Omae K, Roux S, et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere. 2017;2:e00359–16.
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.
    PubMed  PubMed Central  Google Scholar 

    94.
    Ho TY, Scranton MI, Taylor GT, Varela R, Thunell RC, Muller‐Karger F. Acetate cycling in the water column of the Cariaco Basin: seasonal and vertical variability and implication for carbon cycling. Limnol Oceanogr. 2002;47:1119–28.
    CAS  Google Scholar 

    95.
    Sharon I, Battchikova N, Aro EM, Giglione C, Meinnel T, Glaser F, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011;5:1178–1190.
    CAS  PubMed  PubMed Central  Google Scholar 

    96.
    Johnson DC, Dean DR, Smith AD, Johnson MK. Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem. 2005;74:247–81.
    CAS  PubMed  Google Scholar 

    97.
    Zhao D, Curatti L, Rubio LM. Evidence for nifU and nifS participation in the biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Biol Chem. 2007;282:37016–25.
    CAS  PubMed  Google Scholar 

    98.
    Iyer LM, Babu MM, Aravind L. The HIRAN domain and recruitment of chromatin remodeling and repair activities to damaged DNA. Cell Cycle. 2006;5:775–82.
    CAS  PubMed  Google Scholar 

    99.
    Peters DL, McCutcheon JG, Stothard P, Dennis JJ. Novel Stenotrophomonas maltophilia temperate phage DLP4 is capable of lysogenic conversion. BMC Genomics. 2019;20:300.
    PubMed  PubMed Central  Google Scholar 

    100.
    Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–51.
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Active and social life is associated with lower non-social fearfulness in pet dogs

    Demographics
    We studied the environmental factors for fear of fireworks (n = 9,613), thunder (n = 9,513), novel situations (n = 6,945), and fear of heights and surfaces (n = 2,932). The fear of fireworks sample included 6,732 non-fearful and 2,881 fearful dogs with a mean age of 4.8 years (range 2 months to 18 years).
    The fear or thunder sample included 7,809 non-fearful and 1,704 fearful dogs with a mean age of 4.7 years (range 2 months to 17 years). The fear of novel situations sample included 6,062 non-fearful and 883 fearful dogs with a mean age of 4.6 years (range 2 months to 18 years). The fear of surfaces and heights sample included 1,212 non-fearful and 1,720 fearful dogs with a mean age of 5.1 years (range 3 months to 16 years). In all sample sets, 52% of the dogs were females. More detailed descriptive statistics and lists of included breeds and the number of individuals per breed are presented in the Supplementary Table S1.
    Factors associated with fear of fireworks
    Logistic regression analysis identified several environmental and demographic factors associated with fear of fireworks, including age, socialisation score, neutering, activities/training, breed, owner’s dog experience, and dogs in the family (Table 1).
    Table 1 Associations between the demographic and environmental variables with fear of fireworks and fear of thunder of the final models in the logistic regression analyses.
    Full size table

    We found breed differences in the likelihood of fear of fireworks. The most fearful breeds were Cairn Terrier, mixed breed, and Pembroke Welsh Corgi: the least fearful breeds were Labrador Retriever, German Shepherd Dog, and Miniature Poodle (Fig. 1a). All pairwise breed differences are shown in Supplementary Table S8.
    Figure 1

    Logistic regression analyses on the effects of breed (a), age (b), socialisation (c), activities/training (d), and dogs in the family (e) for the fear of fireworks. The Y axis shows the predicted probability of belonging to the “high” fear group. Error bars (a, d, e) and grey lines (b, c) indicate the 95% confidence limits. n = 9,613.

    Full size image

    The probability of fear of fireworks increased with age until 10 years of age and decreased thereafter (χ2 = 146.8, DF = 1, p  More

  • in

    Environmental unpredictability shapes glucocorticoid regulation across populations of tree swallows

    Populations
    Field data were collected from 2016 to 2018 in four different populations of tree swallows breeding in nest-boxes. Populations were located in Chattanooga, Tennessee (TN) (35.1°N, 85.2°W, 206 m elevation, established in 2006, 2018: n = 73), Ithaca, New York (NY) (42.5°N, 76.5°W, 340 m elevation, established in 1986, 2016: n = 42), Burgess Junction, Wyoming (WY) (44.5°N, 107.3°W, 2451 m elevation established in 1995, 2018, n = 77) and in McCarthy, Alaska (AK) (61.4°N, 143.3°W, 445 m elevation, established in 1993, 2016: n = 28, 2017: n = 41). Tree swallows are widely distributed across North America and breed in a variety of environments. These populations were chosen to allow for comparisons among populations breeding in environments with different degrees of environmental predictability and reproductive value. Populations at higher latitude (Alaska) or elevation (Wyoming) are expected to experience cooler and more unpredictable weather conditions and a shorter breeding season starting later in the year (late May). In Tennessee, near the Southern edge of the breeding distribution, tree swallows are expected to experience warmer and more predictable weather conditions and a long breeding season with the first egg usually laid earlier in the season (early to mid-April). In New York, environmental conditions and breeding season length are expected to be intermediate, with the first egg usually laid in early May.
    General field methods and stress manipulation
    In the four populations, nests were monitored every 1–2 days throughout the breeding season from the initiation of activity at each site to fledging, except for the last week of nestlings’ development (to avoid inducing premature fledging). For every active nest, we recorded clutch initiation date and completion dates, clutch size, hatch date, brood size, and the number of nestlings fledged. Nestling fates were determined by checking boxes 22–24 days after hatching as fledging usually occurs around day 20. We installed radio frequency identification (RFID) units on each box on the fourth day of incubation (see below). Birds were captured at their nest boxes by hand or using a manually activated trap. All birds were captured and sampled on specific days of life history substages, and during a set time of day, to reduce the variation in circulating glucocorticoid hormones resulting from circadian rhythms. Adult females were captured between 0700 and 1000 h in NY, TN and WY and between or 0600 and 0900 h in AK to compensate for the earlier start of activity due to the increased day length compared to the other populations.
    Females were initially captured 6 or 7 days after clutch completion (capture number 1). At this capture, we took a first blood sample within 3 min of initial disturbance to measure baseline circulating corticosterone levels. A second blood sample was taken after 30 min of restraint in a cloth bag to measure stress-induced corticosterone levels. Immediately after this sample was taken, females were injected with dexamethasone (dex) (0.5 μl g−1, Dexamethasone Sodium Phosphate, Mylan Institutional LLC), a synthetic glucocorticoid that binds to receptors within the HPA axis, in order to assess negative feedback indepently of the stress-induced corticosterone level29. A final blood sample was taken 30 min after dex injection to measure the degree of down-regulation in circulating corticosterone (a measure of negative feedback). Between samples, we weighed the females, and measured the length of their skull from the back of the head to the bill tip (head-bill) and flattened wing length. Non-banded individuals received USGS leg bands and a celluloid colour band with attached passive integrated transponder (PIT) tag encoding a 10-digit hexadecimal string (Cyntag, Cynthiana, KY). Female age was determined based on plumage coloration and characterized as second year (SY) or after second year (ASY)57.
    As part of a separate study, at their first capture, adult females were allocated to one of the experimental groups: control, feather restraint (in which three primaries were reversibly attached to alter flight ability and thereby increasing the cost of foraging), or predator exposure (see29 for details on both experimental treatments). Treatments started after the first capture and lasted for 5–6 days. As these treatments had no effects on HPA axis regulation (Table S1, S2, S3), data from all individuals were included in analyses.
    Females were then recaptured 5–6 days later (on incubation day 12 or 13; capture 2), at the end of the experimental treatments (see above). At this capture, we only took a baseline blood sample and weighed the bird before release. Finally, we recaptured females again 6–8 days after eggs hatched (capture 3). We followed the same procedure as in capture 1, taking a baseline, restraint stress-induced, and post-dex blood samples, and again weighed each female.
    Twelve days after eggs hatched, each nestling received an USGS leg band, was weighed and had head-bill and flat wing length measured.
    All blood samples were collected from the alar vein, in heparinised microhematocrit capillary tubes. Blood samples were then transferred to microcentrifuge tubes, and kept on ice until centrifugation (within 4 h). After separation, the plasma was stored at − 20 °C in the field and then at − 80 °C in the lab until analysis. All methods were approved by Cornell IACUC and conducted with appropriate state and federal permits. We followed the guidelines to the use of wild birds in research of the Onithological Council for the care and use of animals.
    Provisioning behaviour
    Number of feeding trips for females from nestling ages 1–18 was recorded using radio-frequency identification (RFID) devices (Cellular Tracking Technologies; Rio Grande, NJ, USA)58. RFID units were installed on each active box on day 4 of incubation. Antennae were fastened around each entrance hole so that birds had to pass directly through an antenna to enter or exit the box. We programmed our RFID units to sample for PIT tags every second between 0500 and 2200 h each day as tree swallows are not very active at night. Poll time was set at 500, and cycle time at 1,000. The delay time (minimum period of time between successive tag recordings) was set to 1 s. RFID boards were powered by 12 V 5Ah (PS-1250, PowerSonic, San Diego, CA, USA) batteries that were replaced every five days. At the first capture, each bird was fitted with a PIT tag attached to a colour band. Each PIT tag encoded a unique 10-digit hexadecimal string that was recorded, along with a time stamp, when birds passed through or perched on the antenna (see59 for more details). From the raw RFID records, we determined the number of daily feeding trips for each female through 18 days of age for the brood using an algorithm validated in the New York population59.
    Corticosterone assay
    Steroids were extracted from plasma samples using a triple ethyl acetate extraction and then corticosterone levels were determined using an enzyme immunoassay kit (DetectX Corticosterone, Arbor Assays: K014-H5) previously validated for tree swallows60. Samples were run in duplicate and all samples from an individual were run on the same plate. In total we ran 47 assays with an average extraction efficiency of 92.8% and a detection limit of 0.47 ng ml−1 (calculated as described in60). The intra-assay variation based on duplicate samples was 8.88% and the inter-assay variation based on plasma pool run across plates was 11.1%.
    Data analysis
    To characterise the degree of environmental unpredictability at the different field sites we calculated the unpredictability of temperature variables. We obtained historical weather data for each site over as long a yearly range as possible. For New York we obtained data from the North East Climate Center (https://www.nrcc.cornell.edu/) for the Game Farm road weather station (from 1983, located about 7 km from field sites) and from the Western Regional Climate Center (https://wrcc.dri.edu/) for the Prentice Cooper State Forest station in Tennessee (from 2003, located about 16 km from field sites), the May Creek station in Alaska (from 1990 located about 19 km from field sites) and the Burgess station in Wyoming (from 1992, located about 5 km from field sites). From these data, we extracted the average daily temperature, the daytime average daily temperature (between 0600 and 2200) which is the period when the swallows are the most active and the daily maximum temperature, which is known to affect flying insects’ activity and therefore food availability61.
    We quantified the unpredictability of these temperatures variables during the breeding season: from April to June in Tennessee and New York and from May to July in Alaska and Wyoming. We calculated unpredictability using a general additive model (GAM) following the methods described in Franch-Gras et al.43. For each site, these variables were divided by their mean to normalise them before analysis43. This model (one for each site) considers the dispersion of the data in the time series around a typical curve of the normalised variable. For each weather variable and site, the typical curve was fitted in a GAM model in relation to the day of the year using the gam function in the mgcv package in R 3.5.3 (R Core Team, 2019). As suggested by Franch-Gras and collaborators43, we fitted the GAMs using cubic splines as smoothing function to not a priori constrain the shape of the curve. The standard deviation of the residuals of the fitted model (SDres) represents an index of unpredictability for each variable43. This index gives an overall measure of unpredictability using the historical records and is not intended to indicate variation in weather in the particular years of study at each site.
    All data come from the first nesting attempt of each female. We compared females’ corticosterone levels by fitting a generalised linear mixed model (GLMM) with a gamma distribution that included population, life history substage, sample (baseline, stress-induced and post-dex), female age, treatment and their interactions (2-, 3-, 4- and 5-ways that include sample) as fixed factors, relative clutch initiation date as a covariate, female identity and experimental year as random intercepts, and population as a random slope. We further characterised females’ corticosterone regulation by calculating their glucocorticoid stress response as the difference between stress-induced and baseline corticosterone levels and their negative feedback as the difference between post-dex and stress-induced corticosterone levels. As it is not clear yet which trait is more important for the regulation of the phenotype—the raw hormone level or the response (the derived value)—we ran similar models on stress-induced and post-dex corticosterone values with baseline and stress-induced corticosterone levels as covariate respectively. For negative feedback, we also ran a model on the percentage change in corticosterone between the stress-induced and post-dex sampling periods. In order to directly compare the strength of the relationship between temperature unpredictability or reproductive value and females’ corticosterone regulation, we ran the same models but we replaced the fixed effect of population with either average temperature unpredictability or total breeding season length as a continuous variable. Then we used an information theory approach by comparing models’ Akaike Information Criterion (AIC) scores to determine which model, and thus which of these two variables, better predicts the observed variation in corticosterone regulation. We compared the magnitude of females’ acute stress response and negative feedback strength using GLMMs fit with a normal distribution including population, capture number, female age and their interactions as fixed factors, relative clutch initiation date as a covariate, female identity and experimental year as random intercepts, and population as a random slope. Population was added as a random slope in order to allow changes in HPA axis regulation to be different between populations. Within each population, we determined whether corticosterone level at each time point, and stress response and negative feedback were correlated using Pearson correlations.
    We calculated the total breeding season length during the experimental year as the number of days between the first clutch initiation and the last day nestlings fledged at each site. We compared populations using a GLM fitted with a Poisson distribution. We also compared clutch size, brood size, hatching success and fledging success between populations. Population, female age and their interactions were added as fixed factors, and relative clutch initiation day as a covariate. The model for relative clutch initiation date was fitted with a normal distribution, models for clutch size and brood size with a Poisson distribution and models for hatching success and fledging success with a binomial distribution.
    We compared the number of daily feeding trips females made using a generalised linear mixed model GLMM fitted with a Poisson distribution. Population, female age, treatment, their interactions and nestling age were added as fixed factors and brood size at each nestling age as a covariate. We also added relative clutch initiation date and brood size as covariates and nest identity as random factor. We used GLMMs to compare nestlings’ body mass with population, female age and their interaction as fixed factors. Female identity was added as a random factor.
    GLMs were run using the GENMOD procedure and GLMMs the GLIMMIX procedure in SAS University Edition (SAS Institute Inc., Cary, NC, USA). Distributions for the different models were chosen depending of the type of data. Poisson distribution was used for counting data (nestling provisioning, breeding season length, clutch size, brood size), binomial distribution was used for binary data (0/1: hatching and fledging success), gamma distribution was used for continuous data when all data were superior to 0 (corticosterone levels, stress response, nestlings’ body mass) and Gaussian distribution was used for continuous data that included positive and negative values, after checking for normality of the residuals (negative feedback). Post‐hoc comparisons were performed using Tukey‐Kramer multiple comparison adjustment to obtain corrected p‐values. Probability levels  More

  • in

    Damage severity of wood-destroying insects according to the Bevan damage classification system in log depots of Northwest Turkey

    1.
    De Zan, L. R., Bellotti, F., D’Amato, D. & Carpanetoi, G. M. Saproxylic beetles in three relict beech forests of central Italy: analysis of environmental parameters and implications for forest management. For. Ecol. Manag.328, 229–244 (2014).
    Google Scholar 
    2.
    Brockerhoff, E. G., Jones, D. C., Kimberley, M. O., Suckling, D. M. & Donaldson, T. Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. For. Ecol. Manag.228, 234–240 (2006).
    Google Scholar 

    3.
    Hwayyiz, D. et al. Distribution of darkling beetles (Tenebrionidae) in Malaysia. J. Entomol. Zool Stud.4, 1113–1117 (2016).
    Google Scholar 

    4.
    Reeve, J. D. Complex emergence patterns in a bark beetle predator. Agric. For. Entomol.2, 233–240 (2000).
    Google Scholar 

    5.
    Kolibac, J. Trogossitidae. A review of the beetle family, with a catalogue and keys. Zookeys366, 1–194 (2013).
    Google Scholar 

    6.
    Lawrence, J. & Slipinski, A. Australian Beetles. Volume 1: morphology, classification and keys (CSIRO, Collingwood, 2013).
    Google Scholar 

    7.
    Gathu, R. K., Kirubi, D. T. & Gitonga, D. Composition and abundance of wood-boring beetles of Acacia xanthophloea and their associated natural enemies in Thika, Kenya. J. Asia Pac. Biodivers.11, 248–254 (2018).
    Google Scholar 

    8.
    Raje, K. R., Abdel-Moniem, H. E., Farlee, L., Ferris, V. R. & Holland, J. D. Abundance of pest and benign Cerambycidae both increase with decreasing forest productivity. Agric. For. Entomol.14(2), 165–169 (2012).
    Google Scholar 

    9.
    Evans, H.F., Moraal, L.G., Pajares, J.A. Biology, ecology and economic importance of Buprestidae and Cerambycidae. Bark and wood boring insects in living trees in Europe, a synthesis/Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.C., Evans, H.F., Dordrecht etc. : Kluwer – ISBN 1402022409, 447–474 (2004).

    10.
    Ohsawa, M. Erratum to “Species richness of Cerambycidae in larch plantations and natural broad-leaved forests of the central mountainous region of Japan”. For. Ecol. Manag.189, 375–385 (2004).
    Google Scholar 

    11.
    Kariyanna, B., Mohan, M. & Gupta, R. Biology, ecology and significance of longhorn beetles (Coleoptera: Cerambycidae). J. Entomol. Zool. Stud.5, 1207–2121 (2017).
    Google Scholar 

    12.
    Monteys, V. S. & Tutusaus, G. T. A new alien invasive longhorn Beetle, Xylotrechus chinensis (Cerambycidae), is infesting mulberries in Catalonia (Spain). Insects9, e52 (2018).
    Google Scholar 

    13.
    Hanks, L. M. Influence of the larval host plant on reproductive strategies of Cerambycid beetles. Annu. Rev. Entomol.44, 483–505 (1999).
    PubMed  CAS  Google Scholar 

    14.
    Kaygin, A. T. Endüstriyel Odun Zararlıları [Industrial Wood Borers], Ankara (Science and Biology Publications Series, In Turkish, 2007).
    Google Scholar 

    15.
    Mifsud, D. & Bily, S. Jewel beetles (Coleoptera, Buprestidae) from the Maltese Islands (Central Mediterranean). Central Mediterranean Naturalist3, 181–188 (2002).
    Google Scholar 

    16.
    Canakcioglu, H., & Mol, T. Orman Entomolojisi: Zararlı ve Yararlı Böcekler. Istanbul, ISBN: 9754044872. [Forest Entomology: Harmful and Useful Insects ], Istanbul University Publication. Turkish. (1998)

    17.
    Hansen, L. S. & Jensen, K. M. V. Upper lethal temperature limits of the common furniture beetle Anobium punctatum (Coleoptera: Anobiidae). Int. Biodeter. Biodegr.37, 225–232 (1996).
    Google Scholar 

    18.
    Kaygın, T. & Sade, E. Species of anobiidae family in Turkey and introduction of some important ones of these species. ZKÜ J. Bartın For. Faculty6(6), 141–152 (2004).
    Google Scholar 

    19.
    Rose, A., Lindquist, O. & Syme, P. Insects of Eastern Spruces, Fir and Hemlock (Canadian Forest Service, Ottawa, ON, 1994).
    Google Scholar 

    20.
    Hulcr, J., Black, A., Prior, K., Chen, C. Y. & Li, H. F. Studies of ambrosia beetles (Coleoptera: Curculionidae) in their native ranges help predict invasion impact. Fla. Entomol.100, 257–261 (2017).
    Google Scholar 

    21.
    Mulercikas, P., Tamutis, V. & Kazlauskaitė, S. Species composition and abundance of click-beetles (Coleoptera, Elateridae) in agrobiocenozes in Southern Lithuania. Pol. J. Environ. Stud.21, 425–433 (2012).
    Google Scholar 

    22.
    Akbulut, S., Keten, A., Baysal, I. & Yuksel, B. The effect of log seasonality on the reproductive potential of Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae) reared in black pine logs under laboratory conditions. Turk J Agric For31, 413–422 (2007).
    Google Scholar 

    23.
    Komut, O., Imamoğlu, S. & Oztürk, A. The effective damage in forestry enterprises selling storage and precautions. III. National Black Sea Forestry Congress, Artvin, Turkey, 20–22 May, 270–278 (2010).

    24.
    Yalcin, M., Yuksel, B., Akcay, C. & Muhammet, C. Integrated pheromone trap system for collecting pests: insects collecting cages. Kahramanmaras Sutcu Imam Univ. J. Nat. Sci.19, 355–361 (2016).
    Google Scholar 

    25.
    Acatay, A. Zararlı orman böcekleri teşhis anahtarı (The key to identifying harmful forest insects) (Istanbul University, Forest faculty publications. In Turkish, Istanbul, 1961).
    Google Scholar 

    26.
    Freude, H., Harde, K.W. & Lohse, G.A. Die KäferMitteleuropas. Band 10, Goecke and Evers Verlag, Krefeld. German (1981).

    27.
    Freude, H., Harde, K.W & Lohse, G.A. Die KäferMitteleuropas. Band 11, Goecke and Evers Verlag. Krefeld, German (1983).

    28.
    Bevan, D. Forest Insects, Forest Commission Handbook.1. A guide to insects feeding on trees in Britain, 153p (1987).

    29.
    Borror, D. J., Triplehorn, C. A. & Johnson, N. F. An introduction to study of insects 6th edn. (Saunders College Publishing, California, 1989).
    Google Scholar 

    30.
    Cherepanov, A. I. Cerambycidae of Northern Asia (Lieden, Brill, 1991).
    Google Scholar 

    31.
    Bense, U. Longhorn beetles: Illustrated key to the Cerambycidae and Vesperidae of Europe (Margraf Verlag, Weikersheim, 1995).
    Google Scholar 

    32
    Creffield, J. W. Wood-destroying insects: wood borers and termites (CSIRO Publishing, Clayton, 1996).
    Google Scholar 

    33.
    Yu, Y. et al. A new longhorn beetle (Coleoptera: Cerambycidae) from the Early Cretaceous Jehol Biota of Western Liaoning in China. Cretac. Res.52, 453–460 (2015).
    Google Scholar 

    34.
    Moretti, M. & Barbalat, S. The effects of wildfires on wood-eating beetles in deciduous forests on the southern slope of the Swiss Alps. For. Ecol. Manag.187, 85–103 (2004).
    Google Scholar 

    35.
    Farrell, B. D. et al. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution55, 2011–2027 (2001).
    PubMed  CAS  Google Scholar 

    36.
    Wood, D. L. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu. Rev. Entomol.27, 411–446 (1982).
    CAS  Google Scholar 

    37.
    Liljebland, E. Monograph of the family Mordellidae Coleoptera) of North America (North of Mexico University of Michigan Press, Michigan, 1945).
    Google Scholar 

    38.
    Slipinski, S.A. Revision of the Australian Cerylonidae (Coleoptera: Cucujoidea). Annales, Zoologici, Polska Akademia Nauk, Instytut Zoologii, (1975).

    39.
    Nadeaua, P., Majka, C. G. & Moreaua, G. Short-term response of Coleopteran assemblages to thinning-induced differences in dead wood volumes. For. Ecol. Manag.336, 44–51 (2015).
    Google Scholar 

    40.
    Ozdikmen, H. Longhorned beetles of Bolu province in Turkey (Coleoptera: Cerambycidae). Mun. Ent. Zool.6, 179–422 (2011).
    Google Scholar 

    41.
    Baker, W. L. Eastern Forest Insects (USDA Forest. Service. Misc. Pub, USA, 1972).
    Google Scholar 

    42
    Fettkother, R., Reddy, G. V., Noldt, U. & Dettner, K. Effect of host and larval frass volatiles on behavioural response of the old house borer, Hylotrupes bajulus (L.) (Coleoptera: Cerambycidae), in a wind tunnel bioassay. Chemoecology10, 1–10 (2000).
    CAS  Google Scholar 

    43.
    Mori, K., Ebata, T. & Sakakibara, M. Synthesis of (2s, 3r, 7rs)-stegobinone [2,3-dihydro-2,3,5-trimethyl-6-(1-methyl-2- oxobutyl)-4h-pyran-4-one] and its (2r, 3s, 7rs)-isomer: The pheromone of the drugstore beetle. Tetrahedron37, 709–713 (1981).
    CAS  Google Scholar 

    44.
    Williams, L.H. Changes in wood processing and use have influencedthe likelihood of beetle infestations in seasoned wood. U.S. Department of Agriculture Forest Service General Technical Report SO-28. (1980).

    45.
    Linsley, E. G. Ecology of cerambycidae. Annu Rev Entomol4, 99–138 (1959).
    Google Scholar 

    46.
    Vives, E. Coleoptera, Cerambycidae Fauna Iberica, Museo Nacional de Ciencias naturales. CSIC, Madrid12, 1–715 (2000).
    Google Scholar 

    47.
    Kuzminski, R., Labędzki, A. & Chrzanow, A. Occurrence of Ergates faber (Linnaeus 1761) (Coleoptera, Cerambycıdae) and a proposal for protective measures in managed forests to preserve the species. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria13, 15–25 (2014).
    Google Scholar 

    48.
    Cardenas, A. M. & Gallardo, P. The effect of temperature on the preimaginal development of the Jewel beetle, Coraebus florentinus (Coleoptera: Buprestidae). Eur J Entomol109, 21–28 (2012).
    Google Scholar 

    49.
    Cardenas, A. M. & Gallardo, P. The effects of oviposition site on the development of the wood borer Coraebus florentinus (Coleoptera: Buprestidae). Eur J Entomol110, 135–144 (2013).
    Google Scholar 

    50.
    Salle, A., Nageleisen, L. M. & Lieutier, F. Bark and wood boring insects involved in oak declines in Europe: Current knowledge and future prospects in a context of climate change. For. Ecol. Manag.328, 79–93 (2014).
    Google Scholar  More

  • in

    Insights into a 429-million-year-old compound eye

    1.
    Barrande, J. Système Silurien du Centre de la Bohème, p. 253. (Prague, Paris, 1852–1881).
    2.
    Hughes, N. C., Kříž, J., Macquaker, J. H. S. & Huff, W. D. The depositional environment and taphonomy of the Homerian Aulacopleura shales fossil assemblage near Loděnice, Czech Republic (Prague Basin, Perunican microcontinent). Bull. Geosci. 89, 219–238 (2014).
    Google Scholar 

    3.
    Hughes, N. C., Hong, P. S., Hou, J. B. & Fusco, G. The development of the Silurian trilobite Aulacopleura koninckii reconstructed by applying Inferred growth and segmentation dynamics: A case study in Paleo-Evo-Devo. Front. Ecol. Evol. 5, 1–12 (2017).
    Google Scholar 

    4.
    Moore, R. C., ed. Treatise on Invertebrate Paleontology [Part O—Arthropoda 1 (Trilobitomorpha)]. (Geol. Soc. America and Univ. Kansas Press, 1959).

    5.
    Fortey, R. A. & Owens, R. M. Evolutionary trends in invertebrates. Chapter 5. Trilobites. In Evolutionary Trends (ed. K. J. McNamara) 121–142 (Belhaven Press, London, 1990).

    6.
    Fusco, G., Hughes, N. C., Webster, M. & Minelli, A. Exploring developmental modes in a fossil arthropod: Growth and trunk segmentation of the trilobite Aulacopleura koninckii. Am. Nat. 163, 167–183 (2003).
    PubMed  Google Scholar 

    7.
    Fusco, G., Hong, P. S. & Hughes, N. C. Axial growth gradients across the postprotaspid ontogeny of the Silurian trilobite Aulacopleura koninckii. Paleobiology 42, 426–438 (2016).
    Google Scholar 

    8.
    Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten. [Concept and significance of fossil-Lagerstätten]. Neues Jahrbuch für Geologie und Paläontologie (1970).

    9.
    Seilacher, A., Reif, W.-E. & Westphal, F. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311, 5–23 (1985).

    10.
    Cong, P.-Y., Ma, X.-Y., Hou, X.-G., Edgecombe, G. D. & Strausfeld, N. J. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–542 (2014).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Ma, X.-Y., Hou, X.-G., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Tanaka, G. et al. Mineralized rods and conessuggest colour vision in a 300 Myr-old fossil fish. Nat. Commun. 5, 5920 (2014).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Ma, X.-Y., Edgecombe, G. D., Hou, X.-G., Goral, T. & Strausfeld, N. J. Preservational pathways of corresponding brains of a Cambrian euarthropod. Curr. Biol. 25, 2969–2975 (2015).
    CAS  PubMed  Google Scholar 

    14.
    Strausfeld, N. F., Ma, X.-Y. & Edgecombe, G. D. Fossils and the evolution of arthropod brains. Curr. Biol. 26, R989-1000 (2016).
    CAS  PubMed  Google Scholar 

    15.
    Tanaka, G., Parker, A. R., Siveter, D. J., Maeda, H. & Furutani, M. An exceptionally well-preserved Eocene dolichopodid fly eye: Function and evolutionary significance. Proc. R. Soc. B 276, 1015–1019 (2009).
    PubMed  Google Scholar 

    16.
    Schoenemann, B. & Clarkson, E. N. Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites. Sci. Rep. 3, 1429 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S., & Clarkson, E.N.K. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Comm. 7, 1–9 (2016).

    18.
    Schoenemann, B., Pärnaste, H. & Clarkson, E. N. K. Structure and function of a compound eye, more than half a billion years old. PNAS 114, 13489–13494 (2017).
    CAS  PubMed  Google Scholar 

    19.
    Schoenemann, B., Poschmann, M. & Clarkson, E. N. K. Insights into the 400 million-year-old eyes of giant sea scorpions (Eurypterida) suggest the structure of Palaeozoic compound eyes. Sci. Rep. 9, 1–10 (2019).
    ADS  CAS  Google Scholar 

    20.
    Bergström, J. Classification of olenellid trilobites and some Balto-Scandian species. Nor. Geol. Tidsskr. 53, 283–314 (1973).
    Google Scholar 

    21.
    Nilsson, D. E. Optics and evolution of the compound eye. In Facets of Vision (eds. S. G. Stavenga & R. C. Hardie) 30–73 (Springer, Berlin, 1989).

    22.
    Nilsson, D. E. Eye evolution and its functional basis. Vis. Neurosci. 30, 5–20 (2013).
    PubMed  PubMed Central  Google Scholar 

    23.
    Strausfeld, N. J. et al. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems. Arthropod Struct. Dev. 45, 152–172 (2016).
    PubMed  Google Scholar 

    24.
    Nilsson, D. E. Evolutionary links between apposition and superposition optics in crustacean eyes. Nature 302(5911), 818–821 (1983).
    ADS  Google Scholar 

    25.
    Nilsson, D. E., Hallberg, E. & Elofsson, R. The ontogenetic development of refracting superposition eyes in crustaceans: Transformation of optical design. Tissue Cell 18, 509–519 (1986).
    CAS  PubMed  Google Scholar 

    26.
    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology. (Princeton University Press, Princeton, 2014), pp. 405.

    27.
    Müller J. Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere. [Contributions to the comparative physiology of the sense of sight of humans and animals]. (Cnobloch, Leipzig, 1826).

    28.
    Exner, S. Die Physiologie der facettirten Augen von Krebsen und Insecten: eine Studie. [Physiology of the facetted eyes of crustaceans and insects]. (Franz Deuticke, Berlin, 1891), pp. 232.

    29.
    Gaten, E. Optics and phylogeny: Is there an insight? The evolution of superposition. Contrib. Zool. 67, 223–235 (1998).
    Google Scholar 

    30.
    Towe, K. M. Trilobite eyes: Calcified lenses in vivo. Science 179, 1007–1009 (1973).
    ADS  CAS  PubMed  Google Scholar 

    31.
    Lee, M. R., Torney, C. & Owen, A. W. Magnesium-rich intralensar structures in schizochroal trilobite eyes. Palaeontology 50, 1031–1037 (2007).
    Google Scholar 

    32.
    Lee, M. R., Torney, C. & Owen, A. W. Biomineralisation in the Palaeozoic oceans: evidence for simultaneous crystallisation of high and low magnesium calcite by phacopine trilobites. Chem. Geol. 314, 33–44 (2012).
    ADS  Google Scholar 

    33.
    Torney, C., Lee, M. R. & Owen, A. W. An electron backscatter diffraction study of Geesops: a broader view of trilobite vision? Adv. Trilobite Res. 389 (2008).

    34.
    Torney, C., Lee, M. R. & Owen, A. W. Microstructure and growth of the lenses of schizochroal trilobite eyes. Palaeontology 57, 783–799 (2914).

    35.
    Clarkson, E. N. & Levi-Setti, R. Trilobite eyes and the optics of Des Cartes and Huygens. Nature 254, 663 (1975).
    ADS  CAS  PubMed  Google Scholar 

    36.
    Clarkson, E. N. K., Horváth, G. & Levi-Setti, R. The eyes of trilobites; the oldest preserved visual system. Arthropod Struct. Dev. 35, 247–259 (2006).
    PubMed  Google Scholar 

    37.
    Legg, D. A., Sutton, M. D. & Edgecombe, G. D. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat. Commun. 4, 2485 (2013).
    ADS  PubMed  Google Scholar 

    38.
    Boudreaux, H. B. Arthropod Phylogeny, with Special Reference to Insects. (Wiley, New York, 1979).

    39.
    Scholtz, G. & Edgecombe, G. D. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev. Genes Evol. 216, 395–415 (2006).
    PubMed  Google Scholar 

    40.
    Scholtz, G., Staude, A., & Dunlop, J. A. (2019). Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities. Nat. Commun. 10, 2503 (2019).

    41.
    Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819 (2001).
    ADS  CAS  PubMed  Google Scholar 

    42.
    Speiser, D. I., Eernisse, D. J., & Johnsen, S. A chiton uses aragonite lenses to form images. Curr. Biol. 21, 665–670 (2911).

    43.
    Li, L. et al. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science 350, 952–956 (2015).
    CAS  PubMed  Google Scholar 

    44.
    Lindgren, J. et al. Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 573, 122–125 (2019).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Snyder, A. W. The acuity of compound eyes: Physical limitations and design. J. Comp. Physiol. A 116, 161–182 (1977).
    Google Scholar 

    46.
    Snyder, A. W. Physics of vision in compound eyes. In Comparative physiology and evolution of vision in invertebrates (ed. H. J. Autrum) 225–313 (Springer, Berlin, 1979).

    47.
    Nilsson, D. E. & Odselius, R. A new mechanism for light-dark adaptation in the Artemia compound eye (Anostraca, Crustacea). J. Comp. Physiol. A 143, 389–399 (1981).
    Google Scholar 

    48.
    Young, S. & Downing, A. C. The receptive fields of Daphnia ommatidia. J. Exp. Biol. 64, 185–202 (1976).
    CAS  PubMed  Google Scholar 

    49.
    Sandeman, D. C. Regionalization in the eye of the crab Leptograpsus variegatus: Eye movements evoked by a target moving in different parts of the visual field. J. comp. Physiol. 123, 299–306 (1978).
    Google Scholar 

    50.
    Zeil, J. & Hemmi, J. M. The visual ecology of fiddler crabs. J. Comp. Physiol. A 192, 1–25 (2006).
    ADS  Google Scholar 

    51.
    Doughtie, D. G. & Rao, K. R. Ultrastructure of the eyes of the grass shrimp, Palaemonetes pugio. Cell Tissue Res. 238, 271–288 (1984).
    Google Scholar 

    52.
    Welsh, B. L. The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosystem. Ecology 56, 513–530 (1975).
    Google Scholar 

    53.
    Ball, E. E., Kao, L. C., Stone, R. C. & Land, M. F. Eye structure and optics in the pelagic shrimp Acetes sibogae (Decapoda, Natantia, Sergestidae) in relation to light-dark adaptation and natural history. Philos. Trans. R. Soc. Lond. B Biol. Sci. 313, 251–270 (1986).

    54.
    Hanamura, Y. Occurrence of Acetes sibogae Hansen (Crustacea: Decapoda: Sergestidae) in Western Australia, with notes on the northern Australian population. Rec. West Aus. Mus. 19, 465–468 (1999).
    Google Scholar 

    55.
    Schaffmeister, B. E., Hiddink, J. G. & Wolff, W. J. Habitat use of shrimps in the intertidal and shallow subtidal seagrass beds of the tropical Banc d’Arguin, Mauritania. J. Sea Res. 55, 230–243 (2006).
    ADS  Google Scholar 

    56.
    Vogt, K. Ray path and reflection mechanisms in crayfish eyes. Z. Naturforsch. C 32, 466–468 (1977).
    Google Scholar 

    57.
    Vogt, K. Die Spiegeloptik des Flusskrebsauges. [Mirror optics of crayfish]. J. Comp. Physiol. 135, 1–19 (1980).

    58.
    Land, M. E. Crustacea, in Photoreception and vision in invertebrates (ed. Ali, M. A.), 401–438, (Plenum, London, 1984).

    59.
    Meyer-Rochow, V. B. The crustacean eye: Dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage. Zool. Sci. 18, 1175–1198 (2001).
    CAS  PubMed  Google Scholar 

    60.
    Land, M. F. The eyes of hyperiid amphipods: Relations of optical structure to depth. J. Comp. Physiol. A. 164, 751–762 (1989).
    Google Scholar 

    61.
    Nilsson, D. E. & Nilsson, H. L. A crustacean compound eye adapted for low light intensities (Isopoda). J. Comp. Physiol. 143, 503–510 (1981).
    Google Scholar 

    62.
    Fahrenbach, W. H. The morphology of the eyes of Limulus II. Ommatidia of the compound eye. Z. Zellforsch. 93, 451–483 (1969).

    63.
    Paulus H. F. The compound eyes of apterygote insects. In The Compound Eye and Vision of Insects. (ed. G. A. Horridge) 3–20 (Clarendon Press, Oxford, 1975).

    64.
    Horridge, G. A. & Barnard, P. B. T. Movement of palisade in locust retinula cells when illuminated. J. Cell Sci. 3, 131–136 (1965).
    Google Scholar 

    65.
    Snyder A.W. Optical properties of invertebrate physiology. In The Compound Eye and Vision of Insects. (ed. G. A. Horridge) 154–179 (Clarendon Press, Oxford, 1975).

    66.
    Lindgren, J. et al. Molecular preservation of the pigment melanin in fossil melanosomes. Nat. Commun. 3, 824 (2012).
    ADS  PubMed  Google Scholar 

    67.
    Vinther, J., Briggs, D. E. G., Prum, R. O. & Saranathan, V. The colour of fossil feathers. Biol. Lett. 4, 522–525 (2008).
    PubMed  PubMed Central  Google Scholar 

    68.
    Li, Q. et al. Plumage color patterns of an extinct dinosaur. Science 327, 1369–1372 (2010).
    ADS  CAS  PubMed  Google Scholar 

    69.
    Vinther, J. A guide to the field of palaeo colour: Melanin and other pigments can fossilize: Reconstructing colour patterns from ancient organisms can give new insights to ecology and behavior. BioEssays 37, 643–656 (2015).
    PubMed  Google Scholar 

    70.
    Lindgren, J. et al. Interpreting melanin-based coloration through deep time: A critical review. Proc. R. Soc. B. 282(1813), 20150614 (2015).
    PubMed  Google Scholar 

    71.
    Kirschfeld, K. The visual system of Musca: Studies on optics, structure and function. In Information Processing in the Visual Systems of Anthropods (ed. Wehner R.) 61–74 (Springer, Berlin, 1972).

    72.
    Kirschfeld, K. & Franceschini, N. Optische Eigenschaften der Ommatidien im Komplexauge von Musca. [Optical properties of the ommatidia in the compound eyes of Musca]. Kybernetik 5, 47–52 (1968).

    73.
    Stavenga, D. G. The neural superposition eye and its optical demands. J. Comp. Physiol. 102, 297–304 (1975).
    Google Scholar 

    74.
    McIntyre, P. & Caveney, S. Graded-index optics are matched to optical geometry in the superposition eyes of scarab beetles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311, 237–269 (1985).

    75.
    Nilsson, D. E. & Ro, A. I. Did neural pooling for night vision lead to the evolution of neural superposition eyes?. J. Comp. Physiol. A 175, 289–302 (1994).
    Google Scholar 

    76.
    van Straelen, V. Description de crustaceés décapodes macroures nouveaux des terrains secondaires. Ann. Soc. roy. Zool. Belg. 53, 84–93 (1923).
    Google Scholar 

    77.
    Land, M. F. & Nilsson, D.-E. Animal Eyes. (Oxford University Press, Oxford, 2012).

    78.
    Menzi, U. Visual adaptation in nocturnal and diurnal ants. J. Comp. Physiol. A 160, 11–21 (1987).
    Google Scholar 

    79.
    Greiner, B. Visual adaptations in the night active wasp Apoica pallens. J. Comp. Neurol. 495, 255–262 (2006).
    PubMed  Google Scholar 

    80.
    Greiner, B., Ribi, W. A. & Warrant, E. J. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res. 316, 377–390 (2004).
    PubMed  Google Scholar 

    81.
    Meyer-Rochow, V. B. & Walsh, S. The eyes of mesopelagic crustaceans: I. Gennadas sp. (Penaeidae). Cell Tissue Res. 184, 87–101 (1977).

    82.
    Meyer-Rochow, V. B. The eyes of mesopelagic crustaceans. Cell Tissue Res. 186, 337–349 (1978).
    CAS  PubMed  Google Scholar  More

  • in

    Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype

    1.
    Rubatzky, V.E., C.F. Quiros, and P.W. Simon, Carrots and related vegetable Umbelliferae. 1999: CABI publishing.
    2.
    Ahmad, T. et al. Phytochemicals in Daucus carota and their health benefits. Foods8(9), 424 (2019).
    PubMed Central  CAS  Google Scholar 

    3.
    Wells, H. F., Bond, J. K. & Thornsbury, S. Vegetables and pulses outlook. Change2015, 16 (2016).
    Google Scholar 

    4.
    Carlson, A., Investigating retail price premiums for organic foods. Amber Waves, May, US Department of Agriculture, Economic Research Service, Washington, DC, 2016

    5.
    Westerveld, S. M., McKeown, A. W. & McDonald, M. R. Seasonal nitrogen partitioning and nitrogen uptake of carrots as affected by nitrogen application in a mineral and an organic soil. HortScience41(5), 1332–1338 (2006).
    CAS  Google Scholar 

    6.
    Thorup-Kristensen, K. Root growth and nitrogen uptake of carrot, early cabbage, onion and lettuce following a range of green manures. Soil Use Manag.22(1), 29–38 (2006).
    Google Scholar 

    7.
    Dugdale, L. et al. Disease response of carrot and carrot somaclones to Alternaria dauci. Plant. Pathol.49(1), 57–67 (2000).
    CAS  Google Scholar 

    8.
    Parsons, J. et al. Meloidogyne incognita nematode resistance QTL in carrot. Mol. Breed.35(5), 114 (2015).
    Google Scholar 

    9.
    Louarn, S. et al. Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biol. Technol.76, 26–33 (2013).
    CAS  Google Scholar 

    10.
    Strobel, G. The emergence of endophytic microbes and their biological promise. J. Fungi4(2), 57 (2018).
    Google Scholar 

    11.
    Mandyam, K. & Jumpponen, A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud. Mycol.53, 173–189 (2005).
    Google Scholar 

    12.
    Johnston-Monje, D. & Raizada, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE6(6), e20396 (2011).
    ADS  PubMed  PubMed Central  CAS  Google Scholar 

    13.
    Newsham, K. K. A meta-analysis of plant responses to dark septate root endophytes. New Phytol.190(3), 783–793 (2011).
    PubMed  CAS  Google Scholar 

    14.
    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev.79(3), 293–320 (2015).
    PubMed  PubMed Central  Google Scholar 

    15.
    Lugtenberg, B. J., Caradus, J. R. & Johnson, L. J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol.92, 12 (2016).
    Google Scholar 

    16.
    Kusari, S., Hertweck, C. & Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol.19(7), 792–798 (2012).
    PubMed  CAS  Google Scholar 

    17.
    Huang, Y.-H. Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing. J. Integr. Agric.17(2), 359–367 (2018).
    CAS  Google Scholar 

    18.
    Rodríguez, P. et al. Are endophytic microorganisms involved in the stereoselective reduction of ketones by Daucus carota root?. J. Mol. Catal. B Enzym.49(1–4), 8–11 (2007).
    Google Scholar 

    19.
    Rodriguez, R. et al. Fungal endophytes: diversity and functional roles. New Phytol.182(2), 314–330 (2009).
    PubMed  CAS  Google Scholar 

    20.
    Gómez-Lama Cabanás, C. et al. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front. Microbiol.5, 427 (2014).
    PubMed  PubMed Central  Google Scholar 

    21.
    Busby, P. E., Ridout, M. & Newcombe, G. Fungal endophytes: Modifiers of plant disease. Plant Mol. Biol.90(6), 645–655 (2016).
    PubMed  CAS  Google Scholar 

    22.
    Brader, G. et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol.55, 61–83 (2017).
    PubMed  CAS  Google Scholar 

    23.
    Schouten, A. Mechanisms involved in nematode control by endophytic fungi. Annu. Rev. Phytopathol.54, 121–142 (2016).
    PubMed  CAS  Google Scholar 

    24.
    Latz, M. A. et al. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol. Divers.11(5–6), 555–567 (2018).
    Google Scholar 

    25.
    Rabiey, M., et al., Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health? Eur. J. Plant Pathol. 2019: p. 1–19.

    26.
    Cook, R. J. Advances in plant health management in the twentieth century. Annu. Rev. Phytopathol.38(1), 95–116 (2000).
    PubMed  CAS  Google Scholar 

    27.
    Hallmann, J. et al. Bacterial endophytes in agricultural crops. Can. J. Microbiol.43(10), 895–914 (1997).
    CAS  Google Scholar 

    28.
    Busby, P. E., Ridout, M. & Newcombe, G. Fungal endophytes: modifiers of plant disease. Plant Mol. Biol.90(6), 645–655 (2016).
    PubMed  CAS  Google Scholar 

    29.
    Card, S. et al. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol.92, 8 (2016).
    Google Scholar 

    30.
    Card, S. D. et al. Beneficial endophytic microorganisms of Brassica–A review. Biol. Control90, 102–112 (2015).
    Google Scholar 

    31.
    May, G., Here come the commensals. Am. J. Bot. 2016. 103.

    32.
    Hoagland, L. et al. Foodborne pathogens in horticultural production systems: Ecology and mitigation. Sci. Hortic.236, 192–206 (2018).
    Google Scholar 

    33.
    Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J.6(7), 1378 (2012).
    PubMed  CAS  Google Scholar 

    34.
    Liu, H. et al. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front. Microbiol.8, 2552 (2017).
    PubMed  PubMed Central  Google Scholar 

    35.
    Gottel, N. R. et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol.77(17), 5934–5944 (2011).
    PubMed  PubMed Central  CAS  Google Scholar 

    36.
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature488(7409), 86 (2012).
    ADS  PubMed  PubMed Central  CAS  Google Scholar 

    37.
    Philippot, L. et al. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol.11(11), 789–799 (2013).
    PubMed  CAS  Google Scholar 

    38.
    Oono, R. et al. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am. J. Bot.101(8), 1362–1374 (2014).
    PubMed  Google Scholar 

    39.
    Abdelrazek, S., Carrot Endophytes: Diversity, Ecology and Function. 2019, Purdue University Graduate School.

    40.
    Hoagland, L. et al. Key traits and promising germplasm for an organic participatory tomato breeding program in the US midwest. HortScience50(9), 1301–1308 (2015).
    Google Scholar 

    41.
    Yao, H. & Wu, F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS Microbiol. Ecol.72(3), 456–463 (2010).
    PubMed  CAS  Google Scholar 

    42.
    Kwak, Y.-S. et al. Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2, 4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl. Environ. Microbiol.77(5), 1770–1776 (2011).
    PubMed  CAS  Google Scholar 

    43.
    Upreti, R. & Thomas, P. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front. Microbiol.6, 255 (2015).
    PubMed  PubMed Central  Google Scholar 

    44.
    Martin, R. et al. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia107(2), 284–297 (2015).
    PubMed  Google Scholar 

    45.
    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature488(7409), 91 (2012).
    ADS  CAS  Google Scholar 

    46.
    da Silva, D. A. F. et al. Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiol.14(1), 332 (2014).
    PubMed  PubMed Central  Google Scholar 

    47.
    Correa-Galeote, D., Bedmar, E. J. & Arone, G. J. Maize endophytic bacterial diversity as affected by soil cultivation history. Front. Microbiol.9, 484 (2018).
    PubMed  PubMed Central  Google Scholar 

    48.
    Abdelrazek, S. et al. Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE15(6), e0233783 (2020).
    PubMed  PubMed Central  CAS  Google Scholar 

    49.
    Horsfall, J. G. An improved grading system for measuring plant diseases. Phytopathology35, 655 (1945).
    Google Scholar 

    50.
    Brown, J.R., Recommended chemical soil test procedures for the North Central Region. 1998: Missouri Agricultural Experiment Station, University of Missouri-Columbia

    51.
    Green, V. S., Stott, D. E. & Diack, M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem.38(4), 693–701 (2006).
    CAS  Google Scholar 

    52.
    Weil, R. R. et al. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Alternat. Agric.18(1), 3–17 (2003).
    Google Scholar 

    53.
    Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil. Ecol.61, 127–130 (2012).
    Google Scholar 

    54.
    Institute, S., JMP: Statistics and Graphics Guide. 2000: Sas Inst.

    55.
    Surette, M. A. et al. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil253(2), 381–390 (2003).
    CAS  Google Scholar 

    56.
    Corry, J.E., G.D. Curtis, and R.M. Baird, Handbook of culture media for food and water microbiology. 2011: Royal Society of Chemistry.

    57.
    Reasoner, D. J. & Geldreich, E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol.49(1), 1–7 (1985).
    PubMed  PubMed Central  CAS  Google Scholar 

    58.
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol.2(2), 113–118 (1993).
    PubMed  CAS  Google Scholar 

    59.
    White, T. J. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc18(1), 315–322 (1990).
    Google Scholar 

    60.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods7(5), 335 (2010).
    PubMed  PubMed Central  CAS  Google Scholar 

    61.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26(19), 2460–2461 (2010).
    PubMed  PubMed Central  CAS  Google Scholar 

    62.
    Tikhonov, M., Leach, R. W. & Wingreen, N. S. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J9(1), 68–80 (2015).
    PubMed  Google Scholar 

    63.
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons.61(1), 1–10 (1992).
    MathSciNet  Google Scholar 

    64.
    Chao, A., Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 265–270 (1984).

    65.
    Faith, D. P. & Baker, A. M. Phylogenetic diversity (PD) and biodiversity conservation: Some bioinformatics challenges. Evol. Bioinform.2, 117693430600200000 (2006).
    Google Scholar 

    66.
    Vázquez-Baeza, Y. et al. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience2(1), 16 (2013).
    PubMed  PubMed Central  Google Scholar 

    67.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol.26(1), 32–46 (2001).
    Google Scholar 

    68.
    Roberts, D.W. and M.D.W. Roberts, Package ‘labdsv’. Ordination and Multivariate, 2016.

    69.
    Hill, M., R. Bunce, and M. Shaw, Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. The Journal of Ecology, 597–613 (1975).

    70.
    Du Toit, L. et al. First report of bacterial blight of carrot in Indiana caused by Xanthomonas hortorum pv. carotae. Plant Dis.98(5), 685–685 (2014).
    PubMed  Google Scholar 

    71.
    Arnold, A. E. & Herre, E. A. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia95(3), 388–398 (2003).
    PubMed  Google Scholar 

    72.
    Gazis, R. & Chaverri, P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol.3(3), 240–254 (2010).
    Google Scholar 

    73.
    Rivera-Orduña, F. N. et al. Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers.47(1), 65–74 (2011).
    Google Scholar 

    74.
    Vieira, M. L. et al. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can. J. Microbiol.58(1), 54–66 (2011).
    MathSciNet  PubMed  Google Scholar 

    75.
    Singh, D. K. et al. Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn. f.: Spatiotemporal and tissue type effects. Sci. Rep.7, 2 (2017).
    ADS  Google Scholar 

    76.
    Arnold, A. E. et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci.100(26), 15649–15654 (2003).
    ADS  PubMed  CAS  Google Scholar 

    77.
    Pel, M. J. & Pieterse, C. M. Microbial recognition and evasion of host immunity. J. Exp. Bot.64(5), 1237–1248 (2013).
    PubMed  CAS  Google Scholar 

    78.
    Arnold, A. et al. Hyperdiverse fungal endophytes and endolichenic fungi elucidate the evolution of major ecological modes in the Ascomycota. Syst. Biol.58, 283–297 (2009).
    PubMed  Google Scholar 

    79.
    Li, H.-Y. et al. Endophytes and their role in phytoremediation. Fungal Divers.54(1), 11–18 (2012).
    Google Scholar 

    80.
    Wang, F. et al. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants–a soil microcosm experiment. Chemosphere147, 88–97 (2016).
    ADS  PubMed  CAS  Google Scholar 

    81.
    Nilsson, R. H. et al. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett.296(1), 97–101 (2009).
    PubMed  CAS  Google Scholar 

    82.
    Motooka, D. et al. Fungal ITS1 deep-sequencing strategies to reconstruct the composition of a 26-species community and evaluation of the gut mycobiota of healthy Japanese individuals. Front. Microbiol.8, 238 (2017).
    PubMed  PubMed Central  Google Scholar 

    83.
    Dumas-Gaudot, E. et al. A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions. Proteomics4(2), 451–453 (2004).
    PubMed  CAS  Google Scholar 

    84.
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol.22(21), 5271–5277 (2013).
    PubMed  Google Scholar 

    85.
    Lemanceau, P. et al. Let the core microbiota be functional. Trends Plant Sci.22(7), 583–595 (2017).
    PubMed  CAS  Google Scholar 

    86.
    Shade, A. & Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol.14(1), 4–12 (2012).
    PubMed  CAS  Google Scholar 

    87.
    Pancher, M., et al., Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Applied and environmental microbiology, 2012: p. AEM. 07655–11.

    88.
    Xia, Y. et al. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front. Plant Sci.6, 490 (2015).
    PubMed  PubMed Central  Google Scholar 

    89.
    Reeve, J. et al. Organic farming, soil health, and food quality: considering possible links. In Advances in Agronomy 319–367 (Elsevier, Amserdam, 2016).
    Google Scholar 

    90.
    Hoagland, L. et al. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biol. Fertil. Soils45(1), 11 (2008).
    Google Scholar 

    91.
    Rudisill, M. A. et al. Sustaining soil quality in intensively managed high tunnel vegetable production systems: A role for green manures and chicken litter. HortScience50(3), 461–468 (2015).
    Google Scholar 

    92.
    Seghers, D. et al. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol.70(3), 1475–1482 (2004).
    PubMed  PubMed Central  CAS  Google Scholar 

    93.
    Chen, S. & Reese, C. D. Parasitism of the nematode Heterodera glycines by the fungus Hirsutella rhossiliensis as influenced by crop sequence. J. Nematol.31(4), 437 (1999).
    PubMed  PubMed Central  CAS  Google Scholar 

    94.
    D’Amico, M., Frisullo, S. & Cirulli, M. Endophytic fungi occurring in fennel, lettuce, chicory, and celery—commercial crops in southern Italy. Mycol. Res.112(1), 100–107 (2008).
    PubMed  Google Scholar 

    95.
    González-Teuber, M., Vilo, C. & Bascuñán-Godoy, L. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genom. Data11, 109–112 (2017).
    PubMed  PubMed Central  Google Scholar 

    96.
    Riches, M.R.M.J.V.K., Muck Vegetable Cultivar Trial& Research Report2016. 2016.

    97.
    Liu, B. et al. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl. Soil. Ecol.37(3), 202–214 (2007).
    Google Scholar 

    98.
    van Bruggen, A. H. et al. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Appl. Soil. Ecol.86, 192–201 (2015).
    Google Scholar 

    99.
    Cai, X. et al. Long-term organic farming manipulated rhizospheric microbiome and Bacillus antagonism against Pepper blight (Phytophthora capsici). Front. Microbiol.10, 342 (2019).
    PubMed  PubMed Central  Google Scholar 

    100.
    Liu, H. et al. Dark septate endophytes colonizing the roots of ‘non-mycorrhizal’plants in a mine tailing pond and in a relatively undisturbed environment, Southwest China. J. Plant Interact.12(1), 264–271 (2017).
    CAS  Google Scholar 

    101.
    Bonito, G. et al. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol.23(13), 3356–3370 (2014).
    PubMed  Google Scholar 

    102.
    Chen, Y. H., Gols, R. & Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol.60, 35–58 (2015).
    PubMed  CAS  Google Scholar 

    103.
    Williamson, V.M., P.A. Roberts, and R. Perry, 13. Mechanisms and genetics of resistance. Root-knot nematodes, 2009. 301.

    104.
    Davis, R. M. Carrot diseases and their management. In Diseases of Fruits and Vegetables 397–439 (Springer, Berlin, 2004).
    Google Scholar 

    105.
    Farrokhi-Nejad, R., Cromey, M. G. & Moosawi-Jorf, S. A. Determination of the anastomosis grouping and virulence of Rhizoctonia spp. associated with potato tubers grown in Lincoln, New Zealand. Pak. J. Biol. Sci.10(21), 3786–3793 (2007).
    PubMed  Google Scholar 

    106.
    Durán-López, M. et al. The micorryzal fungi Ceratobasidium sp. and Sebacina vermifera promote seed germination and seedling development of the terrestrial orchid Epidendrum secundum Jacq. South Afr. J. Bot.125, 54–61 (2019).
    Google Scholar 

    107.
    Mosquera-Espinosa, A. T. et al. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia105(1), 141–150 (2013).
    PubMed  Google Scholar 

    108.
    Vanhove, W., Vanhoudt, N. & Van Damme, P. Biocontrol of vascular streak dieback (Ceratobasidium theobromae) on cacao (Theobroma cacao) through induced systemic resistance and direct antagonism. Biocontrol Sci. Tech.26(4), 492–503 (2016).
    Google Scholar 

    109.
    Taufik, M., et al. Evaluating the ability of endophyte fungus to tontrol VSD diseases in cocoa seeding. in IOP Conference Series: Earth and Environmental Science. 2019. IOP Publishing.

    110.
    du Toit, L. & Derie, M. First report of Cladosporium leaf spot of spinach caused by Cladosporium variabile in the winter spinach production region of California and Arizona. Plant Dis.96(7), 1071–1071 (2012).
    PubMed  Google Scholar 

    111.
    Hamayun, M. et al. Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J. Microbiol. Biotechnol.25(10), 1785–1792 (2009).
    CAS  Google Scholar 

    112.
    Nesha, R. & Siddiqui, Z. A. Effects of Paecilomyces lilacinus and Aspergillus niger alone and in combination on the growth, chlorophyll contents and soft rot disease complex of carrot. Sci. Hortic.218, 258–264 (2017).
    Google Scholar 

    113.
    Wang, F. et al. Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J. Microbiol. Biotechnol.23(1), 79–83 (2007).
    Google Scholar 

    114.
    Li, X.-J. et al. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J. Agric. Food Chem60(13), 3424–3431 (2012).
    PubMed  CAS  Google Scholar 

    115.
    de Vries, R. P., de Lange, E. S. & Stalpers, J. A. Control and possible applications of a novel carrot-spoilage basidiomycete, Fibulorhizoctoniaápsychrophila. Antonie Van Leeuwenhoek93(4), 407–413 (2008).
    PubMed  PubMed Central  Google Scholar 

    116.
    Iturralde Martinez, J. F. et al. Multiplex end-point PCR for the detection of three species of ophiosphaerella causing spring dead spot of bermudagrass. Plant Dis.103(8), 2010–2014 (2019).
    PubMed  Google Scholar 

    117.
    Gao, L., et al., Three new species of Cyphellophora (Chaetothyriales) associated with sooty blotch and flyspeck. PLoS One, 2015. 10(9).

    118.
    Spagnoletti, F. et al. Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl. Soil. Ecol.111, 25–32 (2017).
    Google Scholar 

    119.
    Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome: New concepts in the light of meta-omics. Front. Cell. Infect. Microbiol.4, 29 (2014).
    PubMed  PubMed Central  Google Scholar 

    120.
    Lee, K., Pan, J. J. & May, G. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol. Lett.299(1), 31–37 (2009).
    PubMed  CAS  Google Scholar 

    121.
    Aimé, S. et al. The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol. Plant Microbe Interact.26(8), 918–926 (2013).
    PubMed  Google Scholar 

    122.
    CaféFilho, A., Reifschneider, F. & Tateishi, N. T. Pathogenicity of Colletotrichum gloeosporioides to carrot. Int. J. Pest Manag.32(4), 274–276 (1986).
    Google Scholar 

    123.
    Redman, R. S. et al. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol.119(2), 795–804 (1999).
    PubMed  PubMed Central  CAS  Google Scholar 

    124.
    Lu, H. et al. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci.151(1), 67–73 (2000).
    CAS  Google Scholar 

    125.
    Hiruma, K. et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell165(2), 464–474 (2016).
    PubMed  PubMed Central  CAS  Google Scholar  More

  • in

    Breeding for low cadmium barley by introgression of a Sukkula-like transposable element

    1.
    Bertin, G. & Averbeck, D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88, 1549–1559 (2006).
    CAS  Article  Google Scholar 
    2.
    Nawrot, T. et al. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol. 7, 119–126 (2006).
    CAS  Article  Google Scholar 

    3.
    Horiguchi, H. et al. Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch. Toxicol. 68, 632–636 (1994).
    CAS  Article  Google Scholar 

    4.
    Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49, 750–759 (2015).
    ADS  CAS  Article  Google Scholar 

    5.
    Clemens, S. & Ma, J. F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 67, 489–512 (2016).
    CAS  Article  Google Scholar 

    6.
    Wang, W., Yamaji, N. & Ma, J. F. Molecular Mechanism of Cadmium Accumulation in Rice (eds Himeno, S. & Aoshima, K.) 115–124 (Springer, 2019).

    7.
    Sasaki, A., Yamaji, N., Yokosho, K. & Ma, J. F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24, 2155–2167 (2012).
    CAS  Article  Google Scholar 

    8.
    Yan, H. et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat. Commun. 10, 2562 (2019).
    ADS  Article  Google Scholar 

    9.
    Ueno, D. et al. Gene limiting cadmium accumulation in rice. Proc. Natl Acad. Sci. USA 107, 16500–16505 (2010).
    ADS  CAS  Article  Google Scholar 

    10.
    Yamaji, N., Xia, J. X., Mitani-Ueno, N., Yokosho, K. & Ma, J. F. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol. 162, 927–939 (2013).
    CAS  Article  Google Scholar 

    11.
    Uraguchi, S. et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc. Natl Acad. Sci. USA 108, 20959–20964 (2011).
    ADS  CAS  Article  Google Scholar 

    12.
    Hao, X. et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front. Plant Sci. 9, 476 (2018).
    ADS  Article  Google Scholar 

    13.
    Luo, J. S. et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 9, 645 (2018).
    ADS  Article  Google Scholar 

    14.
    Schulte, D. et al. The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol. 149, 142–147 (2009).
    CAS  Article  Google Scholar 

    15.
    Codex General Standards for Contaminants and Toxins in Food and Feed (Codex Stan 193-1995) (Codex Alimentarius, FAO & WHO, 2019).

    16.
    Chen, F. et al. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67, 2082–2088 (2007).
    ADS  CAS  Article  Google Scholar 

    17.
    Wu, D., Sato, K. & Ma, J. F. Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol. 208, 817–829 (2015).
    CAS  Article  Google Scholar 

    18.
    Saisho, D., Myoraku, E., Kawasaki, S., Sato, K. & Takeda, K. Construction and characterization of a bacterial artificial chromosome (BAC) library from the Japanese malting barley variety ‘Haruna Nijo’. Breed. Sci. 57, 29–38 (2007).
    Article  Google Scholar 

    19.
    Huang, C. F., Yamaji, N., Chen, Z. & Ma, J. F. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 69, 857–867 (2012).
    CAS  Article  Google Scholar 

    20.
    Yan, J. et al. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ. 39, 1941–1954 (2016).
    CAS  Article  Google Scholar 

    21.
    Shirasu, K., Schulman, A. H., Lahaye, T. & Schulze-Lefert, P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10, 908–915 (2000).
    CAS  Article  Google Scholar 

    22.
    Kartal-Alacam, G., Yilmaz, S., Marakli, S. & Gozukirmizi, N. Sukkula retrotransposon insertion polymorphisms in barley. Russ. J. Plant Physiol. 61, 828–833 (2014).
    CAS  Article  Google Scholar 

    23.
    Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).
    CAS  Article  Google Scholar 

    24.
    Pereira, J. F. & Ryan, P. R. The role of transposable elements in the evolution of aluminium resistance in plants. J. Exp. Bot. 70, 41–54 (2019).
    CAS  Article  Google Scholar 

    25.
    Zhang, L. et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat. Commun. 10, 1494 (2019).
    ADS  Article  Google Scholar 

    26.
    Fujii, M. et al. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat. Commun. 3, 713 (2012).
    ADS  Article  Google Scholar 

    27.
    Kashino-Fujii, M. et al. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions. Plant Physiol. 178, 716–727 (2018).
    CAS  Article  Google Scholar 

    28.
    Laxa, M. et al. The 5′UTR intron of Arabidopsis GGT1 aminotransferase enhances promoter activity by recruiting RNA polymerase II. Plant Physiol. 172, 313–327 (2016).
    CAS  Article  Google Scholar 

    29.
    Yokosho, K., Yamaji, N., Fujii-Kashino, M. & Ma, J. F. Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol. 172, 2327–2336 (2016).
    CAS  Article  Google Scholar 

    30.
    Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2013).
    CAS  Article  Google Scholar 

    31.
    Negi, P., Rai, A. N. & Suprasanna, P. Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response. Front. Plant Sci. 7, 1448 (2016).
    PubMed  PubMed Central  Google Scholar 

    32.
    Pourkheirandish, M. et al. Evolution of the grain dispersal system in barley. Cell 162, 527–539 (2015).
    CAS  Article  Google Scholar 

    33.
    Sasaki, A., Yamaji, N. & Ma, J. F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J. Exp. Bot. 65, 6013–6021 (2014).
    CAS  Article  Google Scholar 

    34.
    Cai, H., Huang, S., Che, J., Yamaji, N. & Ma, J. F. The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice. J. Exp. Bot. 70, 2717–2725 (2019).
    CAS  Article  Google Scholar 

    35.
    Close, T. J. et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genom. 10, 582 (2009).
    Article  Google Scholar 

    36.
    Wang, S., Basten, C. J. & Zeng, Z. B. Windows QTL Cartographer 2.5 (Department of Statistics, North Carolina State University, 2012); http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

    37.
    Fuse, T., Sasaki, T. & Yano, M. Ti-plasmid vectors useful for functional analysis of rice genes. Plant Biotech. 18, 219–222 (2001).
    CAS  Article  Google Scholar 

    38.
    Tsutsui, T., Yamaji, N. & Ma, J. F. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol. 156, 925–931 (2011).
    CAS  Article  Google Scholar 

    39.
    Chen, S. et al. A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol. Plant Pathol. 7, 417–427 (2006).
    ADS  CAS  Article  Google Scholar 

    40.
    Hiei, Y., Ishida, Y., Kasaoka, K. & Komari, T. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 87, 233–243 (2006).
    Article  Google Scholar 

    41.
    Hiei, Y. & Komari, T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 85, 271–283 (2006).
    CAS  Article  Google Scholar 

    42.
    Hensel, G., Valkov, V., Middlefell-Williams, J. & Kumlehn, J. Efficient generation of transgenic barley: the way forward to modulate plant–microbe interactions. J. Plant Physiol. 165, 71–82 (2008).
    CAS  Article  Google Scholar 

    43.
    Miki, D. & Shimamoto, K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45, 490–495 (2004).
    CAS  Article  Google Scholar  More

  • in

    New priorities for climate science and climate economics in the 2020s

    1.
    Nerini, F. F. et al. Connecting climate action with other Sustainable Development Goals. Nat. Sustainability 2, 674–680 (2019).
    Article  Google Scholar 
    2.
    Palmer, T. & Stevens, B. The scientific challenge of understanding and estimating climate change. Proc. Natl Acad. Sci. USA 116, 24390–24395 (2019).
    ADS  CAS  Article  Google Scholar 

    3.
    IPCC. in Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 151 (IPCC, Geneva, Switzerland, 2014).

    4.
    Cook, J. et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 11, https://doi.org/10.1088/1748-9326/11/4/048002 (2016).

    5.
    IPCC. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. AI, 1311–1394 (Cambridge University Press, 2013).

    6.
    Ipcc. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Barros, V. R. et al.) (Cambridge University Press, 2014).

    7.
    Knutti, R., Rugenstein, M. A. A. & Hegerl, G. C. Beyond equilibrium climate sensitivity. Nat. Geosci. 10, 727 (2017).
    ADS  CAS  Article  Google Scholar 

    8.
    Palmer, T. N. A. CERN for climate change. Phys. World 24, 14 (2011).
    Article  Google Scholar 

    9.
    Stainforth, D. A., Downing, T. E., Washington, R., Lopez, A. & New, M. Issues in the interpretation of climate model ensembles to inform decisions. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 365, 2163–2177 (2007).
    ADS  Article  Google Scholar 

    10.
    Shepherd, T. G. Storyline approach to the construction of regional climate change information. P. Roy Soc A 475, 20190013 (2019).

    11.
    McWilliams, J. C. Irreducible imprecision in atmospheric and oceanic simulations. Proc. Natl Acad. Sci. USA 104, 8709–8713 (2007).
    ADS  CAS  Article  Google Scholar 

    12.
    Frigg, R., Bradley, S., Du, H. & Smith, L. A. Laplace’s demon and the adventures of his apprentices. Philos. Sci. 81, 31–39 (2014).

    13.
    Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895 (2018).
    ADS  CAS  Article  Google Scholar 

    14.
    Moore, F. C., Baldos, U., Hertel, T. & Diaz, D. New science of climate change impacts on agriculture implies higher social cost of carbon. Nat. Commun. 8, https://doi.org/10.1038/s41467-017-01792-x (2017).

    15.
    Tol, R. S. J. A social cost of carbon for (almost) every country. Energy Econ. 83, 555–566 (2019).
    Article  Google Scholar 

    16.
    Weitzman, M. L. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91, 1–19 (2009).
    Article  Google Scholar 

    17.
    Calel, R., Stainforth, D. A. & Dietz, S. Tall tales and fat tails: the science and economics of extreme warming. Climatic Change 132, 127–141 (2015).
    ADS  Article  Google Scholar 

    18.
    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235 (2015).
    ADS  CAS  Article  Google Scholar 

    19.
    Lemoine, D. Estimating the consequences of climate change from variation in weather. National Bureau of Economic Research Working Paper Series No. 25008, https://doi.org/10.3386/w25008 (2018).

    20.
    Hazeleger, W. et al. Tales of future weather. Nat. Clim. Change 5, 107 (2015).

    21.
    Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change 151, 555–571 (2018).
    ADS  Article  Google Scholar 

    22.
    Dessai, S. et al. Building narratives to characterise uncertainty in regional climate change through expert elicitation. Environ. Res. Lett. 13, https://doi.org/10.1088/1748-9326/aabcdd (2018).

    23.
    Pall, P. et al. Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Clim. Extremes 17, 1–6 (2017).
    Article  Google Scholar 

    24.
    Zappa, G. & Shepherd, T. G. Storylines of atmospheric circulation change for european regional climate impact assessment. J. Clim. 30, 6561–6577 (2017).
    ADS  Article  Google Scholar 

    25.
    Bhave, A. G., Conway, D., Dessai, S. & Stainforth, D. A. Water resource planning under future climate and socioeconomic uncertainty in the Cauvery River Basin in Karnataka, India. Water Resour. Res. 54, 708–728 (2018).
    ADS  Article  Google Scholar 

    26.
    Daron, J. D. & Stainforth, D. A. On predicting climate under climate change. Environ. Res. Lett. 8, 034021 (2013). More