Population genetic variation characterization of the boreal tree Acer ginnala in Northern China
1.
Sreekanth, P. M., Balasundaran, M., Nazeem, P. A. & Suma, T. B. Genetic diversity of nine natural Tectona grandis L.f. populations of the Western Ghats in Southern India. Conserv. Genet.13, 1409–1419. https://doi.org/10.1007/s10592-012-0383-5 (2012).
Article Google Scholar
2.
Zhang, Y., Zhang, X., Chen, X., Sun, W. & Li, J. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers. Hereditas155, 22. https://doi.org/10.1186/s41065-018-0058-4 (2018).
Article PubMed PubMed Central Google Scholar
3.
Yang, S., Xue, S., Kang, W., Qian, Z. & Yi, Z. Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China. PLoS ONE14, e0211471–e0211471. https://doi.org/10.1371/journal.pone.0211471 (2019).
CAS Article PubMed PubMed Central Google Scholar
4.
Abebe, T. D., Bauer, A. M. & Léon, J. Morphological diversity of Ethiopian barleys (Hordeum vulgare L.) in relation to geographic regions and altitudes. Hereditas147, 154–164. https://doi.org/10.1111/j.1601-5223.2010.02173.x (2010).
Article PubMed Google Scholar
5.
Rinaldi, R. et al. The influence of a relict distribution on genetic structure and variation in the Mediterranean tree, Platanus orientalis. AoB Plants https://doi.org/10.1093/aobpla/plz002 (2019).
Article PubMed PubMed Central Google Scholar
6.
Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep.9, 6239. https://doi.org/10.1038/s41598-019-41886-8 (2019).
CAS Article PubMed PubMed Central ADS Google Scholar
7.
Tóth, E. G., Tremblay, F., Housset, J. M., Bergeron, Y. & Carcaillet, C. Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps. BMC Evol. Biol.19, 190. https://doi.org/10.1186/s12862-019-1510-4 (2019).
CAS Article PubMed PubMed Central Google Scholar
8.
Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv.5, eaay9969. https://doi.org/10.1126/sciadv.aay9969 (2019).
Article PubMed PubMed Central ADS Google Scholar
9.
Hamilton, J. A., Royauté, R., Wright, J. W., Hodgskiss, P. & Ledig, F. T. Genetic conservation and management of the California endemic, Torrey pine (Pinus torreyana Parry): Implications of genetic rescue in a genetically depauperate species. Ecol. Evol.7, 7370–7381. https://doi.org/10.1002/ece3.3306 (2017).
Article PubMed PubMed Central Google Scholar
10.
Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley, New York, 2009).
Google Scholar
11.
Cohen, J. I., Williams, J. T., Plucknett, D. L. & Shands, H. Ex situ conservation of plant genetic resources: global development and environmental concerns. Science253, 866–872. https://doi.org/10.1126/science.253.5022.866 (1991).
CAS Article PubMed ADS Google Scholar
12.
Li, M., Zhao, Z., Miao, X. & Zhou, J. Genetic diversity and population structure of Siberian apricot (Prunus sibirica L.) in China. Int. J. Mol. Sci.15, 377–400. https://doi.org/10.3390/ijms15010377 (2013).
CAS Article PubMed PubMed Central Google Scholar
13.
Bao, W. et al. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies. PLoS ONE12, e0188685–e0188685. https://doi.org/10.1371/journal.pone.0188685 (2017).
CAS Article PubMed PubMed Central Google Scholar
14.
Zhang, X. Vegetation Regionalization Map of China (Geological Publishing House, Beijing, 2007).
Google Scholar
15.
Huang, D., Wang, J. & Li, D. Biological characteristics and planting technology of Acer ginnala Maxim. Mod. Agric. Sci.16, 112–113 (2009).
Google Scholar
16.
Tian, X., Jin, Q., Li, D., Wei, Z. & Xu, T. Pollen morphology of Aceraceae and its systematic implication. Acta Bot. Yunnanica23, 457–465 (2001).
Google Scholar
17.
Zhou, Y. et al. Inhibiting effects of 3 antioxidants on contamination and browning of tissue culture of Acer ginnala Maxim. Acta Agric. Shanghai23, 5–7 (2007).
Google Scholar
18.
Li, H. Y., Song, J. Y., Dong, J. & Zhan, Y. G. Establishment of callus regeneration system for Acer ginnala maxim and determination of gallic acid in callus. Chin. Bull. Bot.25, 212–219 (2008).
CAS Google Scholar
19.
Wang, R. B., Wang, C. Q., Liu, X. L. & Li, L. H. Advances in the research of chemical constituents and medicine and edible function of Acer ginnala. J. Anhui Agric. Sci.39, 5387–5388+5517 (2011).
20.
Xie, Y. F., Li, Q., Zou, H. & Yuan, H. L. Analysis of polyphenols from the leaves of Acer ginnala Maxim by reversed-phase high performance liquid chromatography. J. Anal. Sci.27, 443–446 (2011).
CAS Article Google Scholar
21.
Dong, J., Zhan, Y. & Ren, J. Kinetics in suspension culture of Acer ginnala. Sci. Silvae Sin.48, 18–23 (2012).
CAS Google Scholar
22.
Park, K. H. et al. Antioxidative and anti-inflammatory activities of galloyl derivatives and antidiabetic activities of Acer ginnala. Evid. Based Complement Altern. Med.2017, 6945912. https://doi.org/10.1155/2017/6945912 (2017).
Article Google Scholar
23.
Ma, Z. H., Zhang, M. S., Ma, C. E. & Hao, Y. H. Key points of cultivation technology of special economic forest of Acer ginnala. Spec. Econ. Anim. Plant5, 22 (2005).
24.
Wang, D., Pang, C. H., Gao, Y. H., Hao, X. J. & Wang, Y. L. Phenotypic diversity of Acer ginnala (Aceraceae) populations at different altitude. Acta Bot. Yunnanica32, 117–125 (2010).
CAS Article Google Scholar
25.
Yan, N., Wang, D., Gao, Y. H., Hao, X. J. & Wang, Y. L. Genetic diversity of Acer ginnala populations at different elevation in Qiliyu based on ISSR markers. Sci. Silvae Sin.46, 50–56 (2010).
Google Scholar
26.
Chiang, T. Y. et al. Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE https://doi.org/10.1371/journal.pone.0211342 (2019).
Article PubMed PubMed Central Google Scholar
27.
Zane, L., Bargelloni, L. & Patarnello, T. Strategies for microsatellite isolation: a review. Mol. Ecol.11, 1–16. https://doi.org/10.1046/j.0962-1083.2001.01418.x (2002).
CAS Article PubMed Google Scholar
28.
Geng, Q. et al. Understanding population structure and historical demography of Litsea auriculata (Lauraceae), an endangered species in east China. Sci. Rep.7, 17343. https://doi.org/10.1038/s41598-017-16917-x (2017).
CAS Article PubMed PubMed Central ADS Google Scholar
29.
Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet. Res. Int.2014, 691759. https://doi.org/10.1155/2014/691759 (2014).
CAS Article PubMed PubMed Central Google Scholar
30.
Li, G. & Quiros, C. F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet.103, 455–461. https://doi.org/10.1007/s001220100570 (2001).
CAS Article Google Scholar
31.
Ferriol, M., Picó, B. & Nuez, F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet.107, 271–282. https://doi.org/10.1007/s00122-003-1242-z (2003).
CAS Article PubMed Google Scholar
32.
Budak, H. et al. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor. Appl. Genet.108, 328–334. https://doi.org/10.1007/s00122-003-1428-4 (2004).
CAS Article PubMed ADS Google Scholar
33.
Masmoudi, M. B. et al. Contrasted levels of genetic diversity in a benthic Mediterranean octocoral: consequences of different demographic histories?. Ecol. Evol.6, 8665–8678. https://doi.org/10.1002/ece3.2490 (2016).
Article PubMed PubMed Central Google Scholar
34.
Li, X. et al. De novo transcriptome assembly and population genetic analyses for an endangered Chinese endemic Acer miaotaiense (Aceraceae). Genes9, 378 (2018).
Article Google Scholar
35.
Goudet, J. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered.86, 485–486 (1995).
Article Google Scholar
36.
Gomory, D., Szczecińska, M., Sramko, G., Wołosz, K. & Sawicki, J. Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) Mill in East Central Europe. PLoS ONE https://doi.org/10.1371/journal.pone.0151730 (2016).
Article Google Scholar
37.
Lowrey, B. et al. Characterizing population and individual migration patterns among native and restored bighorn sheep (Ovis canadensis). Ecol. Evol.9, 8829–8839. https://doi.org/10.1002/ece3.5435 (2019).
Article PubMed PubMed Central Google Scholar
38.
Wang, S. H., Bao, L., Wang, T. M., Wang, H. F. & Ge, J. P. Contrasting genetic patterns between two coexisting Eleutherococcus species in northern China. Ecol. Evol.6, 3311–3324. https://doi.org/10.1002/ece3.2118 (2016).
Article PubMed PubMed Central Google Scholar
39.
Matsui, K. Pollination ecology of four Acer species in Japan with special reference to bee pollinators. Plant Spec. Biol.6, 117–120. https://doi.org/10.1111/j.1442-1984.1991.tb00218.x (1991).
Article Google Scholar
40.
Rosado, A., Vera-Vélez, R. & Cota-Sánchez, J. H. Floral morphology and reproductive biology in selected maple (Acer L.) species (Sapindaceae). Braz. J. Bot.41, 361–374. https://doi.org/10.1007/s40415-018-0452-1 (2018).
Article Google Scholar
41.
Lönn, M. & Prentice, H. C. Gene diversity and demographic turnover in central and peripheral populations of the perennial herb Gypsophila fastigiata. Oikos99, 489–498. https://doi.org/10.1034/j.1600-0706.2002.11907.x (2002).
Article Google Scholar
42.
Kearns, C. A., Inouye, D. W. & Waser, N. M. Endangered mutualisms: the conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst.29, 83–112. https://doi.org/10.1146/annurev.ecolsys.29.1.83 (1998).
Article Google Scholar
43.
Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science313, 351–354. https://doi.org/10.1126/science.1127863 (2006).
CAS Article ADS Google Scholar
44.
Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol.25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).
Article Google Scholar
45.
Booy, G., Hendriks, R. J. J., Smulders, M. J. M., Van Groenendael, J. M. & Vosman, B. Genetic diversity and the survival of populations. Plant Biol.2, 379–395. https://doi.org/10.1055/s-2000-5958 (2000).
Article Google Scholar
46.
Nosil, P., Funk, D. J. & Ortiz-Barrientos, D. Divergent selection and heterogeneous genomic divergence. Mol. Ecol.18, 375–402. https://doi.org/10.1111/j.1365-294X.2008.03946.x (2009).
Article PubMed Google Scholar
47.
Shih, K. M., Chang, C. T., Chung, J. D., Chiang, Y. C. & Hwang, S. Y. Adaptive genetic divergence despite significant isolation-by-distance in populations of Taiwan Cow-Tail Fir (Keteleeria davidiana var. formosana). Front. Plant Sci. https://doi.org/10.3389/fpls.2018.00092 (2018).
Article PubMed PubMed Central Google Scholar
48.
Lu, Z., Wang, Y., Peng, Y., Korpelainen, H. & Li, C. Genetic diversity of Populus cathayana Rehd populations in southwestern china revealed by ISSR markers. Plant Sci.170, 407–412. https://doi.org/10.1016/j.plantsci.2005.09.009 (2006).
CAS Article Google Scholar
49.
Liu, C. et al. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China. PLoS ONE9, e87187. https://doi.org/10.1371/journal.pone.0087187 (2014).
CAS Article PubMed PubMed Central ADS Google Scholar
50.
Tian, H. Z. et al. Genetic diversity in the endangered terrestrial orchid Cypripedium japonicum in East Asia: insights into population history and implications for conservation. Sci. Rep.8, 6467. https://doi.org/10.1038/s41598-018-24912-z (2018).
CAS Article PubMed PubMed Central ADS Google Scholar
51.
Rasmussen, I. R. & Brødsgaard, B. Gene flow inferred from seed dispersal and pollinator behaviour compared to DNA analysis of restriction site variation in a patchy population of Lotus corniculatus L. Oecologia89, 277–283. https://doi.org/10.1007/BF00317228 (1992).
CAS Article PubMed ADS Google Scholar
52.
Šmídová, A., Münzbergová, Z. & Plačková, I. Genetic diversity of a relict plant species, Ligularia sibirica (L.) Cass. (Asteraceae). Flora206, 151–157. https://doi.org/10.1016/j.flora.2010.03.003 (2011).
Article Google Scholar
53.
Ilves, A., Lanno, K., Sammul, M. & Tali, K. Genetic variability, population size and reproduction potential in Ligularia sibirica (L.) populations in Estonia. Conserv. Genet.14, 661–669. https://doi.org/10.1007/s10592-013-0459-x (2013).
Article Google Scholar
54.
Tian, Z. & Jiang, D. Revisiting last glacial maximum climate over China and East Asian monsoon using PMIP3 simulations. Paleogeogr. Paleoclimatol. Paleoecol.453, 115–126. https://doi.org/10.1016/j.palaeo.2016.04.020 (2016).
Article ADS Google Scholar
55.
Manel, S., Poncet, B. N., Legendre, P., Gugerli, F. & Holderegger, R. Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol. Ecol.19, 3824–3835. https://doi.org/10.1111/j.1365-294X.2010.04716.x (2010).
Article PubMed Google Scholar
56.
Manel, S. et al. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol.21, 3729–3738. https://doi.org/10.1111/j.1365-294X.2012.05656.x (2012).
Article PubMed PubMed Central Google Scholar
57.
Bothwell, H. et al. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conserv. Genet.14, 467–481. https://doi.org/10.1007/s10592-012-0411-5 (2013).
Article Google Scholar
58.
Fang, J. Y. et al. Divergent selection and local adaptation in disjunct populations of an endangered conifer, Keteleeria davidiana var. formosana (Pinaceae). PLoS ONE. https://doi.org/10.1371/journal.pone.0070162 (2013).
Article PubMed PubMed Central Google Scholar
59.
Hsieh, Y. C. et al. Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity111, 147–156. https://doi.org/10.1038/hdy.2013.31 (2013).
Article PubMed PubMed Central Google Scholar
60.
Huang, C. L. et al. Genetic relationships and ecological divergence in Salix species and populations in Taiwan. Tree Genet. Genomes11, 39. https://doi.org/10.1007/s11295-015-0862-1 (2015).
Article Google Scholar
61.
Li, Y. L., Xue, D. X., Zhang, B. D. & Liu, J. X. Population genomic signatures of genetic structure and environmental selection in the Catadromous Roughskin Sculpin Trachidermus fasciatus. Genome Biol. Evol.11, 1751–1764. https://doi.org/10.1093/gbe/evz118 (2019).
Article PubMed PubMed Central Google Scholar
62.
Xue, X. X., Li, W. H. & Liu, L. Y. The northward shift of Weihe river and the uplift of Qinling Mountains. J. Northwest Univ. (Nat. Sci. Ed.)32, 451–454 (2002).
Google Scholar
63.
Zhang, Y. Q., Yang, N. & Ma, Y. S. Neotectonics in the southern part of the Taihang uplift, North China. J. Geomech.9, 313–329 (2003).
Google Scholar
64.
Xue, X. X., Li, H. H., Li, Y. X. & Liu, H. J. The new data of the uplifting of Qinling Mountains since the Middle Pleistocene. Quat. Sci.24, 82–87 (2004).
Google Scholar
65.
Zhang, T.-C., Comes, H. P. & Sun, H. Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol. Phylogenet. Evol.60, 1–12. https://doi.org/10.1016/j.ympev.2011.04.009 (2011).
CAS Article PubMed Google Scholar
66.
Ye, J. W., Zhang, Z. K., Wang, H. F., Bao, L. & Ge, J. P. Phylogeography of Schisandra chinensis (Magnoliaceae) reveal multiple refugia with ample gene flow in Northeast China. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00199 (2019).
Article PubMed PubMed Central Google Scholar
67.
Doyle, J. J., Doyle, J. L., Doyle, J. A. & Doyle, F. J. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem. Bull.19, 11–15 (1987).
MATH Google Scholar
68.
Russell, D. W. & Sambrook, J. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001).
Google Scholar
69.
Kikuchi, S. & Shibata, M. Permanent genetic resources: development of polymorphic microsatellite markers in Acer mono Maxim. Mol. Ecol. Resour.8, 339–341. https://doi.org/10.1111/j.1471-8286.2007.01948.x (2008).
CAS Article PubMed Google Scholar
70.
Terui, H., Lian, C. L., Saito, Y. & Ide, Y. Development of microsatellite markers in Acer capillipes. Mol. Ecol. Notes6, 77–79. https://doi.org/10.1111/j.1471-8286.2005.01144.x (2006).
CAS Article Google Scholar
71.
Liu, X. H. Genetic diversity and relationship of Acer L.germplasm resources detected by SRAP markers. College of Horticulture and Plant Protection, Yangzhou University. The Master Degree of Agricultural Science (2009).
72.
Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).
Article Google Scholar
73.
Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics163, 1177–1191 (2003).
PubMed PubMed Central Google Scholar
74.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol.14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
CAS Article PubMed Google Scholar
75.
Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour.4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
Article Google Scholar
76.
Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).
CAS Article PubMed PubMed Central Google Scholar
77.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).
Article Google Scholar
78.
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography37, 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x (2014).
Article Google Scholar
79.
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).
80.
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci.14, 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x (2003).
Article Google Scholar
81.
Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics89, 583–590 (1978).
CAS PubMed PubMed Central Google Scholar
82.
Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).
Article PubMed Google Scholar
83.
Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol.5, 384–387. https://doi.org/10.1111/2041-210X.12158 (2014).
Article Google Scholar More