More stories

  • in

    Sampling environmental DNA from trees and soil to detect cryptic arboreal mammals

    Fully terrestrial eDNA sampling approaches offer a potentially powerful addition to biodiversity monitoring efforts23,24. However, protocols for using eDNA-based methods to characterize terrestrial biodiversity, and vertebrate communities in particular, are still nascent27,28,30. In this study, we show for the first time that an eDNA metabarcoding approach can be used to broadly characterize tree-dwelling mammal communities by sampling tree trunks and surrounding soil. Our findings add to recent work (e.g., for reptiles22,24) showing that surface eDNA collection methods, which are relatively untested compared with soil-based eDNA methods, can also be effective at detecting terrestrial vertebrates. Further, we demonstrate that supplementing metabarcoding detection with qPCR-based methods can greatly improve sensitivity, a potentially important consideration for monitoring schemes focused on rare taxa (e.g., Refs.11,12). Together, our results have significant implications for global biodiversity conservation as the broader guild of arboreal vertebrates includes highly threatened5,48,49, as well as invasive alien species50, that are often cryptic, inhabit inaccessible locations, and are therefore challenging to monitor.Our methods captured over 60% of the mammalian diversity expected at the sites, and a similar fraction of the subset of arboreal species, despite sampling only 21 trees. Species accumulation curves suggest that more species would likely have been added with increased sampling effort. These results broadly agree with those of Leempoel et al.23 who found that soil eDNA metabarcoding well characterized mammal communities in California chaparral. However, in both our study and that of Leempoel et al.23, some conspicuous absences were evident. Bats comprised all of the arboreal species that we expected but failed to detect at our sites using metabarcoding (Fig. 1A). Leempoel et al.23 also noted a lack of bat detections (2 of 14 possible taxa detected), which they suggested could be due to low efficiency of either the 12S primer set or of their soil sampling methods for that order. While both reasons could also apply to the lack of bats detected in our study (discussed further below), the performance of the 12S primer set very likely contributed to our lack of American black bear detections as MiMammal-U primers are known to be ineffective at amplifying bear DNA38. These challenges highlight the reality that false negatives and varying detectability among species are common issues to all survey approaches, including eDNA metabarcoding. Our study represents a rare example among metabarcoding studies in that it uses repeated sampling and community occupancy models to quantify false negative rates. This quantitative approach, coupled with continued experimentation with different molecular techniques and survey methods (e.g., Refs.23,27), will be vital to helping researchers decide how eDNA metabarcoding methods will fit into existing biodiversity monitoring efforts moving forward.Although our results suggest that sampling for tree-roosting bats using eDNA metabarcoding still requires further research and optimization, our approach likely has application to characterizing communities in a much broader range of arboreal species globally. Geographic regions with multiple elusive arboreal mammals of management interest—for example, gliders and tree kangaroos in Australasia, or primates in the global tropics—may be particularly suited for a metabarcoding approach for community-level assessments4,8,9,49. It may be especially useful for rapid biodiversity assessments (RBAs51) in remote forested environments, where the ability to collect multiple samples relatively rapidly without regard to time of day would be a key advantage27. Existing survey methods to monitor arboreal mammals tend to be optimized for particular groups of species, often segregated by body size and behavior, with no suitable single method available to characterize all members of the guild4,8,9,16,49. Diurnal and nocturnal species, for example, often require separate survey methods or timing8. While camera traps capture both diurnal and nocturnal species, they typically miss smaller species16,23. The need for multiple methods to survey for nocturnal and diurnal, or large and small, species separately raises the cost of sampling and can result in datasets that are difficult to compare across sites because of inherent sampling biases8. Excluding bats, we found encouraging results for both diurnal and nocturnal arboreal species of a broad range of body sizes, detecting all seven expected species (Fig. 1A). While more work is needed to assemble robust genetic reference libraries before global arboreal mammal monitoring with eDNA metabarcoding will be broadly feasible, a clear advantage of the technique remains the power to detect a broad swath of species, with widely varying morphologies and behaviors, with a single method23,27,28,51.The promise of eDNA metabarcoding approaches for at least some arboreal guilds is well illustrated by our results for southern flying squirrel, Glaucomys volans. Like other flying squirrels (Tribe: Pteromyini), this species is strictly nocturnal, highly arboreal, and tends to get injured in live traps, making it difficult to directly observe and monitor48,52. Yet G. volans eDNA was readily detectable using metabarcoding in our study, occurring in 19–26% of soil samples and 47–52% of roller samples across both sites. Our similarly encouraging results for detecting other squirrels (Sciuridae) also bode well for management applications. For example, the methods would enable fine-scale mapping of habitat use in places such as the United Kingdom where native red squirrels (Sciurus vulgaris) are outcompeted by eastern gray squirrels, or the Delmarva peninsula (USA) to support the conservation efforts for the Delmarva fox squirrel (Sciurus niger cinereus)53. Further research is needed to determine the extent to which our results for squirrels generalize to other taxa with similar active tree-climbing lifestyles (e.g., gliders4, primates49).Our finding that soil samples revealed fewer species, had lower detection probability, and had lower read counts than roller samples, even for some non-arboreal species like white-tailed deer, likely reflects multiple factors. First, soil and tree bark represent markedly different biological and chemical environments that likely differ in eDNA quantity by species, eDNA persistence rates54,55, and microorganism abundance. The latter may be especially pertinent to our study as we observed a relatively large drop in the number of reads after removal of microorganism reads, especially for soil samples. This suggests that performing additional purification steps prior to sequencing could boost the ability of both methods, and especially soil eDNA, to detect target species by increasing mammalian sequencing depth. Other in-lab factors, such as method of extraction23 or choice of primers, similarly have the potential to influence the recovery and amplification of target species’ DNA and should be the focus of future research.Next, our focal trees were not chosen to occur near any special attractants or areas of multi-species use, such as saltlicks or water sources, which has proven successful in other vertebrate eDNA studies18,25,31,32,56. It is possible that adding a broader range of soil sampling sites, including some targeted towards other guilds (e.g., burrow users32,56), would have yielded a more complete inventory. Nevertheless, both soil and surface methods have advantages over the much more commonly-used metabarcoding approaches that rely on natural water bodies for assessing mammal communities16,17,27,28,29,30,38 as they are not limited to where these features occur. Our study is the first to suggest that surface eDNA metabarcoding methods can be a powerful supplement to established soil-based methods of characterizing mammal communities, especially for arboreal species.As noted, bats were especially lacking from our eDNA metabarcoding results, with only two of six likely species detected. Notably, our metabarcoding species list lacked two of the bat species that our sampling scheme was designed around (eastern red bat and northern long-eared bat) and for which we had confirmed recent presence at the sites (Table 1). The lack of northern long-eared bat detections may directly relate to recent precipitous population declines (~ 99%) caused by white-nose syndrome57. However, the lack of eastern red bat detections was especially surprising as roosting of this species was suspected based on telemetry in 17 of our 21 target trees. Reasons for this omission may relate to the fact that eastern red bats roost singly on small twigs and in leaf clusters, and therefore may not leave much DNA on tree trunks. Another possibility is low efficiency of the 12S primer set for bats, although we were unable to find information about this in the literature. It is notable that Leempoel et al.23 had a similarly poor representation of bats with comparable soil-based methods. However, our metabarcoding results did indicate that we are capable of detecting even uncommon, or at least unexpected, bat species with our methods. Eastern small-footed bat, which is typically viewed as a rock-roosting species and is considered endangered by the International Union for Conservation of Nature (IUCN)58, was detected in both soil and surface eDNA samples from Morristown National Historic Park. This species was not otherwise confirmed as present at the site until a year later, in spring 2022, when it was caught in a mist net (BM, unpublished data). Our results with respect to bat detections, along with those of others23, underscore the need for further research to adapt eDNA metabarcoding methods to this vulnerable group, which could contribute much needed demographic and distribution information. This is especially urgent as 18% of bat species are listed as “data deficient” by the IUCN, while 57% lack basic population trend information5,58.Our comparison of qPCR to metabarcoding detection methods for big brown bat represents a hopeful result for the use of eDNA to monitor rare vertebrates that are of particular conservation interest. It is well-known that qPCR-based eDNA surveys targeted towards individual species return higher detection probabilities and have greater power at low abundance, than metabarcoding approaches59. Our results agree, showing for the first time that adding a qPCR step in the analysis of surface and soil eDNA samples can be effective for detecting bats in forested environments. The addition of a qPCR step opens the door for developing species-specific assays to increase detection power for endangered or elusive bat species, or other cryptic arboreal mammals49. Emerging molecular detection approaches such as droplet digital PCR have the potential to increase this sensitivity even further59. Like other eDNA-based tools and survey tools in general, careful consideration of sampling effort, the natural history of target species, and the configuration of different field and molecular methods will be key to optimizing our approach to characterize mammal communities, or to target a particular species, in different regions.Although eDNA surveys are not inexpensive given the need for both fieldwork and molecular analyses, they can be cheaper than conventional approaches, especially if such approaches require many hours of fieldwork or expensive equipment60. Thus, the relative cost-effectiveness of surface or soil eDNA surveys will depend heavily on the mammal communities of interest, the mix of methods that must be employed to effectively sample them, and the purpose of the sampling efforts. However, even if costs are increased, eDNA surveys can reduce field time to the extent that they can improve detection rates, either by replacing or supplementing conventional sampling methods (e.g., as a supplement to visual observations). With higher detection rates, fewer visits are required to achieve the same results. This operational efficiency would be especially advantageous when field conditions present safety risks, are intrusive to sensitive habitats, or are challenging to access. For example, adding surface eDNA sampling to existing visual surveys of eastern wood rats (Neotoma floridana), a cryptic mammal that inhabits steep, rocky slopes in the eastern US, could likely increase detection power, thereby reducing the need for additional risky and costly sampling visits. More studies involving direct comparisons among methods (e.g., Refs.23,24,30,60), in a variety of ecoregions, are needed to determine the extent to which incorporating our methods into existing vertebrate monitoring workflows would increase efficiency.Finally, we detected other vertebrates, including seven birds and one salamander, in soil and surface eDNA samples, despite our use of a mammal-specific primer set. This is similar to results from Leempoel et al.23 in California using the same primer set, in which six bird species were detected. We found that surface eDNA detected more bird species than soil, perhaps for the same reasons as for mammals (above). Our results provide evidence that surface eDNA surveys, with taxon-specific primers, could be used to survey bird communities, or used to target particularly rare species in forested ecosystems (e.g., Ref.61). Our detection of a salamander, coupled with recent promising research into reptile detection using surface eDNA methods22,24 suggests a broader potential for applications with other vertebrates as well. Finally, both surface and soil eDNA metabarcoding can be expanded beyond forests, providing insight into their effectiveness in other habitats (e.g., caves17 or talus slopes). Our study and others highlight that the potential of coupling surface and soil eDNA methods for detecting and monitoring mammalian biodiversity, and terrestrial organisms generally, has yet to be fully realized. More

  • in

    Solar radiation, temperature and the reproductive biology of the coral Lobactis scutaria in a changing climate

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).Article 
    ADS 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. 116, 12907–12912 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    ADS 

    Google Scholar 
    Van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. 112, 2307–2313 (2015).Article 
    ADS 

    Google Scholar 
    Parrett, J. M. & Knell, R. J. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. R. Soc. B. 285, 20180303 (2018).Article 

    Google Scholar 
    Hagedorn, M. et al. Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. 118, e2110559118 (2021).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Epstein, N., Bak, R. & Rinkevich, B. Applying forest restoration principles to coral reef rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 13, 387–395 (2003).Article 

    Google Scholar 
    West, J. M. & Salm, R. V. Resistance and resilience to coral bleaching: Implications for coral reef conservation and management. Conserv. Biol. 17, 956–967 (2003).Article 

    Google Scholar 
    Yeemin, T., Sutthacheep, M. & Pettongma, R. Coral reef restoration projects in Thailand. Ocean Coast. Manag. 49, 562–575 (2006).Article 

    Google Scholar 
    Anthony, K. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Chang. Biol. 21, 48–61 (2015).Article 
    ADS 

    Google Scholar 
    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).Article 
    ADS 

    Google Scholar 
    Porter, J. W., Fitt, W. K., Spero, H. J., Rogers, C. S. & White, M. W. Bleaching in reef corals: Physiological and stable isotopic responses. Proc. Natl. Acad. Sci. 86, 9342–9346 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).Article 
    ADS 

    Google Scholar 
    Grottoli, A., Rodrigues, L. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621–631 (2004).Article 
    CAS 

    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).Article 
    ADS 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, e63267 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B. 282, 20151887 (2015).Article 

    Google Scholar 
    Dai, C., Fan, T. & Yu, J. Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar. Ecol. Prog. Ser. 201, 179–187 (2000).Article 
    ADS 

    Google Scholar 
    Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122 (2006).Article 
    ADS 

    Google Scholar 
    Rosser, N. & Gilmour, J. New insights into patterns of coral spawning on Western Australian reefs. Coral Reefs 27, 345–349 (2008).Article 
    ADS 

    Google Scholar 
    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).Article 
    ADS 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 
    ADS 

    Google Scholar 
    Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10 (2014).Article 
    ADS 

    Google Scholar 
    Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In Proc. 9th Int. Coral Reef Symp. 1123–1128 (2002).Johnston, E. C., Counsell, C. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).Article 

    Google Scholar 
    Hirose, M. & Hidaka, M. Reduced reproductive success in scleractinian corals that survived the 1998 bleaching in Okinawa. Galaxea 2000, 17–21 (2000).Article 

    Google Scholar 
    Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706 (2001).Article 
    ADS 

    Google Scholar 
    Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. 28, 1061–1071 (2016).Article 
    CAS 

    Google Scholar 
    Bassim, K., Sammarco, P. & Snell, T. Effects of temperature on success of (self and non-self) fertilization and embryogenesis in Diploria strigosa (Cnidaria, Scleractinia). Mar. Biol. 140, 479–488 (2002).Article 

    Google Scholar 
    Kenkel, C. D. et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6, e26914 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Louis, Y. D., Bhagooli, R., Kenkel, C. D., Baker, A. C. & Dyall, S. D. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 191, 63–77 (2017).Article 
    CAS 

    Google Scholar 
    Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).Article 

    Google Scholar 
    Gierz, S., Ainsworth, T. D. & Leggat, W. Diverse symbiont bleaching responses are evident from 2-degree heating week bleaching conditions as thermal stress intensifies in coral. Mar. Freshw. Res. 71, 1149–1160 (2020).Article 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 

    Google Scholar 
    Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423–438 (2010).Article 

    Google Scholar 
    Lesser, M. P. Coral bleaching: causes and mechanisms. In Coral Reefs: An Ecosystem in Transition (eds Riegl, B. M. & Purkis, S. J.) 405–419 (Springer, 2011).Chapter 

    Google Scholar 
    Barber, J. & Andersson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 17, 61–66 (1992).Article 
    CAS 

    Google Scholar 
    Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenergy 1143, 113–134 (1993).Article 
    CAS 

    Google Scholar 
    Lesser, M. P. & Farrell, J. H. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23, 367–377 (2004).Article 

    Google Scholar 
    Salih, A., Hoegh-Guldberg, O. & Cox, G. Bleaching responses of symbiotic dinoflagellates in corals: the effects of light and elevated temperature on their morphology and physiology. In Proceedings of the Australian Coral Reef Society 75th Anniversary Conference (eds Greenwood, J. G. & Hall, N. R.) 199–216 (1998).Smith, D. J., Suggett, D. J. & Baker, N. R. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?. Glob. Chang. Biol. 11, 1–11 (2005).Article 
    ADS 

    Google Scholar 
    Downs, C. et al. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS ONE 8, e77173 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276–1294 (2009).Article 
    CAS 

    Google Scholar 
    Jokiel, P. L. & York, R. H. Jr. Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
    Google Scholar 
    Vareschi, E. & Fricke, H. Light responses of a scleractinian coral (Plerogyra sinuosa). Mar. Biol. 90, 395–402 (1986).Article 

    Google Scholar 
    Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Wellington, G. & Fitt, W. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).Article 
    CAS 

    Google Scholar 
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).Article 
    ADS 

    Google Scholar 
    Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013 (2017).Article 
    ADS 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay. Hawaiʻi. PeerJ 3, e1136 (2015).Article 

    Google Scholar 
    Rodgers, K. S., Bahr, K. D., Jokiel, P. L. & Richards Donà, A. Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawai‘i. PeerJ 5, e3355 (2017).Article 

    Google Scholar 
    Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs 39, 757–769 (2020).Article 

    Google Scholar 
    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164 (1983).Article 
    ADS 

    Google Scholar 
    Kramarsky-Winter, E. & Loya, Y. Reproductive strategies of two fungiid corals from the northern Red Sea: Environmental constraints?. Mar. Ecol. Prog. Ser. 174, 175–182 (1998).Article 
    ADS 

    Google Scholar 
    Loya, Y. & Sakai, K. Bidirectional sex change in mushroom stony corals. Proc. R. Soc. B. 275, 2335–2343 (2008).Article 

    Google Scholar 
    Hagedorn, M. et al. Coral larvae conservation: Physiology and reproduction. Cryobiology 52, 33–47 (2006).Article 
    CAS 

    Google Scholar 
    Jokiel, P. L. & Brown, E. K. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641 (2004).Article 
    ADS 

    Google Scholar 
    Tanaka, K., Guidry, M. W. & Gruber, N. Ecosystem responses of the subtropical Kaneohe Bay, Hawaii, to climate change: A nitrogen cycle modeling approach. Aquat. Geochem. 19, 569–590 (2013).Article 
    CAS 

    Google Scholar 
    Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121 (2017).Article 

    Google Scholar 
    Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).Article 

    Google Scholar 
    Barnhill, K. A. & Bahr, K. D. Coral resilience at Malaukaa fringing reef, Kāneʻohe Bay, Oʻahu after 18 years. J. Mar. Sci. Eng. 7, 311 (2019).Article 

    Google Scholar 
    Lesser, M., Stochaj, W., Tapley, D. & Shick, J. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225–232 (1990).Article 
    ADS 

    Google Scholar 
    Brown, B., Dunne, R., Scoffin, T. & Le Tissier, M. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 219–230 (1994).Le Tissier, M. D. A. & Brown, B. E. Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar. Ecol. Prog. Ser. 136, 235–244 (1996).Article 
    ADS 

    Google Scholar 
    Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Takahashi, S., Nakamura, T., Sakamizu, M., Woesik, R. V. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).Article 
    CAS 

    Google Scholar 
    Coelho, V. et al. Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. J. Exp. Mar. Biol. Ecol. 497, 152–163 (2017).Article 

    Google Scholar 
    Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: Causes and consequences. Ecology 69, 1552–1565 (1988).Article 

    Google Scholar 
    Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs 40, 1411–1418 (2021).Article 

    Google Scholar 
    Hagedorn, M. et al. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS ONE 7, e33354 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61 (2021).Article 
    CAS 

    Google Scholar 
    Binet, M., Doyle, C., Williamson, J. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100 (2014).Article 
    CAS 

    Google Scholar 
    Jokiel, P., Maragos, J. & Franzisket, L. Coral growth: buoyant weight technique. In Coral Reefs: Research Methods Vol. 5 (eds Stoddart, D. R. & Johannes, R. E.) 529–542 (UNESCO, 1978).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2019).Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. J. Math. Methods Biosci. 50, 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Graves, S., Piepho, H.-P. & Selzer, M. L. multcompView: Visualizations of paired comparisons. R package version 0.1-7. https://CRAN.R-project.org/package=multcompView (2015).Christensen, R. H. B. ordinal-Regression models for ordinal data. R package version 2019.4-25. https://cran.r-project.org/package=ordinal/. (2019).Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.7. https://cran.r-project.org/package=rcompanion (2019).Hope, R. M. Rmisc: Ryan Miscellaneous. R package version 1.5. https://cran.r-project.org/package=Rmisc (2013).Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics, R package version 0.9-73. https://cran.r-project.org/package=RVAideMemoire (2019).Callaghan, J. A short note on the intensification and extreme rainfall associated with Hurricane Lane. Trop. Cyclone Res. Rev. 8, 103–107 (2019).Article 

    Google Scholar 
    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Seasonal reproduction in equatorial reef corals. Invertebr. Reprod. Dev. 48, 207–218 (2005).Article 

    Google Scholar 
    Lotterhos, K. E. & Levitan, D. Gamete release and spawning behavior in broadcast spawning marine invertebrates. In The Evolution of Primary Sexual Characters (eds Leonard, J. & Córdoba-Aguilar, A.) 99–120 (Oxford Univ. Press, 2010).
    Google Scholar 
    Ims, R. A. The ecology and evolution of reproductive synchrony. Trends Ecol. Evol. 5, 135–140 (1990).Article 
    CAS 

    Google Scholar 
    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Guest, J. R., Baird, A. H., Bouwmeester, J. & Edwards, A. J. To assess temporal breakdown in spawning synchrony requires comparable temporal data. https://doi.org/10.1126/comment.737627/full/ (2020).Hartmann, D. L. et al. Observations: atmosphere and surface. In Climate change 2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 159–254 (Cambridge University Press, 2013).Pörtner, H. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC Intergovernmental Panel on Climate Change, 2019).
    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming?. Science 363, 128–129 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315 (2002).Article 
    ADS 

    Google Scholar 
    Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle Iii, F. J. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161–173 (2011).Article 

    Google Scholar 
    Sweeney, A. M., Boch, C. A., Johnsen, S. & Morse, D. E. Twilight spectral dynamics and the coral reef invertebrate spawning response. J. Exp. Biol. 214, 770–777 (2011).Article 

    Google Scholar 
    Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202 (2012).Article 

    Google Scholar 
    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394 (1986).Article 

    Google Scholar 
    Hunter, C. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata. In Proc 6th Int Coral Reef Symp. vol. 2, 727–732.Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast spawning corals of the Montastraea annularis species complex. Evolution 58, 308–323 (2004).
    Google Scholar 
    Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763 (2007).Article 
    ADS 

    Google Scholar 
    Humanes, A., Noonan, S. H., Willis, B. L., Fabricius, K. E. & Negri, A. P. Cumulative effects of nutrient enrichment and elevated temperature compromise the early life history stages of the coral Acropora tenuis. PLoS ONE 11, e0161616 (2016).Article 

    Google Scholar 
    Lesser, M. P., Kruse, V. A. & Barry, T. M. Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J. Exp. Biol. 206, 4097–4103 (2003).Article 

    Google Scholar 
    Häder, D.-P. et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 14, 108–126 (2015).Article 

    Google Scholar 
    Albright, R. & Mason, B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8, e56468 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Espinoza, J., Schulz, M., Sanchez, R. & Villegas, J. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia 41, 51–54 (2009).Article 
    CAS 

    Google Scholar 
    Paoli, D. et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315–2319 (2011).Article 
    CAS 

    Google Scholar 
    Gallo, A., Esposito, M. C., Tosti, E. & Boni, R. Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants 10, 1131 (2021).Article 
    CAS 

    Google Scholar 
    Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084–1090 (2015).Article 

    Google Scholar 
    Gulko, D. Effects of ultraviolet radiation on fertilization and production of planula larvae in the Hawaiian coral Fungia scutaria. In Ultraviolet Radiation and Coral Reefs Vol. 41 (eds Gulko, D. & Jokiel, P. L.) 135–147 (University of Hawai’i, 1995).
    Google Scholar 
    Pruski, A. M., Nahon, S., Escande, M.-L. & Charles, F. Ultraviolet radiation induces structural and chromatin damage in Mediterranean sea-urchin spermatozoa. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 673, 67–73 (2009).Article 
    CAS 

    Google Scholar 
    Dahms, H.-U. & Lee, J.-S. UV radiation in marine ectotherms: Molecular effects and responses. Aquat. Toxicol. 97, 3–14 (2010).Article 
    CAS 

    Google Scholar 
    Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).CAS 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511 (2015).Article 

    Google Scholar 
    Jokiel, P. & Coles, S. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208 (1977).Article 

    Google Scholar 
    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the Central Red Sea. Science 329, 322–325. https://doi.org/10.1126/science.1190182 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Cooper, T. F., De’Ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14, 529–538 (2008).Article 
    ADS 

    Google Scholar 
    Tanzil, J., Brown, B., Tudhope, A. & Dunne, R. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28, 519–528 (2009).Article 
    ADS 

    Google Scholar 
    Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Chang. Biol. 19, 3011–3023 (2013).Article 
    ADS 

    Google Scholar 
    Richmond, R. H., Tisthammer, K. H. & Spies, N. P. The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front. Mar. Sci. 5, 226 (2018).Article 

    Google Scholar 
    Chen, P.-Y., Chen, C.-C., Chu, L. & McCarl, B. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 30, 12–20 (2015).Article 

    Google Scholar 
    Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. Elife 4, e09991 (2015).Article 

    Google Scholar 
    Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl. Acad. Sci. 118, e2101985118 (2021).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE 15, e0236399 (2020).Article 
    CAS 

    Google Scholar 
    Daly, J. et al. Cryopreservation can assist gene flow on the Great Barrier Reef. Coral Reefs 41, 455–462 (2022).Article 

    Google Scholar  More

  • in

    Measuring the world’s cropland area

    Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).Article 

    Google Scholar 
    Land Use Statistics and Indicators. Global, Regional and Country Trends 2000–2020 FAOSTAT Analytical Brief Series No 48 https://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1599856/ (FAO, 2022).FAO. Land Statistics. Global, Regional and Country Trends, 1990–2018 FAOSTAT Analytical Brief Series No. 15 https://www.fao.org/3/cb2860en/cb2860en.pdf (FAO, 2021).Summary for policymakers in: Special Report on Climate Change and Land (eds Shukla, P. R. et al.) https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf (WMO, in the press).Sustainable Development Goals Indicator 2.4.1 (FAO, accessed); https://www.fao.org/sustainable-development-goals/indicators/241/en/Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IGES, 2006).Grassi, G. et al. Carbon fluxes from land 2000–2020: bringing clarity on countries’ reporting. Earth Syst. Sci. Data 14, 4643–4666 (2022).Article 
    ADS 

    Google Scholar 
    Tubiello, F. N. et al. Measuring Progress Towards Sustainable Agriculture FAO Statistical Working Papers Series No. 21–24 https://www.fao.org/3/cb4549en/cb4549en.pdf (FAO, 2021).Conchedda, G. & Tubiello, F. N. Drainage of organic soils and GHG emissions: validation with country data. Earth Syst. Sci. Data 12, 3113–3137 (2020).Article 
    ADS 

    Google Scholar 
    Hanson, C., Mazur, E., Stolle, F., Davis, C. & Searchinger, T. 5 takeaways on cropland expansion and what it means for people and the planet. WRI Insights https://www.wri.org/insights/cropland-expansion-impacts-people-planet (2022).Potapov, P. et al. The Global 2000–-2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).Article 

    Google Scholar 
    Hansen, M. C. et al. Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. 17, 034050 (2022).Article 
    ADS 

    Google Scholar 
    Tubiello, F. N. et al. Carbon emissions and removals from forests: new estimates, 1990–2020. Earth Syst. Sci. Data. 13, 1681–1691 (2021).Article 
    ADS 

    Google Scholar  More

  • in

    Plant traits and marsh fate

    Coleman, D. J. et al. Limnol. Oceanogr. Lett. 7, 140–149 (2022).Article 

    Google Scholar 
    Noyce, G. L. et al. https://doi.org/10.1038/s41561-022-01070-6 (2022).Kirwan, M. L. & Megonigal, J. P. Nature 504, 53–60 (2013).Article 

    Google Scholar 
    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerve, B. & Cahoon, D. R. Ecology 83, 2869–2877 (2002).Article 

    Google Scholar 
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Proc. Natl Acad. Sci. 116, 21623–21628 (2019).Article 

    Google Scholar 
    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Proc. Natl Acad. Sci. 106, 182–6186 (2009).Article 

    Google Scholar 
    Dean, J. F. et al. Rev. Geophys. 56, 207–250 (2018).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).Lin, Y. et al. Water Res. 205, 117682 (2021).Article 

    Google Scholar 
    Zakharova, L., Meyer, K. M. & Seifan, M. Ecol. Modell. 407, 108703 (2019).Article 

    Google Scholar  More

  • in

    Limits on phenological response to high temperature in the Arctic

    Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).Article 
    ADS 

    Google Scholar 
    Overland, J. E. et al. Surface air temperature. In Arctic Report Card: Update for 2019 (eds Richter-Menge, J. et al.) (U.S. National Park Service, 2020).
    Google Scholar 
    Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).Article 
    ADS 

    Google Scholar 
    Diepstraten, R. A. E., Jessen, T. D., Fauvelle, C. M. D. & Musiani, M. M. Does climate change and plant phenology research neglect the Arctic tundra?. Ecosphere 9, e02362 (2018).Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).Article 
    CAS 

    Google Scholar 
    Billings, W. D. & Bliss, L. C. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40, 388–397 (1959).Article 

    Google Scholar 
    Billings, W. D. & Mooney, H. A. The ecology of arctic and alpine plants. Biol. Rev. 43, 481–529 (1968).Article 

    Google Scholar 
    Sørensen, T. Temperature relations and phenology of the northeast Greenland flowering plants. Meddr Gronland 1–305 (1941).Barrett, R. T. & Hollister, R. D. Arctic plants are capable of sustained responses to long-term warming. Polar Res. 35, 25405 (2016).Article 

    Google Scholar 
    Julitta, T. et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 198–199, 116–125 (2014).Article 
    ADS 

    Google Scholar 
    Petraglia, A. et al. Responses of flowering phenology of snowbed plants to an experimentally imposed extreme advanced snowmelt. Plant Ecol. 215, 759–768 (2014).Article 

    Google Scholar 
    Semenchuk, P. R. et al. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: An example of periodicity. Environ. Res. Lett. 11, 125006 (2016).Article 
    ADS 

    Google Scholar 
    Hollister, R. D., Webber, P. J. & Bay, C. Plant response to temperature in northern Alaska: Implications for predicting vegetation change. Ecology 86, 1562–1570 (2005).Article 

    Google Scholar 
    Oberbauer, S. et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120481 (2013).Article 
    CAS 

    Google Scholar 
    Tieszen, L. L. Photosynthesis in the principal Barrow, Alaska, species: A summary of field and laboratory responses. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (ed. Tieszen, L. L.) 241–268 (Springer, 1978).Chapter 

    Google Scholar 
    Körner, Ch. CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia 53, 98–104 (1982).Article 
    ADS 

    Google Scholar 
    Tieszen, L. L. Photosynthesis and respiration in arctic tundra grasses: Field light intensity and temperature responses. Arct. Alp. Res. 5, 239–251 (1973).Article 
    CAS 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).Article 

    Google Scholar 
    Marchand, F. L., Mertens, S., Kockelbergh, F., Beyens, L. & Nijs, I. Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob. Change Biol. 11, 2078–2089 (2005).Article 
    ADS 

    Google Scholar 
    Yan, W. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).Article 

    Google Scholar 
    Zhou, G. & Wang, Q. A new nonlinear method for calculating growing degree days. Sci. Rep. 8, 10149 (2018).Article 
    ADS 

    Google Scholar 
    Kramer, K. Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol. 31, 172 (1994).Article 

    Google Scholar 
    Nakano, Y., Higuchi, Y., Sumitomo, K. & Hisamatsu, T. Flowering retardation by high temperature in chrysanthemums: Involvement of FLOWERING LOCUS T-like 3 gene repression. J. Exp. Bot. 64, 909–920 (2013).Article 
    CAS 

    Google Scholar 
    del Olmo, I., Poza-Viejo, L., Piñeiro, M., Jarillo, J. A. & Crevillén, P. High ambient temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a mechanism associated with H2A.Z dynamics. Plant J. 100, 343–356 (2019).Article 

    Google Scholar 
    Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Hollister, R. D. et al. A review of open top chamber (OTC) performance across the ITEX Network. Arct. Sci. https://doi.org/10.1139/AS-2022-0030 (2022).Article 

    Google Scholar 
    Bütikofer, L. et al. The problem of scale in predicting biological responses to climate. Glob. Change Biol. 26, 6657–6666 (2020).Article 
    ADS 

    Google Scholar 
    Gu, S. Growing degree hours—A simple, accurate, and precise protocol to approximate growing heat summation for grapevines. Int. J. Biometeorol. 60, 1123–1134 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).Article 
    ADS 

    Google Scholar 
    Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ettinger, A. K., Buonaiuto, D. M., Chamberlain, C. J., Morales-Castilla, I. & Wolkovich, E. M. Spatial and temporal shifts in photoperiod with climate change. New Phytol. 230, 462–474 (2021).Article 
    CAS 

    Google Scholar 
    Seyednasrollah, B., Swenson, J. J., Domec, J.-C. & Clark, J. S. Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sens. Environ. 209, 446–455 (2018).Article 
    ADS 

    Google Scholar 
    Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).Article 

    Google Scholar 
    Chaudhry, S. & Sidhu, G. P. S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 41, 1–31 (2022).Article 
    CAS 

    Google Scholar 
    Sun, X. et al. Global diurnal temperature range (DTR) changes since 1901. Clim. Dyn. 52, 3343–3356 (2019).Article 

    Google Scholar 
    Ballinger, T. J. NOAA Arctic Report Card 2021: Surface Air Temperature. https://doi.org/10.25923/53XD-9K68 (2021).Jagadish, S. V. K., Way, D. A. & Sharkey, T. D. Plant heat stress: Concepts directing future research. Plant Cell Environ. 44, 1992–2005 (2021).Article 
    CAS 

    Google Scholar 
    Gilmore, E. C. Jr. & Rogers, J. S. Heat units as a method of measuring maturity in corn. Agron. J. 50, 611–615 (1958).Article 

    Google Scholar 
    Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: A review. Glob. Change Biol. 20, 408–417 (2014).Article 
    ADS 

    Google Scholar 
    Molitor, D., Junk, J., Evers, D., Hoffmann, L. & Beyer, M. A high-resolution cumulative degree day-based model to simulate phenological development of grapevine. Am. J. Enol. Vitic. 65, 72–80 (2014).Article 

    Google Scholar 
    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. 111, 4916–4921 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Inouye, B. D., Ehrlén, J. & Underwood, N. Phenology as a process rather than an event: From individual reaction norms to community metrics. Ecol. Monogr. 89, e01352 (2019).Article 

    Google Scholar 
    Miles, W. T. S. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds. Glob. Change Biol. 23, 1400–1414 (2017).Article 
    ADS 

    Google Scholar 
    Moussus, J.-P., Julliard, R. & Jiguet, F. Featuring 10 phenological estimators using simulated data. Methods Ecol. Evol. 1, 140–150 (2010).Article 

    Google Scholar 
    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’ (2019).Auguie, B. egg: Extensions for ‘ggplot2’: Custom Geom, Custom Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size (2019).Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’ (2020).Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (2017).Hamner, B. & Frasco, M. Metrics: Evaluation Metrics for Machine Learning (2018).Gilli, M., Maringer, D. & Schumann, E. Numerical Methods and Optimization in Finance (Elsevier/Academic Press, 2019).MATH 

    Google Scholar 
    Garnier, S. viridis: Default Color Maps from ‘matplotlib’ (2018).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar  More

  • in

    A new long-snouted marine reptile from the Middle Triassic of China illuminates pachypleurosauroid evolution

    Systematic paleontologySauropterygia Owen, 186038.Eosauropterygia Rieppel, 199439.Pachypleurosauroidea Huene, 195640.Pachypleurosauridae Nopcsa, 192841.Luopingosaurus imparilis gen. et sp. nov.EtymologyThe genus name refers to the Luoping County, at which the fossil site is located. Species epithet imparilis (Latin) means peculiar and unusual.HolotypeA ventrally exposed skeleton with a posterior part of the caudal missing, IVPP V19049.Locality and horizonLuoping, Yunnan, China; Second (Upper) Member of Guanling Formation, Pelsonian (~ 244 Ma), Anisian, Middle Triassic37.DiagnosisA pachypleurosaurid distinguishable from other members of this family by the following combination of features (those unique among pachypleurosaurids identified with an asterisk): snout (preorbital portion) long and anteriorly pointed, 55.0% of skull length (*); orbital length about one quarter of skull length; internal naris retracted, without contribution from premaxilla; nasal ending at level of anterior margin of prefrontal; dentary length 71.7% of mandibular length; hyoid length 9.7% of mandibular length; presence of entepicondylar foramen in humerus; 21 cervical and 27 dorsal vertebrae (*); distinct expansions of distal heads of posterior two sacral ribs; six pairs of caudal ribs; phalangeal formula 2–3-5–5-3 for manus and 2–3-4–6-4 for pes (*); Metatarsal I short and stout with expanded proximal end, 56.4% of Metatarsal V in length (*); and Metatarsal IV being longest phalange in pes.Comparative descriptionThe holotype and only currently known specimen of Luopingosaurus has a preserved length of 46.2 cm from the rostral tip to the 30th caudal vertebra (for measurements, see Table 1). The estimated total length of the body may have reached 64 cm, assuming similar tail proportions of pachypleurosaurids. As such, Luopingosaurus is longer than most of other pachypleurosauroids that are small-sized with a maximum total length rarely exceeding 50 cm4,9,10,11,12,14,15,16,18,23,25, although some pachypleurosaurids are notably larger (e.g., 88 cm in Diandongosaurus cf. acutidentatus22, ~ 120 cm in Neusticosaurus edwardsii8, and ~ 130 cm in Wumengosaurus delicatomandibularis13).Table 1 Measurements (in mm) of the holotype (IVPP V19049) of Luopingosaurus imparilis gen. et sp. nov. R, right.Full size tableThe pre-orbital portion, distinctly longer than the postorbital region, measures 55% of the total skull length (the premaxillary symphysis to the occipital condyle) and 51% of the mandibular length. The paired premaxillae form most of the snout anterior to the naris with a pointed anterior tip, similar to the conditions in Wumengosaurus13,30 and Honghesaurus23. By contrast, other pachypleurosauroids uniformly have a blunt rostrum4,6,7,8,9,10,11,12,14,15,16,18,22,25. The premaxilla bears a long posteromedial process inserting between the anterior parts of the elongate nasals (Fig. 3). The premaxillary teeth are homodont with a tall peduncle and a short, conical crown, but the tooth number is hard to estimate because of occlusion of jaws. The posterior parts of nasals contact each other medially, and posteriorly, they contact the frontals in an interdigitating suture at the level of the anterior margin of the prefrontal. In Honghesaurus23, Wumengosaurus30, Neusticosaurus8 and Serpianosaurus9, the even longer nasal extends posteriorly beyond this level and ends at the anterior portion of the orbit.Figure 3Skull and mandible of Luopingosaurus imparilis gen. et sp. nov., IVPP V19049. Head before (a) and after (b) dusted with ammonium chloride. (c), Line- drawing. (d, e), two computed laminography scanning slices. (f), reconstruction in ventral view. ac, acetabulum; an, angular; ar, articular; ax, axis; c, cervical vertebra; den, dentary; eo, exoccipital; f, frontal; hy, hyoid; in, internal naris; j, jugal; m, maxilla; n, nasal; p, parietal; par, prearticular; pof, postfrontal; prf, prefrontal; pt, pterygoid; q, quadrate; qj, quadratojugal; sa, surangular; sp, splenial; sq, squamosal; stf, supratemporal fossa; v, vomer.Full size imageThe orbit is oval and large, measuring 24.8% of the skull length (Fig. 3). The lateral margin of the frontal contacts the prefrontal anteriorly and the postfrontal posteriorly, and defines most of the medial border of the orbit. The L-shaped jugal, together with the posterolateral process of the maxilla, forms the lateral border of the orbit. No distinct lacrimal is discernable; the bone is probably absent as in other sauropterygians. The postfrontal contacts the dorsal process of the triradiate postorbital ventrally, and both bones define the posterior border of the orbit. Additionally, the posterior process of the postorbital contacts the anterior process of the squamosal, forming the bar between the supratemporal fossa and the ventrally open infratemporal fenestra. The jugal extends beyond the ventral margin of the postorbital and also contacts the anterior process of the squamosal, resembling the conditions in Wumengosaurus30, Honghesaurus23 and Diandongosaurus15. This contact is absent in other pachypleurosauroids4,6,7,8,9,10,11,12.A pair of vomers and pterygoids and a right palatine are discernable in the palate (Fig. 3a–c). The vomer is elongate and slender, extending anteriorly well beyond the nasal. The internal naris, partly covered by the detached splenial, is longitudinally retracted, corresponding to a retracted external naris (Fig. 3d–f). The medial margin of the naris is defined by the nasal, without contribution from the premaxilla. A retracted naris is otherwise present in Wumengosaurus13,30, Qianxisaurus16 and Honghesaurus23. Similar to the condition in Honghesaurus23, the retracted naris of Luopingosaurus is relatively short, having a longitudinal diameter distinctly less than half of the longitudinal diameter of the orbit. By contrast, other pachypleurosauroids4,6,7,8,9,10,11,12,25 generally have an oval-shaped naris. The elongate palatine has a slightly convex medial margin suturing with the pterygoid. Because of the coverage of the detached splenial, the lateral portion of the palatine is unexposed, and it is hard to know whether an ectopterygoid is present or not. The pterygoid is the largest and longest element of the palate, measuring 55.2% of the mandibular length. It has an anterior projection that contacts the vomer anteromedially, and does not participate in the margin of the internal naris. At the level of the posterior orbital margin, the pterygoid has a triangular lateral extension, which was termed as the ectopterygoid process of the pterygoid in Neusticosaurus8. The pterygoid extends back to the occipital condyle, and covers the basicranium and parietals in ventral view. Additionally, the bone has a broad posterolateral process that is set off from the palatal surface by a distinct ridge, resembling the conditions in Serpianosaurus9 and Neusticosaurus8. Posteriorly, the basioccipital is exposed in ventral view, showing the area for attachment to the right exoccipital.The left quadrate is exposed in lateral view with its dorsal process extending underneath the base of the descending process of the squamosal. The posterior margin of the quadrate is excavated, as in many other pachypleurosaurids (e.g., Serpianosaurus9 and Honghesaurus23). The quadratojugal is narrow and splint-like, flanking the anterior margin of the quadrate. A pair of hyoids are ossified. They are rod-like, slightly expanded at both ends. The dentary is wedge-shaped, being 71.7% of the mandibular length. Laterally, it bears a longitudinal series of pores and grooves parallel to the oral margin of the bone (Fig. 3a). The elongate angular tapers at both ends, contacting the dentary anterodorsally and the surangular dorsally in ventral view. The surangular, slightly shorter than the angular, contacts the articular posterodorsally, with a pointed anterior tip wedging into the notched posterior margin of the dentary. The retroarticular process of the articular is very short with a rounded posterior margin. Medially, the splenial and prearticular form most of the inner wall of the mandible. The splenial tapers at both ends and enters the mandibular symphysis anteriorly, having a length similar to the dentary. The relatively slender prearticular contacts the splenial anterodorsally, extends posteriorly and abuts the articular dorsally, measuring 41.1% of the mandibular length.The whole series of 21 cervical vertebrae (including the atlas-axis complex) is well exposed ventrally. The atlas centrum is oval, much smaller than the axis centrum (Fig. 3c). From the axis, the cervical vertebrae increase gradually in size toward the trunk vertebrae posteriorly. The bicephalous cervical ribs have typical free anterior and posterior processes as in other pachypleurosauroids8,9. The trunk is relatively long, including 27 dorsal vertebrae. The posterior dorsal ribs show certain pachyostosis (Fig. S1). Each gastralium consists of five elements (a short and more massive median element and two slender rods in line towards each side; Figs. 3, 4a, b, S1), similar to the conditions in most of other pachypleurosauroids9,11,18,25 (except Neusticosaurus8). Three sacral ribs are clearly revealed by X-ray computed microtomography (Fig. 4c–f). They are relatively short and stout, with the posterior twos bearing a distinct expansion on their distal heads. The distal expansion of the sacral rib is also present in Keichousaurus11, Prosantosaurus25, Qianxisaurus16 and Wumengosaurus13, but it is not pronounced in other pachypleurosauroids4,6,7,8,9,10. The caudal ribs are relatively few, six pairs in number. Additionally, several chevron bones are visible in the proximal caudal region, and they are gradually reduced in length posteriorly (Fig. 4d).Figure 4Girdles, limbs and vertebrae of Luopingosaurus imparilis gen. et sp. nov., IVPP V19049. Photo (a) and line-drawing (b) of pectoral girdle, forelimbs and anterior dorsal vertebrae. Photo (c), line-drawing (d) and two computed laminography scanning slices (e, f) of pelvic girdle, hind limbs and posterior vertebrae. as, astragalus; ca, caudal vertebra; cal, calcaneum; car, caudal rib; co, coracoid; d, dorsal vertebra; dltp, deltopectoral crest; enf, entepicondylar foramen; fe, femur; fi, fibula; h, humerus; il, ilium; int, intermedium; is, ischium; mc, metacarpal; mt, metatarsal; pu, pubis; s, sacral vertebra; sc, scapula; sr, sacral rib; ti, tibia; ul, ulna; uln, ulnare.Full size imageThe paired clavicles and the median interclavicle form a transverse bar at the 20th cervical vertebrae (Fig. 4a, b). The blade-like clavicle tapers posterolaterally with its distal projection overlapped by the scapula in ventral view. The left clavicle contacts the right one anterodorsally to the interclavicle. The interclavicle tapers laterally to a point at each end. The anterior margin of the interclavicle is convex and its posterior margin is slightly concave without a midline projection (contra the condition in Anarosaurus42). The scapula consists of a broad ventral portion and a relatively narrow and elongate dorsal wing that varies little through its length. The coracoid is hourglass-shaped with a slightly concave posterolateral margin and a conspicuously concave anteromedial margin. The medial margin is straight, along which the coracoids would articulate each other in the midline. The humerus is constricted at the middle portion with a nearly straight preaxial margin and a concave postaxial margin. A slit in the expanded distal portion of this bone indicates the possible presence of an entepicondylar foramen (Fig. 4a, b). The radius, slightly longer than the ulna, is more expanded proximally than distally. The ulna is straight with a slightly constricted shaft. In each forelimb, there is two nearly rounded carpals, ulnare and intermedium; the former is half the width of the latter. Five metacarpals are rod-like, slightly expanded at both ends. Among them, Metacarpal I is the shortest, 48% of the length of Metacarpal II. Metacarpal III is slightly shorter than Metacarpal IV, which is the longest. Metacarpal V is 71% of the length of Metacarpal IV. The phalangeal formula is 2–3–5–5–3 for the manus, indicating presence of hyperphalangy in Luopingosaurus (see Discussion below).In the pelvic girdle, the ilia, pubes and ischia are well exposed (Fig. 4c–f). The ilium is nearly triangular with a relatively long and tapering posterior process. The plate-like pubis is well constricted at its middle portion, with the medial portion nearly equal to the lateral portion. The obturator foramen is slit-like, located at the posterolateral corner of this bone (Fig. 4e). The ischium is also plate-like, having a relatively narrow lateral portion and an expanded medial portion that is notably longer than the medial portion of the pubis. The posterolateral ischial margin is highly concave. The posterior pubic margin and anterior ischial margin are moderately concave, and both together would enclose the thyroid fenestra. The femur is slightly longer than the humerus, with a constricted shaft and equally expanded ends (Fig. 4d). No internal trochanter is developed. The tibia is nearly equal to the fibula in length; the former is straight and thicker than the slightly curved latter. Two ossified tarsals, calcaneum and astragalus, are nearly rounded; the latter is significantly larger than the former. As in Honghesaurus23, the astragalus lacks a proximal concavity. The right metatarsals are well-preserved. Metatarsal I is the shortest and stoutest phalange with an expanded proximal end, and Metatarsal IV is the longest. Metatarsal II is nearly twice the length of Metatarsal I. Metatarsal III is slightly shorter than Metatarsal IV, and Metatarsal V is 76% of the length of Metatarsal IV. The phalangeal count is 2–3–4–6–4, which is complete judging from the appearance of the distal phalanges in the right pes (Fig. 4c). More

  • in

     Restoration and coral adaptation delay, but do not prevent, climate-driven reef framework erosion of an inshore site in the Florida Keys

    De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 80(342), 108–110 (2013).Article 

    Google Scholar 
    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 
    ADS 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. & Manzello, D. P. Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 4, 94–104 (2012).Article 

    Google Scholar 
    Newman, S. P. et al. Reef flattening effects on total richness and species responses in the Caribbean. J. Anim. Ecol. 84, 1678–1689 (2015).Article 

    Google Scholar 
    Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 1–9 (2014).Article 

    Google Scholar 
    Storlazzi, C. D. et al. Rigorously valuing the potential coastal hazard risk reduction provided by coral reef restoration in Florida and Puerto Rico. U.S. Geol. Surv. 2, 1–24 (2021).
    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2015265118 (2021).Article 

    Google Scholar 
    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).Article 
    ADS 

    Google Scholar 
    Achlatis, M. et al. Sponge bioerosion on changing reefs: Ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Sci. Rep. 7, 1–13 (2017).Article 

    Google Scholar 
    Perry, C. T. & Alvarez-Filip, L. Changing geo-ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 33, 976–988 (2019).
    Google Scholar 
    Manzello, D. P., Enochs, I. C., Kolodziej, G. & Carlton, R. Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: An inshore-offshore comparison. Mar. Ecol. Prog. Ser. 521, 81–89 (2015).Article 
    ADS 

    Google Scholar 
    de Bakker, D. M., van Duyl, F. C., Perry, C. T. & Meesters, E. H. Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients. Glob. Chang. Biol. 25, 4092–4104 (2019).Article 
    ADS 

    Google Scholar 
    Wisshak, M., Schönberg, C. H. L., Form, A. & Freiwald, A. Ocean acidification accelerates reef bioerosion. PLoS ONE 7, e45124 (2012).Article 
    ADS 

    Google Scholar 
    Webb, A. E. et al. Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates. Front. Mar. Sci. 4, 311 (2017).Article 

    Google Scholar 
    Perry, C. T. et al. Estimating rates of biologically driven coral reef framework production and erosion: A new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31, 853–868 (2012).Article 
    ADS 

    Google Scholar 
    Molina-Hernández, A., González-Barrios, F. J., Perry, C. T. & Álvarez-Filip, L. Two decades of carbonate budget change on shifted coral reef assemblages: Are these reefs being locked into low net budget states?: Caribbean reefs carbonate budget trends. Proc. R. Soc. B Biol. Sci. 287, 20202305 (2020).Article 

    Google Scholar 
    Toth, L. T., Courtney, T. A., Colella, M. A., Kupfner, S. A. & Robert, J. The past, present, and future of coral reef growth in the Florida Keys. Glob. Change Biol. 28(17), 5294–5309. https://doi.org/10.1111/gcb.16295 (2022).Article 

    Google Scholar 
    Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402–1407 (2013).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. et al. Ocean acidification enhances the bioerosion of a common coral reef sponge: Implications for the persistence of the Florida Reef Tract. Bull. Mar. Sci. 91, 271–290 (2015).Article 

    Google Scholar 
    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    van Hooidonk, R., Maynard, J. A., Liu, Y. & Lee, S. K. Downscaled projections of Caribbean coral bleaching that can inform conservation planning. Glob. Chang. Biol. 21, 3389–3401 (2015).Article 
    ADS 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 80(333), 418 (2011).Article 
    ADS 

    Google Scholar 
    Teneva, L. et al. Predicting coral bleaching hotspots: The role of regional variability in thermal stress and potential adaptation rates. Coral Reefs 31, 1–12 (2012).Article 
    ADS 

    Google Scholar 
    Albright, R., Langdon, C. & Anthony, K. R. N. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central great Barrier Reef. Biogeosciences 10, 6747–6758 (2013).Article 
    ADS 

    Google Scholar 
    Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2014).Article 
    ADS 

    Google Scholar 
    Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the paris agreement. Sci. Rep. 6, 1–8 (2016).
    Google Scholar 
    Lee, J.-Y. et al. (2021) Future global climate: Scenario-based projections and near-term information supplementary material climate change 2021: the physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change doi:https://doi.org/10.1017/9781009157896.006McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2, 623–627 (2012).Article 
    ADS 

    Google Scholar 
    Okazaki, R. R. et al. Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Glob. Chang. Biol. 23, 1023–1035 (2017).Article 
    ADS 

    Google Scholar 
    Kornder, N. A., Riegl, B. M. & Figueiredo, J. Thresholds and drivers of coral calcification responses to climate change. Glob. Chang. Biol. 24, 5084–5095 (2018).Article 
    ADS 

    Google Scholar 
    Van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Chang. 3, 508–511 (2013).Article 
    ADS 

    Google Scholar 
    Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).Article 
    ADS 

    Google Scholar 
    Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918 (2013).Article 

    Google Scholar 
    Ruzicka, R. R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).Article 
    ADS 

    Google Scholar 
    Manzello, D. P., Enochs, I. C., Kolodziej, G., Carlton, R. & Valentino, L. Resilience in carbonate production despite three coral bleaching events in 5 years on an inshore patch reef in the Florida Keys. Mar. Biol. 165, 1–11 (2018).Article 

    Google Scholar 
    Gintert, B. E. et al. Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: A nugget of hope, aberrance, or last man standing?. Coral Reefs 37, 533–547 (2018).Article 
    ADS 

    Google Scholar 
    Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).Article 

    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl. Acad. Sci. U. S. A. 105, 10444–10449 (2008).Article 
    ADS 

    Google Scholar 
    Silverstein, R. N., Correa, A. M. S. & Baker, A. C. Specificity is rarely absolute in coral–algal symbiosis: Implications for coral response to climate change. Proc. R. Soc. B Biol. Sci. 279, 2609–2618 (2012).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. U. S. A. 110, 1387–1392 (2013).Article 
    ADS 

    Google Scholar 
    Voolstra, C. R. et al. Rapid evolution of coral proteins responsible for interaction with the environment. PLoS ONE 6(5), e20392 (2011).Article 
    ADS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    ADS 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 80(344), 895 (2014).Article 
    ADS 

    Google Scholar 
    Tribollet, A., Chauvin, A. & Cuet, P. Carbonate dissolution by reef microbial borers: A biogeological process producing alkalinity under different pCO 2 conditions. Facies 65, 1–10 (2019).Article 

    Google Scholar 
    Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Chang. Biol. 24, 773–785 (2018).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 91, 1–16 (2021).Article 

    Google Scholar 
    Van Westen, R. M. & Dijkstra, H. A. Ocean eddies strongly affect global mean sea-level projections. Sci. Adv. 7, 1–12 (2021).
    Google Scholar 
    DeMerlis, A. et al. Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. Coral Reefs https://doi.org/10.1007/s00338-022-02232-z (2022).Article 

    Google Scholar 
    Webb, A. E. et al. Quantifying functional consequences of habitat degradation on a Caribbean coral reef. Biogeosciences 18, 6501–6516 (2021).Article 
    ADS 

    Google Scholar 
    Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 2–10 (2018).
    Google Scholar 
    DeCarlo, T. M. et al. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43, 7–10 (2015).Article 
    ADS 

    Google Scholar 
    Wooldridge, S. A. Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef. Australia. Mar. Pollut. Bull. 58, 745–751 (2009).Article 

    Google Scholar 
    Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. https://doi.org/10.5194/gmd-9-1937-2016 (2016).O’Neill, B. C., Kriegler, E., Riahi, K. & Ebi, K. L. A new scenario framework for climate change research : The concept of shared socioeconomic pathways. Clim. Change https://doi.org/10.1007/s10584-013-0905-2 (2014).Article 

    Google Scholar 
    O’Neill, B. C. et al. The scenario model intercomparison project ( ScenarioMIP ) for CMIP6. Geosci. Model Dev. 9(9), 3461–3482 (2018).Article 
    ADS 

    Google Scholar 
    Towle, E. K. et al. (2021) National coral reef monitoring plan.Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32, 987–997 (2013).Article 
    ADS 

    Google Scholar 
    Manzello, D. P., Enochs, I. C., Kolodziej, G. & Carlton, R. Coral growth patterns of Montastraea cavernosa and Porites astreoides in the Florida Keys: The importance of thermal stress and inimical waters. J. Exp. Mar. Bio. Ecol. 471, 198–207 (2015).Article 

    Google Scholar 
    Gattuso, J.P. et al. (2015) Package ‘ seacarb ’Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M. & Hoegh-Gulberg, O. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Chang. Biol. 11, 2251–2265 (2005).Article 
    ADS 

    Google Scholar 
    van Hooidonk, R. & Huber, M. Quantifying the quality of coral bleaching predictions. Coral Reefs 28, 579–587 (2009).Article 
    ADS 

    Google Scholar 
    Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423–438 (2010).Article 

    Google Scholar 
    Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching (Eos, Washington, DC, 2003).Book 

    Google Scholar 
    van Hooidonk, R. et al. Projections of future coral bleaching conditions using IPCC CMIP6 models: Climate policy implications, management applications, and Regional Seas summaries. (2020).Kinsey, D. W. & Hopley, D. The significance of coral reefs as global carbon sinks-response to Greenhouse. Glob. Planet. Change 3, 363–377 (1991).Article 
    ADS 

    Google Scholar 
    van Westen, R. M. et al. Ocean model resolution dependence of Caribbean sea-level projections. Sci. Rep. 10, 1–11 (2020).
    Google Scholar  More