Chemical pollution imposes limitations to the ecological status of European surface waters
1.
Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117. https://doi.org/10.1126/science.1248365 (2014).
ADS CAS Article PubMed Google Scholar
2.
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 736–746. https://doi.org/10.1126/science.1259855 (2015).
ADS CAS Article Google Scholar
3.
Wang, H. et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1 (2016).
Article Google Scholar
4.
Grizzetti, B. et al. Human pressures and ecological status of European rivers. Sci. Rep. 7, 205. https://doi.org/10.1038/s41598-017-00324-3 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
5.
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl. Acad. Sci. 109, 3232–3237. https://doi.org/10.1073/pnas.1109936109 (2012).
ADS Article PubMed Google Scholar
6.
Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561. https://doi.org/10.1038/nature09440 (2010).
ADS CAS Article PubMed Google Scholar
7.
Millennium Ecosystem Assessment. Ecosystems and Human Well-being. A Framework for Assessment https://pdf.wri.org/ecosystems_human_wellbeing.pdf (2003).
8.
Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99. https://doi.org/10.1146/annurev-environ-021810-094524 (2011).
Article Google Scholar
9.
Richmond, E. K. et al. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 9, 4491. https://doi.org/10.1038/s41467-018-06822-w (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
10.
Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23. https://doi.org/10.1016/j.ecoser.2015.10.023 (2016).
Article Google Scholar
11.
Anzaldua, G. et al. Getting into the water with the ecosystem services approach: the DESSIN ESS evaluation framework. Ecosyst. Serv. 30, 318–326. https://doi.org/10.1016/j.ecoser.2017.12.004 (2018).
Article Google Scholar
12.
Van Vliet, M. T. H., Florke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802. https://doi.org/10.1038/NGEO3047 (2017).
ADS Article Google Scholar
13.
Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90. https://doi.org/10.1002/fee.1450 (2017).
Article Google Scholar
14.
Global Chemicals Outlook II—from legacies to innovative solutions: implementing the 2030 agenda for sustainable development. Synthesis report https://wedocs.unep.org/bitstream/handle/20.500.11822/28113/GCOII.pdf?sequence=1&isAllowed=y (2019).
15.
Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1216-4 (2020).
Article PubMed Google Scholar
16.
A guide to SDG interactions. From sciene to implementation https://council.science/publications/a-guide-to-sdg-interactions-from-science-to-implementation/ (2017).
17.
EC. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Off. J. Eur. Union L 396, 1–848 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R01907-20140410&from=EN (2006).
18.
Geiser, K. Chemicals Without Harm. Policies for a Sustainable World (MIT Press, Cambridge, 2015).
Google Scholar
19.
Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures of chemicals in our changing environment. Science 367, 388–392. https://doi.org/10.1126/science.aay6636 (2020).
ADS CAS Article PubMed Google Scholar
20.
UNESCO. Solving the puzzle: the ecosystem approach and biosphere reserves https://unesdoc.unesco.org/ark:/48223/pf0000119790 (2000).
21.
Nõges, P., van de Bund, W., Cardoso, A. C., Solimini, A. G. & Heiskanen, A. S. Assessment of the ecological status of European surface waters: a work in progress. Hydrobiologia 633, 197–211. https://doi.org/10.1007/s10750-009-9883-9 (2009).
CAS Article Google Scholar
22.
Tsakiris, G. The status of the European waters in 2015: a review. Environ. Process. 2, 543–557. https://doi.org/10.1007/s40710-015-0079-1 (2015).
Article Google Scholar
23.
Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Commun. L 327, 1–72 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2000:2327:TOC (2000).
24.
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).
ADS CAS Article PubMed Google Scholar
25.
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475. https://doi.org/10.1038/461472a (2009).
ADS CAS Article PubMed Google Scholar
26.
Clean Water Rule: Definition of “Waters of the United States”. Federal Register 80, 37054–37127, Monday, June 29, 2015/Rules https://www.govinfo.gov/content/pkg/FR-2015-06-29/pdf/2015-13435.pdf (2015).
27.
C&L Inventory. Database containing classification and labelling information on notified and registered substances received from manufacturers and importers https://echa.europa.eu/information-on-chemicals/cl-inventory-database (accessed March 4, 2019) (2019).
28.
Posthuma, L., de Zwart, D. & Dyer, S. D. Chemical mixtures affect freshwater species assemblages: from problems to solutions. Curr. Opin. Environ. Sci. Health 11, 78–89. https://doi.org/10.1016/j.coesh.2019.09.002 (2019).
Article Google Scholar
29.
The Water Framework Directive and the Floods Directive: Actions towards the ‘good status’ of EU water and to reduce flood risks. Communication from the Commission to the European Parliament and the Council, 9.3.2015. COM(2015) 120 final https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0120 (2015).
30.
EC. Fitness check of the Water Framework Directive, Groundwater Directive, Environmental Quality Standards Directive and Floods Directive https://ec.europa.eu/environment/water/fitness_check_of_the_eu_water_legislation/documents/Water%20Fitness%20Check%20-%20SWD(2019)439%20-%20web.pdf. 1–176 (2019).
31.
Arle, J., Mohaupt, V. & Kirst, I. Monitoring of surface waters in Germany under the Water Framework Directive—a review of approaches, methods and results. Water 8, 217. https://doi.org/10.3390/w8060217 (2016).
Article Google Scholar
32.
Drakvik, E. et al. Statement paper on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 134, 105267. https://doi.org/10.1016/j.envint.2019.105267 (2020).
CAS Article PubMed Google Scholar
33.
Brack, W. et al. High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environ. Sci. Eur. 31, 62. https://doi.org/10.1186/s12302-019-0230-0 (2019).
Article Google Scholar
34.
Van Gils, J. et al. The European Collaborative Project SOLUTIONS developed models to provide diagnostic and prognostic capacity and fill data gaps for chemicals of emerging concern. Environ. Sci. Eur. 31, 72. https://doi.org/10.1186/s12302-019-0248-3 (2019).
Article Google Scholar
35.
van Gils, J. et al. Computational material flow analysis for thousands of chemicals of emerging concern in European waters. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2020.122655 (2020).
Article PubMed Google Scholar
36.
Pistocchi, A. et al. Assessment of the effectiveness of reported Water Framework Directive Programmes of Measures. Part III—JRC Pressure Indicators v.2.0: nutrients, urban runoff, flow regime and hydromorphological alteration https://doi.org/10.2760/325451 (2018).
37.
EC. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union L 226, 1–17 https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:2226:0001:0017:EN:PDF (2013).
38.
EEA. European waters—assessment of status and pressures https://www.eea.europa.eu/publications/state-of-water (2018).
39.
Dulio, V. et al. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ. Sci. Eur. 30, 5. https://doi.org/10.1186/s12302-018-0135-3 (2018).
Article PubMed PubMed Central Google Scholar
40.
Guidelines for the health risk assessment of chemical mixtures Fed. Reg. 51 185, 34014–34025 https://www.epa.gov/sites/production/files/32014-34011/documents/chem_mix_31986.pdf (1986).
41.
Calamari, D. & Vighi, M. A proposal to define quality objectives for aquatic life for mixtures of chemical substances. Chemosphere 25, 531–542. https://doi.org/10.1016/0045-6535(92)90285-Y (1992).
ADS Article Google Scholar
42.
Technical guidance for deriving environmental quality standards. Common Implementation Strategy for the Water framework Directive (2000/60/EC)—Guidance Document No. 27 https://circabc.europa.eu/sd/a/ba6810cd-e611-4f72-9902-f0d8867a2a6b/Guidance%20No%2027%20-%20Deriving%20Environmental%20Quality%20Standards%20-%20version%202018.pdf (2011).
43.
Posthuma, L. & De Zwart, D. Encyclopedia of Toxicology 3rd edn, Vol. 4, 363–368 (Elsevier Inc., Academic Press, 2014).
Google Scholar
44.
Birk, S. et al. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Ind. 18, 31–41. https://doi.org/10.1016/j.ecolind.2011.10.009 (2012).
Article Google Scholar
45.
De Zwart, D. & Posthuma, L. Complex mixture toxicity for single and multiple species: proposed methodologies. Environ. Toxicol. Chem. 24, 2665–2676. https://doi.org/10.1897/04-639r.1 (2005).
Article PubMed Google Scholar
46.
Lyche Solheim, A. et al. A new broad typology for rivers and lakes in Europe: Development and application for large-scale environmental assessments. Sci. Total Environ. 697, 134043. https://doi.org/10.1016/j.scitotenv.2019.134043 (2019).
ADS CAS Article Google Scholar
47.
Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 https://www.jstor.org/stable/3868138 (2003).
48.
Vermeulen, R., Schymanski, E. L., Barabási, A.-L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396. https://doi.org/10.1126/science.aay3164 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
49.
Posthuma, L., van Gils, J., Zijp, M. C., van de Meent, D. & de Zwart, D. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Environ. Toxicol. Chem. 38, 905–917. https://doi.org/10.1002/etc.4373 (2019).
CAS Article PubMed PubMed Central Google Scholar
50.
Hoondert, R. P. J., Oldenkamp, R., de Zwart, D., van de Meent, D. & Posthuma, L. QSAR-based estimation of Species Sensitivity Distribution parameters: an exploratory investigation. Environ. Toxicol. Chem. 38, 2764–2770. https://doi.org/10.1002/etc.4601 (2019).
CAS Article PubMed PubMed Central Google Scholar
51.
Williams, A. J. et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J. Chem. Inform. 9, 61. https://doi.org/10.1186/s13321-017-0247-6 (2017).
CAS Article Google Scholar
52.
Blum, C. et al. The concept of sustainable chemistry: key drivers for the transition towards sustainable development. Sustain. Chem. Pharm. 5, 94–104. https://doi.org/10.1016/j.scp.2017.01.001 (2017).
CAS Article Google Scholar
53.
Kostal, J., Voutchkova-Kostal, A., Anastas, P. T. & Zimmerman, J. B. Identifying and designing chemicals with minimal acute aquatic toxicity. Proc. Natl. Acad. Sci. U.S.A. 112, 6289–6294. https://doi.org/10.1073/pnas.1314991111 (2015).
ADS CAS Article PubMed Google Scholar
54.
Saouter, E. et al. Environmental footprint: update of Life Cycle Impact Assessment methods—ecotoxicity freshwater, human toxicity cancer, and non-cancer https://doi.org/10.2760/178544 (2018).
55.
Rapport, D. & Friend, A. Towards a comprehensive framework for environmental statistics. A stress-response approach https://www.worldcat.org/title/towards-a-comprehensive-framework-for-environmental-statistics-a-stress-response-approach/oclc/21772350 (1979).
56.
Kaika, M. & Page, B. The EU Water Framework Directive: part 1. European policy-making and the changing topography of lobbying. Eur. Environ. 13, 314–327. https://doi.org/10.1002/eet.331 (2003).
Article Google Scholar
57.
Page, B. & Kaika, M. The EU Water Framework Directive: part 2. Policy innovation and the shifting choreography of governance. Eur. Environ. 13, 328–343. https://doi.org/10.1002/eet.332 (2003).
Article Google Scholar
58.
Elosegi, A., Gessner, M. O. & Young, R. G. River doctors: learning from medicine to improve ecosystem management. Sci. Total Environ. 595, 294–302. https://doi.org/10.1016/j.scitotenv.2017.03.188 (2017).
ADS CAS Article PubMed Google Scholar
59.
Kortenkamp, A. & Faust, M. Regulate to reduce chemical mixture risk. Science 361, 224–226. https://doi.org/10.1126/science.aat9219 (2018).
ADS CAS Article PubMed Google Scholar
60.
Voulvoulis, N., Arpon, K. D. & Giakoumis, T. The EU Water Framework Directive: from great expectations to problems with implementation. Sci. Total Environ. 575, 358–366. https://doi.org/10.1016/j.scitotenv.2016.09.228 (2017).
ADS CAS Article PubMed Google Scholar
61.
Giakoumis, T. & Voulvoulis, N. The transition of EU water policy towards the Water Framework Directive’s integrated river basin management paradigm. Environ. Manag. 62, 819–831. https://doi.org/10.1007/s00267-018-1080-z (2018).
ADS Article Google Scholar
62.
Suter, G. W., Traas, T. P. & Posthuma, L. In Species Sensitivity Distributions in Ecotoxicology, Ch 21 (eds Posthuma, L. et al.) 437–474 (CRC Press, Boca Raton, 2002).
Google Scholar
63.
Kortenkamp, A. et al. Common assessment framework for HRA and ERA higher tier assessments including fish and drinking water and multi-species ERA via SSD, population-level ERA via IBM and food web vulnerability ERA. SOLUTIONS Deliverable D18.1 https://www.solutions-project.eu/wp-content/uploads/2018/11/D18.1_SOLUTIONS-D18_1-after-peer-review-clean-V2_Kortenkamp_chm_with_annex.pdf (2018).
64.
Posthuma, L., De Zwart, D., Keijzers, R. & Postma, J. Water systems analysis with the ecological key factor ‘toxicity’. Part 2. Calibration. Toxic pressure and ecological effects on macrofauna in the Netherlands (in Dutch) https://www.stowa.nl/sites/default/files/assets/PUBLICATIES/Publicaties%202016/STOWA%202016-15/STOWA%202016-15B.pdf (STOWA, Amersfoort, the Netherlands, 2016).
65.
Posthuma, L. & De Zwart, D. Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. Environ. Toxicol. Chem. 25, 1094–1105. https://doi.org/10.1897/05-305r.1 (2006).
CAS Article PubMed Google Scholar
66.
Posthuma, L. & De Zwart, D. Predicted mixture toxic pressure relates to observed fraction of benthic macrofauna species impacted by contaminant mixtures. Environ. Toxicol. Chem. 31, 2175–2188. https://doi.org/10.1002/etc.1923 (2012).
CAS Article PubMed Google Scholar
67.
Berger, E., Haase, P., Oetken, M. & Sundermann, A. Field data reveal low critical chemical concentrations for river benthic invertebrates. Sci. Total Environ. 544, 864–873. https://doi.org/10.1016/j.scitotenv.2015.12.006 (2016).
ADS CAS Article PubMed Google Scholar
68.
Posthuma, L. et al. Mixtures of chemicals are important drivers of impacts on ecological status in European surface waters. Environ. Sci. Eur. 31, 71. https://doi.org/10.1186/s12302-019-0247-4 (2019).
Article Google Scholar
69.
Zijp, M. C., Posthuma, L. & Van de Meent, D. Definition and applications of a versatile chemical pollution footprint methodology. Environ. Sci. Technol. 48, 10588–10597. https://doi.org/10.1021/es500629f (2014).
ADS CAS Article PubMed Google Scholar
70.
Bjørn, A., Diamond, M., Birkved, M. & Hauschild, M. Z. Chemical footprint method for improved communication of freshwater ecotoxicity impacts in the context of ecological limits. Environ. Sci. Technol. 48, 13253–13262. https://doi.org/10.1021/es503797d (2014).
ADS CAS Article PubMed Google Scholar
71.
Kapo, K. E. et al. iSTREEM®: an approach for broad-scale in-stream exposure assessment of “down-the-drain” chemicals. Integr. Environ. Assess. Manag. 12, 782–792. https://doi.org/10.1002/ieam.1793 (2016).
Article PubMed Google Scholar
72.
Donnelly, C., Arheimer, B., Capell, R., Dahne, J. & Stromqvist, J. Regional overview of nutrient load in Europe—challenges when using a large-scale model approach, E-HYPE. Understanding fresh-water quality problems in a changing world https://iahs.info/uploads/dms/15569.361%2049-58.pdf (2013).
73.
Posthuma, L., Suter, G. W. I. & Traas, T. P. Species Sensitivity Distributions in Ecotoxicology (CRC-Press, Boca Raton, 2002).
Google Scholar
74.
Drescher, K. & Bödeker, W. Assessment of the combined effects of substances—the relationship between concentration addition and independent action. Biometrics 51, 716–730. https://doi.org/10.2307/2532957 (1995).
MathSciNet Article MATH Google Scholar
75.
EEA. WISE WFD database at https://www.eea.europa.eu/data-and-maps/data/wise-wfd-3 (2012).
76.
Globevnik, L., Koprivsek, M. & Snoj, L. Metadata to the MARS spatial database. Freshw. Metadata J. 21, 1–7. https://doi.org/10.15504/fmj.2017.21 (2017).
Article Google Scholar
77.
Birk, S. et al. Intercalibrating classifications of ecological status: Europe’s quest for common management objectives for aquatic ecosystems. Sci. Total Environ. 454–455, 490–499. https://doi.org/10.1016/j.scitotenv.2013.03.037 (2013).
ADS CAS Article PubMed Google Scholar
78.
Zijp, M. C., Huijbregts, M. A. J., Schipper, A. M., Mulder, C. & Posthuma, L. Identification and ranking of environmental threats with ecosystem vulnerability distributions. Sci. Rep. 7, 9298. https://doi.org/10.1038/s41598-017-09573-8 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar More
